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Abstract
The Multi-Level Bin Packing problem and its vari-
ants are some of the most popular combinatorial
optimization problems. They have a wide range
of real-life applications yet, they are some of the
harder problems we know of. In this paper we solve
the Multi-Level Bin Packing Problem and a variant
of it, Multi-Level Bin Packing Problem with Con-
flict Constraints, using Integer Programming. We
propose two Integer Programming models, a stan-
dard one and one with additional flow optimiza-
tions. We hypothesized that the second model will
have a smaller solution space and consequently an
improved performance for both of the problems.
However, we find that the second model’s perfor-
mance is worse and that although it may have a
smaller solution space, the comparison of the BnB
nodes points towards inconclusiveness.

1 Introduction
The Bin Packing (BP) problem ”is one of the best-known and
most widely studied problems of combinatorial optimization”
[1]. Finding an optimal solution of a BP problem instance is
an NP-hard problem, with the corresponding problem of de-
termining whether an instance of the BP problem has a solu-
tion, which is NP-Complete [2]. The BP problem has count-
less real life applications which include: supply chain man-
agement, routing and resource allocation, financial budgeting
or scheduling, to name a few [3, 4]. A generalisation of the
BP problem, known as the Multi-Level Bin Packing (MLBP)
problem, has numerous real life applications such as: coating
of tools with several required intermediate steps, or network
load balancing [5]. Additionally, it can be used for logistic
planning for products that need to be packed into boxes before
they are loaded into different containers for shipping. Many
variants of MLBP, like the Multi-Level Bin Packing Problem
with Conflict Constraints (MLBPCC), also have several dif-
ferent real world applications. An example of an MLBPCC
application is a scenario in which items may be conflicting
with each other, like food products and heavy chemicals, but
still have to be packed into a minimum amount boxes before
they are loaded into different containers.

Although the magnitude of usefulness for both BP and
MLBP is similar, MLBP is not nearly as much considered
in the literature as BP is. Table 1 shows the search results
for both keywords from some of the top scientific publica-
tion search engines and highlights this vast difference. This
is also the case for MLBPCC which is omitted from the ta-
ble since none of the mentioned search engines yielded any
results for the keyword of ”Multi-Level Bin Packing Prob-
lem with Conflict Constraints”. Due to this research gap, the
focus of this research paper is to explore the MLBP and its
variant, MLBPCC.

As mentioned before, BP, but also MLBP(CC), are NP-
Hard combinatorial optimization problems, meaning there is
no algorithm that we know of that solves any of these prob-
lems in polynomial time. A paper by Chen et al. was one of

Scientific
publication search

engine

”Multi-Level
Bin Packing” ”Bin Packing”

Google Scholar 7 39600
Semantic Scholar 4 9130
Scopus 3 3108
Web of Science 12 5120
IEEE Xplore 2 1010
TU Delft Library 2 1503

Table 1: Amount of search results given by each scientific publi-
cation search engine, for keywords ”Multi-Level Bin Packing” and
”Bin Packing” on the 6th of May 2022.

the few papers that researched a way of solving MLBP. It did
so by using dynamic programming to find optimal solutions
for instances of what they call ”normal” sized problems, and
a multi-level fuzzy matching algorithm to solve problems for
”large” instance sizes [6]. A promising alternative approach
for solving combinatorial optimization problems is Mixed In-
teger Programming (MIP) [7], which is a generalisation of
the Integer Programming (IP). This is where a problem is re-
duced to an instance of an (M)IP problem and then special-
ized (M)IP solver software is used to solve it. One of the
most popular professional grade optimization software that
is used for solving (M)IP problems, and that will be used in
this project, is the CPLEX Optimizer. It is designed to pro-
vide flexible, high-performance, mathematical programming
solvers for linear programming and (mixed) integer program-
ming, naming just a few [8].

The aim of this project is to find, implement, optimize and
evaluate IP models for the Multi-Level Bin Packing problem
as well as for Multi-Level Bin Packing problem with Conflict
Constraints. More specifically, we will answer the question:
Do flow based IP models outperform other kind of IP models
to solve MLBP(CC) instances in terms of solution time and
the number of branch-and-bound nodes required?

The following section, Section 2, formally describes the
BP problem, the MLBP problem and the variant of it,
MLBPCC. Next, Section 3 illustrates the IP approach and
then explains the mathematical reasoning with regard to IP
representations of MLBP and MLBPCC. Then, Section 4 dis-
cusses the experimental setup used for evaluating different
models, and brief instructions on how to run the set up are
described in Section 5. The results based on the empirical
measurements of the performances of the two models are de-
scribed in Section 6. The discussion of the results and poten-
tial explanation for why our initial hypothesis was wrong are
reasoned about in the Section 7. Next, the ethical aspects of
this research and the reproducibility of it are reflected upon in
Section 8. Finally, Section 9 contains the summary of this pa-
per, the concluding remarks and the future recommendations
for research in this topic.

2 Formal Problem Description
2.1 Bin Packing
The standard version of the BP problem consists of a set of
n items and an infinite set of bins where each item has an as-



Figure 2: Left: Given MLBP Instance with n = 5 and m = 2. Right: Solved MLBP instance, with the total cost equal to the sum of the costs
of the 5 used bins, highlighted in red.

sociated size ai and bins have equal associated capacity W .
The task is to insert all items into the bins such that the to-
tal number of bins used is minimized while adhering to the
constraint that no bin’s capacity is exceeded by the combined
size of all the contained items. A visualization of this can be
seen in Figure 1.

Figure 1: Top: Given instance of BP with n = 5. Bottom: Solved
instance of BP with N = 3.

More formally: given a list I = (a1, ..., an) of sizes of n
items, where ai ∈ N>0 denotes the size of the item i and the
capacity W of each bin. Find an assignment
f : {1, ..., n} → {1, ..., N}, with

∑I
i:f(i)=j ai ≤ Wj for all

j ∈ {1, ..., N} such that N ∈ N is minimum. [2]

2.2 Multi-Level Bin Packing
The MLBP problem is a generalisation of the BP problem
with some differences. First, in MLBP there is a finite amount
of bins, all of varying capacities and sizes. Second, bins are
partitioned into m levels. Before an item can be put in one
of the final top level bins at level m, it must be first put into
a bin of the first level, which in turn must be put into a bin
of the second level. This is continued until the item is finally
packed into a bin of the top level. The goal of MLBP is to put
each item in one of the top level bins while minimising the
total cost of the bins used at all levels. All this has to be done
while adhering to the capacity constraint of each bin used. A
visualization of this can be seen in Figure 2. More formally:
given m ∈ N>0 levels, where each level k is represented by
a list of bins Bk for k ∈ {1, ...,m}. Each bin Bk

j at level k,
has a designated size s(Bk

j ), capacity w(Bk
j ) and cost c(Bk

j ).
Additionally a list of n items, B0, is given, which like bins
have a size, however items do not have capacity nor cost,
therefore w(B0

i ) = ∅∧ c(B0
i ) = ∅∧ s(B0

i ) ∈ N>0, ∀i ∈ B0.
Find an assignment of item indices {1, ..., n} to bin indices
at each of the levels ({11, ..., j1}, ..., {1m, ..., jm}), such that
the sum of the sizes of all the items/bins (Bk

ji
) in, bin j at

level k, Bk
j is less than or equal to its capacity,∑

i∈Bk
j
s(Bk

ji
) ≤ w(Bk

j ) for all bins j ∈ Bk at level k, for
every k ∈ {1, ...,m}. The assignment f should minimize the
cost of all the bins used, min

∑
Bk

j ∈T c(Bk
j ) where T is the

set of all the bins used.



Figure 3: Left: Given MLBPCC Instance with n = 5 and m = 2 and the conflict graph G. Right: Solved MLBPCC instance, with the total
cost equal to the sum of the costs of the 7 used bins, highlighted in red.

2.3 Multi-Level Bin Packing With Conflict
Constraints

A variant of the MLBP problem this paper is also focusing
on is the MLBPCC problem. On top of the standard MLBP
instance, a conflict graph between the items is given. Items
that share an edge in this graph have a conflict relationship
and cannot be put in the same bin at any level. A visuali-
sation of this can be seen in Figure 3. The additional con-
straint can be described more formally by a conflict graph
G = (B0, E), where each node corresponds to an item and
an edge (B0

q , B
0
r ) ∈ E which indicates a conflict between

items B0
q and B0

r . Bin j of level k cannot hold both B0
q and

B0
r , ∀k ∈ m, ∀j ∈ Bk.

Other constraints and the objective function are the same as
in the case of the MLBP.

3 Integer Programming models
An integer programming (IP) problem is a mathematical
model in which decision variables are restricted to integer
values and those discrete decision variables are restricted
by linear (in)equality constraints. The objective is to mini-
mize/maximize a linear objective function. A mixed integer
programming (MIP) model, besides using the discrete deci-
sion variables also uses continuous decision variables [9].

Considering (M)IPs is interesting because (1) many com-
binatorial optimization problems can be expressed as an IP
or MIP model and (2) there exist powerful general purpose
(M)IP solvers that can solve (M)IP models. It is important to
note that this project’s focus will be only on IP models.

Often times additional constraints are included in the IP
models whose sole purpose is to improve the performance
of a model by eliminating symmetries and consequently re-
ducing the search space. These constraints are called the
symmetry-breaking constraints.

IP solvers take the IP models that represent the required
problem instance and use various techniques and algorithms
to efficiently solve them. Techniques such as the Cutting-
plane method or Branch-and-Bound algorithms are used with
a combination of various heuristics for node selection [10].
The main idea behind the Branch-and-Bound algorithm is to
branch on specific values of decision variables reducing the
search space [11]. This is particularly important since the
amount of Branch-and-Bound nodes that it takes to come up
with an optimal solution tells us something about how strong
a model is. In general less Branch-and-Bound nodes indicates
that the model is stronger and therefore should theoretically
be faster.

For a more detailed introduction to the IP, we refer the
reader to the Integer Programming and Combinatorial Opti-
mization [12] textbook.

3.1 BP IP model
An example of an IP model for the BP problem is as follows:

Decision variable yj ∈ {0, 1},∀j ∈ B, where B is the set
of all the bins, is used to indicate if bin j has been used, that
is yj = 1 if so and yj = 0 otherwise. Similarly decision
variable xij ∈ {0, 1} equals to 1 if item i ∈ I , where I is a
set of items, is inserted into bin j. The objective function is

min
∑
j∈B

yj (1)

where the amount of bins used is minimised.
The first constraint that needs to be enforced is the capacity

constraint, ∑
i∈I

xij · s(i) ≤ yj · w(Bj)

∀j ∈ B (2)



that is, the sum of the sizes of all the items in bin j, needs
to be less than or equal to the capacity of bin j for all j ∈ B.
Second, Constraint 3 ensures that each item is used exactly
once.

∑
j∈B

xij = 1,∀i ∈ I (3)

Additionally, for the BP a symmetry-breaking constraint
which enforces a partial ordering of the bins,

yj ≥ y(j+1),∀j ∈ B (4)

can be added. Since all the bins have the same capacity, this
constraint prunes symmetric solutions, where solutions are
different but have the same objective value score. For ex-
ample consider ya = {0, 1, 1} and yb = {1, 1, 0}. The two
solutions are different, ya ̸= yb, however they have the same
score, of 2. Adding the symmetry-breaking constraint prunes
ya, forcing our model to only consider yb.

3.2 MLBP IP model 1
The first approach of representing MLBP as an IP model is
based on the IP representation of the BP. The decision vari-
ables are all kept as binary values with the addition of a whole
another dimension to keep track of the levels. Decision vari-
able ykj ∈ {0, 1} keeps track of which bins have been used,
ykj = 1 if bin j at level k has been used, ykj = 0 otherwise.
Decision variable xk

ij ∈ {0, 1} keeps track of connections be-
tween different levels, xk

ij = 1 if item/bin i in level (k − 1)

is assigned to bin j at level k and xk
ij = 0 otherwise. The

objective function,

min

m∑
k=1

∑
j∈Bk

ykj · c(Bk
j ) (5)

is calculated by going through all the bins and adding their
cost if they have been used. This is done by taking the ad-
vantage of the binary variable y where if a bin is not used,
ykj = 0, then the cost of that bin, is not added to the total
sum.

The main constraint that was explicitly described in the
mathematical description of this problem (Section 2.2), is the
capacity constraint:

∑
i∈B(k−1)

xk
ij · s(B

(k−1)
i ) ≤ ykj · w(Bk

j )

∀k ∈ m,∀j ∈ Bk (6)

It ensures that the contents of any of the bins do not exceed its
capacity. The next constraint is that each item must be used
in all the levels. This can be split into two smaller constraints.
First, each item must be inserted into the bins of level 1,

∑
i∈B0

x1
ij = 1,∀j ∈ B1 (7)

Second, once a bin i is used at level (k − 1), it also must be
used at level k:

∑
i∈B(k−1)

xk
ij = y

(k−1)
i ,∀k ∈ m,∀j ∈ Bk (8)

These two constraints combined together inductively ensure
the above constraint.

A big advantage of this model is that since the decision
variable x is used to represent the connections between the
bins, it is not possible for a solution to contain ”item split-
ting”. That is, if an item/bin a and an item/bin b have been
put into the same bin at level k, they also have to be together
in whatever bins they go to in levels > k.

On top of this model additional constraints can be added
to improve the performance, however for the sake of research
they are only added in the second MLBP IP model and are
described in the following section.

3.3 MLBP IP model 2
The second IP model for MLBP is based on flow constraints
and is an extension of the first IP model from Section 3.2. A
solution of the MLBP can be represented as a forest, where
each tree represents the packing of a top level bin. Hence,
the top level bin represents the root node and child nodes rep-
resent intermediate nodes. Finally, leaf nodes represent the
items. To enforce such a tree structure we introduce an addi-
tional flow variable fk

ij for each variable xk
ij that represent the

amount of flow on the corresponding edge. More formally,
fk
ij represents the amount of items flowing from bin/item i of

level (k− 1) to bin j of level k. Variable fk
ij has the exact di-

mensions of xk
ij , however, f is not strictly binary as x is. The

first level of f is binary, f1
ij ∈ {0, 1}, forcing each item to be

used. However, in all the other levels of f , all items can go to
the same bin which means f can take a value of any natural
number up to n (amount of items), f>1

ij ∈ N[0,n]. The idea of
this model is that each of the leaf nodes sends out exactly one
unit of flow and the root nodes (all top level bins) consume
exactly n units of flow. The incoming flow of intermediate
nodes is always equal to the outgoing flow. This leads to the
following additional constraints:

∑
j∈B1

f1
ij = 1,∀i ∈ B0 (9)

∑
j∈Bm

∑
i∈B(m−1)

fm
ij = n (10)

∑
a∈B(k−1)

fk
aj =

∑
b∈B(k+1)

fk
jb

∀k ∈ [2, ..., (m− 1)],∀j ∈ Bk (11)

Constraint 9 forces all items to be used by stating that the
amount of flow between each item and the first level bins
has to be exactly one. Next, we need to make sure the to-
tal amount of flow leaving our network is the same as the
amount put in. Constraint 10 enforces this by stating that the
amount of flow between the last two levels must be equal to



the amount of items in the problem instance. Additionally, we
also need to make sure that the amount of flow leaving each
node (excluding the start and end nodes) is exactly the same
as the amount of flow that enters that node, this is imposed by
the Constraint 11.

Thus far, the model contains and correctly constraints the
the f variable, however, f is not ”connected” to the rest of
the model, meaning it does not affect the solution space rep-
resented by the model. In order to connect f and x variables
so that they mimic each other, we add the following two con-
necting constraints:

fk
ij ≤ xk

ij · n

∀k ∈ m,∀i ∈ B(k−1),∀j ∈ Bk (12)

xk
ij ≤ fk

ij

∀k ∈ m,∀i ∈ B(k−1),∀j ∈ Bk (13)

This allows the two decision variables to work together, mak-
ing the model stronger in a sense that the solution space is
tighter. On top of this, another connecting constraint can be
added to theoretically further tighten the model and conse-
quently improve the performance. In a similar way that f and
x have been connected, we can also connect x and y. The
constraint of:

xk
ij ≤ y

(k−1)
i

∀k ∈ [2,m],∀i ∈ B(k−1),∀j ∈ Bk (14)

ensures that as soon as we know bin i of level (k − 1) is
not used, connections between that bin and any of the bins of
the level k will not be considered, consequently reducing the
search space.

Additionally, we can add a minor symmetry-breaking con-
straint that is based on the symmetry-breaking Constraint 4
from BP. The Constraint 15 ensures that when two bins, j
and q, are in level k, and j is ”better” or equal to q then j
should be used first.

ykj ≥ ykq

∀k ∈ m,∀j ∈ Bk,∀q ∈ Bk :

s(Bk
j ) ≥ s(Bk

q ) ∧ w(Bk
j ) ≥ w(Bk

q ) ∧ c(Bk
j ) ≤ c(Bk

q )

(15)

In this case, ”better” means: greater size, greater capacity and
lower cost. It is worth mentioning that this constraint has a
much smaller effect than the one in the BP. This is because in
BP all bins are the same and in MLBP instances it is rare to
find bins that are strictly better than or as good as each other.

The objective function is exactly the same as in the first
model, Equation 5.

3.4 MLBPCC IP models
Since MLBPCC is a variant of MLBP and most constraints
are the same, both of the MLBPCC IP models are based on

the two previous MLBP IP models. As mentioned before the
main difference between MLBP and MLBPCC is the con-
flicting items constraint (see Section 2.3). In order to satisfy
this constraint another decision variable, z is needed, where
zkaj ∈ {0, 1} is a binary variable overseeing whether an item
a is in a bin j of level k. This variable needs to be populated
for the whole model, which is done inductively with two con-
straints. First, z1aj tracks every connection between items and
bins in the first level, x1

aj , by adhering to the Constraint 16.

x1
aj = z1aj ,∀a ∈ B0,∀j ∈ B1 (16)

This makes sure that if an item a goes to bin j (x1
aj = 1), then

item a is in bin j (z1aj = 1). Second, if an item a is in a bin i
of level (k−1) and there is a connection between that bin and
some bin j of level k, then item a also needs to be in the bin
j of level k. This is done in the Constraint 17, which under
the hood is transformed to a linear constraint by CPLEX.

(z
(k−1)
ai ∧ xk

ij) → zkaj

∀k ∈ [2,m],∀i ∈ B(k−1),∀j ∈ Bk,∀a ∈ B0 (17)

Once all z is populated, the actual conflict constraint, which
ensures that no conflicting items end up in any of the same
bins, can be added. This constraint,

zkaj + zkbj ≤ ykj

∀k ∈ m,∀j ∈ Bk,∀a ∈ B0,∀b ∈ B0 : confab (18)

means that if there is a conflict between items a and b, then
both of these items cannot be in the same bin j (ykj , ∀k ∈ m,
∀j ∈ Bk). Also, an optimizing shortcut is applied here, if bin
j is not used (ykj = 0) then none of the items can be in that
bin.

The above constraints, with the constraints of the standard
MLBP IP model (Section 3.2), constitute the first MLBPCC
IP model. Similarly, the above constraints, with the con-
straints of the flow based MLBP IP model (Section 3.3), con-
stitute the second MLBPCC IP model. It is worth mentioning
that all four models have the exact same objective function,
Equation 5.

4 Experimental Setup
The IP models described in the previous section have been
implemented in ISO C++17 Standard using the CPLEX Op-
timization Studio 22.1.0 environment and the GCC 10.2.0
compiler for Windows. The experiments have been run
on CPLEX’s standard settings while always using only one
thread on a machine with an Intel Core i7-9750H CPU
with 2.60 GHz. The instances have been randomly gen-
erated using scripts that can be found in the /inst/scripts
folder in the repository, a link to which can be found in
the Appendix A. Each instance has a specified amount of
items and levels, however, since difficulty within those two
parameters can vary widely, each problem instance with
n ∈ {5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 100} items and m ∈



{1, 2, 3, 4, 5} levels has five different randomly generated
instances. This results in 275 instances for MLBP and
1100 instances for MLBPCC. The latter has four times the
amount of instances because it has an additional parameter
p ∈ {25, 50, 75, 90} which represents the probability that two
items are in a conflict with each other. All instances are lo-
cated in the /inst/mlbp and /inst/mlbpcc folders in the reposi-
tory, a link to which is in the Appendix A.

5 Reproducibility of Results
In order to reproduce the results or to verify the set up,
we provide brief instructions on how to run the source
code and explanations for some implementation choices.
The solver can be run through the terminal by chang-
ing the directory to the root project directory and by run-
ning the following command: ”./x64/Debug/MLBP.exe ifile
inst/mlbp/n0030 m03 000.inst prob MLBP ttime 0 threads
1”. The first string is the location of the project executable,
the string after ”ifile” is the specific problem instance that is
to be run, the string after ”prob” is the problem that is to be
solved (BP, MLBP or MLBPCC) and finally that last two dig-
its represent the time limit in seconds and amount of threads
to be used. After all the computations the results are shown
with the best objective value found and the solution, as shown
in Figure 4. The solution is displayed in two formats, the first
one showing a 2-dimensional array sol where solkj returns the
index of the bin at level k into which item j has been inserted.
This allows for a quick verification of the correctness of the
solution by seeing which item goes to which bin at which
point. The second format is easier to visualize when compos-
ing a graph, as shown in Figure 5. It is also a 2-dimensional
array sol, however here solkj returns an index of a bin of level
k+1 where an item/bin j of level k has been inserted into.

Figure 4: Result output after solving n0005 m03 000.inst instance
of MLBP

6 Results
In order to compare the two models, two different approaches
have been taken. The first approach looks into how well a
model is able to solve each instance given a specified time
limit. For MLBP a time limit of t = 600 seconds (10 min-
utes) has been chosen while for MLBPCC t = 60 seconds (1
minute). Time limit t for MLBPCC is lower than for MLBP
because MLBPCC instances are harder to solve and also be-
cause the amount of variables is greater, causing the amount
of total instances to be much greater (275 for MLBP and

Figure 5: Visualization of the solution from Figure 4, where the used
bins are colored

1100 for MLBPCC). Within t the model can either optimally
solve the problem instance, give a feasible solution which is
not necessarily optimal, or not come up with any solution in
time. The results are added up and compared for the two
models in Tables 2 and 3 for MLBP and MLBPCC respec-
tively. The comparison in the tables focuses on three differ-
ent cases; ”Same Count”, ”Better Status” and ”Both Feasible,
Better Score”. ”Same Count” counts the amount of times both
models achieved the same score. ”Better Status” counts the
amount of times one model had a better status in the hierarchy
of Optimal > Feasible > Unknown. The last row represents
the amount of times both models found a feasible solution,
but the score of one model was better than the other one.

MLBP model 1 MLBP model 2
Same Count 233
Better Status 17 1
Both Feasible,
Better Score 19 5

Table 2: Comparison of scores between the two MLBP models, with
timeout t = 600 and 275 instances.

MLBPCC model 1 MLBPCC model 2
Same Count 676
Better Status 71 15
Both Feasible,
Better Score 184 154

Table 3: Comparison of scores between the two MLBPCC models,
with timeout t = 60 and 1100 instances.

The second approach focuses on the time taken to opti-
mally solve the problem instances. Since MLBP(CC) are
NP-Hard problems, the time needed to solve the instances
of bigger sizes grows exponentially. This is why in this ap-
proach not all instances have been tested against, instead,
for MLBP, the first 250 instances have been run. It is im-
portant to note that since there are five different instances
for each n and m combination, we average the results from
those instances to compute a single point on the graph, this
is why the x-axis goes from 0-50 instead of 0-250. In or-



der to make the results consistent, instead of measuring time
in seconds, we measure the performance in the amount of
ticks provided by CPLEX. Where a tick is a unit used to mea-
sure work done deterministically. Since the difference in the
amount of ticks it takes to solve simpler versus harder in-
stances varies enormously and steadily increases with diffi-
culty, the y-axis presents the amount of ticks on a logarithmic
scale. The results of this approach for MLBP are shown in
Figure 6. The results for MLBPCC can be seen in Figure 8.
Since the complexity of MLBPCC is greater, the results had
to be run on a smaller time limit t. This caused a lot of in-
stances to provide feasible but not optimal solutions, this is
why in Figure 8 we can see the amount of ticks to converge
near 105, which is the amount of ticks the models compute
in t. The occurrence of the spikes in that Figure is due to the
complexity of instances not increasingly linearly but rather
in a ”spiky” manner. For example, the instances n5m1p75,
n5m1p90, n5m2p25, n5m2p50, n5m2p75 are executed in the
given order, however the order of difficulty more accurately
resembles the order of: n5m2p25 < n5m2p50 ≤ n5m1p75 <
n5m1p90 ≤ n5m2p75. It is important to note that some of the
instances came with no solutions in the given t, consequently
having no influence on the comparison between the models
and therefore were omitted from the graphs. A brief compar-
ison of the results can be seen in the first two rows of Tables
4 for MLBP and 5 for MLBPCC, where the amount of times
one model is faster than the other is counted.

Figure 6: Visualisation of the tick comparison from Table 4 for the
two MLBP models.

Additionally, we also look into the amount of the Branch-
and-Bound (BnB) nodes in order to learn more about the
models. As mentioned in Section 3, less BnB nodes indi-
cates a stronger model and usually a better performance. The
last two rows of Tables 4 and 5 briefly compare the amount
of BnB nodes, while Figures 7 and 9 show graphs for the
amount of BnB nodes for MLBP and MLBPCC respectively.
Both the x and y axes are presented in the same manner as in
the previous tick figures. The reason for the amount of BnB

Model 1 Model 2
Same Ticks count 0
Less Ticks count 208 42
Same BnB nodes count 36
Less BnB nodes count 110 104

Table 4: Comparison of ticks and BnB nodes between the two
MLBP models, with timeout t = 600 and the first 250 instances.

Model 1 Model 2
Same Ticks count 359
Less Ticks count 385 356
Same BnB nodes count 434
Less BnB nodes count 335 331

Table 5: Comparison of ticks and BnB nodes between the two
MLBPCC models, with timeout t = 60 and the first 1100 instances.

nodes not increasing in the MLBPCC graph is the same as
mentioned before with regard to Figure 8, namely, given the
complexity of the instances and the given t, the models often
timeout only reaching a limited amount of progress which is
shown as the amount of BnB nodes. However, because this
happens for both models 1 and 2, the comparison of the two
models is still valid and is explained in the next section.

Figure 7: Visualisation of the BnB node comparison from Table 4
for the two MLBP models.

The full result text files for the graphs and
tick/BnB node comparison tables are in the format
”f ticks MLBP(CC)...” and for score comparison are in
the format ”f scores MLBP(CC)...”, all of which can be
found in the /evaluation folder in the repository, a link to
which can be found in the Appendix A.

7 Discussion
Our initial answer for the question of ”Do flow based IP mod-
els outperform other kind of IP models to solve MLBP(CC)



Figure 8: Visualisation of the tick comparison from Table 5 for the
two MLBPCC models.

Figure 9: Visualisation of the BnB node comparison from Table 5
for the two MLBPCC models.

instances in terms of solution time and the number of branch-
and-bound nodes required?”, was yes. This is because, flow
based IP models use additional decision variables and con-
straints to make the models stronger, we expect to see this
in lower amount of BnB nodes and lower total computation
time. However, the results from Table 2 show that model 1
was able to better solve the given instances in the given time
limit than model 2. This point is further reinforced in Figure
6, where model 1 has consistently less ticks for each instance,
which is further summarized in the top two rows of Table 4.
Looking at the amount of BnB nodes, in Figure 7, we can see
a slight advantage of model 2, however the bottom two rows
of Table 4 point to inconclusiveness of this. This might be due
to a fact that the effects of the stronger model start to show
on more complex instances. This would mean that some of
the BnB node count in the last row of Table 4 could increase
rapidly on easier instances for model 1 where there is only a
minor difference whereas the count for model 2 is increased
on harder instances where the difference is more significant.

As mentioned previously, data from MLBPCC is not as
clear as the one for MLBP due to a higher complexity and a
consequent lower time limit. Despite this, we can still see in
Table 3, that model 1 outperforms model 2. This is further
highlighted in Figure 8, where although both models perform
similarly, the amount of ticks for model 1 consistently dips in
comparison to model 2; this also holds when looking at the
top two rows of Table 5. When looking at the amount of BnB
nodes for both models for MLBPCC, the results seem to also
point towards inconclusiveness. The results in Figure 9 seem

to align with the results from Figure 7, except for the x-axis
range 80-120, which gives the opposite result. The inconclu-
siveness of the comparison of the amount of BnB nodes is
further shown by the bottom two rows of Table 5, which may
be due to the same point made previously with regard to the
bottom two rows of Table 4 for MLBP.

Having seen the results, it is clear that our initial hypothesis
was wrong. Additional flow based constraints do not neces-
sarily outperform other kind of IP models for MLBP(CC). A
possible explanation for this is that in order to make model 2
stronger, more decision variables and constraints were added.
Although more variables and constraints potentially leads to
less BnB nodes in the more complex instances of MLBP, the
results were inconclusive for all other instances, as shown
in Tables 4, 5 and Figure 9. The additional variables and
constraints do not guarantee a stronger model, however they
can lead to a higher computational time for a computation of
each solution. This means that the extra flow based variables
and constraints cause the computation of each solution to take
more time, which even in a case where the solution space is
smaller, the total time taken would still be longer.

8 Responsible Research
Conducting ethical and sustainable research as well as ad-
dressing those topics is filled with difficulties, yet, we believe
it is extremely important to do so with regard to any research,
regardless of the field. We shall discuss different measures
we take on to ensure our research is both reproducible and
ethical.

Reproducibility of experimental results as well as trans-
parency of the experimental set up are essential to a healthy
academia and society as a whole. Both of these relate to the
Mertonian norm of ’Organized Skepticism’ [13] where in or-
der to be critical towards one’s own work and to ease others’
critique of one’s work it is necessary for transparent exper-
imental results and straightforward reproducibility of them.
This is why we want to make sure this paper is a good foun-
dation for future work. We therefore provide all source ma-
terials that were used during this research, that is, the source
code implementation, source code for evaluation scripts, and
the results achieved. The link to the repository containing all
materials can be found in the Appendix A. Additionally, in
Section 5 we provide instructions on how to run our project
after it has been built.

This paper explores the different IP models for solving
MLBP and MLBPCC. It’s main focus is the mathematical
reasoning, code implementation and the results of the two.
We believe this research is conducted ethically with regards
to the methods and conclusions reached. As mentioned in the
Introduction, MLBP and MLBPCC have many real-world ap-
plications, specifically in the field of logistics. It has the po-
tential for a lot of benefits for the human-kind such as, lower-
cost and more efficient transport which consequently often
times results in lower emissions, a characteristic increasingly
demanded nowadays. However, we do acknowledge a possi-
bility of using efficient MLBP techniques for packing goods
for malicious purposes such as weaponry. Thus, we notice
both the potential advantages and drawbacks of the use of



this research. However, it is beyond our qualifications to dis-
cuss what are the ’right’ ways of using MLBP in real-world or
to discuss the different regulations that could be enforced to
ensure only the ’right’ applications of MLBP are used. There-
fore we leave such task to the competent authorities.

9 Conclusions and Future Work
In this paper, we consider two different IP models for both
MLBP and MLBPCC problems to answer the question of:
”Do flow based IP models outperform other kind of IP mod-
els to solve MLBP(CC) instances in terms of solution time
and the number of branch-and-bound nodes required?”. All
four models have been carefully thought of, implemented, op-
timized and evaluated. The second approach models (flow
based) have been built on top of the first ones with additional
flow based constraints. It was predicted that the second ap-
proach models would outperform the first ones, however, we
found that they are slower and that although the flow based
models might be stronger, the results of the BnB node com-
parison between the models are inconclusive.

For future research, two main improvements can be added.
First, the experiments can be run on a more powerful ma-
chine like a supercomputer. This would enable the gathering
of results of bigger/more complex problem instances. This
especially helps the MLBPCC problem, where there were is-
sues in gathering the results due to exponential difficulty of
the instances. Second, the flow based model can be further
strengthened, for example by finding stronger bounds on the
maximum flow over edges for Constraint 12. This can be
done by determining such bounds level by level. For level 0,
f1
ij = 1 for all i and j, since each item must be in exactly

one bin. For level 1, we have to find how many items can be
packed into bin B1

j for all j ∈ Bk. This can be done by sort-
ing items by size and solving the Knapsack problem where
we want to fit as many items as we can into bin j. For levels
>1, we also solve the Knapsack problem for each bin B>1

j ,
but this time it is weighted since a bin of the first level can
contain multiple items. The weight of each bin of the previous
level is a combination of its size and the number of maximum
possible items it can hold, which is determined in the previ-
ous step. Such constraint could make the flow based model
even stronger, resulting in a lower number of BnB nodes.

A Link to the repository
https://github.com/jakubtokarz/MLBP
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