

Delft University of Technology

How bugs are born
a model to identify how bugs are introduced in software components
Rodríguez-Pérez, Gema; Robles, Gregorio; Serebrenik, Alexander; Zaidman, Andy; Germán, Daniel M.;
Gonzalez-Barahona, Jesus M.
DOI
10.1007/s10664-019-09781-y
Publication date
2020
Document Version
Final published version
Published in
Empirical Software Engineering

Citation (APA)
Rodríguez-Pérez, G., Robles, G., Serebrenik, A., Zaidman, A., Germán, D. M., & Gonzalez-Barahona, J. M.
(2020). How bugs are born: a model to identify how bugs are introduced in software components. Empirical
Software Engineering, 25(2), 1294-1340. https://doi.org/10.1007/s10664-019-09781-y

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s10664-019-09781-y
https://doi.org/10.1007/s10664-019-09781-y

Empirical Software Engineering
https://doi.org/10.1007/s10664-019-09781-y

How bugs are born: a model to identify how bugs
are introduced in software components

Gema Rodrı́guez-Pérez1 ·Gregorio Robles2 ·Alexander Serebrenik3 ·
Andy Zaidman4 ·Daniel M. Germán5 · Jesus M. Gonzalez-Barahona2

© The Author(s) 2020

Abstract
When identifying the origin of software bugs, many studies assume that “a bug was intro-
duced by the lines of code that were modified to fix it”. However, this assumption does not
always hold and at least in some cases, these modified lines are not responsible for intro-
ducing the bug. For example, when the bug was caused by a change in an external API. The
lack of empirical evidence makes it impossible to assess how important these cases are and
therefore, to which extent the assumption is valid. To advance in this direction, and better
understand how bugs “are born”, we propose a model for defining criteria to identify the
first snapshot of an evolving software system that exhibits a bug. This model, based on the
perfect test idea, decides whether a bug is observed after a change to the software. Further-
more, we studied the model’s criteria by carefully analyzing how 116 bugs were introduced
in two different open source software projects. The manual analysis helped classify the root
cause of those bugs and created manually curated datasets with bug-introducing changes
and with bugs that were not introduced by any change in the source code. Finally, we used
these datasets to evaluate the performance of four existing SZZ-based algorithms for detect-
ing bug-introducing changes. We found that SZZ-based algorithms are not very accurate,
especially when multiple commits are found; the F-Score varies from 0.44 to 0.77, while the
percentage of true positives does not exceed 63%. Our results show empirical evidence that
the prevalent assumption, “a bug was introduced by the lines of code that were modified to
fix it”, is just one case of how bugs are introduced in a software system. Finding what intro-
duced a bug is not trivial: bugs can be introduced by the developers and be in the code, or
be created irrespective of the code. Thus, further research towards a better understanding of
the origin of bugs in software projects could help to improve design integration tests and to
design other procedures to make software development more robust.

Keywords Bug origins · Bug-introducing changes · First-failing change · SZZ algorithm ·
Extrinsic bugs · Intrinsic bugs

Communicated by: Per Runeson

� Gregorio Robles
grex@gsyc.urjc.es

Extended author information available on the last page of the article.

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-019-09781-y&domain=pdf
mailto: grex@gsyc.urjc.es

Empirical Software Engineering

1 Introduction

During the life of a software product developers often fix bugs1 (Pan et al. 2009; Murphy-
Hill et al. 2015). Research has shown that developers spend half of their time fixing bugs;
while they devote only about 36% to adding features (the rest goes to making code more
maintainable) (LaToza et al. 2006). Fixing a bug consists of determining why software is
behaving erroneously, and subsequently correcting the part of the component that causes
that erroneous behavior (Zeller 2009; Beller et al. 2018; Beller et al. 2015; Ebert et al. 2015).
A developer fixing a bug produces a change to the source code, which can be identified
unambiguously as the bug-fixing change (BFC). However, identifying what change(s) intro-
duced the bug has proven to be a more difficult task (da Costa et al. 2017; Rodrı́guez-Pérez
et al. 2018a).

Nonetheless, identifying the changes that introduced bugs would enable to (1) dis-
cover bug introduction patterns which could be used to develop techniques to avoid
changes introducing bugs (Hassan 2009; Hassan and Holt 2005; Kim et al. 2007); (2)
identify who was responsible for introducing the bug for the sake of self-learning and
peer-assessment (Izquierdo-Cortazar et al. 2011; da Costa et al. 2014; Ell 2013); or (3)
understand how long the bug has been present in the code (e.g., to infer how many released
versions have been affected or how effective the project testing/verification strategy
is (Rodriguez-Perez et al. 2017; Chen et al. 2014; Weiss et al. 2007)). For these, among
other reasons, identifying what changes introduced bugs has been a very active area of
research over the last decade (Abreu and Premraj 2009; Aranda and Venolia 2009; da Costa
et al. 2017).

The vast majority of this research is based on the assumption that a bug was introduced
by the lines of code that were modified to fix it (Śliwerski et al. 2005; Kim et al. 2006;
Williams and Spacco 2008). Although the literature frequently uses this assumption, there is
not enough empirical evidence supporting it. Indeed, recent studies have demonstrated that
well-known algorithms based on this assumption (such as the approach proposed by Sliwer-
ski, Zimmermann, and Zeller (SZZ) (2005)) tend to incorrectly identify the bug-introducing
changes (BICs) (da Costa et al. 2017; Rodrı́guez-Pérez et al. 2018a). For some bugs an
explicit change introducing it does not even exist; the system behaves incorrectly due to
changes that are external to the system (German et al. 2009; Rodrı́guez-Pérez et al. 2018b).

In this work we focus on analyzing how bugs were introduced in a software component,
therefore we evaluate whether the aforementioned assumption holds.

For a major part, this work has been possible because in modern software development
the history of a software product is typically recorded in a source code management (SCM)
system, which enables researchers to retrieve and trace all changes to its source code, and
understand the reasons why a change fixed a bug.

We selected two open source projects, Nova and ElasticSearch, as exploratory case stud-
ies to understand and locate, whenever possible, what change(s) introduced bugs and their
characteristics. We analyze those cases in which a BFC in the SCM of Nova and Elastic-
Search can be associated with a bug. To accomplish this task, we identify bugs in the system

1Throughout this paper, we use the term “bug”, which we define in detail in Section 5. Although bugs could
be considered as “defects/faults” or “failures”, according to Institute of Electrical and Electronics Engineers
and IEEE Computer Society. Software Engineering Standards Committee (2009) and ISO/IEC (2001), we
use “bug” as it is widely used in the literature (Tan et al. 2014; Śliwerski et al. 2005; Chen et al. 2014) and it
is the term developers use normally. We also describe shades between all these terms in Section 2.

Empirical Software Engineering

using the issue tracker system (ITS) (bugs that were fixed directly in the source code with-
out an entry in the bug tracker system (Aranda and Venolia 2009) are outside the scope of
this research). The ITS links directly to the change (commit) that fixed the bug (its BFC).
Using this information, we will navigate back the history of the source code to identify the
origin for each of the bugs in both case studies.

1.1 Goal: A Model of How BugsWere Introduced

Based on this analysis, we propose a model of how bugs were introduced, from which the
assumption that a bug was introduced by the lines of code that were modified to fix it can
be derived as a specific case. The model classifies bugs into two categories: (1) intrinsic
bugs: bugs that were introduced by one or more specific changes to the source code; and
(2) extrinsic bugs: bugs that were introduced by changes not registered in the SCM (e.g.,
from an external dependency), or changes in requirements.

The proposed model will be of help in the complex task of identifying the origin of bugs,
particularly, the idea of the “perfect test”. This idea is fundamental (1) to decide whether a
snapshot2 of a software component is affected by a bug; and (2) to identify which version
of a software component exhibits the bug for the first time. Furthermore, this model is nec-
essary for two main reasons: (1) its application in real-world cases provides the formalisms
(e.g., definitions) to create a manually curated dataset with bug-introducing changes, when
they exist; and (2) it can precisely define criteria to decide the first manifestation of a bug
in the history of an open source software product.

The current absence of such criteria causes ambiguity of what snapshot should be con-
sidered as “exhibiting a bug”, which renders any approach to find the BIC arguable. For
example, software may work properly until the system where it runs on upgrades a library
it depends on (an event that might not be recorded in version control). Note that in this sce-
nario the same snapshot does not exhibit the bug before the library upgrade, but exhibits the
bug after.

In such a case, the changed lines by the BFC were not the cause of the bug (these
lines were correct until the upgrade). Our proposed model establishes criteria that allow
researchers to determine that the snapshot after the upgrade did not introduce the bug but, it
exhibited the bug for the first time.

In the previous example, the snapshot that first exhibited the bug was the one that was
run after the library upgrade. However, which snapshot exhibits the bug? The one before
the library upgrade, or any version that exhibits the bug after the library upgrade? Currently,
there is not a common way to assess that the changes identified as first exhibiting the bug by
current approaches (Śliwerski et al. 2005; Kim et al. 2006; Thung et al. 2013) are true/false
positives/negatives since they do not have into account this example.

Hence, in this paper, we set out to address the following question:

“How can we identify the origin of a defect based on information in source control
systems?”

1.2 Research Questions

In particular, to answer our central question, we first defined specific criteria that help deter-
mine whether a change in the source code introduced a bug, and the moment this change was

2A snapshot is the state of the system after a commit.

Empirical Software Engineering

introduced. Then, we studied these criteria in some real-world cases. Thus, we addressed
the following research questions (RQs):

– RQ1: Is there a criteria to help researchers find a useful classification of changes lead-
ing to bugs?
Motivation: Our designed model provides defined criteria to decide whether a certain
bug is present in a snapshot. However, we need to ensure that these criteria can be
applied to real-world projects to determine whether a change in the source code intro-
duced a bug. Thus, we used the model to understand and classify the root cause in 116
bugs. This process produced two manually curated datasets that contain a collection of
bugs, and information on a) the change to the source code that introduced the bug, or
b) the absence of such a change.

– RQ2: Do these criteria help in defining precision and recall in four existing SZZ-based
algorithms for detecting bug-introducing changes?
Motivation: The positive answer to RQ1, at least for some cases, helped us create
manually curated datasets that may be considered as the “ground truth” for some bugs.
We use this “ground truth” datasets to compare four existing SZZ-based algorithms
that identify BICs and compute their performance (in terms of precision, recall and F-
score), and compare them against each other. The analysis of the results helps to find
ways to improve them.

1.3 Contributions

This work is a further development of our preliminary work (Rodrı́guez-Pérez et al. 2018b),
which we are extending with the following main results, based on prior literature and
empirical findings:

1. A model that, given a BFC, describes when the corresponding bug was introduced,
consisting of (i) a set of explicit assumptions on how bugs were introduced, (ii) specific
criteria for deciding whether a bug is present in a snapshot, (iii) a process for determin-
ing which change in the source introduced the bug, or the knowledge that it was not
introduced by a change, and (iv) a proposed terminology of the components that play a
role in the bug introduction process.

2. An operationalization of the process to determine which change first exhibited the
bug that can be used to (i) classify the bug as intrinsic or extrinsic, (ii) identify the first
snapshot that contains the bug.

3. A unified terminology with all relevant concepts involved in the origin of bugs. A
common terminology is needed because we have found in the literature that scholars
use different wording for the same concepts or, even worse, use the same wording for
different concepts. This situation hinders the understanding of the bug origin problem
and can be solved with a unified terminology.

4. An empirical study on two open source software systems (ElasticSearch and Nova)
that exemplifies how our model and operationalization can be applied to two real
open source projects. The result of this study is a manual curated reference dataset
that annotates a set of bug fixing changes with the change that introduced the bug, or
with the absence of such a change (in our case we do it for a collection of 116 bug
reports).

5. An evaluation of the performance of four existing SZZ-based algorithms for the iden-
tification of BICs. This evaluation provides further insights on how these algorithms
could be improved.

Empirical Software Engineering

The rest of this paper is structured as follows. We first introduce some motivating exam-
ples in Section 2 to support the convenience of developing a model to describe how bugs
were introduced. Related work is presented in Section 3. Then, we introduce the general
framework and the assumptions we consider, in Section 4. Section 5 describes the model,
the associated terminology and the process to determine which change first exhibited the
bug. Then, Section 6 details the operationalization of these process. Section 7 introduces
the case studies and the empirical results. Section 8 discusses potential applications, guide-
lines and improvements, and reports on threats to validity. Finally, we draw conclusions and
point out potential future research in Section 9.

2 Background andMotivation Examples

Software is prone to defects due to its inherent complexity and the developers’ difficulties
to understand its design (Itkonen et al. 2007). Therefore, defects and how they are intro-
duced in code have been an active area of research (see Basili and Perricone (1984), Mockus
and Weiss (2000), and Boehm and Basili (2005) for some seminal work on the matter of
understanding and classifying how defects are introduced). According to IEEE Standard
1044 (2009), a defect is “an imperfection or deficiency in a work product where that work
product does not meet its requirements or specifications and needs to be either repaired or
replaced”. When the defect is present in software, it is considered a “fault” (manifestation
of an error in software). A defect/fault can be introduced in different phases of a software
product life (e.g., planning, coding, deployment) due to many reasons, such as missing
or changing requirements, wrong specifications, miscommunication, programming errors,
time pressure, poorly documented code, among others (Nakajo and Kume 1991; Jacobs et al.
2007; Nuseibeh and Easterbrook 2000). When the software is executed and the system pro-
duces wrong results, defects may lead to failures, described as “[e]vents in which a system
or system component does not perform a required function within specified limits” (Institute
of Electrical and Electronics Engineers and IEEE Computer Society. Software Engineering
Standards Committee 2009). Developers, and in many cases researchers too, typically use
the term “bug” to refer both to defects/faults (deficiencies) and failures (their manifesta-
tion), depending on the context. For example, “fixing a bug” usually means “fixing a failure
by correcting the faulty code” while “reporting a bug” means “reporting a failure”. A sin-
gle fault may lead to several failures and, in some cases, a single failure may be caused by
several faults. Through this paper, we will use in general the term “bug”, trying to specify,
when that is relevant and is not obvious from the context, if we refer to failures or faults. We
will also assume that when a “bug is fixed” means that “a failure was fixed by correcting at
least one fault”. In general, we will be interested in the first fault (per order of introduction
in the source code), in case there are more that one causing a failure.

However, neither IEEE 1044 (2009) nor ISO/IEC 9126 (2001) provide a way of deter-
mining whether some code can be considered buggy (or faulty) when it was written. Of
course, researchers and developers may know if some code is considered faulty when a cer-
tain failure is fixed, but that is not enough to know if it could also be considered faulty when
it was written, or at that time it was perfectly correct, according to the context of the sys-
tem at that moment. The lack of definitions and some previous unconsidered origins3 for

3The current literature does not consider a change that has not been recorded in the SCM of a project (e.g.,
in requirements, to external APIs, to the environment) as “the origin of a bug”.

Empirical Software Engineering

Fig. 1 Intrinsic bug: the bug-introducing change (BIC) is recorded in the source code management (SCM).
The first-failing change (FFC) and the first-failing moment (FFM) coincide with the BIC

bugs (Rodrı́guez-Pérez et al. 2018b) cause difficulties to correctly identify which change
introduced a fault, and even if the fault was introduced by it, or by a later change in the
context of the system. Furthermore, with a precise definition of “introducing a fault” (from
now on, “introducing a bug”), researchers can identify whether a change that exhibits a
given bug is also the change responsible for introducing it (i.e., the bug-introducing change
(BIC)) or whether this change corresponds to the first time that the system manifested the
bug. In other words, the fact that before a given change the system does not exhibit a
bug, but after it, the bug appears, is not enough to consider that the change introduced the
bug.

We will refer to this later case with the concept of “first-failing change” (FFC), in the
sense that this change did not introduce the bug, but there was a “first-failing moment”
(FFM) –not recorded in the SCM– in which the bug manifests itself for the first time. Thus,
in this work, when there is an intrinsic bug, the bug-introducing change, the first-failing
change and the first-failing moment are the same (see Fig. 1). However, when there is an
extrinsic bug, there is no bug-introducing change in the SCM and the first-failing change is
the commit in our SCM right after the first-failing moment occurs (see Fig. 2).

Bugs can be classified as (a) intrinsic, when the bug has a bug-introducing change
(BIC) which coincides with the first-failing change (FFC) and the first-failing
moment (FFM), or (b) extrinsic, when the bug does not have a BIC but a FFC
which differs from the FFM.

Extrinsic bugs are caused by changes that are not recorded in the SCM. These bugs are
not the result of introducing faulty code, but might be due to incorrect assumptions, changes
in requirements, dependencies on the run-time environment, changes to the environment,
bugs in external APIs, among others. As far as we know, this kind of bugs has not been stud-
ied before from the perspective of their introduction; this work aims to offer more insights
into such bugs. In the next examples, we show some extrinsic bugs and motivate the interest
in researching them.

Fig. 2 Extrinsic bug: the first-failing moment (FFM) does not coincide with a change in the source code
management (SCM). There is no bug-introducing change (BIC), and the first-failing change (FFC) is the first
change recorded in the SCM after the first-failing moment FFM

Empirical Software Engineering

Fig. 3 ElasticSearch bug report #3551 (Example 1)

Example 1 Figure 3 shows a bug report from the ElasticSearch project.4 The bug occurred
when downloading a site plugin from GitHub. In this case, the dependency of the source
code of ElasticSearch on the GitHub API caused the bug. Around seven months after insert-
ing the original lines, the GitHub API changed and the source code in ElasticSearch became
buggy because the plugin no longer worked. Figure 4 shows the lines modified to fix the
bug. The original version of these lines did not introduce the bug, but they are the lines where
the bug manifested itself (after the change in the GitHub API). Thus, there is no change
to the source code of ElasticSearch itself that introduced the bug because when those lines
were introduced the GitHub API worked as the developer expected. Table 1 summarizes
the existence of the bug-introducing change, first-failing change and first-failing moment in
this example.

Example 2 Figure 5 offers another bug report from ElasticSearch5. This bug pertains to
setting permissions in subdirectories; it was caused by the post-installation script setting all
data permissions to 644 inside of /etc/elasticsearch, and failing to set appropriate
permissions (755) to subdirectories. The only line that was modified to fix this bug was
line 37 (see Fig. 6). However, as directories did not exist in /etc/elasticsearch
when the original version of line 37 was introduced, we can conclude that there is no BIC.
Table 2 summarizes the existence of the bug-introducing change, first-failing change and
first-failing moment in this example.

Example 3 Some bugs manifest themselves if the software is used in a different environ-
ment than it was intended for. Figure 7 shows a bug report in Nova describing a failure when
using Windows Server 2012; Windows Server 2012 introduced support for projecting a vir-
tual NUMA topology into Hyper-V virtual machines. Here, as well, there is no BIC, and the
manifestation of the bug depends on the environment used. Table 3 summarizes the exis-
tence of the bug-introducing change, first-failing change and first-failing moment in this
example.

The bug in Example 1 manifested itself due to a change to an external artefact upon
which the software depends. The bug in Example 2 manifested itself due to an incor-
rect assumption (in this case, an omission of a requirement). Example 3 shows a bug

4https://github.com/elastic/elasticsearch/issues/3551
5https://github.com/elastic/elasticsearch/issues/3820

https://github.com/elastic/elasticsearch/issues/3551
https://github.com/elastic/elasticsearch/issues/3820

Empirical Software Engineering

Fig. 4 Bug Fixing commit of #3551 (Example 1)

Table 1 First-failing moment (FFM), first-failing change (FFC) and bug-introducing change (BIC) in
Example 1

Where Presence in the SCM

BIC None (extrinsic bug) No

FFM When the GitHub API changed No

FFC First commit after the GitHub API changed Yes

Fig. 5 ElasticSearch bug report #3820 (Example 2)

Fig. 6 Bug Fixing commit of #3820 (Example 2)

Table 2 First-failing moment (FFM), first-failing change (FFC) and bug-introducing change (BIC) in
Example 2

Where Presence in the SCM

BIC None (extrinsic bug) No

FFM When the requirements changed No

FFC First commit after requirements changed Yes

Empirical Software Engineering

Fig. 7 Bug caused by the operating system where the code is being used (Example 3)

caused by a change in the environment, as the bug manifested when the software was used
in a platform it did not officially support at the time of writing the code. These cases
are examples of extrinsic bugs, in which there is no bug-introducing change causing the
bug.

As we can observe, extrinsic bugs are not the result of an explicit change in the SCM.
Thus, it is necessary to develop new models to describe their origin.

3 RelatedWork

Traditionally, in mining software repositories, researchers identify the lines of source code
that introduced the bug assuming that the last change that touched the fixed line(s) in a bug-
fixing change (BFC) introduced the bug (Zeller et al. 2011; Śliwerski et al. 2005; Williams
and Spacco 2008). Thus, the introduction of bugs has been studied over the last years
from the BFC backward by using two different methods: dependency-based and text-based
methods.

Dependency-based approaches use changes in the relationship between control and data
in the code. Ottenstein and Ottenstein proposed the first program dependence graph to
be used in software engineering (Ottenstein and Ottenstein 1984). This approach achieves
higher accuracy than text-based approaches (Sinha et al. 2010) in identifying the bug-
introducing change (BIC), taking into account the semantics of the source code, because it
addresses some of the limitations of text-based approaches (Davies et al. 2014). However,
dependency-based approaches are not appropriate for identifying the origins of all bugs

Table 3 First-failing moment (FFM), first-failing change (FFC) and bug-introducing change (BIC) in
Example 3

Where Presence in the SCM

BIC None (extrinsic bug) No

FFM When running Windows Server 2012 No

FFC The commit that introduced the Virtual NUMA functionality Yes

Empirical Software Engineering

because they have some implementation challenges. For instance, these approaches cannot
identify the BIC when the BFCs do not change the method’s dependencies.

On the other hand, the text-based approaches are more popular when identifying the
BIC since they pose less implementation challenges (Davies et al. 2014), thus the related
work section focuses on these approaches. Text-based approaches are based on textual dif-
ferences to discover addition, deletion and modifications lines between the BFCs and its
previous version, and then backtrack the modification and deletion lines to identify the
change that introduced the bug. The approach proposed by Sliwerski, Zimmermann, and
Zeller (SZZ) is a popular text-based algorithm (Rodrı́guez-Pérez et al. 2018a), improv-
ing on previous text-based approaches (Čubranic and Murphy 2003; Fischer et al. 2003a;
2003b). As such, it assumes that the last change that touched the fixed line in a BFC intro-
duced the bug (Śliwerski et al. 2005) and relies on historical data to identify changes in
the source code that introduced bugs. For that, the algorithm links the SCM and the ITS in
order to identify the BFC and then, it identifies the BIC. To that end, it employs the diff
functionality to determine the lines that have been changed between the BFC and its previ-
ous version and the blame functionality to identify the last change(s) to those lines. Finally,
it uses a temporary window from the bug report date until the BFC date to remove false
positives.

Since the inception of SZZ two main improvements have been proposed: Kim et al. used
annotation graphs to reduce false positives and gain precision by excluding comments, blank
lines, and format changes from the analysis (Kim et al. 2006); and Williams and Spacco
improved the line mapping algorithm of SZZ by using weights to map the evolution of a
line (Williams and Spacco 2008). Many studies have largely used these SZZ algorithms
to predict, classify and find bugs. Kamei et al. proposed a model to identify defect-prone
changes instead of defect-prone files or defect-prone packages; this model allows develop-
ers to review these risky changes while they are still fresh in their minds, which is known
as ‘Just-in Time Quality Assurance’ (JIT) (Kamei et al. 2013). Kim et al. showed how
to classify file changes as buggy or clean using change information features and source
code terms (2008). Tantithamthavorn et al. studied how to improve the bug localization
performance assuming that a recently fixed file may be fixed in the near future (2013).
Nagappan et al. used the SZZ idea of mapping as the base to associate metrics with post-
release defects, and built regression models to predict the likelihood of post-release defects
for new entities (2006). Zimmermann et al. used the SZZ to predict bugs in large software
systems (2007).

Recently, Da Costa et al. have made an important effort proposing a framework for eval-
uating the results of five SZZ implementations. This framework assesses the data generated
by SZZ implementations and flags changes as not likely to be BICs. For that, this frame-
work relies on three criteria: (1) the earliest bug appearance which is related to the number
of disagreements that SZZ has with the affected-version reported; (2) the impact that a BIC
has in future bugs; and (3) the likelihood that the BIC given by SZZ is the real cause of the
bug computed as the difference in days between the first and the last suspicious BICs; if
this difference is several years, the commit is removed. Their findings showed that current
SZZ implementations still lack mechanisms to correctly identify real BICs (da Costa et al.
2017). In this work, we describe how to use our model to identify real BICs, which is one
of the the major problems of SZZ algorithms. While Da Costa et al. base their study on the
reliability of SZZ results with computing metrics, our aim is to describe a model that can
help to reason about whether an earlier change in the SCM caused the bug.

Furthermore, Campos Neto et al. have studied the impact of refactoring changes on
SZZ and have proposed the RA-SZZ implementation (Refactoring Aware-SZZ). Refactoring

Empirical Software Engineering

changes are one of the major limitations of SZZ since the algorithm blame them as bug-
introducing changes when, in fact, these changes did not introduce the bug because they did
not change the system behavior. The authors observed that 6.5% of the lines blamed as BICs
by SZZ were refactoring changes and that 19.9% of the lines removed in a BFC were related
to refactoring changes (2018). In addition, Campos Neto et al. re-evaluated the RA-SZZ
implementation in Defects4J dataset and observed that 44% of the lines identified as BICs
by RA-SZZ are very like to real BICs. However, there exist refactoring operations (31.17%)
and equivalent changes (13.64%) that are misidentified by RA-SZZ (2019). While Cam-
pos Neto et al. assumed that the BIC should be in the evolutionary history of the lines that
have been changed in a BFC, our work takes a backward step to understand how bugs were
introduced and describe a model that can help with this identification. In our model, the
evolution history of the lines that have been changed in a BFC can be derived as a specific
case of how bugs were introduced.

More recently, Sahal and Tosun proposed a way to link the code additions in a fix-
ing change to a list of candidate BICs (2018). The authors state that their approach works
well for linking code additions with previous changes, although it still produces many false
positives since this approach assumes that the BIC is one of the changes surrounding the
new additions in a BFC. Our model helps researchers to understand whether an incomplete
change caused a bug and then, the BFC fixed this bug by adding only new lines of source
code. However, our model does not assume that the BICs have to be the changes surrounding
the new additions.

In addition, other studies observed serious limitations when using both dependency-
based and text-based approaches. These limitations are addressed in the model proposed
in this work. Murphy-Hill et al. observed that when developers fix bugs, they have dif-
ferent options as to how to fix them and each decision may lead to a different location
where a bug was introduced (2015). Qualitatively, the authors showed the many factors
that influence how bugs are fixed, most of them being non-technical. These factors may
affect bug prediction and localization because the bug fixing cannot be at the same loca-
tion as the bug, or because the bug fixing might be covering the symptom and not the
cause of the bug. Rodrı́guez-Pérez et al. performed a systematic literature study on the use
of the SZZ algorithm and quantify its limitations (2018a). Prechelt and Pepper offered an
overview of the limitations of the text-based approaches when they are used for Defect-
Insertion Circumstance Analysis (DICA) (2014). The authors observed that BFCs may have
touched non-buggy lines, and even when they touched those lines, the actual BIC may
have been made earlier. Also, they stated that bugs and issues are not easy to distinguish
in bug trackers, causing low reliability when mapping BFCs with BICs. In particular, the
precision of mapping BFCs with BICs in their case study was only 50% due to changes
considered as bugs that, in fact, were not bug reports (e.g., feature request, refactoring).
Furthermore, others authors highlighted limitations to map BFCs with BICs due to some
characteristics of the software that can negatively affect textual approaches. For exam-
ple, German et al. investigated bugs that manifested themselves in unchanged parts of the
software and their impact across the whole system (2009). Chen et al. studied the impact
of dormant bugs (i.e., introduced in a version of the software system, but are not found
until much later) on bug localization (2014). As opposed to the previous studies that have
relied on the lines modified in the BFCs to identify the BIC, this study proposes (1) a
model that helps researchers to reasoning whether the origin of a bug is intrinsic or extrin-
sic; and (2) how researchers can operationalize the model to identify the BIC, when it
exists. Our preliminary approach (Rodrı́guez-Pérez et al. 2018b) was the seed to extend
the work and provide a more comprehensive description of how to correctly identify BICs.

Empirical Software Engineering

Furthermore, in this work we detail the process of using the model and its operational-
ization to build reliable datasets that can be used to evaluate four existing SZZ-based
algorithms.

4 The Framework and its Assumptions

Given a bug-fixing change (BFC), identifying its bug-introducing change (BIC) is not nec-
essarily straightforward as bugs can have different origins as shown in Section 2. Thus, in
order to identify when and how bugs were introduced, we designed a model that consists in a
framework based on five assumptions. These assumptions enable the framework to describe
the first time that the software exhibited the bug according to a BFC.

The model we propose is based on the following five assumptions:

1. The model assumes that there is version control for the software.
2. The model assumes that it has means to identify the bug-fixing change

(BFC).
3. The model assumes that it is possible to know whether a bug is present

in the system or not.
4. The model assumes that it is possible to identify a candidate of the bug-

introducing change (BIC) that corresponds to the bug-fixing change.
5. The model assumes that the fix is perfect.

The first assumption allows researchers to track how code changes as it evolves, and to
recover any past version of it. The second one enables researchers to identify the BFC, and to
link it to the contextual information of how the bug was fixed. The third assumption permits
researchers to know when the software exhibited the bug that was fixed in the BFC. The
fourth one allows researchers to identify whether the bug has been previously introduced in
the SCM. And the fifth assumption enables researchers to decide that the bug is no longer
present in the BFC snapshot, but it was present in a previous snapshot.

These assumptions can, to some extent, be implemented with today’s technologies and
processes. For some of them, however, we required theoretical conceptualizations and sim-
plifications, as we discuss in an extensive way in the subsequent sections. We, therefore,
offer details on how the model implemented each assumption. Furthermore, we inform
researchers about known limitations and possible solutions for all assumptions. In those
cases where an assumption, due to its theoretical or practical novelty, was elaborated more,
we also provide context and introduce the necessary definitions and concepts.

4.1 TheModel Assumes that there is Version Control for the Software

4.1.1 Implementation

The model assumes that the development history of the project is recorded in the source
code management systems (SCM), and that the record is complete, i.e., it starts from the
very first change6 to the code. Thus, all changes can be tracked because they were done
via a version control system (VCS) tool (such as git). For each change we can recover the

6A change is what developers do in a single commit

Empirical Software Engineering

state of the system (i.e., snapshots of the system) before and after applying that change; and
retrieve the differences between the two snapshots.

4.1.2 Limitations and Solutions

Nowadays, the history of a project is recorded in SCM, enabling researchers to reconstruct
the process by which the software project was created (Bird et al. 2009). Although old
software projects can migrate their history from previous repositories, the migration may not
be complete (Gonzalez-Barahona et al. 2014). In addition, the use of SCM imposes some
possible limitations that can alter how it was created. For example, changes may have been
reordered, deleted or edited (Bird et al. 2009). In particular, commits in a pull-request might
be reworked (in response to comments), and only those that are the result of the peer-review
can be observed (Kalliamvakou et al. 2014). Another aspect to take into consideration is the
effect of gatekeepers, who act as a filter/dispatcher for the incoming changes (Gousios et al.
2015; Canfora et al. 2011).

4.2 TheModel Assumes that it has means to Identify the Bug-Fixing Change (BFC)

4.2.1 Implementation

When a bug report is closed by a BFC, the model assumes that it has means for linking the
BFC with the bug report. If the system also uses a code review system, the model assumes
there is a way to find the discussion corresponding to a given BFC. Therefore, a bug report
can be linked to its BFC and the information related to its review.

4.2.2 Limitations and Solutions

Several studies that focus on issue tracker systems used to collect bug reports or feature
requests have demonstrated that a substantial part of bug notifications are not correctly cat-
egorized, and are functionality requests or suggestions for refactoring. Herzig et al. reported
33.8% (2013), while Rodrı́guez-Pérez et al. reported up to 40% (2016). In addition, Herzig
et al. pointed out that 39% of files marked as defective have never had a bug (2013).

Furthermore, when the bug notifications are correctly identified as a bug report, previous
studies indicate several limitations of linking the BFC with the bug report. For example, the
fixing commit cannot be linked to the bug (Bird et al. 2009), or the fixing commit was linked
to a wrong bug report, as they do not correspond to each other (Bissyande et al. 2013).

A number of tools have been developed to increase the linkage between bugs and fixes,
among others, EpiceaUntangler (Dias et al. 2015), BugTracking (Rodrı́guez-Pérez et al.
2016), Relink (Wu et al. 2011), Rclinker (Le et al. 2015), or Frlink (Sun et al. 2017). The
model can use them in order to reduce these limitations, at least partially.

4.3 TheModel Assumes that it is Possible to KnowWhether a Bug is Present
in the System or Not

4.3.1 Definitions and Concepts

To study the origin of bugs, our model needs to unequivocally determine if the bug is present
for any given snapshot of the software system. In this way, we will be able to know when
the bug appeared and when it has been fixed.

Empirical Software Engineering

We need to consider what it means that “the bug is present”. Since there is no definition
for ensuring that a bug is present in a snapshot, we build upon the definition of “defect” by
IEEE Standard 1044 (2009):

“Defect: An imperfection or deficiency in a work product where that work product
does not meet its requirements or specifications and needs to be either repaired or
replaced.”

We will slightly adapt this definition in three ways: i) we will use the term “bug”, ii)
we are only concerned with “software products”, and iii) we will add temporal behavior,
by adding “at the moment of producing the snapshot”. The adapted definition will be as
follows:

“Bug: An imperfection or deficiency in a software product where that software
product does not meet its requirements or specifications, as defined at the moment
being considered, and needs to be either repaired or replaced.”

Therefore, to know if a bug is present in a certain snapshot of the product, the model
will check if it meets requirements or specifications at the moment of the production of
the snapshot. This introduces an essential aspect as some lines of code might be consid-
ered a bug for a certain snapshot, because of the specifications at that point. However,
the exact same lines could be considered correct if present in another snapshot if at that
point some other specifications were applicable and were met (e.g., in Example 3 in
Section 2).

As a result, we can define: A bug was present for the first time in the first snapshot where
the fixed code can be considered incorrect in any branch that ends merged in the BFC’s
branch, according to the specifications applicable to that snapshot. This definition considers
that the bug can propagate several times, e.g., in multiple branches that lead to the BFC.

When developers fix a bug, they can write a test that fails if the bug is present (Beller
et al. 2018). Thus, if developers could run such a test for every snapshot, they would see
that the bug is not present in those snapshots where the test passes. We consider a test as
perfect, if it can be run on any past version of the software.

This perfect test is a theoretical construct that may be challenging to create in practice.
However, it provides an essential and precise definition of “faulty code at the time of writ-
ing it”. Furthermore, this perfect test can be seen as a kind of regression test7 which will
evolve and adapt depending on the software’s changing circumstance (e.g., dependencies,
APIs, even requirements) for each past version. The perfect test would encompass all the
knowledge about the behavior of the software in the past, thus forming an oracle for each
previous version.

4.3.2 Implementation

Our model assumes that it is possible to know whether a bug is present in a system or
not by using perfect tests. These tests would create a signal that pinpoints when the bug
was present. For that, they can also be used with past snapshots, before the bug was fixed.
Theoretically, these perfect tests would fail according to our previous definition8.

7“regression testing is an activity aimed at showing that code has not been adversely affected by changes”
(Rothermel and Harrold 1996)
8 “the tests would fail in the first snapshot preceding the snapshot that fixed the considered bug, according to
the specifications applicable for that first snapshot, i.e., for the requirements that were known and specified
at that point”.

Empirical Software Engineering

The idea of perfect knowledge replicates the idea of the global observer in distributed
systems (Chandy and Lamport 1985); it is an idealized situation (i.e., difficult or even
impossible to implement), but a beneficial concept for reasoning about the system, and for
comparing practical implementations and algorithms.

In order to run the tests for previous snapshots, these tests might have to be updated
“for past conditions”, i.e., they have to be adapted to structural changes in the system under
test (Moonen et al. 2008). In addition to the tested module, the tests need their dependencies:
libraries, compilers or interpreters, external components and maybe even services accessed
via remote APIs Zaidman et al. (2008, 2011). Thus, a test fails or passes not only for a
certain snapshot, but for a certain snapshot of all those dependencies.

Dependencies can be considered as a part of the requirements (Mens et al. 2005): the
module is expected to work, at any given moment, with a certain set of dependencies. Thus,
the test should pass for that set. However, when dependencies change, the test may start
failing, even if it is run on the same snapshot (Zaidman et al. 2011; Demeyer et al. 2002;
Moonen et al. 2008; Marsavina et al. 2014; Palomba and Zaidman 2019; 2017). For exam-
ple, the module can be expected to work with Python 2, but at some point the project decides
that it should also run with Python 3. That will break large parts of the code, and many tests
will fail when the new interpreter is introduced. Therefore, tests need to evolve to take into
account the new dependency, in the same way they need to evolve to take into consideration
any change in requirements.

Thus, the final definition of bug that we use in this work is:
“Bug: An imperfection or deficiency in a software product that causes a given test to fail.

The test will be defined for each snapshot of the product, according to the requirements and
specifications applicable for that snapshot, and for the dependencies supported in it, and
will fail for a snapshot only if the bug is present in that snapshot.”

Although this definition may be difficult to implement in practice, it provides an accurate
test to know when a bug is present, and therefore, when it is introduced. Assuming the model
has perfect knowledge about the requirements, specifications, dependencies, and perfect
tests are available, it can clearly describe when the bug is present, and from there on, it also
knows when the bug was introduced, and how.

4.3.3 Limitations and Solutions

Being able to gather information of previous requirements, documentation or dependencies
of a project in previous versions is not always easy, as shown by Zaidman et al. (2011).
Some projects use build tools such as Maven or Gradle, and researchers can analyze the
build scripts looking for dependencies or plugins that have changed. But, in other cases
there is no formal record of such information. Thus, in the usual case a perfect test is not
feasible. However, the contextual information found in issue tracker systems, code review
systems and control version systems may help to write the tests, and to identify the origin
of bugs.

Knauss et al. studied how the open communication paradigm in software ecosystems
provides opportunities for ‘just-in-time’ requirement engineering (RE) (2014). They pro-
pose T-Reqs, a tool based on git that enables agile cross-functional teams to be aware
of requirements at system level and allows them to efficiently propose updates to those
requirements (Knauss et al. 2018). This tool can support successful implementation in our
model, since researchers can match changes/updates in the requirements with the changes
in the source code and then, our model can use this information to build the perfect
knowledge.

Empirical Software Engineering

4.4 TheModel Assumes that it is Possible to Identify a Candidate
of the Bug-Introducing Change (BIC) that Corresponds to the Bug-Fixing
Changes

4.4.1 Implementation

To identify the BIC, the model assumes that there is a perfect test for the fixed bug. Any
approach that uses the representation of the model should start by analyzing how to link the
BFC to the contextual information of how the bug was fixed. Then, it can start looking for
the corresponding BIC.

Finally, once the approach has the test for each snapshot, it runs the test for all the previ-
ous snapshots until it finds the first snapshot that fails according to a BFC or until the test
cannot be run or build because the tested functionality is not implemented yet.

The theoretical possible outputs of the test are:

– The test passes for all snapshots. This means that the bug was never present until the
BFC. This is impossible because if the test is perfect, that would mean there was no
bug to fix. So, the model ignores this case.

– The test fails for at least some of the snapshots. This means that there will be a first
snapshot for which the test fails. That snapshot will be the candidate BIC. It can be
no other, because if the bug was in an earlier or later snapshot, the test would also fail
for it.

– The test is not-runnable or not-building. The model does not consider these scenarios
since it assumes that perfect tests can be updated to previous snapshots.

Once there is a candidate for the BIC, researchers can analyze why the test failed and
determine whether this change introduce the bug of not:

– If there was no change in the source code that made the test fail, but the reason for
the failure of the test was a change in requirements, specifications or dependencies, the
candidate BIC is not responsible for introducing the bug. The change will be considered
as the FFC. The model assumes that the bug is extrinsic because there is no new code
causing the test to fail – the code introduced was correct (at least with respect to this
bug).

– In any other case, the model assumes that the bug is intrinsic because the change
includes code that causes the test to fail. Therefore, the candidate BIC is the
BIC.

4.4.2 Limitations and Solutions

In practice, when manually inspecting the changes, we may not need perfect knowledge; we
only need to be able to assert on whether the definition of a bug is fulfilled. We also need to
consider that when we roll back into earlier snapshots, we could find a moment when the test
cannot be run because the feature being tested was not implemented at that moment. Even
in the presence of build automation tools such as Maven, it is sometimes not that easy to go
back in time to rebuild a project (Zaidman et al. 2011). Moonen et al. have shown that about
2/3 of the refactoring changes from Fowler et al. (1999) can actually result in non-building
test cases because the refactoring changes the original interface and the test code requires
a change in the types of classes that were involved in the refactoring (Moonen et al. 2008).
In contrast, Hilton et al. have recently performed a study on test coverage evolution using

Empirical Software Engineering

Continuous Integration builds (Beller et al. 2017), reporting that this modern infrastructure
eases building prior versions of a software project considerably (Hilton et al. 2018).

We could consider implementing these perfect tests by automatically generating them,
e.g., using EvoSuite (Fraser and Arcuri 2013a; Palomba et al. 2016). However, automati-
cally generating tests raises a number of issues. First, the generated test may not run or build
in previous snapshots. Second, the test may not be precise enough since there will be lack of
information to understand and implement the specifications and requirements. In fact, even
if developers can implement the perfect tests manually because they have enough informa-
tion, the results are not binary, as they might return four values: Pass, Fail, Not-Runnable
and Not-Building. The test should return not-runnable when the feature to test is not present,
and return not-building when there is an issue with the dependencies trying to be built in
that snapshot (Zaidman et al. 2011; Moonen et al. 2008).

Nevertheless, researchers can use some test generation tools like EvoSuite (Fraser and
Arcuri 2013a, b) to further investigate and solve theses issues. In particular, in future work
we can investigate targeted search-based strategies to update tests after, e.g., refactoring
operations (Vonken and Zaidman 2012).

Finally, another limitation is the assumption that the requirements in previous snapshots
were always correct. If we combine that with the assumption that the tests are perfect and
we can update them for conditions in the past, we run the risk of running into faulty require-
ments in previous snapshots (Viller et al. 1999). If we roll back the tests in this situation,
the tests are likely to not fail.

4.5 TheModel Assumes that the Fix is Perfect

4.5.1 Implementation

This means that the bug is no longer present after being fixed (i.e., after the BFC), and the
bug report will not be reopened in the future. To ensure that the bug is no longer in the
system, the model again uses the concept of perfect tests: if the snapshot of the BFC passes
the test, the model ensures that, under the same specifications and requirements, the bug has
been removed. We would then have what we call perfect fixing.

4.5.2 Limitations and Solutions

Perfect fixing is not always possible in practice and the bug report might need to be
reopened (Zimmermann et al. 2012; Shihab et al. 2013).

In some cases, bug reports are reopened because they were not correctly fixed. Xia et al.,
reported that 6%-26% of the bug reports in Eclipse, Apache HTTP and OpenOffice.org were
reopened. In this context, they proposed the ReopenPredictor tool which uses various kinds
of features such as raw textual information or meta features to build a classification-based
framework and predict whether a bug report would be reopened (2015).

Furthermore, Zimmermann et al. investigated the reasons why bug reports were reopened
at Microsoft. Their findings showed that bug reports were typically reopened because either
a tester did not provide enough information in the report and there was a misunderstanding
about the cause of the bug, or the bug was a regression bug9 (Zimmermann et al. 2012).

9“A regression bug is a bug which causes a feature that worked correctly to stop working after a certain
event” (Brooks 1995)

Empirical Software Engineering

4.6 Summary of the Assumptions

Table 4 summarizes the need, limitations and possible solutions for each assumption of the
model.

5 TheModel

In this section, we formally define the notions introduced in Section 2. We do this with two
purposes in mind: (1) to identify the first manifestation of a bug in the history of a soft-
ware product and, (2) to provide the formalisms used to create and describe a manually
curated dataset which can be considered as the “ground truth”. It is important to empha-
size that the model is not a mathematical model solving relevant equations or characterizing
the system, but it is a conceptual model that qualitatively represents the complex bug intro-
duction process and highlights general rules and concepts. To that end, we use an example
that identifies the bug-introducing change (BIC) or the first-failing change (FFC) given a
bug-fixing change (BFC). This example describes a software product called Project A (PA)
which uses an external library called ExtL. Figure 8 shows the model as a black box, with
the information of a bug-fixing change as input and a change to the software identified as
the bug-introducing change or the first-failing change as output.

5.1 Main Concepts & Unifying Terminology

We found that a unique terminology to name each of the concepts when identifying bug-
introducing changes did not exist. We think that a common terminology would be desirable
because researchers currently refer to different concepts as the same, and this can cause
problems when trying to understand or reproduce previous studies. Table 5 offers a com-
parison of the terminology used in this work and how the concepts have been referred to in
previous publications. To the best of our knowledge, no previous study has presented a com-
prehensive list of all these concepts and terms used, and neither has someone investigated
whether the terms are being used consistently.

The terminology describes that developers using the source code management (SCM) to
write software in terms of commits, observable changes (additions, deletions or modifica-
tions) performed on a file (or set of files). The impact of a commit on a system might be rep-
resented as a snapshot, which is a state of the project after the commit has been performed.

Depending on the origin of the bug, we distinguish between: an extrinsic bug which has
its origin in a change not recorded in its source code,10 or an intrinsic bug which has its ori-
gin in a change to the source code, this change is the bug-introducing change (BIC). Notice
that extrinsic bugs do not have a bug-introducing change but a first-failing change (FFC).

To identify the bug-introducing change, we analyze the changes that fixed the bug in a
bug-fixing change (BFC). To fix a bug, the bug-fixing change may add new lines or change
(modify or delete) the existing ones. For a commit c, we label modified or deleted, but not
added, lines as lines changed by a commit LC(c).

If LC(BFC) �= ∅, we can track down whether the revision which last modified each line
in LC(BFC) lead to the bug that is fixed in the BFC, e.g., using tools such as “git blame”.
This last revision is called the previous commit (pc).

10source code broadly defined as any file under version control

Empirical Software Engineering

Ta
bl
e
4

Su
m

m
ar

y
of

th
e

as
su

m
pt

io
ns

,t
he

ir
lim

ita
tio

ns
an

d
po

ss
ib

le
so

lu
tio

ns

A
ss

um
pt

io
n

N
ee

d
L

im
ita

tio
ns

So
lu

tio
ns

&
to

ol
s

Se
ct

io
n

4.
1

C
on

tr
ol

ve
rs

io
n

V
C

S
H

is
to

ry
in

co
m

pl
et

e
(G

on
za

le
z-

B
ar

ah
on

a
et

al
.2

01
4)

–

C
ha

ng
es

in
co

m
m

its
(K

al
lia

m
va

ko
u

et
al

.2
01

4)
–

G
at

ek
ee

pe
rs

’
E

ff
ec

t(
C

an
fo

ra
et

al
.2

01
1)

–

Se
ct

io
n

4.
2

Id
en

tif
y
B
F
C

B
ug

s
re

po
rt

ed
an

d
fi

xe
d

B
ug

s
vs

.f
ea

tu
re

s
(H

er
zi

g
et

al
.2

01
3)

B
ug

T
ra

ck
in

g
(R

od
rı́

gu
ez

-P
ér

ez
et

al
.2

01
6)

L
in

ka
ge

(R
od

rı́
gu

ez
-P

ér
ez

et
al

.2
01

8a
;B

ir
d

et
al

.2
00

9)
R

el
in

k
(W

u
et

al
.

20
11

),
R

cl
in

ke
r

(L
e

et
al

.
20

15
),

Fr
lin

k
(S

un
et

al
.2

01
7)

Ta
ng

le
d

co
m

m
its

(R
od

rı́
gu

ez
-P

ér
ez

et
al

.2
01

8a
)

E
pi

ce
aU

nt
an

gl
er

(D
ia

s
et

al
.2

01
5)

Se
ct

io
n

4.
3

Pr
es

en
ce

of
a

bu
g

Pe
rf

ec
tt

es
t

B
ug

de
pe

nd
en

to
n

sp
ec

if
ic

at
io

ns
Im

pr
ov

in
g

R
E

(K
na

us
s

et
al

.2
01

4)

(Z
ai

dm
an

et
al

.2
01

1;
M

oo
ne

n
et

al
.2

00
8;

V
ill

er
et

al
.1

99
9)

T-
R

eq
s

(K
na

us
s

et
al

.2
01

8)

Se
ct

io
n

4.
4

Id
en

tif
y
B
IC

Pe
rf

ec
tt

es
ts

ig
na

ls
bu

g
Te

st
no

tb
ui

ld
in

g/
ru

nn
in

g
(Z

ai
dm

an
et

al
.2

01
1;

M
oo

ne
n

et
al

.2
00

8)
E

vo
Su

ite
(F

ra
se

r
an

d
A

rc
ur

i2
01

3b
;

20
13

a)

Fa
ul

ty
re

qu
ir

em
en

ts
(V

ill
er

et
al

.1
99

9)
T-

R
eq

s
(K

na
us

s
et

al
.2

01
8)

Se
ct

io
n

4.
5

Pe
rf

ec
tF

ix
in

g
B
F
C

fi
xe

s
bu

g
de

fi
ni

te
ly

B
ug

re
po

rt
re

op
en

ed
(Z

im
m

er
m

an
n

et
al

.2
01

2;
Sh

ih
ab

et
al

.2
01

3)
R

eo
pe

nP
re

di
ct

or
(X

ia
et

al
.2

01
5)

Empirical Software Engineering

Fig. 8 Model to identify bug-introducing changes (BICs) or first-failing changes (FFCs)

Since the bug-fixing change can change more than one line, it is possible that different
lines in LC(BFC) may have different previous commits. We will refer to PC(c) as the set of
previous commits of a commit.

But, it is also possible to go further back in time and recursively analyze the previous
commits of the LC(pc). These commits are referred to as descendants commits of a bug-
fixing change, (DC(BFC)). The previous commits are the immediately previous commits to
the lines changed in the bug-fixing change; the descendant commits are all the commits that
previously modified the lines changed in the bug-fixing change. The remaining commits in
the source code management of a software product from the bug-fixing change backwards
are the ancestors commits, AC(BFC), which also includes the previous and descendants
commits. Formally,

PC(BFC) ∪ DC(BFC) ⊆ AC(BFC).

5.2 A Process to Identify when and How a Bugwas Introduced

This subsection describes the process used by our proposed model (Section 4) to deter-
mine when and how a bug was introduced. This process can be generalized and allows us
to demonstrate how existing SZZ-based algorithms can be evaluated, which is something
missing in the current literature.

This process consists of the following steps, which can be adopted by other researchers
as well.

Ensure that a Control Version Exists The first step is to ensure that the selected project
has a development history recorded in a SCM. Furthermore, to identify every change in the
code from the beginning of the project until the bug fixing change, we need to ensure that
the SCM of the selected project holds the complete history of the project.

Identify the Bug-Fixing Change (BFC) The second step is to identify the bug-fixing change
linked to a bug report. To that end, researchers should analyze only issues labeled (manually
or by developers) as bugs reports.

When analyzing a bug fix, it is important to consider that a BFC may fix different bugs;
and that fixing a bug might require multiple partial fixes (commits). Furthermore, a BFC
can modify other parts of the source code that are not related to the bug, e.g., removing dead
code or refactoring the source code (Rodrı́guez-Pérez et al. 2018a; Neto et al. 2018). Thus,
when those cases exist, researchers should only analyze the source code of the BFC that
fixed the aimed bug.

Empirical Software Engineering

Ta
bl
e
5

C
om

pa
ri

so
n

of
ou

r
te

rm
in

ol
og

y
w

ith
th

e
on

e
fo

un
d

in
th

e
re

se
ar

ch
lit

er
at

ur
e

Pr
op

os
ed

Te
rm

in
ol

og
y

Fo
un

d
as

...
R

ef
er

en
ce

s

C
om

m
it

C
ha

ng
e

(d
a

C
os

ta
et

al
.2

01
7;

K
im

et
al

.2
00

6)

C
om

m
it

(I
zq

ui
er

do
-C

or
ta

za
r

et
al

.2
01

1;
Iz

qu
ie

rd
o-

C
or

tá
za

r
et

al
.2

01
2)

R
ev

is
io

n
(K

im
et

al
.2

00
8)

T
ra

ns
ac

tio
n

(Ś
liw

er
sk

ie
ta

l.
20

05
;B

et
te

nb
ur

g
an

d
H

as
sa

n
20

13
;K

im
et

al
.2

00
6)

Pr
ev

io
us

co
m

m
it

E
ar

lie
r

ch
an

ge
(Ś

liw
er

sk
ie

ta
l.

20
05

)

C
ha

ng
e

im
m

ed
ia

te
ly

pr
io

r
(W

ill
ia

m
s

an
d

Sp
ac

co
20

08
)

L
as

tc
ha

ng
e

(d
a

C
os

ta
et

al
.2

01
7;

B
av

ot
a

an
d

R
us

so
20

15
)

Pr
ev

io
us

co
m

m
it

(I
zq

ui
er

do
-C

or
ta

za
r

et
al

.2
01

1)

R
ec

en
tv

er
si

on
(K

im
et

al
.2

00
8)

Pr
ec

ed
in

g
re

vi
si

on
(H

at
a

et
al

.2
01

0;
R

ah
m

an
et

al
.2

01
1;

G
ue

rr
ou

je
ta

l.
20

15
)

D
es

ce
nd

an
tc

om
m

it
D

es
ce

nd
an

t
(A

le
xa

nd
ru

an
d

G
al

l2
01

5)

C
ha

ng
e

(Ś
liw

er
sk

ie
ta

l.
20

05
;d

a
C

os
ta

et
al

.2
01

7;
K

im
et

al
.2

00
6)

C
om

m
it

(K
im

et
al

.2
00

8)

A
nc

es
to

r
co

m
m

it
R

ev
is

io
n

(Ś
liw

er
sk

ie
ta

l.
20

05
;d

a
C

os
ta

et
al

.2
01

7;
K

im
et

al
.2

00
6)

C
ha

ng
e

(K
im

et
al

.2
00

8)

C
om

m
it

hi
st

or
y

(M
en

ee
ly

et
al

.2
01

3)

B
ug

-f
ix

in
g

ch
an

ge
Fi

x
fo

r
a

bu
g

(Ś
liw

er
sk

ie
ta

l.
20

05
)

B
ug

-f
ix

in
g

ch
an

ge
(d

a
C

os
ta

et
al

.2
01

7;
K

im
et

al
.2

00
6;

W
ill

ia
m

s
an

d
Sp

ac
co

20
08

;I
zq

ui
er

do
-C

or
ta

za
r

et
al

.2
01

1;
K

im
et

al
.2

00
8)

Fi
xe

d
re

vi
si

on
(H

at
a

et
al

.2
01

0)
(P

an
et

al
.2

00
9)

B
ug

-i
nt

ro
du

ci
ng

ch
an

ge
Fi

x-
in

du
ci

ng
ch

an
ge

s
(Ś

liw
er

sk
ie

ta
l.

20
05

;W
ill

ia
m

s
an

d
Sp

ac
co

20
08

;I
zq

ui
er

do
-C

or
tá

za
r

et
al

.2
01

2)

B
ug

-i
nt

ro
du

ci
ng

ch
an

ge
(d

a
C

os
ta

et
al

.2
01

7;
K

im
et

al
.2

00
6;

K
im

et
al

.2
00

8)

D
ef

ec
t-

in
du

ci
ng

(S
ye

r
et

al
.2

01
5)

Fi
rs

t-
fa

ili
ng

ch
an

ge
Fi

x-
in

du
ci

ng
ch

an
ge

s
(Ś

liw
er

sk
ie

ta
l.

20
05

;W
ill

ia
m

s
an

d
Sp

ac
co

20
08

;I
zq

ui
er

do
-C

or
tá

za
r

et
al

.2
01

2)

B
ug

-i
nt

ro
du

ci
ng

ch
an

ge
(d

a
C

os
ta

et
al

.2
01

7;
K

im
et

al
.2

00
6;

K
im

et
al

.2
00

8)

D
ef

ec
t-

in
du

ci
ng

(S
ye

r
et

al
.2

01
5)

Empirical Software Engineering

Ensure the Perfect Fixing The third step is to ensure that the perfect fixing exists. A BFC
might be incomplete and spread over several commits. In such cases, there is no perfect
fixing. However, researchers need to be sure of this fact when analyzing the origin of bugs
and they have to identify whether a bug report was reopened or not. In the affirmative case,
researchers should consider the last BFC.

Describe Whether a Bug is Present The fourth step is to describe whether a bug was
present in a certain snapshot or not. For that, researchers can use all the information avail-
able in the SCM, in the ITS, in the code review system and/or in the testing system to build
the perfect test signaling a bug, as explained in Section 4.3.

Thus, in order to describe whether a certain snapshot contains the bug fixed in the
bug-fixing change, researchers need to run the perfect test from the bug-fixing snapshot
backward. If the test passes, the snapshot does not contain the bug but, if the test fails, the
snapshot contains the bug.

Identify the First-Failing Change The last step is to identify the first-failing change given
a bug-fixing change and decide whether it is the bug-introducing change or not. To find
the first-failing change, we assume linear history and need to identify the first snapshot
in the continuous sequence of test failing snapshots, which finishes right before the bug-
fixing change. That is, there is a continuous sequence of snapshots for which the test
fails, starting in the possible first-failing change, and finishing right before the bug-fixing
change. Since the test is failing –all the way– from this snapshot up to the fix, we can say
that this is the first snapshot “with the bug present”, thereby we have identified the first-
failing change. Furthermore, if this change introduced the bug, it is the bug-introducing
change.

We use the example in Fig. 9 to illustrate how researchers can distinguish both scenar-
ios. Figure 9 shows the timeline of Project A (PA) represented by its snapshots from the
bug-fixing change backward, and the timeline of an external library (ExtL) used in PA.
The following scenarios are possible when analyzing the first snapshot in the continuous
sequence of test failing snapshots:

– The bug is intrinsic. The LC(commit) introduced the bug because the lines were faulty.
For example, Fig. 9 shows how line 2 added in the previous commit of bug-fixing
change inserted the bug. This line uses an external library (numpy) in a wrong way
causing the bug to appear and manifest itself for the first time in the bug-introducing
change. In this case11, the documentation of numpy clearly describes that by default
“arange” infers the data type from the input, thereby the line uses numpy in a wrong
way causing the bug. This snapshot is the bug-introducing change.

– The bug is extrinsic. The LC(commit) did not introduce the bug. For example, Fig. 10
shows how line 3 inserted in a previous commit of the bug-fixing change did not
insert the bug because these lines are using ExtL, which contained a bug. In this
case,12 the method array.split () returns an incorrect behavior with array size bigger
than MAX INT32. This snapshot is not the bug-introducing change, but the first-failing
change.

11https://stackoverflow.com/questions/43209391/numpy-is-calculating-wrong
12https://github.com/numpy/numpy/issues/11809

https://stackoverflow.com/questions/43209391/numpy-is-calculating-wrong
https://github.com/numpy/numpy/issues/11809

Empirical Software Engineering

Fig. 9 Guiding example to identify how the bug was inserted given a bug-fixing change (BFC) in Project A
(PA)

6 Operationalizing the Process

This section details how we operationalized the process described in Section 5.2. This oper-
ationalization is essential to identify the origin of bugs in real open source projects because
the model (Section 5) is based on five idealized assumptions (Section 4).

Ensure that a Control Version Exists The projects that we selected have a development
history recorded in a SCM. Also, for both projects, the initial commit13 was not migrating
code from other version control system. Thus, we were able to trace back all the develop-
ment history of the projects without suffering from the initial import commits observed by
Da Costa et al. (da Costa et al. 2017).

Identify the Bug-Fixing Change To identify the BFC, we only analyzed issues labeled
(manually or by developers) as bugs. Then, from these bugs, we excluded the bugs where
developers do not agree whether the BFC was fixing the bug or another kind of issue (Herzig
et al. 2013). In total, we discarded four BFCs (see Section 7.1).

When analyzing a bug fix, we were aware that a BFC might (1) fix different bugs; (2)
require multiple partial fixes (commits); and (3) modify other parts of the source code unre-
lated to the bug. When we identified these cases, we only analyzed the source code of the
BFC that fixed the aimed bug.

Ensure the Perfect Fixing When we found reopened bug reports, we selected and analyzed
the last BFC identified in the ITS. In total, we found two cases of reopened bug reports.

Although we analyzed bug reports listed until 2016, we cannot assure that these bug
reports will not be reopened in the future. However, if these bug reports have not been
reopened for at least two years, we can be almost sure that the BFC, indeed, fixed the bug.

Describe Whether a Bug is Present Ideally, we should contact developers to identify
whether a bug was present in a certain snapshot or not because they are the project experts.

13https://github.com/elastic/elasticsearch/commit/b3337c; https://github.com/openstack/nova/commit/bf6e6e

https://github.com/elastic/elasticsearch/commit/b3337c
https://github.com/openstack/nova/commit/bf6e6e

Empirical Software Engineering

Fig. 10 Guiding example to identify how the bug was inserted given a bug-fixing change (BFC) in Project
A (PA). In this scenario the bug was extrinsic, caused by a bug the External Library (ExtL) that PA is using.
It manifested itself in the lines inserted in the first-failing change (FFC)

However, in practice, this is hard to implement because developers’ time is limited. Fur-
thermore, even if developers participate, they might not be able to decide whether a specific
snapshot did not introduce the bug because it fulfilled the requirements of the project in
previous snapshots. Indeed, developers might have forgotten those requirements, might mis-
interpret them retrospectively or might not even have been involved in the project at that
time (da Costa et al. 2017).

Thus, we have to trust the knowledge of researchers, in this case, the authors of the paper.
Although we are not experts developers in Nova and ElasticSearch, we had information in
the ITS, the source code review system and the SCM that, when analyzed, helped us to
identify whether a bug was present in a snapshot. To describe whether a bug was present in
a snapshot, we needed to build the “perfect tests”: however, there are no practical means to
implement and run the perfect test. Thus, we mentally created and ran the designed test on
the previous snapshots and reasoned whether we could assert that these snapshots fulfilled
the requirements of the project. We used this mentally designed test as proxy of the “perfect
test”.

For example, a valuable piece of information to mentally create the “perfect test” was
the description14 of the bug report #1410622 in Nova. This description suggests that this is
an extrinsic bug as its origin was a change in an external library (which is not recorded in
the SCM of Nova). Other useful information came from the comments and discussion from
developers in the ITS. A developer’s comment15 at Nova bug #1370590 indicates that the
bug is extrinsic because the bug has its origin in a requirement change. A condition was
introduced during development that needed some information, but many calls to a func-
tion were not providing this information since it was not required before which caused the
bug.

Identify the First-Failing Change We classified the bug as intrinsic or extrinsic after
identifying the BFC and using the mentally designed test as proxy of the “perfect test”.

14The description was: “Webob library has a bug Pylons/webob#149 which causes modification of req.body
after first access. So it’s critical to calculate the body hash before any other access is made.”
15The comment said: “These calls now need to provide disk info to create domain and network”

Empirical Software Engineering

For the extrinsic bugs, we linked their BFC with the presence of a FFC because no BIC
can be found in the SCM. For the intrinsic bugs, we applied “git diff” to the files touched
by the BFC. “Git diff” identified what lines were added, modified or deleted between the
snapshot after the BFC and the previous one. That way, we determined the previous com-
mits of the BFC (PC(BFC)) and analyzed whether these previous commits introduced the
bug. Notice that, the lines that did not contain source code (e.g., comments or blank lines)
or affect test files were filtered out. “Git diff” cannot backtrack the lines that have been
added. Thus, when we identified a BFC with only new lines added to fix the bug, we ana-
lyzed the lines adjacent to these added lines. This analysis provides good perspective to
understand whether the last modification of these adjacent lines were somehow faulty, e.g.,
the adjacent lines were missing a piece of code to function correctly (i.e., the lines added by
the BFC).

Then, we selected each one of the previous commits to analyze whether the test would
fail in the corresponding snapshot. If the test would not fail in none of the snapshots
from previous commits, we navigated back to the previous ones, the descendant com-
mits, until finding the first commit for which the test would fail; this commit was the
BIC. Due to the complexity of some bugs, sometimes we could not manually identify
the BIC.

At the end of this process, we could have following three different outcomes:

– The BFC had a BIC, and we identified it manually.
– The BFC had a BIC, but we did not identify it manually.
– The BFC did not have a BIC, but a FFC.

7 Case Studies

Following Easterbrook et al. (2008), we selected two exploratory case studies to gain a deep
understanding of the bug introduction phenomenon in two open source projects: Nova and
ElasticSearch. We applied the model proposed in this paper to both projects to evaluate its
applicability and to provide important insights that led us to validate or refute the assumption
that relates the lines fixed in the BFC to the lines that introduced the bug in the software
product. The operationalization of the model in these case studies resulted in a procedure
that allowed us to build curated reference datasets in which bugs are linked with the presence
or absence of BICs. These manually curated datasets can be considered as the ground truth
of the projects computing the real performance of the algorithms that are build upon the
current assumption.

Runeson et al. argued that the systems selected in a case of study must be typical
in order to generate a theory based on them (Runeson et al. 2012). Our aim is not to
generate a theory of bug introduction, but to qualitatively study the bug introduction phe-
nomenon in open source projects. Thus, we selected two projects with interesting and
worthwhile characteristics to study. Besides, both projects have some differences that
can allow us to validate the model and may extend the procedure to other similar open
source projects. The second case study can be seen as an analytical replication of the first
one.

Nova is the most active module of the OpenStack project in terms of contributions.
OpenStack has more than 7,900 contributors, and significant industrial support from several
major companies such as Red Hat, Huawei, IBM or HP. Nova is mainly written in Python
and currently has more than 52,600 commits with more than 500K lines of code and around

Empirical Software Engineering

1500 developers.16 All its history is saved and available in a version control system (git17),
an issue tracker system (Launchpad)18 and a source code review system (Gerrit19).

In addition to the enormous diversity of people and companies contributing to Nova,
the project has other characteristics that make it a good case to study: (1) the ease of
gathering data. An important factor to ensure the reliability of data is that in a previous
study (Rodrı́guez-Pérez et al. 2016) we had already identified bug reports in the issue
tracker system; (2) Nova uses Python, a dynamically typed, interpreted programming lan-
guage. Python is dynamically typed and this can affect the way that bugs were introduced
into the source code of a project. Ray et al. claim that statically typed languages are
less defect prone than the dynamic typed languages (Ray et al. 2014), although there is
some controversy about this work (Berger et al. 2019); and (3) it uses a source code
review system that it is connected with a continuous integration (CI) tool in order to ver-
ify that quality criteria are satisfied before a code change is integrated in the repository
(Vassallo et al. 2016).

ElasticSearch is a distributed open source search and analytics engine written in Java
(a statically typed language). It has over 30,500 commits and over 900 developers, which
points towards a frequent evolution in the code. This project was chosen because of its
rigorous policy of labeling issues, as ElasticSearch developers use the label “bug” to tag
issues that describe real bugs. We can thus be sure that the BFCs address real bugs. The
code and the bug report list of ElasticSearch are hosted on GitHub.20

In addition, ElasticSearch has other characteristics that makes it a good case study: (1)
the ease of gathering the data since its code is hosted on GitHub. In addition, the policy of
adding the link of the bug report number or the pull request number into the BFC is help-
ful when linking and analyzing the two data sources; (2) It is a statically-typed language
project written in Java and this programming language might present different characteris-
tics than Python; (3) It uses a source code review that is built into the pull requests system
of GitHub. That way, reviewers can discuss and review the proposed changes and add
follow-up commits before these changes are merged into the base branch of the project.

7.1 Nova and Elasticsearch Datasets

We relied on the Nova dataset from our previous work (Rodrı́guez-Pérez et al. 2016).
This dataset consists of 60 random bug reports that were reported in 2015. For each of
the bug reports that we manually identified, two different researchers manually linked
them to the BFCs in the SCM. Then in ElasticSearch, we randomly gather 60 fixed and
closed issues labeled as bug and reported between January 2013 and December 2016 from
the GitHub issue tracker. Subsequently, we manually checked that the BFC was correctly
linked.

To ensure that the bug reports could be applied to our model, we verified that they
describe real bug reports at the moment of their report and not other issues (as the ones stud-
ied by Herzig et al. (2013)). For that, we carefully read the description and comments in the
issue tracker system and code review system to analyze whether we could apply the model.

16http://stackalytics.com
17https://wiki.openstack.org/wiki/Getting The Code
18https://launchpad.net/openstack
19https://review.openstack.org/
20https://github.com/elastic/elasticsearch/

http://stackalytics.com
https://wiki.openstack.org/wiki/Getting_The_Code
https://launchpad.net/openstack
https://review.openstack.org/
https://github.com/elastic/elasticsearch/

Empirical Software Engineering

For example, the description of the bug report #118529021 looked like a bug. How-
ever, after carefully analyzing all the comments, this report was removed because of the
discordance between developers of Nova:

– “I am not sure that I consider this a bug. Without –all-tenants=1, the code operates
under your own tenant. That means that –all-tenants=1 foo should really be a no-op
without –all-tenants=1.”

– “I disagree, mainly because the structure of the requests and code path should largely
be transparent to the user. I would suggest that specifying –tenants should imply you
are doing a query across –all-tenants=1unless the –tenants specified is the same as what
is contained in OS TENANT NAME (the unless part is debatable)”

Furthermore, we uncover other reasons why some bug reports cannot be applied to our
model. For instance, bug report #143157122 described a bug in a test file. We removed
it because a bug in a test file does not mean that the source code of the project con-
tained a bug. We also discovered that bug reports such as #774023 and #144807524

described hypothetical scenarios (i.e., a possible bug in the future). These bug reports were
excluded from the analysis because, although developers described them as bug reports,
the bug was still hypothetical and had not occurred yet in the project. As such, we could
not build the perfect test in those cases as the BFCs were fixing hypothetical future
bugs.

The result of this analysis was the removal of 3 bug reports from the initial set of 60
random bug reports in Nova and of a 1 bug report from the initial set of 60 random bug
reports of ElasticSearch.

7.2 Results

This section answers the research questions. First, we present the model that helped to
describe when a snapshot of a component exhibits the bug. Then, we describe the empirical
results of the evaluation of this model. We applied the model on two different datasets, from
Nova and ElasticSearch, with the aim of identifying intrinsic and extrinsic bugs. In this
process, we obtained curated and reliable datasets in which each BFC was connected to a
BIC or a FFC. Finally, we used these curated datasets to compute the effectiveness of four
existing SZZ algorithms.

7.2.1 RQ1: Can there be Criteria to Help Researchers Find a Useful Classification
of Changes Leading to Bugs?

To better understand and solve the problem of identifying the origin of bugs, we designed
a model (Section 5) that provides criteria (Section 4) for reasoning which snapshot of a
software product first exhibited the bug. Specifically, the model is based on the idea of the
“perfect test” which was designed using prior literature (Rodrı́guez-Pérez et al., 2018a, b;
Kim et al., 2006; Sinha et al., 2010) and empirical findings (da Costa et al., 2017; Rodrı́guez-
Pérez et al., 2018a, b).

21https://bugs.launchpad.net/nova/+bug/1185290
22https://bugs.launchpad.net/nova/+bug/1431571
23https://github.com/elastic/elasticsearch/issues/7740
24https://bugs.launchpad.net/nova/+bug/1448075

https://bugs.launchpad.net/nova/+bug/1185290
https://bugs.launchpad.net/nova/+bug/1431571
https://github.com/elastic/elasticsearch/issues/7740
https://bugs.launchpad.net/nova/+bug/1448075

Empirical Software Engineering

To ensure that the criteria defined in the model, in particular the “perfect test”, can be
applied to real-world projects, we manually analyzed the origin of the 116 bugs in two open
source projects. For that, we applied the operationalization of the process as is described in
Section 6 into the two projects and then, we evaluated whether the criteria helped us to find
a useful classification of the origin of bugs.

This study shows that, contrary to what is assumed in the literature (i.e., the last change
that touched the fixed line(s) in a bug-fixing change introduced the bug), there are other
sources for the introduction of bugs (e.g., changes in external dependencies, or changes in
requirements). Although these sources were already known, our proposed model is the first
one that includes them as a part of the model.

Furthermore, this careful analysis enabled us to produce manually curated datasets for
Nova and ElasticSearch with bug-introducing changes and bugs that were not introduced
by any change in the source code. Thus, we classified bugs as intrinsic and extrinsic and
calculated the share of BFCs that have and do not have a BIC.

We determined whether the bug was intrinsic or extrinsic by applying our criteria to the
projects. Although, by definition, intrinsic bugs always have a BIC, sometimes, we were
unable to identify it manually. The complexity of the source code and the lack of informa-
tion, when we analyzed the BFCs, made this identification difficult because we could not
(mentally) implement the test. Thus, our results have intrinsic bugs with and without a BIC
found. Table 6 shows the number of intrinsic bugs for which the BIC was manually found
(or not), the number of extrinsic bugs having a FFC, and the number of bugs that we could
not be sure whether they were intrinsic or extrinsic.

Notice that classifying a bug as “BIC not found” is different from not having a BIC.
When we were sure that there was no BIC causing the test to fail, we classified the bug as not
having a BIC (extrinsic). However, we classified the bug as “BIC not found” when we were
sure that a BIC exists (the bug was intrinsic), but we were unable to find this BIC manually.

We observe that the lion’s share of BFCs, both in Nova(60%) and in ElasticSearch(64%),
were related to intrinsic bugs, previous changes or omissions caused these bugs. The
percentage of extrinsic bugs is higher in Nova (21%) than in ElasticSearch (9%).

RQ1: The criteria defined in the model enables us to classify bugs as
intrinsic or extrinsic and to create manually curated datasets that contain
information about intrinsic (with the ID of the BIC) and extrinsic bugs. In
our case studies, 9%–21% of the bugs were extrinsic, meaning that they
do not have a BIC in the SCM.

7.2.2 RQ2: Do These Criteria Help in Defining Precision and Recall in Four Existing
SZZ-Based Algorithms for Detecting Bug-Introducing Changes?

After the positive answer for RQ1, we obtained the manually curated datasets that can be
understood as the“ground truth” datasets. We applied four existing SZZ algorithms that

Table 6 Percentage of intrinsic
bugs with a bug-introducing
change (BIC) manually found (or
not); extrinsic bugs with a
first-failing change (FFC); and
undecided bugs in Nova and
ElasticSearch (ES)

Intrinsic Extrinsic

BIC found BIC not found FFC Unsure Total

Nova 34 (60%) 4 (7%) 12 (21%) 7 (12%) 57

ES 38 (64%) 7 (12%) 5 (9%) 9 (15%) 59

Empirical Software Engineering

retrieve the BIC given the BFC to our datasets. In particular, we used (1) the original
SZZ (Śliwerski et al. 2005), this algorithm links the SCM and the ITS in order to iden-
tify the BFC and then, it identifies a set of changes that, according to the algorithm, are
flagged as the BIC(s). This set is identified by determining the lines that have been changed
between the BFC and its previous version (e.g., diff) and identifying the last change(s)
to those lines (e.g., git blame). Then, it uses a temporary window from the bug report
date until the BFC date to remove some false positives from the set of previous changes.
The remaining changes in this set were blamed as the bug-introducing change(s) by the
SZZ algorithm. We used (2) the SZZ-1 (Kim et al. 2006), this algorithm is an improve-
ment of the SZZ algorithm, which uses annotation graphs to reduce false positives and
gain precision by excluding comments, blank lines, and format changes from the anal-
ysis. We use the SZZ-1 with two different heuristics; (3) SZZ-1E (Izquierdo-Cortazar
et al. 2011) that identifies an unique BIC as the earlier commit from the set of PC(b)
and, (4) SZZ-1L (Davies et al. 2014) that identifies an unique BIC as the latest com-
mit from the set of PC(b). The four SZZ approaches do not attempt to identify FFCs
since they do not consider that a bug can be caused by change(s) not recorded in the
SCM. For that reason, all the previous changes identified by the SZZ are considered to
be BICs.

After that, we compared the manually curated datasets with the results from the four
existing SZZ algorithm and measured how many BICs (true positives) these algorithms
obtain, how many identified commits were not the BICs (false positives), and how many
BICs could not be found (false negatives).

Our criteria helps to determine the first snapshot of a software component that exhibits
the bug according to a bug-fixing commit and identify the bug-introducing change. How-
ever, according to our model, there is just one change that introduced the bug. Notice that,
because of the heuristics of SZZ and SZZ-1, there can be more than one BIC for a BFC.
Thus, we can have a set of previous commits (PC(BFC)) identified as BICs by SZZ and
SZZ-1. To compare our manual curated datasets with these algorithms’ results and evalu-
ate their performance, we counted the number of true positives, false positives, and false
negatives using the following criteria:

1. ALL: We counted all the commits that the algorithms identified for a bug-fixing commit
as true positives or false positives. When |PC(BFC)| > 1; we counted one true positive
whether the BIC existed and it belonged to the set of PC(BFC). We flagged as false
positives the other changes belonging to the set of PC(BFC). For example, when we
applied SZZ and SZZ-1 to #1486541 of Nova these algorithms identified three BICs
and the set of previous commits was three (PC(BIC) = 3). But, just one of these
previous commits was the change that introduced the bug reported in #1486541 (there is
one true BIC). Thus, we identified one true positive and two false positives for the BFC
that fixed #1486541. When none of the changes in the set of PC(BFC) was the BIC, we
counted all of them as false positives. In case the algorithms could not be applied (i.e.,
BFCs with only new lines added to fix the bug) but there was a change that introduced
the bug, we counted one false negative.

2. At least: We counted a true positive whether there was a BIC and it was in the set of
previous commits (PC(BFC)) identified by the algorithms. For example, in #1486541
of Nova PC(BFC) = 3. Although just one of the previous commits was the change that
introduced the bug (BIC), we counted one true positive and zero false positives for the
BFC that fixed #1486541. When none of the changes from the PC(BFC) introduced
the bug, we counted one false positive. In case the algorithms could not be applied but

Empirical Software Engineering

Table 7 Nova project: Results of True Positives TP, False Positives FP, False Negatives FN, Recall and
Precision for SZZ-based algorithms assuming that: (1) SZZ and SZZ-1 flag all of the commits belong to a
set of PC(b) as BIC; and (2) the four existing SZZ algorithms only flag the earlier SZZ-1E or latest SZZ-1L
commits that belongs to a set of PC(b) as BIC

SZZ SZZ-1

All At least Only All At least Only SZZ-1E SZZ-1L

TP 25(29%) 25(54%) 17(37%) 28(33%) 28(61%) 19(41%) 25(52%) 19(36%)

FP 54(61%) 12(26%) 20(43%) 51(59%) 11(24%) 20(43%) 14(29%) 20(37%)

FN 9 (10%) 9(20%) 9(20%) 7(8%) 7(15%) 7(15%) 9(19%) 15(27%)

Precision 0.32 0.68 0.46 0.35 0.71 0.48 0.64 0.49

Recall 0.74 0.74 0.65 0.80 0.80 0.73 0.73 0.56

F-score 0.44 0.70 0.54 0.49 0.76 0.58 0.68 0.52

there was a change that introduced the bug reported in the bug report, we counted it as
one false negative.

3. Only: We counted a true positive whether there was a BIC, it was in the set of previous
commits (PC(BFC)) identified by the algorithms and PC(BFC) = 1. For example, in
#1486541 of Nova PC(BFC) = 3, although one of them was the BIC we counted one
false positive because PC(BFC) > 1. In case that the algorithms could not be applied
but there was a change that introduced the bug reported in the bug report, we counted it
as one false negative.

When we applied the SZZ and SZZ-1 algorithms to the set of 46 BFCs of Nova,25 we
obtained 79 changes considered as BICs by the algorithms. When these algorithms were
applied to the 43 BFCs of ElasticSearch,26 we obtained 85 changes flagged as BICs. On the
contrary, when we applied SZZ-1E and SZZ-1L to the 46 BFCs of Nova and 43 BFCs of
ElasticSearch, these algorithms returned 43 and 36 changes flagged as BICs respectively.

Tables 7 and 8 present the percentage of true positives (TP), false positives (FP) and false
negatives (FN), the precision (Precision= T P

T P+FP
), recall (Recall= T P

T P+FN
) and F-Score

(F-Score=2 (P recision∗Recall)
P recision+Recall

) of the SZZ algorithms. There are no True Negatives (TN) in
the tables because these would be commits that did not introduce the bug and were not
identified by the algorithms, i.e., all the ancestor commits that SZZ does not identify.

When comparing the number of true positives from the SZZ approaches, we observed
that the assumption “a bug was introduced by the lines of code that were modified to fix it”
varies depending on the approach and the criteria being used. For example, Tables 7 and 8
shows that this assumption holds better in SZZ and SZZ-1 (54%-63%) when we consider
that at least one of the changes identified by the algorithm is the BIC. The other results
showed that the assumption holds in less than a half of the bugs analyzed in both projects.

Tables 7 and 8 show that in both projects, the highest precision, recall and F-Score were
obtained using the SZZ-1 algorithm and the “At Least” evaluation criteria. Furthermore,
from these Tables we see that the SZZ-1 performed sightly better than the original SZZ
algorithm.

25Out of the 46 bugs, we manually found 34 BICs and 12 FFCs. We removed one bug because we were
unsure about its origin.
26Out of the 43 bugs, we manually found 36 BICs and 5 FFCs. We removed three bugs because we were
unsure about their origin.

Empirical Software Engineering

Table 8 ElasticSearch project: Results of True Positives TP, False Positives FP, False Negatives FN, Recall
and Precision for SZZ-based algorithms assuming that: (1) SZZ and SZZ-1 flag all of the commits belong to
a set of PC(b) as BIC; and (2) the four existing SZZ algorithms only flag the earlier SZZ-1E or latest SZZ-1L
commits that belongs to a set of PC(b) as BIC

SZZ SZZ-1

All At least Only All At least Only SZZ-1E SZZ-1L

TP 26 (27%) 26 (61%) 12(28%) 27 (27%) 27(63%) 12(28%) 16 (28%) 19 (35%)

FP 59 (61%) 10 (23%) 24(56%) 58 (61%) 9(21%) 24(56%) 20 (34%) 17 (30%)

FN 12 (12%) 7(16%) 7(16%) 11 (12%) 7(16%) 7(16%) 22 (38%) 19 (35%)

Precision 0.31 0.72 0.33 0.32 0.75 0.33 0.44 0.53

Recall 0.68 0.79 0.63 0.71 0.79 0.63 0.42 0.50

F-score 0.42 0.75 0.44 0.44 0.77 0.43 0.43 0.51

The real performance of the four existing SZZ algorithms showed that although the most
effective results were obtained by SZZ-1 and the “At Least” criteria, the four algorithms
reached a low percentage of true positives, in which the best case was 61% in Nova and
63% in ElasticSearch.

What Causes a Previous Commit (as Identified by SZZ-Based Algorithms) to not be the
BIC? In those cases where the previous commit identified by the four existing SZZ algo-
rithm was not the BIC, we investigated the cause for the misclassification. Some of these
reasons are already known from previous studies and, although we do not pretend to do an
exhaustive classification of why the previous commits analyzed were not the BIC, we iden-
tified some other reasons that have not been taken into account previously and added them
to the next list of reasons:

– The bug was already in the modified line (da Costa et al. 2017; Neto et al. 2018;
Kim et al. 2006): The modified line was buggy, but the bug was introduced before the
last modification. For instance, one of the previous commits (57108c8575b) of bug27

#4564 fixed another bug. But lines 194–195 modified by this previous commit already
contained the buggy code that caused bug #4564. Thus, this previous commit did not
introduce bug #4564, but it was introduced by a descendant commit of these buggy
lines 194–195.

– The BIC was not in the DC(b) or AC(b) because it was an extrinsic bug: The modi-
fied line has never been buggy from its introduction. For instance, the bug caused by a
change in an external artifact28 #3551 explained in the Fig. 3, Example 1 in Section 2.

– The BFC only added new lines to fix the bug (da Costa et al. 2017; Kim et al. 2006;

27https://github.com/elastic/elasticsearch/issues/4564
28https://bugs.launchpad.net/nova/+bug/1449028

https://github.com/elastic/elasticsearch/issues/4564
https://bugs.launchpad.net/nova/+bug/1449028

Empirical Software Engineering

Rodrı́guez-Pérez et al. 2018b): Due to how SZZ works, it cannot identify the case with
only new lines in the BFC. For instance, commit 2442e1fb forgot to add an if condition.
Thus, the BFC29 for bug #2566 only added new lines to fix the bug.

– The previous commit made an equivalent change in line(s) that were not
buggy (Neto et al. 2018): Due to how SZZ works, it identifies all modified lines in a
BFC. Some of these lines many not be related to the bug. Changes under this case do
not modify the logic of the source code. For instance, the previous commit30 of bug
#4417 merged two different lines of code into one. But the logic of the code is still the
same.

– The previous commit made a reversion: For instance, the previous commit31 of bug
#3274 was reverting a previous change. Thus, the commit that reverted the change
cannot be the BIC.

– The previous commit made a cosmetic change in a line that was not buggy (da
Costa et al. 2017; Neto et al. 2018; Kim et al. 2006): Due to how SZZ works, it can
identify lines that were not buggy in previous modifications. Changes under this case
include small cosmetic changes such as variable renaming or adding blank spaces to
follow a coding style guide. For instance, one of the previous commits32 of bug #8526
added a blank space between the equality sign and the value assigned to a variable. This
previous commit did not introduce the bug; it is just a cosmetic change to refactor the
source code.

Is there an Alternative Approach to find the BIC with Higher Accuracy? Previous
approaches (Śliwerski et al. 2005; Kim et al. 2006; Williams and Spacco 2008) rely on the
analysis of lines of code and assume that “a given bug is introduced by the lines of code that
are modified to fix it”. Thus, to determine the last revision that modified the lines fixed in
a bug-fixing commit, researchers use features of the SCM systems such as “blame”. Tools
like blame only show the last change that modified the lines of code, but the source code
lines may be modified several times. Thus, the disadvantage of using blame is that when a
descendant change of a source code line introduced the bug, this change can be masked with
posterior changes in the same line of the source code. In fact, according to Soetens et al.,
almost 25% of refactoring operations applied are masked when studying the version history
of a software project at the commit level (Soetens et al. 2015).

Hence, an approach that increases the granularity of tools like blame may find BICs with
higher accuracy than the previous approaches (e.g., the four existing SZZ algorithms that
we have studied previously). This alternative approach would track additions and deletions
of tokens instead of additions and deletions of lines, so for every single token in the source
code, this approach identifies the change that has last added/modified that token. Figure 11
shows a BFC analyzed using the line-based approach and Fig. 12 shows the same BFC
analyzed using the token-based approach.

We will refer to the token-approach as TSZZ since it can be seen as a token-based SZZ
approach. To evaluate whether the TSZZ approach increases the precision and recall when
identifying BICs, we analyzed the tokens that were modified in the BFC rather than the
lines of the source code modified.

29https://github.com/elastic/elasticsearch/commit/9e4a0cba
30https://github.com/elastic/elasticsearch/commit/2e64dbce
31https://github.com/elastic/elasticsearch/commit/4c493ac
32https://github.com/elastic/elasticsearch/commit/5aa0a8438f

https://github.com/elastic/elasticsearch/commit/9e4a0cba
https://github.com/elastic/elasticsearch/commit/2e64dbce
https://github.com/elastic/elasticsearch/commit/4c493ac
https://github.com/elastic/elasticsearch/commit/5aa0a8438f

Empirical Software Engineering

Fig. 11 BFC line based #1370177 of Nova

When we applied the TSZZ to the 46 BFCs of Nova it returned a set of 87 possible
BICs. When we applied TSZZ to the 43 BFCs of ElasticSearch it returned a set of 107
possible BICs. Table 9 shows the values of precision, recall, and F-Score of the token-based
algorithm. The table does not show the token-based counterpart of SZZ-1 because SZZ-1
uses annotation graphs (a line-based algorithm) and the result is the same as TSZZ.

The token-based SZZ solution slightly increases the precision and recall in Nova. How-
ever, in ElasticSearch this method performs worse, increasing the number of FN and FP,
which decreases precision and recall.

8 Discussion

In this section we discuss the implications of our findings. First, we discuss to what extent
our findings help towards establishing a bug introduction theory in the context of identifying
the origin of bugs in open source projects (Section 8.1). Then, we discuss the generaliz-
ability of our findings (Section 8.3) and the implications with regard to the real evaluation
of currents algorithms used during the bug identification process (Section 8.4). Finally, we
discuss the threats to validity of this paper (Section 8.5).

Fig. 12 BFC token based #1370177 of Nova

Empirical Software Engineering

Table 9 Results of True Positives TP, False Positives FP, False Negatives FN, Recall and Precision for the
TSZZ-based, TSZZE-based and TSZZL-based algorithms

Nova ElasticSearch

TSZZ TSZZE TSZZL TSZZ TSZZE TSZZL

TP 26 (27%) 21 (43%) 20 (40%) 24 (20%) 12 (21%) 16 (31%)

FP 61 (64%) 15 (30%) 16 (32%) 83 (68%) 18 (32%) 14 (27%)

FN 8 (9%) 13 (27%) 14 (28%) 14 (12%) 26 (47%) 22 (42%)

Precision 0.30 0.58 0.56 0.22 0.40 0.53

Recall 0.76 0.62 0.59 0.63 0.32 0.42

F-score 0.43 0.60 0.57 0.33 0.36 0.47

8.1 Towards a Better Understanding of Bug Introduction

The complex phenomenon of bug introduction has been studied before. Previous studies
have helped researchers to understand that fixing bugs consist of determining why software
behaves erroneously (Zeller 2009; Beller et al. 2018), that bugs can have different root
causes (Li et al. 2006; Catolino et al. 2019), and that bugs can be introduced in a version of
the software system but were not found until much later (Chen et al. 2014). However, the
state-of-the-art lacks a better understanding of the origin of bugs. We believe that there are
not enough empirical studies that attempt to define or evaluate how researchers can ensure
that a change in the source code introduced a bug, the moment it was introduced.

Hence, researches assume that the lines of code that have been used to fix the bug
were also the ones that introduced the bug in the first place is an inaccurate assumption
that has been used in many studies. Furthermore, these studies implicitly assume that bugs
have always been introduced by a developer. However, some recent studies (da Costa et al.
2017; Rodrı́guez-Pérez et al. 2018a, b) showed that this assumption should be reconsidered
because other factors exist.

In our work, we have put this assumption aside and provided a model for ensuring when
the software exhibits the bug and which change introduced it, in case that change exists.
One of the most relevant contributions of the model is that it distinguishes between two
different kind of bugs: intrinsic and extrinsic. The model relates intrinsic bugs with BICs
and extrinsic bugs with a fingerprint that the BIC does not exist.

Our model enables to understand the different ways in which bugs can be introduced.
Practitioners can use it to describe the first time that the software exhibits the bug according
to the BFC. Although our model is descriptive and defines many concepts and relationships,
it cannot be understood as a theory of bug introduction because the lack of explicit predic-
tion disqualifies it as a theory (Easterbrook et al. 2008; Gregor 2006). However, this work
can be the starting point towards a better understanding of bug introduction because it goes
beyond the mere observation of this phenomenon and tries to understand how and why this
phenomenon occurs.

8.2 Guidelines for the Perfect Test Approximations Design

The perfect test provides a precise definition of “faulty code at the time of writing it”. This
definition encompasses all the knowledge about the past software behavior, thus forming an
oracle for each previous version; it also helps to describe whether a certain snapshot contains

Empirical Software Engineering

the bug fixed in the bug-fixing change. Although, this perfect test may be challenging to
create because it is a theoretical construct, we can use some approximations to design it.

This section provides a guidelines to design these approximations based on our experi-
ence after our manual analysis of 116 bug reports. During this analysis we learned some
lessons that would help assist researchers when designing perfect test approximations.

The Context Approximation This is the main source of information to design approxima-
tions for the perfect test. Descriptions and comments of a bug report provide a valuable
knowledge about the context of the bug (e.g., bug cause, bug fix, bug symptoms ...), which
helps researchers to decide whether there is a BIC or a FFC. Thus, when we understand the
context of the bug, we can design the “perfect test” and analyze whether it would pass or
fail in previous snapshots to find the BIC or the FFC. For example, the description of the
bug report #299133 from ElasticSearch says:

The BytesRefOrdValComparator uses Ordinals.Docs.getNumOrdinals() -1 as the
upper bound for the binary search. The -1 causes that we ignore the last value in the
segment.

and the description of the fix of this bug report says:

Use full ord range in binary search. The upper bound of the binary search in Bytes-
RefOrdValComparator starts at 1 and ends at maxOrd - 1. Yet, numOrd is defined as
maxOrd - 1 excluding the 0 ord. This causes wrong sort ords when the bottom of the
queue is compared to the next segment and the greatest term in the new segment is
in-fact less than the current queue bottom.

With this information, we can mentally design an approximation for the “perfect test”. It
will test which snapshot, starting from the BFC backward, would fail because the source
code of that snapshot causes wrong sort ords. Although, we cannot run this approximation
automatically, to identify the BIC, we can manually analyze the source code of the previous
snapshots and identify the first time that the test would fail. In some snapshots, we would
not run the test because the function or feature tested is not present in that moment. In these
cases, the first snapshot that fails after the test cannot run would be the BIC because the
code was buggy when this snapshot introduced the function or feature tested.

The Modified Files Approximation When we do not have enough information to
fully comprehend the context of the bug, we can also analyze the files modi-
fied by the BFC to understand whether the bug was caused by a BIC or a FFC.
Either the name and the modified lines of some files can give us a useful hint to
design the approximation for the “perfect test”. For example, the bug fixing commit34

from Nova modified the files: doc/api-samples/versions-get-resp.json
and nova/api/openstack/compute/views/versions.py. Furthermore, the
description of this BFC says:

Apply v2.1 API to href of version API. Now Nova contains v2 and v2.1 APIs, but
version API returns the same href between v2 and v2.1.

33https://github.com/elastic/elasticsearch/issues/2991
34https://opendev.org/openstack/nova/commit/46bd4e4292648c0474e02ddc1560ce583fbe56d0

https://github.com/elastic/elasticsearch/issues/2991
https://opendev.org/openstack/nova/commit/46bd4e4292648c0474e02ddc1560ce583fbe56d0

Empirical Software Engineering

With this information, we can mentally design an approximation for the “perfect test”.
This approximation will test which snapshot, starting from the BFC backward, would fail
because the source code of that snapshot returns a wrong API version. In this case, we will
notice that, based on the definition of “the perfect test”, there is no faulty code at the time of
writing it. Thus, the test would always pass, which indicates that there is no BIC but a FFC
because the bug was caused by the evolution of the code. After adding a new version of the
API, the bug manifested itself in the source code causing the URL links to not show cor-
rectly. Sometimes, when we have enough information, we manually can point out which is
the FFC. However, in most of the cases, we cannot identify the FFC because the developers
do not give such information; and it is difficult to manually identify this change navigating
from the BFC backward.

The Bug Live Period Approximation In addition to the context, in some cases, we can
analyze some metadata such as the date of the snapshots. With this information we can
compute how long the bug has survived in the source code until it was reported in the issue
tracking system, previous studies suggested that this period should not be bigger than two
years (da Costa et al. 2017; Rodriguez-Perez et al. 2017; Chen et al. 2014). For example,
when we analyze the previous snapshots to identify whether the “perfect test” would pass
or not, we can also analyze the time period between the bug report date and the date of the
snapshot. If this period spans more than two years, we can assume that the source code at
the time of writing it was correct, thereby, the “perfect test” would pass.

8.3 Generalizability of our Findings

The process of operationalizing the model in two different projects leads us to obtain a
method to identify the first time that the software fails according to a BFC. We think that
the case studies selected in this article are so different that this method can be generalized.
Thus, researchers can apply this method in other projects in order to build reliable datasets
that contain the information about the BICs.

By using ElasticSearch and Nova as case studies, we gain deep insights into how bugs
manifest themselves for the first time in these projects. They are exploratory case stud-
ies as we do not have a theory to refute or circumspect. However, the empirical results in
Section 7.2 demonstrate that the current assumption –“a bug was introduced by the lines of
code that were modified to fix it”– is just one of the cases among others of how bugs were
introduced in software.

First, 21% of the bugs analyzed in Nova and 9% in ElasticSearch are extrinsic, meaning
that they do not have a change that introduced the bug directly in the SCM. We hypothesize
that the reason why the percentage of extrinsic bugs is higher in Nova is due to the nature
of the software and its changing environments. It should be noted that Nova, in contrast to
ElasticSearch, is infrastructure software, that runs at the OS level and on many different
platforms, which leads us to think that situations that end in extrinsic bugs appear more
frequently. However, we do not have evidence to demonstrate what specific characteristics
of software can contribute more to this difference.

Second, in both projects, the F-score of the four existing SZZ algorithms aimed at deter-
mining the origin of bugs varies from 0.44 to 0.77 depending on the criteria that we use to
evaluate the SZZ-based algorithms. The assumption “a bug was introduced by the lines of
code that were modified to fix it” is one of many cases when a bug is introduced; in our
manual analysis, we found that this holds true for only about 61% of the cases in the best
scenario. The bugs that were not introduced by the lines of code that were modified to fix

Empirical Software Engineering

them were identified as false positives, some of the reasons of being false positives were
refactoring changes, reverting commits or equivalent changes, among others.

Hence, it is comprehensible to think that these results can be generalized to other projects.
Thus, if we analyze how bugs were introduced in other projects we will find that a percent-
age of them are being caused by factors different from a developer introducing buggy code
in the software.

8.4 Drawbacks of Existing Algorithms and Benefits of the ProposedModel
to Software Engineering

Over the past decades, researchers have used datasets obtained from SZZ-based algorithms
to feed their bug prediction or classification models. For example, Ray et al. used a dataset
gathered using the SZZ algorithm (Rahman et al. 2014) to study the naturalness of buggy
code (Ray et al. 2016). Massacci et al. evaluated most existing vulnerabilities discovery
models on web browsers and took many datasets obtained using SZZ (Massacci and Nguyen
2014). Abreu et al. used the dataset obtained in Śliwerski et al. (2005) to study how the
frequency of communication between developers affects the introduction of a bug in the
source code (Abreu and Premraj 2009). These datasets can contain a noteworthy number of
false positives and false negatives as we have seen in the findings of our case studies (see
Section 7.2.2). Consequently, the results of previous studies in the larger domain of software
engineering (e.g., bug prediction or bug detection) can differ (negatively) if we take into
account that they have used those datasets.

This work demonstrates that the process of applying our model to 116 bug reports and
analyzing 236 previous commits leads to reliable datasets in which each BFC is linked with
its BIC or without one. These curated datasets are one of the benefits of using the model as
they represent the ground truth of the projects and they could be crucial to improve other
areas of software engineering.

In this work, we manually built these curated datasets, and then we used them to com-
pute the real performance in terms of precision, recall, and F-score of four SZZ-based
algorithms. The results show that: (i) there are intrinsic and extrinsic bugs, although the
SZZ-based algorithms consider all bugs as the same; (ii) the correct identification of BICs
is still a challenge when using SZZ-based algorithms; (iii) specific characteristics of the
project might affect the performance of the algorithms when identifying BICs. For example,
we have noticed that the SZZ-1E algorithm obtains the best performance in Nova, while the
SZZ-1L algorithm did in ElasticSearch; (iv) the existence of extrinsic bugs is a crucial fac-
tor for the performance of these algorithms: when they are removed from the dataset, the
performance of these algorithms increases. We have also shown that researchers can decide
what criteria they prefer to use when evaluating the SZZ algorithms depending on different
factors. For example, if they attempt to analyze which algorithm creates a better dataset of
false positives, they can decide to use the “All” criteria. Also, they can use the “At least”
criteria to analyze which algorithm identifies more BICs. Finally, they may prefer to use the
“Only” criteria to evaluate whether just one change introduced the bug.

After the manual analysis, we have realized that establishing whether a BIC exists, and
determining when it was introduced is not straightforward. However, the proposed model
helps to identify the first time that the software exhibits the bug and to understand whether it
was a BIC or a FFC. This model not only provides guidelines on how to become operational
in real projects to build reliable datasets, it also contemplates BFCs that have been largely
not considered in the current research literature. For example, the BFCs with only new lines
added are not considered in the current research literature because the SZZ-based algorithm

Empirical Software Engineering

cannot track back these lines. Thus, another benefit of this paper is that our model decreases
the number of false negatives in the datasets because it considers all kinds of BFCs.

All in all, we believe that the proposed model greatly benefits software engineering, as
for the first time, we have described when a software system exhibits a bug, and we have
looked into how bugs were inserted. In addition, with the empirical evaluation of the pro-
posed model and the evaluation of the effectiveness of SZZ-based algorithms, we shed some
more light on the problem of identifying software bugs realistically. However, to achieve
greater bug localization automation, we need a concerted effort in testing to find ways or
techniques to address the challenges of making the model operational (see Section 6). In
particular, a (partially) automated technique for building and subsequently evolving a per-
fect test would be of great importance, as it is this test that can signal the bug and then find
the BIC or the FFC.

8.5 Threats to Validity

The validity of our work is described in terms of the four main threats to validity in empirical
software engineering research: construct, internal, external and conclusion validity (Wohlin
et al. 2012).

Construct Validity Since we do not have enough means to build or automatize the perfect
test, we have to create it mentally and this can lead to some threats in the results. However,
we mitigate this threat by discussing those cases in which we were unsure about how the
perfect test should be implemented. However, if a bug exists and it is fixed, then a test can
be created to show the existence/lack of a bug. Otherwise, researchers cannot know for sure
if the bug was fixed.

Also, assuming that the bug reports analyzed were not reopened later and that their BFC
was always complete or that there is no duplicates of the same bug may be a threat to the
study. We try to mitigate these cases by analyzing whether the BFCs have one or more BFCs
attached to them or whether there was any information in the bug tracker system about the
bug reports being reopened. Also, there can be cases where commits detected as BFCs turn
out to be false because the bug report did not describe a real bug. To reduce this threat, the
BFCs were manually reviewed to filter out the uncertain cases. Also, we manually located
the BIC and in order to compute the performance of SZZ-based algorithms, we removed
those bugs for which we were unsure from the datasets. Other threats are related to the
peculiarities of the projects. The use of GNUDiffutils is the most extended way of providing
diff information when looking for the difference between two files. However, other ways of
providing diff information can be considered.

Internal Validity The most important internal threat is that the authors, although they know
OpenStack and ElasticSearch from using and having previously investigated them, do not
have advanced programming expertise in these systems. This may have influenced the
results of the analysis. To mitigate, the cases where we were unsure were discussed among
the authors of this paper and removed when no agreement was reached.

External Validity In terms of the number of commits that we analyzed for our study, it
should be noted that our numbers are in the order of magnitude of similar studies that require
intensive human labor, Hindle et al. considered 100 large commits in their study (Hindle
et al. 2008), Da Costa et al. analyzed 160 bugs and 80 BICs (2017), and Williams and

Empirical Software Engineering

Spacco studied 25 BFCs that contained a total of 50 changed lines which were mapped back
to a BIC (2008).

Another threat is that this work has only selected two different programming languages,
Java and Python. It is possible that the study of different programming languages leads to
different results. The use of Nova and ElasticSearch as the case studies implies a better
understanding of how bugs appear in these projects. However, a higher number of projects
would enrich the study because Nova and ElasticSearch can have specific properties. Both
have rapid evolution and an active community of developers, thus other projects with fewer
commits per year could have different results.

Conclusion Validity The metrics used to evaluate the four existing SZZ algorithms (i.e.,
accuracy, precision, recall, and F1-Score) are widely used when evaluating the performance
of algorithms that identify the origin of bugs (Davies et al. 2014). Not having used or compared
all the existing SZZ-based approaches (e.g., RA-SZZ (Neto et al. 2018) can be a threat to the
conclusion validity of the study since these approaches may have better accuracy and preci-
sion. Although comparing our manually curated dataset with other SZZ-based approaches
would give us more insights into the performance of those approaches, we discarded using
them because of the complexity of implementing them and the unavailability to use them
as open source software. However, we study the token-based approach because we believe
that it would have better precision that the four SZZ-based approaches that we selected.

9 Conclusions and FutureWork

In this study, to answer our central question: How can we identify the origin of a defect based
on information in source control systems?, we proposed a model for defining criteria to
decide the first snapshot of an evolving software system that exhibits a certain bug. For that,
the model defines “the perfect test”, which fails when the bug is observed after a change to
the software and passes when the bug in not observed. In practice, this “perfect test” can be
(mentally) created using information from the source control systems, issue tracker systems
and code review systems.

When applying the criteria to two real world projects, we qualitatively show that in the
116 bugs that we consider it is not always straightforward to identify how bugs were intro-
duced. Furthermore, we witnessed how some bugs were caused by changes or omissions in
the source code of the project (60%–64%). Other bugs (i.e., the extrinsic ones) were caused
by changes that are not recorded in the source code (9%–21%). The proposed model helps
to distinguish both cases and identifies when the BIC was made. The evaluation of four
existing SZZ algorithms shows that when a change in the source code caused the bug, the
assumption “a bug was introduced by the lines of code that were modified to fix it” only
holds for 61%-63% of the commits analyzed, in the best case of SZZ-1. The precision does
not exceed 0.75 and the maximum value for the recall is 0.80 in the projects that we eval-
uated. Furthermore, the results show that the version of SZZ with a higher effectiveness is
SZZ-1 when using the “At least” criteria.

The lion’s share of identifying the bug-introducing changes is based on techniques which
rely on the assumption that the lines of code changed to fix the bug are also the ones that
have introduced it. This work provides evidence of the problematic nature of this assump-
tion, and demonstrates that it is just one of the cases among others of how bugs were
introduced in software components. Potentially, this finding has many implications in other
fields of software engineering (e.g., bug prediction or bug detection) since many studies are

Empirical Software Engineering

misidentifying or even omitting the origin of the bug and this can put their results in jeop-
ardy. This work does not try to make a formal proposal of a theory that explains how bugs
were introduced in software products since we cannot be predictive. However, considering
the apparent suitability of the model proposed, and the implications of the findings, it seems
it could be necessary to obtain such a theory and, this work serves as a motivation towards
a theory bug introduction. Our work also contributes to this by defining and explaining all
relevant concepts in bug introduction, proposing a unified terminology.

We have demonstrated that our model enables to identify the snapshot of a component
that exhibits the bug. Future work could use this model to build more datasets that can be
used as the ground truth to evaluate the real performance of techniques when identifying
how bugs were introduced. In order to build these datasets faster, another interesting and
useful line of research would be to automate the perfect test that signals whether the bug is
present in the code.

The findings in this study show that there are two kind of bugs, intrinsic bugs (the origin
is a BIC in the SCM), and extrinsic bugs (the origin is a change not recorded in the SCM).
Furthermore, the findings show that four existing SZZ algorithms misidentify BICs. Other
future lines could be i) to study whether extrinsic bugs can be automatically detected, and ii)
to assess the impact of misidentifying BICs in other areas of software engineering such as
automatic bug detection or bug prediction. This could help to better design integration tests,
or to envision other procedures to make software development more robust against bugs.

The full automation of the research methods used in this paper is also interesting for
practitioners. That would provide software projects with a valuable tool for understanding
how they are introducing bugs, and therefore design measures for mitigation.

Replication Package we have set up a replication package35 including data sources,
intermediate data and scripts.

Acknowledgments We want to express our gratitude to Bitergia36 for the support they have provided
when questions have arisen using their tools. We also acknowledge the support of several authors by the
Government of Spain through projects TIN2014-59400-R and “BugBirth” RTI2018-101963-B-I00. The first
author has been supported by the 4TU federation (The Netherlands) through the project “Social aspects of
software quality”. Other funding came from the Netherlands Organisation for Scientific Research (NWO)
through the “TestRoots” project and the EU Horizon 2020 ICT-10-2016-RIA “STAMP” project (No.731529).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abreu R, Premraj R (2009) How developer communication frequency relates to bug introducing changes. In:
Proceedings of the joint international and annual ERCIM workshops on Principles of software evolution
(IWPSE) and software evolution (Evol) workshops. ACM, pp 153–158.

35https://github.com/Gemarodri/HowBugsAreBorn
36http://bitergia.com

http://creativecommons.org/licenses/by/4.0/
https://github.com/Gemarodri/HowBugsAreBorn
http://bitergia.com

Empirical Software Engineering

Alexandru CV, Gall H (2015) Rapid multi-purpose, multi-commit code analysis. In: 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering (ICSE), vol 2. IEEE, pp 635–638

Aranda J, Venolia G (2009) The secret life of bugs: Going past the errors and omissions in software repos-
itories. In: Proceedings of the 31st international conference on software engineering. IEEE Computer
Society, pp 298–308

Basili VR, Perricone BT (1984) Software errors and complexity: an empirical investigation. Commun ACM
27(1):42–52

Bavota G, Russo B. (2015) Four eyes are better than two: on the impact of code reviews on software quality.
In: 2015 IEEE International Conference on Software Maintenance and Evolution (ICSME). IEEE,
pp 81–90

Beller M, Gousios G, Zaidman A (2015) How (much) do developers test? In: Proceedings of the International
Conference on Software Engineering (ICSE), vol 2. IEEE Computer Society, pp 559–562

Beller M, Gousios G, Zaidman A (2017) Oops, my tests broke the build: an explorative analysis of Travis CI
with GitHub. In: Proceedings of the International Conference on Mining Software Repositories (MSR).
IEEE, pp 356–367

Beller M, Spruit N, Spinellis D, Zaidman A (2018) On the dichotomy of debugging behavior among pro-
grammers. In: Proceedings of the International Conference on Software Engineering (ICSE). ACM,
pp 572–583

Berger ED, Hollenbeck C, Maj P, Vitek O, Vitek J (2019) On the impact of programming languages on code
quality. arXiv:1901.10220

Bettenburg N, Hassan AE (2013) Studying the impact of social interactions on software quality. Empir Softw
Eng 18(2):375–431

Bird C, Bachmann A, Aune E, Duffy J, Bernstein A, Filkov V, Devanbu P (2009) Fair and balanced?: bias
in bug-fix datasets. In: Proceedings of the the 7th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The foundations of software engineering. ACM, pp
121–130

Bird C, Rigby PC, Barr E, Hamilton DJ, German DM, Devanbu P (2009) The promises and perils of mining
git. In: 6th IEEE international working conference on mining software repositories, 2009. MSR’09.
IEEE, pp 1–10

Bissyande TF, Thung F, Wang S, Lo D, Jiang L, Reveillere L (2013) Empirical evaluation of bug link-
ing. In: 2013 17th european conference on software maintenance and reengineering (CSMR). IEEE,
pp 89–98

Boehm B, Basili VR (2005) Software defect reduction top 10 list. Foundations of empirical software
engineering: the legacy of Victor R Basili 426(37):426–431

Brooks FP Jr (1995) The mythical man-month: essays on software engineering, anniversary edition, 2/E.
Pearson Education India

Canfora G, Cerulo L, Cimitile M, Di Penta M (2011) Social interactions around cross-system bug fixings:
the case of freebsd and openbsd. In: Proceedings of the 8th working conference on mining software
repositories. ACM, pp 143–152

Catolino G, Palomba F, Zaidman A, Ferrucci F (2019) Not all bugs are the same Understanding,
characterizing, and classifying bug types. J Syst Softw 152:165–181

Chandy KM, Lamport L (1985) Distributed snapshots: Determining global states of distributed systems.
ACM Transactions on Computer Systems (TOCS) 3(1):63–75

Chen T.-H., Nagappan M, Shihab E, Hassan AE (2014) An empirical study of dormant bugs. In: Proceedings
of the 11th working conference on mining software repositories. ACM, pp 82–91

Čubranic D, Murphy GC (2003) Hipikat: Recommending pertinent software development artifacts. In: 25th
international conference on software engineering, 2003. Proceedings. IEEE, pp 408–418

da Costa DA, Kulesza U, Aranha E, Coelho R (2014) Unveiling developers contributions behind code com-
mits: an exploratory study. In: Proceedings of the 29th annual ACM symposium on applied computing.
ACM, pp 1152–1157

da Costa DA, McIntosh S, Shang W, Kulesza U, Coelho R, Hassan AE (2017) A framework for evaluating the
results of the SZZ approach for identifying bug-introducing changes. IEEE Trans Softw Eng 43(7):641–
657

Davies S, Roper M, Wood M (2014) Comparing text-based and dependence-based approaches for determin-
ing the origins of bugs. Journal of Software: Evolution and Process 26(1):107–139

Demeyer S, Ducasse S, Nierstrasz O (2002) Object-oriented reengineering patterns. Elsevier
Dias M, Bacchelli A, Gousios G, Cassou D, Ducasse S (2015) Untangling fine-grained code changes. In:

2015 IEEE 22nd international conference on software analysis, evolution and reengineering (SANER).
IEEE, pp 341–350

Easterbrook S, Singer J, Storey M.-A., Damian D (2008) Selecting empirical methods for software
engineering research. In: Guide to advanced empirical software engineering. Springer, pp 285–311

http://arxiv.org/abs/1901.10220

Empirical Software Engineering

Ebert F, Castor F, Serebrenik A (2015) An exploratory study on exception handling bugs in Java programs.
J Syst Softw 106:82–101

Ell J (2013) Identifying failure inducing developer pairs within developer networks. In: Proceedings of the
2013 international conference on software engineering. IEEE Press, pp 1471–1473

Fischer M, Pinzger M, Gall H (2003) Analyzing and relating bug report data for feature tracking. In:
Proceedings of the 10th working conference on reverse engineering (WCRE). IEEE, pp 90–100

Fischer M, Pinzger M, Gall H (2003) Populating a release history database from version control and bug
tracking systems. In: International conference on software maintenance, 2003. ICSM 2003. Proceedings.
IEEE, pp 23–32

Fowler M, Beck K, Brant J, Opdyke W, Roberts D (1999) Refactoring: improving the design of existing
code. Addison-Wesley Professional

Fraser G, Arcuri A (2013a) Evosuite: On the challenges of test case generation in the real world. In:
2013 IEEE sixth international conference on software testing, verification and validation (ICST). IEEE,
pp 362–369

Fraser G, Arcuri A (2013b) Whole test suite generation. IEEE Trans Softw Eng 39(2):276–291
German DM, Hassan AE, Robles G (2009) Change impact graphs: Determining the impact of prior

codechanges. Inf Softw Technol 51(10):1394–1408
Gonzalez-Barahona JM, Robles G, Herraiz I, Ortega F (2014) Studying the laws of software evolution in a

long-lived floss project. J Softw Evol Process 26(7):589–612
Gousios G, Zaidman A, Storey MD, van Deursen A (2015) Work practices and challenges in pull-based

development: the integrator’s perspective. In: Bertolino A., Canfora G., Elbaum S. G. (eds) 37th
IEEE/ACM international conference on software engineering, ICSE 2015, Florence, Italy, May 16-24,
2015, vol 1. IEEE Computer Society, pp 358–368

Gregor S (2006) The nature of theory in information systems. MIS quarterly:611–642
Guerrouj L, Kermansaravi Z, Arnaoudova V, Fung BC, Khomh F, Antoniol G, Guéhéneuc Y-G (2015)

Investigating the relation between lexical smells and change-and fault-proneness: an empirical study.
Softw Qual J:1–30

Hassan AE (2009) Predicting faults using the complexity of code changes. In: IEEE 31st international
conference on software engineering, 2009. ICSE 2009. IEEE, pp 78–88

Hassan AE, Holt R (2005) The top ten list: Dynamic fault prediction. In: Proceedings of the 21st IEEE
international conference on software maintenance, 2005. ICSM’05. IEEE, pp 263–272

Hata H, Mizuno O, Kikuno T (2010) Fault-prone module detection using large-scale text features based on
spam filtering. Empir Softw Eng 15(2):147–165

Herzig K, Just S, Zeller A (2013) It’s not a bug, it’s a feature: how misclassification impacts bug pre-
diction. In: Proceedings of the 2013 international conference on software engineering. IEEE Press,
pp 392–401

Hilton M, Bell J, Marinov D (2018) A large-scale study of test coverage evolution. In: Proceedings of the
33rd ACM/IEEE international conference on automated software engineering (ASE). ACM, pp 53–63

Hindle A, German DM, Holt R (2008) What do large commits tell us?: a taxonomical study of large commits.
In: Proceedings of the 2008 international working conference on mining software repositories. ACM,
pp 99–108

Institute of Electrical and Electronics Engineers and IEEE Computer Society. Software Engineering Stan-
dards Committee (2009) IEEE standard 1044-2009: Classification for software anomalies. IEEE std
IEEE

ISO/IEC (2001) ISO/IEC 9126. Software engineering – Product quality ISO/IEC
Itkonen J, Mantyla MV, Lassenius C (2007) Defect detection efficiency: Test case based vs. exploratory

testing. In: First international symposium on empirical software engineering and measurement, 2007.
ESEM 2007. IEEE, pp 61–70

Izquierdo-Cortazar D, Capiluppi A, Gonzalez-Barahona JM (2011) Are developers fixing their own bugs?:
Tracing bug-fixing and bug-seeding committers. International Journal of Open Source Software and
Processes (IJOSSP) 3(2):23–42

Izquierdo-Cortázar D., Robles G, González-Barahona J. M. (2012) Do more experienced developers
introduce fewer bugs? In: IFIP International conference on open source systems. Springer, pp 268–273

Jacobs J, Van Moll J, Kusters R, Trienekens J, Brombacher A (2007) Identification of factors that influ-
ence defect injection and detection in development of software intensive products. Inf Softw Technol
49(7):774–789

Kalliamvakou E, Gousios G, Blincoe K, Singer L, German DM, Damian D (2014) The promises and perils of
mining GitHub. In: Proceedings of the 11th working conference on mining software repositories. ACM,
pp 92–101

Kamei Y, Shihab E, Adams B, Hassan AE, Mockus A, Sinha A, Ubayashi N (2013) A large-scale empirical
study of just-in-time quality assurance. IEEE Trans Softw Eng 39(6):757–773

Empirical Software Engineering

Kim S, Whitehead E Jr et al (2006) Properties of signature change patterns. In: 22nd IEEE international
conference on software maintenance, 2006. ICSM’06. IEEE, pp 4–13

Kim S, Whitehead E Jr, Zhang Y (2008) Classifying software changes: Clean or buggy? IEEE Trans Softw
Eng 34(2):181–196

Kim S, Zimmermann T, Pan K, Whitehead E Jr (2006) Automatic identification of bug-introducing changes.
In: 21st IEEE/ACM international conference on automated software engineering, 2006. ASE’06. IEEE,
pp 81–90

Kim S, Zimmermann T, Whitehead E Jr, Zeller A (2007) Predicting faults from cached history. In: Procee-
dings of the 29th international conference on software engineering. IEEE Computer Society, pp 489–498

Knauss E, Damian D, Knauss A, Borici A (2014) Openness and requirements: opportunities and tradeoffs
in software ecosystems. In: 2014 IEEE 22nd international requirements engineering conference (RE).
IEEE, pp 213–222

Knauss E, Liebel G, Horkoff J, Wohlrab R, Kasauli R, Lange F, Gildert P (2018) T-reqs: Tool support for
managing requirements in large-scale agile system development. arXiv:1805.02769

LaToza TD, Venolia G, DeLine R (2006) Maintaining mental models: a study of developer work habits. In:
Proceedings of the 28th international conference on Software engineering. ACM, pp 492–501

Le T-DB, Linares-Vásquez M, Lo D, Poshyvanyk D (2015) Rclinker: automated linking of issue reports
and commits leveraging rich contextual information. In: 2015 IEEE 23rd international conference on
program comprehension (ICPC). IEEE, pp 36–47

Li Z, Tan L, Wang X, Lu S, Zhou Y, Zhai C (2006) Have things changed now?: an empirical study of bug
characteristics in modern open source software. In: Proceedings of the 1st workshop on Architectural
and system support for improving software dependability. ACM, pp 25–33

Marsavina C, Romano D, Zaidman A (2014) Studying fine-grained co-evolution patterns of production and
test code. In: 2014 IEEE 14th international working conference on source code analysis and manipulation
(SCAM). IEEE, pp 195–204

Massacci F, Nguyen VH (2014) An empirical methodology to evaluate vulnerability discovery models. IEEE
Trans Softw Eng 40(12):1147–1162

Meneely A, Srinivasan H, Musa A, Tejeda AR, Mokary M, Spates B (2013) When a patch goes bad: Explo-
ring the properties of vulnerability-contributing commits. In: 2013 ACM/IEEE international symposium
on empirical software engineering and measurement. IEEE, pp 65–74

Mens T, Wermelinger M, Ducasse S, Demeyer S, Hirschfeld R, Jazayeri M (2005) Challenges in software
evolution. In: Eighth international workshop on principles of software evolution. IEEE, pp 13–22

Mockus A, Weiss DM (2000) Predicting risk of software changes. Bell Labs Technical Journal 5(2):169–180
Moonen L, van Deursen A, Zaidman A, Bruntink M (2008) On the interplay between software testing and

evolution and its effect on program comprehension. In: Mens T, Demeyer S (eds) Software evolution.
Springer, pp 173–202

Murphy-Hill E, Zimmermann T, Bird C, Nagappan N (2015) The design space of bug fixes and how
developers navigate it. IEEE Trans Softw Eng 41(1):65–81

Nagappan N, Ball T, Zeller A (2006) Mining metrics to predict component failures. In: Proceedings of the
28th international conference on Software engineering. ACM, pp 452–461

Nakajo T, Kume H (1991) A case history analysis of software error cause-effect relationships. IEEE Trans
Softw Eng 17(8):830–838

Neto EC, da Costa DA, Kulesza U (2018) The impact of refactoring changes on the SZZ algorithm: an empiri-
cal study. In: 2018 IEEE 25th international conference on software analysis, evolution and reengineering
(SANER). IEEE, pp 380–390

Neto EC, da Costa DA, Kulesza U (2019) Revisiting and improving SZZ implementations. In: 2019
ACM/IEEE International symposium on empirical software engineering and measurement. ACM

Nuseibeh B, Easterbrook S (2000) Requirements engineering: a roadmap. In: Proceedings of the conference
on the future of software engineering. ACM, pp 35–46

Ottenstein KJ, Ottenstein LM (1984) The program dependence graph in a software development environment.
ACM Sigplan Notices 19(5):177–184

Palomba F, Panichella A, Zaidman A, Oliveto R, De Lucia A (2016) Automatic test case generation: what if
test code quality matters? In: Proceedings of the 25th international symposium on software testing and
analysis (ISSTA). ACM, pp 130–141

Palomba F, Zaidman A (2017) Does refactoring of test smells induce fixing flaky tests? In: Proceedings of
the International Conference on Software Maintenance and Evolution (ICSME). IEEE, pp 1–12

Palomba F, Zaidman A (2019) The smell of fear: on the relation between test smells and flaky tests. Empirical
Software Engineering (EMSE) 24(5):2907–2946

Pan K, Kim S, Whitehead EJ Jr (2009) Toward an understanding of bug fix patterns. Empir Softw Eng
14(3):286–315

http://arxiv.org/abs/1805.02769

Empirical Software Engineering

Prechelt L, Pepper A (2014) Why software repositories are not used for defect-insertion circumstance
analysis more often: A case study. Inf Softw Technol 56(10):1377–1389

Rahman F, Khatri S, Barr E, Devanbu P (2014) Comparing static bug finders and statistical prediction. In:
Proceedings of the 36th international conference on software engineering. ACM, pp 424–434

Rahman F, Posnett D, Hindle A, Barr E, Devanbu P (2011) Bugcache for inspections: hit or miss? In: Pro-
ceedings of the 19th ACM SIGSOFT symposium and the 13th European conference on foundations of
software engineering. ACM, pp 322–331

Ray B, Hellendoorn V, Godhane S, Tu Z, Bacchelli A, Devanbu P (2016) On the naturalness of buggy code.
In: Proceedings of the 38th international conference on software engineering. ACM, pp 428–439

Ray B, Posnett D, Filkov V, Devanbu P (2014) A large scale study of programming languages and code
quality in github. In: Proceedings of the 22nd ACM SIGSOFT international symposium on foundations
of software engineering. ACM, pp 155–165

Rodrı́guez-Pérez G., Gonzalez-Barahona JM, Robles G, Dalipaj D, Sekitoleko N (2016) Bugtracking: A tool
to assist in the identification of bug reports. In: IFIP International conference on open source systems.
Springer, pp 192–198

Rodriguez-Perez G, Robles G, Gonzalez-Barahona JM (2017) How much time did it take to notify a bug?:
two case studies: elasticsearch and nova. In: Proceedings of the 8th workshop on emerging trends in
software metrics. IEEE Press, pp 29–35

Rodrı́guez-Pérez G, Robles G, González-Barahona JM (2018a) Reproducibility and credibility in empirical
software engineering: A case study based on a systematic literature review of the use of the szz algorithm.
Inf Softw Technol 99:164–176

Rodrı́guez-Pérez G, Zaidman A, Serebrenik A, Robles G, González-Barahona JM (2018b) What if a bug has a
different origin? Making sense of bugs without an explicit bug introducing change. In: 12th international
symposium on empirical software engineering and measurement (ESEM). ACM, pp 52:1–52:4

Rothermel G, Harrold MJ (1996) Analyzing regression test selection techniques. IEEE Trans Softw Eng
22(8):529–551

Runeson P, Host M, Rainer A, Regnell B (2012) Case study research in software engineering: Guidelines
and examples. Wiley, New York

Sahal E, Tosun A (2018) Identifying bug-inducing changes for code additions. In: Proceedings of the 12th
ACM/IEEE international symposium on empirical software engineering and measurement. ACM, p 57

Shihab E, Ihara A, Kamei Y, Ibrahim WM, Ohira M, Adams B, Hassan AE, Matsumoto K.-i. (2013) Studying
re-opened bugs in open source software. Empir Softw Eng 18(5):1005–1042

Sinha VS, Sinha S, Rao S (2010) Buginnings: identifying the origins of a bug. In: Proceedings of the 3rd
India software engineering conference. ACM, pp 3–12

Śliwerski J, Zimmermann T, Zeller A (2005) When do changes induce fixes?. Proceedings of the 2005
International workshop on mining software repositories: 1–5

Soetens QD, Pérez J., Demeyer S, Zaidman A (2015) Circumventing refactoring masking using fine-grained
change recording. In: Proceedings of the 14th international workshop on principles of software evolution.
ACM, pp 9–18

Sun Y, Wang Q, Yang Y (2017) Frlink: Improving the recovery of missing issue-commit links by revisiting
file relevance. Inf Softw Technol 84:33–47

Syer MD, Nagappan M, Adams B, Hassan AE (2015) Replicating and re-evaluating the theory of relative
defect-proneness. IEEE Trans Softw Eng 41(2):176–197

Tan L, Liu C, Li Z, Wang X, Zhou Y, Zhai C (2014) Bug characteristics in open source software. Empir
Softw Eng 19(6):1665–1705

Tantithamthavorn C, Teekavanich R, Ihara A, Matsumoto K-i (2013) Mining a change history to quickly
identify bug locations: a case study of the eclipse project. In: 2013 IEEE international symposium on
software reliability engineering workshops (ISSREW). IEEE, pp 108–113

Thung F, Lo D, Jiang L (2013) Automatic recovery of root causes from bug-fixing changes. In: 2013 20th
working conference on reverse engineering (WCRE). IEEE, pp 92–101

Vassallo C, Zampetti F, Romano D, Beller M, Panichella A, Penta MD, Zaidman A (2016) Continuous
delivery practices in a large financial organization. In: Proceedings of the international conference on
software maintenance and evolution (ICSME). IEEE Computer Society, pp 519–528

Viller S, Bowers J, Rodden T (1999) Human factors in requirements engineering: A survey of human sciences
literature relevant to the improvement of dependable systems development processes. Interact Comput
11(6):665–698

Vonken F, Zaidman A (2012) Refactoring with unit testing: a match made in heaven?. In: Proceeedings of
the working conference on reverse engineering (WCRE), pp 29–38

Weiss C, Premraj R, Zimmermann T, Zeller A (2007) How long will it take to fix this bug? In: Fourth
international workshop on mining software repositories, 2007. ICSE Workshops MSR’07. IEEE, pp 1–1

Empirical Software Engineering

Williams C, Spacco J (2008) SZZ revisited: Verifying when changes induce fixes. In: Proceedings of the
2008 workshop on defects in large software systems. ACM, pp 32–36

Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2012) Experimentation in software
engineering. Springer Science & Business Media

Wu R, Zhang H, Kim S, Cheung S-C (2011) Relink: recovering links between bugs and changes. In: Pro-
ceedings of the 19th ACM SIGSOFT symposium and the 13th European conference on foundations of
software engineering. ACM, pp 15–25

Xia X, Lo D, Shihab E, Wang X, Zhou B (2015) Automatic, high accuracy prediction of reopened bugs.
Autom Softw Eng 22(1):75–109

Zaidman A, Van Rompaey B, Demeyer S, van Deursen A (2008) Mining software repositories to study co-
evolution of production & test code. In: First international conference on software testing, verification,
and validation (ICST). IEEE, pp 220–229

Zaidman A, Van Rompaey B, van Deursen A, Demeyer S (2011) Studying the co-evolution of production
and test code in open source and industrial developer test processes through repository mining. Empir
Softw Eng 16(3):325–364

Zeller A (2009) Why programs fail - a guide to systematic debugging, 2nd edn. Academic Press, New York
Zeller A, Hughes W, Lavery J, Doran K, Morrison CT, Snodgrass RT, Stärk RF (2011) Causes and effects

in computer programs. In: Proceedings of the fifth international workshop on computer, pp 482–508
Zimmermann T, Premraj R, Zeller A (2007) Predicting defects for Eclipse. In: International workshop on

predictor models in software engineering, 2007. PROMISE’07: ICSE workshops 2007. IEEE, pp 9–9
Zimmermann T, Nagappan N, Guo PJ, Murphy B (2012) Characterizing and predicting which bugs get

reopened. In: Proceedings of the 34th international conference on software engineering. IEEE Press,
pp 1074–1083

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Gema Rodrı́guez-Pérez is a Postdoctoral Researcher at the Univer-
sity of Waterloo, Canada. She received a European Ph.D. degree in
Computer Science from the Universidad Rey Juan Carlos, Spain, in
2018. Her research interests include bug introducing changes, empir-
ical software engineering, software maintenance and evolution, and
mining software repositories. She is a member of the IEEE. More
about Gema and her work is available online at https://gemarodri.
github.io/PersonalWeb/.

Gregorio Robles is Associate Professor at the Universidad Rey Juan
Carlos, a public university near Madrid, Spain. Gregorio is special-
ized in free/open source software research. He is one of the founders
of Bitergia. a software development analytics company, and has been
the General Chair of IEEE ICSME in 2018, and will be the General
Chair of MSR in 2021.

https://gemarodri.github.io/PersonalWeb/
https://gemarodri.github.io/PersonalWeb/

Empirical Software Engineering

Alexander Serebrenik is an associate professor of software evolu-
tion at the Eindhoven University of Technology, The Netherlands.
His research interests include a wide range of software maintenance
and evolution topics, from source-code analysis to collaborative and
human aspects of software engineering. Serebrenik received a Ph.D.
in computer science from Katholieke Universiteit Leuven, Belgium.
He has coauthored “Evolving Software Systems” (Springer Verlag,
2014) and more than 170 scientific papers and articles. He is a Senior
Member of the IEEE. Contact him at a.serebrenik@tue.nl.

Andy Zaidman is a full professor in software engineering at Delft
University of Technology, the Netherlands. He obtained his MSc
(2002) and PhD (2006) in Computer Science from the University
of Antwerp, Belgium. His main research interests are software evo-
lution, program comprehension, mining software repositories and
software testing. He is an active member of the research com-
munity and involved in the organization of numerous conferences
(WCRE’08, WCRE’09, VISSOFT’14 and MSR’18). He is on the edi-
torial board of JSS and EMSE. In 2013 he was the laureate of a Vidi
career grant from the Dutch science foundation NWO, while in 2019
he won the Vici career grant, the most prestigious career grant from
the Dutch science foundation NWO.

Daniel M. Germán is Professor in the Department of Computer Sci-
ence at the University of Victoria, where he does research in the areas
of mining software repositories, open source software engineering,
and intellectual property.

Empirical Software Engineering

JesusM. Gonzalez-Barahona teaches and researches in Universidad
Rey Juan Carlos, Fuenlabrada (Spain). His research interests include
the study of software development communities and processes, with
a focus on quantitative analysis. He is one of the founders of Bitergia,
the software development analytics company. He likes coding, taking
photos and drinking coffee.

Affiliations

Gema Rodrı́guez-Pérez1 ·Gregorio Robles2 ·Alexander Serebrenik3 ·
Andy Zaidman4 ·Daniel M. Germán5 · Jesus M. Gonzalez-Barahona2

Gema Rodrı́guez-Pérez
gema.rodriguez-perez@uwaterloo.ca

Alexander Serebrenik
a.serebrenik@tue.nl

Andy Zaidman
a.e.zaidman@tudelft.nl

Daniel M. Germán
dmg@uvic.ca

Jesus M. Gonzalez-Barahona
jgb@gsyc.urjc.es

1 University of Waterloo, Waterloo, ON N2L 3G1, Canada
2 Universidad Rey Juan Carlos, Madrid, Spain
3 Eindhoven University of Technology, Eindhoven, The Netherlands
4 Delft University of Technology, Delft, The Netherlands
5 University of Victoria, Victoria, BC V8P 5C2, Canada

mailto: gema.rodriguez-perez@uwaterloo.ca
mailto: a.serebrenik@tue.nl
mailto: a.e.zaidman@tudelft.nl
mailto: dmg@uvic.ca
mailto: jgb@gsyc.urjc.es

	How bugs are born: a model to identify how bugs are introduced in software components
	Abstract
	Introduction
	Goal: A Model of How Bugs Were Introduced
	Research Questions
	Contributions

	Background and Motivation Examples
	Related Work
	The Framework and its Assumptions
	The Model Assumes that there is Version Control for the Software
	Implementation
	Limitations and Solutions

	The Model Assumes that it has means to Identify the Bug-Fixing Change (BFC)
	Implementation
	Limitations and Solutions

	The Model Assumes that it is Possible to Know Whether a Bug is Present in the System or Not
	Definitions and Concepts
	Implementation
	Limitations and Solutions

	The Model Assumes that it is Possible to Identify a Candidate of the Bug-Introducing Change (BIC) that Corresponds to the Bug-Fixing Changes
	Implementation
	Limitations and Solutions

	The Model Assumes that the Fix is Perfect
	Implementation
	Limitations and Solutions

	Summary of the Assumptions

	The Model
	Main Concepts & Unifying Terminology
	A Process to Identify when and How a Bug was Introduced
	Ensure that a Control Version Exists
	Identify the Bug-Fixing Change (BFC)
	Ensure the Perfect Fixing
	Describe Whether a Bug is Present
	Identify the First-Failing Change

	Operationalizing the Process
	Ensure that a Control Version Exists
	Identify the Bug-Fixing Change
	Ensure the Perfect Fixing
	Describe Whether a Bug is Present
	Identify the First-Failing Change

	Case Studies
	Nova and Elasticsearch Datasets
	Results
	RQ1: Can there be Criteria to Help Researchers Find a Useful Classification of Changes Leading to Bugs?1007
	RQ2: Do These Criteria Help in Defining Precision and Recall in Four Existing SZZ-Based Algorithms for Detecting Bug-Introducing Changes?1007
	What Causes a Previous Commit (as Identified by SZZ-Based Algorithms) to not be the BIC?1007
	Is there an Alternative Approach to find the BIC with Higher Accuracy?1007

	Discussion
	Towards a Better Understanding of Bug Introduction
	Guidelines for the Perfect Test Approximations Design
	The Context Approximation
	The Modified Files Approximation
	The Bug Live Period Approximation

	Generalizability of our Findings
	Drawbacks of Existing Algorithms and Benefits of the Proposed Model to Software Engineering
	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity
	Conclusion Validity

	Conclusions and Future Work
	Replication Package

	References
	Affiliations

