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a b s t r a c t 

Pipe materials appear to play an important role in the development of biofilms in drinking water distribution 

systems. However, there is controversy as to whether pipe materials shape the composition and diversity of 

bacterial communities in biofilms. To investigate the long-term effects of pipe materials on biofilms, triplicate 

samples of mature biofilms on unplasticized polyvinyl chloride (PVC-U), grey cast iron and asbestos cement (pipe 

age > 40 years) were obtained from three areas of an unchlorinated drinking water distribution system in the 

Netherlands. Illumina sequencing was performed and 773 OTUs (730 OTUs-814 OTUs) were detected within 

the biofilms on the three pipe materials, all of which were dominated by Proteobacteria (36.2%-46.1%). Both 

the alpha and beta diversity results showed that the bacterial communities of the biofilms formed on different 

pipe materials were highly similar. The neutral community model revealed that the assembly of the biofilm 

communities was governed by environmental selection rather than neutral processes. Among the 142 shared OTUs 

between the water and biofilm samples, there were 25 enriched OTUs (e.g., OTU7, assigned as Nitrospira spp.), 

which accounted for 62.6% of the total sequences, while 16 OTUs were disadvantaged (e.g., OTU14 and OTU40, 

assigned as Hyphomicrobiaceae), accounting for 2.2% of the sequences. Based on the findings, we propose and 

discuss a harmonisation process by which biofilms with significant differences due to the pipe material harmonize 

over time resulting in biofilms with similar bacterial communities. Our findings provide valuable insights into 

long-term biofilm development, bridging an essential gap in our current understanding of the influence of pipe 

materials on biofilm communities. These findings also highlight the importance of long-term studies and point 

to a potentially masked harmonizing process during biofilm development over years/decades. 
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. Introduction 

Biofilms formed on the inner surface of drinking water distribution

ipes are a complex mixture of microbes and organic and inorganic

aterials that have accumulated within a microbially-produced poly-

eric matrix [ 1 , 2 ]. Despite the maintenance of disinfectant residuals,

he formation of biofilms is unavoidable and unwanted in drinking wa-

er distribution systems (DWDSs) [ 3-5 ] because biofilms are a reservoir

or (opportunistic) pathogens [ 6 ], they may cause microbial corrosion

 7 ], and they continuously release microbes into bulk water [ 8 ], espe-

ially during changes in the quality of supply water [ 9 , 10 ]. Therefore,
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iofilms have attracted increasing research attention over the last few

ecades. For example, studies have examined the biofilm formation po-

ential of both pilot and full-scale distribution systems [ 4 , 11 ], the quan-

ity and communities of biofilms [ 12 , 13 ], biofilm prevention and inhibi-

ion by nanomaterials [ 14-17 ], the (opportunistic) pathogens in biofilms

 6 , 18 , 19 ] and the key factors for the development and management of

iofilms [ 20-23 ]. 

Typically, the pipelines of DWDSs range in length from tens to sev-

ral hundreds of kilometres, e.g., 0.4 million kilometres in the Nether-

ands [ 24 ] and 1.1 million kilometres in China, with 20,000 km of water

ipelines in the city of Beijing alone [ 25 ]. The material that makes up
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Fig. 1. Layout of the distribution area and sampling locations . L1, PVC-U 

pipe (1978, 42 years old); L2, AC pipe (1962, 58 years old); L3, GCI pipe (1970, 

50 years old). 
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he distribution pipes that are in contact with drinking water is impor-

ant in terms of its potential contribution to water quality deterioration

nd energy consumption [ 26 ]. This is especially true when considering

ts significant influences on planktonic bacterial growth and biofilm for-

ation [ 27 , 28 ]. However, there is controversy in the literature regard-

ng how pipe materials can affect microbial communities of biofilms,

ith studies debating if the pipe material influences the composition

nd diversity of bacterial communities. Several researchers have found

ignificant differences in the bacterial communities of biofilms formed

n different pipe materials [ 29-32 ], while others have found similar bac-

erial communities among biofilms formed on different pipe materials

 33-35 ]. Though valuable knowledge has been obtained, the critical dif-

erences in the scale (pilot vs. full scale), duration (days vs. years) and

ampling strategies (flushing vs. swabbing) of reported studies mean it

s impossible to make reasonable cross-comparisons to draw solid con-

lusions. 

Since the opportunities to sample biofilms from field distribution

ystems are limited, most published studies have used model distribu-

ion networks and removable coupons over short periods, from days to

onths [ 30 , 36 , 37 ], or have used faucets and water meters as alterna-

ives for sampling the biofilms of field DWDSs [ 38 , 39 ]. The limitations of

uch studies have been clearly described in long-term (three years) stud-

es of model systems [ 40 ], field studies of mature biofilms ( > 20 years)

 34 , 35 ], and a simulation study of the influence of hydraulic regimes

 21 ]. However, a study period of three years is still too short to exam-

ne mature biofilms in field DWDSs. Further, the field studies of mature

iofilms in Germany focused mainly on a small distribution zone within

 campus (seven out of eight samples), with the authors attributing the

imilarity of biofilms on different pipe materials to the fluence of adja-

ent biofilm communities [ 34 ]. 

In this study, to investigate the long-term influences of pipe materi-

ls, planktonic bacteria and mature biofilms (pipe age > 40 years) were

ampled from different pipe materials in three distribution areas sup-

lied by the same drinking water treatment plant. The pipe materials in-

luded unplasticized polyvinyl chloride (PVC-U), asbestos cement (AC)

nd grey cast iron (GCI). Our findings offer valuable insights into the

ong-term influences of pipe materials on biofilms in DWDSs and con-

ribute to our understanding of biofilm development. Moreover, these

ndings highlight the importance of long-term studies and demonstrate

he potentially masked harmonizing process with bacterial community

uccession over many years. 

. Materials and methods 

.1. Description of the drinking water supply system 

At the Katwijk treatment plant of Dunea, Den Haag, the Netherlands,

he source water is transported 30 km to a dune area that contains natu-

al lakes for natural infiltration. After an average residence time of two

onths, the infiltrated water is extracted and post-treated by softening,

owdered activated carbon filtration, aeration, rapid sand filtration, and

low sand filtration. Then, the treated water is pumped into the distri-

ution system. Chlorination and the use of disinfectant residuals are

voided in the Netherlands. 

.2. Sampling program 

As illustrated in Fig. 1 , planktonic bacteria were sampled at the treat-

ent plant and three distribution sites (TP, L1, L2 and L3, n = 4), while

iofilm samples were taken in triplicate from three distribution areas

 n = 9). The pipe material at L1 was PVC-U, at L2 it was AC, and at

3 it was GCI. The pipe diameter at all three locations was 110 mm

nd the pipe age was 42 years, 58 years and 50 years, respectively. For

lanktonic bacteria sampling, 500 mL of water that was stagnant in the

ipe for more than three weeks was collected at each sampling point.

or biofilm sampling, three sections (length = 30 cm) were cut from the
2

ame pipe at each distribution point to sample the biofilm. Two sections

ere swabbed immediately after pipe cutting, with a swabbing area of

pproximately 10 cm2 positioned at least 5 cm from the cut end to min-

mize the risk of biofilm disturbance or contamination from the chop

aw. One section was sealed with pre-disinfected caps and filled with

 L of DNA-free water (Millipore) to keep the inner surface wet during

ransport. All samples were stored at 0 °C and transported to the labo-

atory within four hours. To detach the bacteria from the biofilm, the

ipes were pre-treated by ultrasonication three times for two minutes

ach time at 42 KHz [ 41 ]. The obtained suspensions were used for fur-

her DNA extraction and sequencing. Therefore, the triplicate biofilm

amples for the same pipe material consisted of duplicate swab-wiped

iofilm samples and one ultrasound-obtained biofilm sample. 

.3. DNA extraction, illumina sequencing and data processing 

The water samples and obtained suspension biofilm samples were

ltered through 0.2 𝜇m polycarbonate membrane filters (Whatman,

K). DNA was recovered from the filters or rayon swabs using a

astDNA Spin Kit for Soil (Q-Biogene/MP Biomedicals, Solon, OH,

SA), following the manufacturer’s instructions [ 42 , 43 ]. The V3-V4 re-

ion was amplified with the bacterium-specific forward primer 341F

5 ′ -CCTACGGGNGGCWGCAG-3 ′ ) and the reverse primer 805R (5 ′ -

ACTACHVGGGTATCTAATCC-3 ′ ) [ 44 ]. Sequencing was performed on

n Illumina Life Sciences GS FLX series genome sequencer (Roche,

witzerland). The obtained DNA sequences were deposited in the DDBJ

equence read archive (Accession Number: PRJNA648471). 

The sequences generated from the Illumina Miseq analysis of the 16S

RNA gene amplicons were processed (i.e., filtered, clustered, and tax-

nomically assigned and aligned) using the Quantitative Insights Into

icrobial Ecology (QIIME2, v2018.6) pipeline with the default settings

 45 , 46 ]. Raw sequences were first processed using DADA2 [ 47 ], in-

luding quality filtering, denoising, paired-end sequence merging and

himera filtering. DADA2 generated unique amplicon sequence variants

hat were equivalent to 100% similarity operational taxonomic units
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Fig. 2. The number of observed OTUs in water samples from all locations 

( n = 4) and biofilms sampled from pipes comprising different materials 

(L1–PVC, n = 3; L2–AC, n = 3; L3–GCI, n = 3) . 

Fig. 3. Heatmap showing the dominant OTUs and their relative abun- 

dances in all samples . The complete list of relative abundances and taxonomy 

information is provided in Fig. S3. 
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OTUs) in conventional practice. In this publication, we still use the term

TU for the purpose of simplicity (referred to as Feature elsewhere).

axonomy was assigned using the q2-feature-classifier [ 48 ], customized

or the primer set used in this study with Silva SSU database release

32 [ 49 ]. Multiple sequence alignment and phylogenetic tree construc-

ion were performed using the QIIME 2 plugin q2-phylogeny. Alpha and

eta diversity analyses were performed using the QIIME 2 plugin q2-

iversity. 

Weighted and unweighted UniFrac distance matrices were con-

tructed from the phylogenetic tree and used to conduct a principal

oordinate analysis (PCoA) [ 50 ]. The dominant OTUs were defined as

he OTUs with a defined cut-off of relative abundance ( > 1%) within

ach phase/pipe. The significance of beta diversity differences among

ifferent sample categories was determined by the PERMANOVA test in

IIME2. Differences were considered statistically significant when the

-value was lower than 0.05 ( p < 0.05). Venn diagrams exhibiting the

imilarity of the microbial populations among distinct sample categories

ere drawn using the VennDiagram package in R (3.5.3). 

.4. Neutral community model (NCM) 

To explore the contributions of neutral processes and environmen-

al selection to the assembly of the filter communities, an evolved NCM

ollowing null hypothesis was performed [ 51 ]. Specifically, the bulk wa-

er samples were considered to be the source community, whereas the

iofilm samples were the local target communities. The empirically ob-

erved frequency of detection was expressed as the number of biofilm

amples in which a target OTU was detected over the total number

f biofilm samples. In the implementation of this model, only shared

TUs between the target and source communities were employed. Con-

equently, the expected frequency of detection in the target communi-

ies, which were present via dispersal and ecological drift, was calcu-

ated following a beta probability distribution [ 52 ]. The neutral model

as constructed by 95% binomial confidence intervals based on the Wil-

on method with the Hmisc package in R [ 51 ]. Theoretically, OTUs that

ell between the confidence interval were considered to be a result of

he neutral dynamics of stochastic births and deaths within the local

ommunities and stochastic immigration from the source communities,

ccording to the neutrality assumption. OTUs falling outside the upper

r lower bound of the confidence interval were detected at dispropor-

ionately higher or lower frequencies in the local communities than pre-

icted by the neutral model, based on their relative abundance in the

ource communities, which are advantaged or disadvantaged by the lo-

al environment [ 53 ]. 

. Results 

In total, 333,660 sequences were generated from the 13 samples

four water and nine biofilm), and these were assigned as 10,431 OTUs.

he rarefaction curves reached a plateau after 4000 sequence reads were

btained, indicating that enough sample coverage was obtained in this

tudy (Fig. S1). 

.1. Number of observed OTUs 

Fig. 2 shows the number of OTUs observed from the water and

iofilm samples. On average, 1205 OTUs ( n = 4) were observed in the

ater samples, which was much higher than that observed in the biofilm

amples (773 OTUs, on average, n = 9). For the biofilms formed on dif-

erent pipe materials at the three locations, 814, 775 and 730 OTUs

ere observed for AC (L2), PVC-U (L1) and GCI (L3), respectively. The

ifference in the number of OTUs between water and biofilms was statis-

ically significant, while the differences among the biofilms on different

aterials were not significant. 
3

.2. Bacterial community composition 

At the phylum level, both water and biofilm samples were domi-

ated by Proteobacteria, the relative abundance of which was higher

n the biofilms (36.2%− 46.1%) than in the water (15.5%–25.2%) (Fig.

2). The community of bacteria in the water samples was dominated by

D1 (16.4%− 20.1%), OP3 (3.0%− 3.6%), Acidobacteria (1.9%− 2.3%),

lanctomycetes (1.6%− 2.2%), Nitrospirae (0.9%− 2.8%), Chlamydiae

1.0%− 2.4%), Bacteroidetes (0.8%− 2.3%) and TM6 (0.5%− 1.5%), in

escending order. For the biofilm samples, the bacterial commu-

ity was dominated by Planctomycetes (5.4%− 11.1%), Acidobacteria

3.2%− 6.3%), Actinobacteria (1.5%− 5.7%), Nitrospirae (2.2%− 4.4%),

hloroflexi (2.0%− 3.7%), OD1 (0.7%− 4.1%) and Gemmatimonadetes

0.9%− 3.0%). Importantly, at the phylum level, minor differences were

bserved among the biofilms on the different pipe materials (PVC-U, AC

nd GCI). 

A total of 19 core OTUs were detected in the water and

iofilm samples ( Fig. 3 ; Table S2). In the water samples, OTU10

f_Hyphomicrobiaceae) and OTU16 (f_Hyphomicrobiaceae) were the

ost dominant OTUs (relative abundance 0.5%− 2.7%; occupancy,

00%). OTU16 was only detected in the water samples and not in any of

he biofilm samples. For the biofilm samples across all locations and pipe

aterials, the core OTUs included OTU1, OTU2, OTU3, OTU4, OTU5,

TU6 and OTU8 which were assigned to the class Gammaproteobac-

eria (relative abundance, 0.4%− 2.1%; occupancy, 100%), and OTU7

nd OTU9, which were assigned to Nirospira spp. (relative abundance,
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Table 1 

Influences of the pipe material tested by two-way ANOSIM . 

Group 1 Group 2 p -value 

Tests BF WA 0.04 

L1 

L1 

L2 0.39 

L3 0.10 

L2 L3 0.10 

Fig. 4. PCoA plot generated using the unweighted UniFrac distance ma- 

trix showing the microbial community distributions of different sample 

categories . 
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Table 2 

Spearman rank correlation coefficients . 

OTUs Sequences Relative Abundance 

Water 4694 73,527 11.5% (unique) 

Biofilms 5879 260,133 86.8% (unique) 

Shared 142 34,248 13.2% (biofilm) 

Neutral 101 12,069 4.6% (biofilm) 35.2% (share) 

Enriched 25 21,443 8.3% (biofilm) 62.6% (share) 

Disadvantaged 16 736 0.3% (biofilm) 2.2% (share) 

Fig. 5. Neutral community model for the combined biofilm samples 

( n = 9) . The solid line is the model prediction, and the dashed lines represent 

the 95% confidence intervals. The green points represent the OTUs for which 

the observed frequency is greater than the model prediction (enriched), and the 

red points represent the OTUs for which the observed frequency is less than 

the prediction (disadvantaged), based on their mean relative abundances in the 

supply water communities. 
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.6%− 1.2%; occupancy, 100%). OTU5, OTU6, OTU8 and OTU9 were

etected only in biofilm samples, not in water samples. 

When comparing the dominant OTUs among the biofilms formed on

ifferent pipe materials, it can be seen that most of the dominant OTUs

ere shared by all pipe materials (13/17 OTUs, Venn gram Fig. S4).

owever, two OTUs (OTU10, OTU19) were detected only in biofilms

ormed on AC pipe; they were not detected in biofilms on the PVC-U

nd GCI pipes. Similar to the observations at the phylum level, there

ere minor differences in the dominant OTUs of the biofilms formed on

VC-U, AC and GCI pipes, indicating minor effects of the pipe material

n biofilm formation. 

.3. Bacterial community similarity 

The PCoA plot based on unweighted UniFrac distances clearly shows

he two clusters of water and biofilm ( Fig. 4 ; Table 1 , p < 0.05). The

acterial communities of the water samples were clearly distanced from

ach other, suggesting clear variation in bulk water bacteria among the

ampling locations. Moreover, it can be seen that the biofilm samples

ere clustered closely together, highlighting the high reproducibility of

he obtained results (the triplicate samples from each pipe material) and

he weak influence of the pipe material on the bacterial communities of

iofilms. This is consistent with the above findings on the composition

f the bacterial communities. 

The beta diversity results for the biofilm samples from different lo-

ations and different sampling strategies are presented in a PCoA plot

Fig. S3). The bacterial communities of the biofilm samples exhibited

ittle variation between the different locations, with the PCoA plot ex-

laining very little of the variation. From the Venn diagram (Fig. S4), it

an be seen that there were differences in OTU10, OTU13, OTU18 and

TU19. A comparison of biofilm samples collected by pipe specimen ul-
rasound versus swab indicates that there was variation between the dif- o

4

erent sampling strategies in the same section ( p < 0.01, PERMANOVA

est by QIIME2). The biofilm swab samples were clustered together in

ifferent locations, demonstrating the reproducibility of swab samples. 

.4. Effects of neutral processes on biofilm microbial community assembly 

Between the 4694 OTUs and 5879 OTUs detected in water (over a

hree-week-period) and biofilms ( > 40 years old), there were only 142

hared OTUs that accounted for 2.4% of the number of observed OTUs

nd 13.2% of the total sequences in the biofilms. To further explore the

icrobial community assembly within the biofilms, those 142 shared

TUs were used to calculate the probability of detecting the OTUs in

he biofilm due to neutral processes, e.g., dispersal and ecological drift

 Table 2 ; Fig. 5 ). Though the number of neutral process-driven OTUs ac-

ounted for 71.1% of the total number of shared OTUs, they accounted

or just 35.2% of the shared sequences. Further, 28.9% of the num-

er of shared OTUs that were environmentally selected accounted for

2.6% of the shared sequences, including OTU3, OTU4, OTU7, OTU10

nd OTU11; these had relative abundances > 1% and occupancies of

00%. Moreover, the goodness-of-fit ( R2 ) value was 0.02 (where ≤ 0 is

o fit and 1 is a perfect fit). This further confirms that taking the water

icrobes as a meta-community, the assembly of the biofilm bacterial

ommunity is governed by environmental selection rather than neutral

rocesses. 

. Discussion 

Different from the traditionally used pilot/simulated systems and/or

oung biofilm sampling, this study investigated mature biofilms on full-

cale drinking water distribution pipes comprised of different materials

i.e., PVC-U, AC and GCI) that were installed in different areas supplied

y the same water treatment plant. Here, the long-term effects are dis-

ussed in terms of the influences of pipe material on biofilm formation in

rinking water pipes, and in particular, the possible harmonizing effects

n the bacterial community assembly. 
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.1. Microbiome assembly in drinking water biofilms revealed by the NCM 

odel 

The NCM model results based on the shared OTUs between water

nd biofilms suggested that the assembly of the biofilm bacterial com-

unity was governed by environmental selection, while water microbes

omprise a meta-community that serves as a seed bank. This verifies

he hypothesis proposed by Henne et al. [ 34 ]. More specifically, the

nriched community member OTU7, assigned as Nitrospira spp., has

een widely reported to be able to thrive in drinking water biofilms

 34 , 40 , 50 ]. In contrast, disadvantaged community members, such as

TU14 and OTU40, assigned to the family Hyphomicrobiaceae, have

een found to thrive in phosphorus-limited environments and form fil-

mentous biofilms in drinking water biofilters [ 54 ]. They are disadvan-

aged because the Dutch drinking water supply system is carbon-limited,

ith the pursuit of a chlorine-free drinking water supply and extremely

ow assimilable organic carbon (AOC < 10 𝜇g C/L) [ 55 ]. 

However, it should be mentioned that the number of shared OTUs

etween the water and biofilm samples (142 OTUs) was low in the

resent study. This is because of the low number of water samples. The

iofilms sampled in this study had developed over four decades under

istorical water microbiology conditions. Since historical water samples

ere not available and the acquired water samples were only snapshots,

igher temporal resolution could not be achieved for this study. More-

ver, there was significant variation among the bacterial communities

n the bulk water samples, which might be caused by stagnation and

he contributions of plumbing systems [ 56-58 ]. Since the shared OTUs

etween the water and biofilm samples were selected for the NCM anal-

sis, the model results would not be influenced. For future research, the

ombination of dynamic water and biofilm sampling at a certain fre-

uency over a long period of time would offer more valuable insights

nto microbiome assembly over time. In particular, feeding such a high-

esolution data set into the NCM model would assist in uncovering the

ssential mechanism underlying biofilm formation and strategies for its

ontrol [ 53 , 56 ]. 

.2. Influence of pipe material on biofilm formation 

As revealed by the composition ( Fig. 3 ) and diversity of the bacterial

ommunities ( Fig. 4 ), though there were slight differences in terms of

ertain members and their presence and abundance, the mature biofilm

ommunities, which were more than 40 years old, formed on different

ipe materials (i.e., PVC-U, AC and GCI) were highly similar. This sug-

ests that the pipe material has only a minor influence on the bacterial

ommunities of biofilms. However, there is a general consensus among

he academic community that the pipe material is important for both the

uantity and community of biofilms [ 31 , 36 , 59 ]. The lack of differences

s a function of pipe material in the present study are in contrast to the

ommonly observed influences of the pipe material on both the com-

osition and diversity of biofilm bacterial communities in water supply

ipes, such as plumbing systems (28-day-old biofilm) [ 60 ], shower hoses

eight-month-old biofilm) [ 31 ], and modelled and field distribution sys-

ems (biofilms ranging in age from 1 month to 42 weeks) [ 29 , 32 , 61 ].

owever, the above studies all investigated young biofilms that were

ess than one year of age. 

On the other hand, studies that have reported a similar bacterial

uantity and community in mature biofilms formed on different pipe

aterials were conducted in an office building in Finland (copper vs.

EX, biofilms greater than one year old) [ 33 ] and in a main distribution

ipe in Germany (steel, copper, PVC, biofilms more than 20 years old)

 34 ]. Both of the above studies illustrate the potential importance of

he vicinity of the biofilm over the support material. Placing different

oupon materials in the same reactor, Aggarwal et al. also found that

he coupon material did not have a significant impact on the biomass

evel or composition of the biofilm community [ 62 ]. By comparing their

esults with a similar study that used separate reactors for each coupon
5

aterial [ 63 ], the authors argued that isolating different materials to

tudy their impacts on biofilms cannot mimic full-scale systems con-

aining a variety of materials [ 62 ], as isolation of a material neglects to

onsider the mutual influences of biofilms via the exchange of bacteria

hrough mitigation and/or diffusion [ 34 , 64 ]. 

In the present study, the biofilms on three pipe materials were taken

rom different supply areas that were > 10 km away from each other.

ur findings are consistent with an earlier study of the full-scale chlo-

aminated DWDS of Saint Paul, Minn, USA. This study observed sur-

risingly similar biofilm communities regardless of the age, location

nd pipe material (unlined cast iron versus cement-lined cast iron, >

3-year-old biofilm) [ 35 ]. It is interesting that the two studies both ob-

erved similar bacterial communities on different pipe materials from

ifferent locations (spatially distanced), though the present study of the

utch system was completely different to the system in Saint Paul, espe-

ially in relation to the disinfection strategies (unchlorinated vs. chlo-

aminated). The key common factor is that both studies investigated

ature biofilms greater than 40 years of age. It is rational to hypothe-

ize that years-long (decades-long) acclimatization harmonized the ini-

ial significant differences induced by the pipe material. This hypothesis

s supported by the previous observation of less-pronounced differences

n terms of the bacterial quantity and community of biofilms formed on

our out of six materials after eight months [ 31 ]. This may be explained

y a reduction in the nutrients leaching from the pipe and, subsequently,

iofilm formation governed by the microbes and nutrients in the supply

ater. Similarly, the microbial communities of pipe biofilms from dif-

erent water sources were different, whereas those of different pipe ma-

erials from the same water source were similar in a Dutch chlorine-free

WDS [ 65 ]. In contrast, plastic pipe biofilms from kitchens and bath-

ooms have been found to have different microbial communities due

o the different operational conditions (e.g., water physical chemistry,

ydraulic condition) of the supply water [ 66 , 67 ]. 

.3. Practical implications 

To ensure biosafety, considerable attention and effort have been in-

ested in understanding the formation of biofilms and in the application

f biofilm management strategies for drinking water distribution net-

orks over decades. Pipe material has been considered to be a key fac-

or possibly governing the potential for biofilm formation and bacterial

ommunity assembly [ 27 ]. However, until now, the critical questions

f how and how long the pipe material influences biofilm development

ave remained unanswered. To date, tests evaluating the potential for

ipe materials to promote microbial growth have varied from 2 weeks

o 16 weeks [ 28 ]. In addition, as mentioned above, simulation studies of

he influence of pipe materials on biofilm communities have been con-

ucted over periods from days to years. Such big variations in the scale

f study time might be the reason for the conflicting observations and

onclusions across studies, as well as the reported differences between

imulated reactors and full-scale systems that have operated for decades

 62 ]. Therefore, the choice of study time may mask the mechanism by

hich the pipe material influences biofilm development and bacterial

ommunity succession. 

As demonstrated in the present study of an unchlorinated Dutch sys-

em ( > 40-year-old biofilm), a chlorinated German system ( > 20-year-

ld biofilm) [ 34 ] and a chlormainated system ( > 53-year-old biofilm)

 35 ], biofilm harmonization occurs regardless of the pipe material and

ther environmental circumstances in full-scale distribution systems, as

ong as the different pipe materials are supplied with same drinking wa-

er. Once the harmonized stable microbial ecology is established, there

re potential risks associated with transition effects when the quality

f the supply water changes, which may lead to destabilization of the

iofilm matrix and sudden release of opportunistic pathogens [ 8-10 ]. 

In addition, from both scientific and practical perspectives, an essen-

ial question to be answered is how long the harmonizing process takes

efore a quantity- and community-stabilized biofilm can be established.
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artiny et al. suggested that biofilm formation may take 200–300 days

o reach a stationary density and ∼500 days to establish a stable pop-

lation on stainless steel [ 40 ]. Proctor et al. observed less pronounced

ifferences after eight months than in the early months when examining

iofilms formed on four of six of the tested flexible polymeric pipe ma-

erials, suggesting that the harmonizing time differs for different materi-

ls [ 31 ]. To determine the time threshold, the long-term efficacy of pipe

aterials, and other essential drinking water biofilm-related questions,

ong-term (years-long) studies of the dynamics of biofilm formation us-

ng the latest developed high-throughput quantification and sequencing

echniques together with high-resolution water-biofilm paired sampling

nd microbial ecology models are required. 

. Conclusion 

As demonstrated by the number of observed OTUs, the bacterial com-

unity in the bulk water was more diverse than that of the biofilms. The

ature biofilm bacterial communities on PVC-U, AC and GCI pipes were

ighly similar in terms of the alpha and beta diversity, indicating a mi-

or influence of the pipe material on the biofilm. As revealed by the

CM model, biofilm community assembly was driven by environmen-

al selection rather than a neutral process. Members of Nitrospira spp.

ere enriched, while members of the family Hyphomicrobiaceae were

isadvantaged. The long-term effects of the pipe material on biofilm

ormation and the harmonizing process require further exploration. 
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