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Abstract

Macroscopic x-ray fluorescence imaging spectroscopy (MA-XRF) and reflec-

tance imaging spectroscopy (RIS) are important tools in the analysis of cultural

heritage objects, both for conservation and art historical research purposes.

The elemental and molecular distributions provided by MA-XRF and RIS

respectively, are particularly useful for the identification and mapping of pig-

ments in easel paintings. While MA-XRF has relatively established data pro-

cessing methods based on modeling of the underlying physics, RIS data cannot

be modeled with sufficient precision and its processing has considerable room

for improvements. This work seeks to improve RIS data processing workflows

in the short wavelength infrared range (SWIR, 1000–2500 nm) with a novel

method that fits Gaussian profiles to pigment-specific absorption features, and

we compare its performance to MA-XRF for the task of semi-quantitative pig-

ment mapping, evaluating their limits of detection (LODs) and the matrix

effects that affect their signals. Two pigments are considered in this work, lead

white and blue verditer, which are mapped in SWIR RIS using the first over-

tone of OH stretching of their primary compounds, hydrocerussite

(Pb3(CO3)2(OH)2) and azurite (Cu3(CO3)2(OH)2), at 1447 and 1497 nm respec-

tively, and in MA-XRF using the Pb-L and Cu-K fluorescence signals. The

methods are evaluated using two sets of custom-prepared paint samples, as

well as a 16th-century painting, discussing the identification, mapping, and

semi-quantitative analysis of the considered pigments. We found SWIR RIS to

be a pigment-specific method with a longer linear range but inferior LODs and

penetration depth when compared to MA-XRF, the latter is often not capable

of discriminating between different pigments with identical elemental
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markers. We furthermore present a novel color scale that allows the simulta-

neous visualization of signals above and below a confidence limit.

KEYWORD S

chemical imaging, macro x-ray fluorescence, MA-XRF, pigment mapping, reflectance
imaging spectroscopy

1 | INTRODUCTION

Paintings are, from a material point of view, highly het-
erogeneous systems consisting of many unevenly distrib-
uted paint layers. Each paint layer consists of a
heterogeneous mixture of pigments that have the stron-
gest contribution to the perceived color, a binder that
holds the paint together; and potentially any other addi-
tives that modify other characteristics of the paint, such
as its viscosity or drying speed. The combined heteroge-
neity of paintings mandates the use of techniques that
provide spatially resolved chemical information. In
recent years, two such imaging techniques, macroscopic
x-ray fluorescence imaging spectroscopy (MA-XRF) and
reflectance imaging spectroscopy (RIS) have become rou-
tine tools for the analysis of historical paintings and other
cultural heritage objects. They contribute to conservation
and art historical research by identifying pigments and
visualizing their distribution.1–9

MA-XRF reveals distributions in samples by record-
ing characteristic radiation emitted during inner shell
electronic transitions upon stimulation by a primary
x-ray beam. The underlying physics of XRF are well
understood and modeled, such that element-specific dis-
tribution images can be readily obtained.10 However, its
limitation to elemental information prevents it from
delivering conclusive pigment identification, as distinct
pigments can share an elemental footprint. Examples are
azurite (Cu3(CO3)2(OH)2) and malachite (Cu2CO3(OH)2)
whose single elemental marker is Cu.

In the visible and infrared spectral ranges, RIS mea-
sures the light reflected or scattered by a sample, supply-
ing information on the molecules present in the material,
and delivering insight complementary to information
provided by MA-XRF. RIS in the visible range (com-
monly the visible to near-infrared range in commercial
cameras, VNIR, from 350 to 1000 nm) may provide infor-
mation on the electronic transitions of molecules occur-
ring in that spectral range, which can provide insight as
to the visible color of some compounds. RIS in the short
wavelength infrared range (SWIR; from 1000 to
2500 nm), which is the focus of this research, provides
information on the distribution of many chemical species
using characteristic frequencies related to vibrational

modes of certain functional groups, like O H.11 How-
ever, modeling of the reflectance response of complex
material matrices, like paint layers, in the SWIR spectral
range is challenging,12,13 making the extraction of chemi-
cal distribution maps from SWIR RIS data more difficult
than for MA-XRF. Novel methods have also been
described for RIS in certain sections of the mid-infrared
range (MIR, from 2500 to 25,000 nm), like 2500–3750 nm
in14 and 8064–13,158 nm in,15 which provides access to
even further vibrational modes, such as C H and C O,
respectively. However, these have not yet seen
widespread use.

Currently, most RIS data processing methods used in
cultural heritage science revolve primarily around dimen-
sionality reduction methods, such as principal compo-
nent analysis (PCA), t-distributed stochastic neighbor
embedding (t-SNE),16 or uniform manifold approxima-
tion and projection (UMAP),17,18 followed by manual
endmember selection and a mapping approach, such as
spectral angle mapping (SAM).19,20 While these methods
are commonly used in the analysis of RIS datasets
(in particular for the VNIR range, presenting less sharp
spectral features), their unsupervised machine-learning
nature makes the results often dataset-specific and the
manual user intervention steps tend to be rather labor–
intensive, and difficult to reproduce. Recently, more auto-
mated approaches based on artificial neural networks
and other spectral matching algorithms have been suc-
cessfully demonstrated21-24 but have not yet seen wide-
spread use in the routine analysis of RIS data from
paintings.

This paper describes an approach for SWIR RIS data
processing that enables the spatial mapping and
semi-quantitative evaluation of pigments, namely a con-
firmation of pigment presence and an estimation of the
pigment's areal density, through the vibrational spectral
features they present in the SWIR spectral range.

We demonstrate our data workflow and focus our
study on two specific pigments: lead white (abbreviated
as LW) (typically a mixture of lead carbonates, hydrocer-
ussite Pb3(CO3)2(OH)2, and cerussite PbCO3

25), and blue
verditer (abbreviated as BV) (a hydrated copper carbon-
ate Cu3(CO3)2(OH)2, the synthetic equivalent of azur-
ite26). These two pigments were chosen due to their
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widespread use in historical paintings and their useful
absorption features in the SWIR range. Our proposed
method consists of fitting a Gaussian profile in the RIS
spectrum onto the characteristic absorption features of
the two pigments. For lead white, we use the first over-
tone of OH stretching of hydrocerussite, which is cen-
tered around 1447 nm.27 For blue verditer, we use the
first overtone of OH stretching of azurite centered
around 1497 nm.28 The SWIR RIS spectra of both pig-
ments and their corresponding absorbance features can
be seen in Figure 1. A similar method was employed by
De Meyer et al.27 for the analysis of SWIR RIS data but
was limited to the qualitative mapping of hydrocerussite.

MA-XRF and the Gaussian fitting approach to SWIR
RIS features (shown in Figure 2) are evaluated for their
potential for semi-quantitative pigment-specific mapping.
The evaluation entails the pigment analysis of three
objects: two sets of custom-made paint mock-ups (mix-
ture and layered systems), which allow for the evaluation
with regards to both pigment identification and semi-
quantitative analysis, and a 16th-century panel painting,
which provides a practical example for pigment
identification. The potential for semi-quantitative pig-
ment analysis is benchmarked by comparing the intensity
of each pigment's characteristic signals in each method
(i.e., for blue verditer, Cu-Kα for MA-XRF, and azurite
for SWIR RIS) to the pigment areal density of each sam-
ple. Whilst MA-XRF and RIS do not always directly mea-
sure the pigments themselves, but rather components
thereof (elements for MA-XRF and chemical species for
RIS), and given that the measured response for each
modality reports a different property and covers a differ-
ent dynamic range, all quantitative results are translated
into pigment areal density values that enable direct

comparison between the two methods in terms of
quantitation.

2 | MATERIALS AND METHODS

2.1 | Test samples

Two sets of paint mock-ups were prepared to evaluate
and compare the methods for different paint layer com-
positions and structures. These two sets were both made
using three pigments: lead white (LW), blue verditer
(BV), and yellow ochre (YO). All pigments were sourced
from Rublev Colors (Willits, CA) (Full pigment analysis
available in Figures S1–S3 and Tables S1, S2). These
pigments were selected due to their distinct elemental
footprints and characteristic absorption features. In MA-
XRF, blue verditer can be detected by means of the Cu-K
fluorescence lines, and in SWIR RIS by the first overtone
of OH stretching (1497 nm), combination ν + δ
(stretching and bending) of OH (2285 nm) and second
overtone of CO3

�2 stretching (2352 nm) of azurite28

(spectra shown in Figure 1). Lead white, which in this
case is a mixture of 98% hydrocerussite and 2% cerussite,
can be detected through MA-XRF by observing the Pb-L
and Pb-M fluorescence lines, and in SWIR RIS by the first
overtone of OH stretching (1447 nm) and combination
ν + δ of OH and second overtone of CO3

�2 stretching
(2325 nm) of hydrocerussite27,29 (spectra shown in
Figure 1). Only the features in the 1400–1500 nm range
were used in this research, as this is the range in which
the binder (linseed oil) is least likely to present strong
absorption features. While the yellow ochre pigment used
in these experiments can be detected through SWIR RIS
due to the presence of kaolinite (Al2(OH)4Si2O5) as a sec-
ondary component through two absorption bands of the
first overtone of OH stretching (1396 nm and
1415 nm),30 the main coloring component, goethite
(α-FeO(OH)), lacks characteristic absorption features in
the SWIR spectral range and consequently the pigment is
not regarded in the subsequent text.

All paints were ground by hand with a muller on a
glass plate, using raw linseed oil (Kremer Pigments Inc.,
New York, NY) as a binder at oil mass ratios of 14%, 22%,
and 29%, respectively for lead white, blue verditer, and
yellow ochre. The paints were applied on 50 μm Melinex
film using a metal 4-sided Bird-type film applicator. After
drying, the samples were attached to a 3 mm plexiglass
sheet for rigidity. The reflectance spectrum and XRF sig-
nals of the support material are provided in Figures S4,
S5 and Table S4.

The first set of paint mock-ups is a collection of
single-layer samples, hereafter referred to as the mixture

FIGURE 1 Short wavelength infrared (SWIR) reflectance

spectra for lead white (LW) and blue verditer (BV) taken from their

respective 150 μm single-pigment samples, and the fitting

reflectance feature of each.
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FIGURE 2 (a) Inverted reflectance spectra from a 50/50 BV/LW 150 μm paint sample and the calculated background. (b) Processed RIS

signal and two Gaussian profiles fit onto the absorbance features. (c) Fitting components used for the fitting of the paint mock-ups.

(d) Fitting components used for the fitting of the test painting.

FIGURE 3 Mixture samples of lead white (LW), blue verditer (BV), and yellow ochre (YO). (a) Visible photograph. The three different

mixtures are marked. Each mixture includes five mixture ratios (5%, 20%, 50%, 80%, and 95%). All samples in each row have the same layer

thickness, marked on the left. (b) Macroscopic x-ray fluorescence imaging spectroscopy (MA-XRF) Pb-Lα map. (c) MA-XRF Cu-Kα map.

(d) MA-XRF Pb-M map. (e) RIS azurite map. (f) RIS hydrocerussite map. All maps are displayed with the signals below the LODs in

greyscale, and the signals above the LODs in a yellow-red heatmap.
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samples (Figure 3a). Each of these samples was put down
as a single paint layer, where the used paint was a mix-
ture of two single-pigment paints at a specific mass ratio.
The ratios examined were 5:95, 20:80, 50:50, 80:20, and
95:5 and each paint ratio was applied in three different
nominal layer thicknesses (50, 100, and 150 μm). The sec-
ond mock-up set is a collection of double-layered sam-
ples, hereafter referred to as the layer samples
(Figure 4a). Each of these samples was made by first
applying a layer of paint of one type of pigment, letting it
dry for a week, and then applying another layer of differ-
ent single-pigment paint. The samples were applied in
three thickness combinations: 50 μm over 100 μm (L1),
100 μm over 50 μm (L2), and 50 μm over 50 μm (L3). The
paint layers were applied such that for both the top and
bottom layers an area of no overlap was present, leaving
single-layer areas accessible with three thicknesses
(50, 100, and 150 μm). These thicknesses of single paint
layers were achieved as in the absence of a second layer
the single layer thickness is the sum of the nominal
thicknesses of both layers (e.g., 100 μm for the L3 sam-
ples). Figure 5 provides a visual diagram of the paint
layer build-up. Each sample on both sets has an area of
roughly 2 � 3 cm2. All samples were allowed to dry for a
month before measurements started. A full description of
the sample compositions is available in Figures S6, S7
and Tables S5, S6.

MA-XRF and SWIR RIS were also applied to the anal-
ysis of Jacob Cornelisz van Oostsanen's Portrait of Jan
Gerritsz van Egmond van de Nijenburg (oil on panel, h
42.4 cm � w 32.8 cm, c. 1518), from the Rijksmuseum
Collection (SK-A-3838) (Figure 6a). Given the painting's
shape and non-removable frame, only a section of the
painting was scanned with MA-XRF to avoid potential
collisions between the frame and the MA-XRF measure-
ment head. This painting was analyzed in relation to con-
servation work in preparation for an upcoming
exhibition. The analysis confirmed the presence of both
azurite and lead white, making it the perfect test case for
our novel mapping method.

2.2 | Data acquisition and processing

2.2.1 | Ma-XRF

MA-XRF data were acquired using an M6 Jetstream MA-
XRF scanner equipped with two 60 mm2 SDD detectors
(Bruker Nano GmbH, Berlin, Germany).31 The Rhodium
x-ray tube was operated at 50 kV and 200 μA, and the
scan was conducted with a dwell time of 400 ms and a
step size of 500 μm for the paint mock-ups and a dwell
time of 70 ms and a step size of 450 μm for the painting.
This resulted in data sets of 342 � 892 pixels for the

FIGURE 4 Layer samples of lead white (LW), blue verditer (BV), and yellow ochre (YO). (a) Visible photograph. Three different layer

sample configurations are marked: L1 (50 μm over 100 μm), L2 (100 μm over 50 μm), and L3 (50 μm over 50 μm). (b) Macroscopic x-ray

fluorescence imaging spectroscopy (MA-XRF) Pb-Lα map. (c) MA-XRF Cu-Kα map. (d) MA-XRF Pb-M map. (e) RIS azurite map. (f) RIS

hydrocerussite map. All maps are displayed with the signals below the LODs in greyscale, and the signals above the LODs in a yellow-red

heatmap.
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mixture samples, 372 � 1232 pixels for the layer samples,
and 485 � 374 pixels for the painting. The spectral data
were processed using DataMuncher32 and PyMCA33 to
produce elemental signal intensity maps.

To evaluate the potential for semi-quantitative analy-
sis, the arithmetic means of signal intensities of each
paint sample were taken and compared to the known
pigment areal density of each sample. To determine the
limits of detection (LODs), the critical signal value yc was
calculated using Equation 1, where yBL is the average
blank signal and sBL is the standard deviation of the
blank signal.34 The blank signal was taken from areas of
the data set where each considered pigment is not
present.

yc ¼ yBLþ3sBL ð1Þ

For these datasets, it was observed that the relation-
ships between signal intensity and areal density for the
single layer 50 μm samples of both pigments were
approximately linear. This happens since the samples are
thin enough for matrix effects to not play a very promi-
nent role in signal intensity. A linear fit of these 50 μm
samples was used to describe these relations and the
areal density value at which this linear fit crosses yc was
taken as the LOD. An alternative, more traditional
method of calculating the LODs for MA-XRF compares
the intensity of a fluorescence signal to its spectral back-
ground31 using:

LOD¼ 3

ffiffiffiffiffiffiffiffiffiffiffi

Nback
p
Nsignal

c
ffiffi

t
p ð2Þ

where Nback and N signal are the background and peak
intensities, respectively, c is the elemental concentration
and t is the measurement time. However, in the context
of this paper, we prefer the first method since it can also

be applied to SWIR RIS, and therefore can yield a more
direct comparison.31

2.2.2 | SWIR RIS

SWIR RIS data was acquired using a Micro-Hyperspec
SWIR 640 hyperspectral camera (Headwall Photonics,
Boston, MA), covering a spectral range from 900 to
2500 nm, with a spectral resolution of 6 nm (267 chan-
nels) and a custom-built motorized easel (LG Motion,
Basingstoke, UK). The samples were illuminated by two
Gulliver 30 lamps (Ianiro LED, New Taipei City, Taiwan)
with 150 W halogen 3000 K bulbs set at 50� of the surface
normal. The camera was operated using an integration
time of 120 ms per line. The datasets were calibrated
using a Spectralon 99% diffuse white reflectance standard
(Labsphere, North Sutton, NH). The mixture samples
were too large to be acquired in a single scan, and thus
two scans were taken and later stitched together using
DataHandlerP.35 The datasets were scaled to match the
resolution of the MA-XRF scans, resulting in datasets of
342 � 892 pixels for the mixture samples and 357 � 1232
pixels for the layer samples, with a pixel size of approxi-
mately 500 μm. The painting was also too large for a sin-
gle scan acquisition, and instead four scans were stitched
together, resulting in a dataset of 3250 � 2170 pixels with
a pixel size of �168 μm.

To be able to fit the reflectance features, the data
needed to be pre-processed. First, the data set was
cropped to the desired spectral range (1333–1591 nm).
Then, a 5-pixel special median filter perpendicular to the
scanning direction was used to get rid of single-pixel
measurement artifacts, followed by a Savitzky–Golay fil-
ter (window length of 5 and polynomial degree of 2) in
the spectral direction to reduce noise and smooth the
SWIR spectral profile. The flat-field normalized reflec-
tance signal (R) was then inverted (1-R). Afterward, the

FIGURE 5 Cross-section

diagram of the paint layer build-up

of the layer samples. SL are single-

layer samples and DL are double-

layer samples.
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specific features were isolated from the background
absorption using a variant of the SNIP filter,36 as shown
in Figure 2a. The initial half-window size for the SNIP fil-
ter depends on the width of the absorbance features
being studied and is traditionally set as approximately
half the width of the target feature. Following this, a half-
window size of six was used for this research and was
found to provide reliable feature isolation. After the pre-
processing, the fitting of features is done using the SciPy
Non-negative Least Squares fitting (NNLS) function pro-
vided through DataHandlerP. The Gaussian profiles used
for the fitting of spectral features are derived from the

150 μm single-pigment samples. Spectra from these sam-
ples were pre-processed as described above, and then the
width and height of the Gaussian profiles were calculated
using the SciPy curve_fit() function.37 These profiles are
shown in Figure 2b. Gaussian profiles were initially cho-
sen due to their simplicity and were found to provide sat-
isfying fits to the considered absorption features, as the
background removal forces the peaks to have very short
tails. Since the support material used for the paint mock-
ups also has a broad absorption feature slightly overlap-
ping with the hydrocerussite feature, it was required to
include a third component during the fitting (Figure 2c).

FIGURE 6 Jacob Cornelisz van Oostsanen, Portrait of Jan Gerritsz van Egmond van de Nijenburg, c. 1518, oil on panel, h 42.4 cm � w

32.8 cm, Rijksmuseum (SK-A-3838) (a) Visible light photograph with the MA-XRF scanned area marked in red and areas used for SWIR RIS

calculations in white. (b) MA-XRF Pb-L map. (c) MA-XRF Pb-M map. (d) MA-XRF Cu-K map. (e) RIS azurite map. (f) RIS hydrocerussite

map. (g) RIS gypsum map. (h) MA-XRF Ca-K map. All maps are displayed with the signals below the LODs in greyscale, and the signals

above the LODs in a yellow-red heatmap. RIS maps are cropped to show only the area scanned with MA-XRF, full maps are available in

Figure S15.
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This component was taken directly from the processed
data. A similar issue occurred with the painting, where
the presence of gypsum (CaSO4�2H2O) in areas of restora-
tion caused problems during the fitting due to its triple
absorption features at 1445, 1490, and 1535 nm.19 The
first two features overlap directly with those of hydrocer-
ussite and azurite, respectively, and thus cause significant
issues with the identification. To account for that, a third
component was added for gypsum (Figure 2d). The com-
ponent was derived using a method similar to that used
for the other components but using a function consisting
of 3 Gaussian profiles of which the height and width are
calculated using the curve_fit function on a sample spec-
trum extracted from the painting's data set.

For the semi-quantitative analysis and calculation of
SWIR LODs, an approach similar to that used for MA-
XRF signals was utilized on the SWIR signals, with the
mean signal intensities of each paint sample being com-
pared to pigment areal density.

To clearly show which areas of an elemental or chem-
ical map are above or below its corresponding limit of
detection we devised a non-standard color scheme in that
signals above the LOD are shown in a red-orange heat
map and signals below in a greyscale. The signals
depicted in the red-orange colormap can be labeled as
detected. While signals that fall below a conservatively
set LOD (with the LOD only considering spectral infor-
mation and not spatial information) cannot be labeled as
reliably detected, their distribution often still reports gen-
uine pigment distribution traces and thus still allows for
low-abundant pigment distributions to be discerned. The
combined color scale allows for a clear visual distinction
between reliably detected and sub-LOD signals, but also
still yields a way for spatial pigment distributions to be
discerned regardless of whether the LOD threshold is
met in all pixel locations.

3 | RESULTS

3.1 | Paint samples

3.1.1 | Ma-XRF

For the paint mock-ups, the elemental distribution maps
for Cu-Kα (8.0 keV), Pb-Lα (10.6 keV), and Pb-M (0.6–
3.7 keV) are used (All other MA-XRF maps are presented
in Figures S8–S11). These specific lines are chosen as
they are the most intense of their respective electron
shells. For the single-layer samples, the MA-XRF maps
(Figure 3b–d) reliably confirm the elemental presence of
the considered pigments. In the case of the layer samples
(Figure 4b–d), the presence of overlying layers does affect

the elemental signal intensity from underlying layers, but
the extent of this effect depends mostly on both the fluo-
rescence energy of the underlying layer and how strongly
absorbing the overlying layer is with regards to that fluo-
rescence energy. For example, comparing the signal
intensity (I) of an uncovered 100 μm blue verditer layer
to the signal intensity of such a layer covered by an over-
lying 50 μm yellow ochre layer it is found that the cov-
ered Cu-Kα signal is only 69.7% ¼ Icovered=Iuncoveredð Þ of
the intensity of the uncovered signal. For an overlying
50 μm lead white layer, the Cu-Kα signal is reduced to
3.3% of the uncovered signal intensity.

As for semi-quantitative analysis, in Figure 7a,b the
average sample signal intensities of the considered fluo-
rescence lines are plotted against the areal density of the
corresponding pigments. The results suggest a discern-
able relationship between signal intensity and pigment
areal density. However, as expected, this relationship var-
ies significantly in function of several factors such as the
overall pigment concentration, the presence of other pig-
ments, and their mass absorption coefficients, which
influences absorption within the sample. All of these are
well-documented factors common to quantitative XRF
analysis.10

One notable exception to this trend is the Pb-M fluo-
rescence lines (Figures 3d and 4d), a group of low energy
(0.6–3.7 keV) and low intensity (�50 times less than Pb-
Lα) fluorescence lines, which are very strongly absorbed
by the samples, and are therefore only related to superfi-
cial Pb presence. Since the signal from these fluorescence
lines is only related to a very thin section of the surface,
matrix effects play much less of a role in the investigated
samples, and the signal is therefore much more strongly
correlated to Pb concentration at the surface of the paint
layer, as can be seen in Figure 7c. Any material beyond
the first 13 μm of a lead white paint layer is not expected
to contribute significantly to the Pb-M signal, as only
around 0.5% of the radiation at 2.3 keV, the energy of the
strongest Pb-M line, is able to escape (as shown in
Figure S12).

The calculated LODs (using the Cu-K and Pb-L lines)
are of 0.04 mg/cm2 for blue verditer and 0.30 mg/cm2 for
lead white, which are equivalent to 0.02 mg/cm2 of Cu
and 0.24 mg/cm2 of Pb, respectively. Using the Pb-M
lines, the surface-specific LODs are 0.03 mg/cm2 for lead
white, which is equivalent to 0.02 mg/cm2 of Pb. Using
Equation 2, the LODs for the 100 μm 50% blue verdi-
ter/50% lead white sample were calculated as 0.04 and
0.10 mg/cm2 for Cu and Pb, respectively. These results
are in good agreement with those reported by Alfeld
et al.,31 which reported 90 ppm of Cu for a NIST SRM
610 (density: 2.5 g/cm3, thickness: 1 mm), which is equiv-
alent to 0.03 mg/cm2 of Cu.

8 DE ALMEIDA NIETO ET AL.
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3.1.2 | SWIR RIS

The method manages to produce fairly accurate pigment
distribution maps, shown in Figures 3e,f and 4e,f, but it
sometimes struggles with identifying the compounds
when they are minor components (<20 mass%) of a

mixture. In the layer samples (Figure 4e,f), it is seen that
the signals from underlying layers tend to be attenuated
by overlying layers, the extent of which again depends on
the nature of the overlying layer. For example, using the
same comparison method as during the MA-XRF analy-
sis, a 100 μm blue verditer layer has its signal attenuated

FIGURE 7 Relationship between signal intensities and pigment areal densities and calculated limits of detection for (a) Macroscopic

x-ray fluorescence imaging spectroscopy (MA-XRF) Cu-Kα, (b) MA-XRF Pb-Lα, (c) MA-XRF Pb-M, (d) Reflectance imaging spectroscopy

(RIS) azurite, (e) RIS hydrocerussite. Error bars represent the standard deviation of the related signal intensities across each paint sample.

DE ALMEIDA NIETO ET AL. 9
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to 29% of the uncovered signal intensity by an overlying
50 μm yellow ochre layer and to 46% by an overlying 50 -
μm lead white layer. Again, the difference between blue
verditer and lead white reappears with the method being
able to identify blue verditer in all layer configurations,
but not lead white. In both datasets, areas with large con-
centrations of azurite present a hydrocerussite signal,
which means the method is more reliable for the identifi-
cation of blue verditer than for lead white.

Regarding semi-quantification, Figure 7d,e shows the
average sample signal intensity plotted against the areal
density of the corresponding pigments. The relationship
between the SWIR RIS signal intensity and the pigment
areal density in the single-layer samples is much better
described by a linear fit than for MA-XRF. The azurite
results show a closer correlation than the hydrocerussite
results, but this could be due to the previously mentioned
azurite misidentifications or due to the overlap between
the support and kaolinite features and the hydrocerussite
feature.

The calculated LODs are 0.93 mg/cm2 for blue verdi-
ter and 5.37 mg/cm2 for lead white, which are equivalent
to 0.93 mg/cm2 of azurite and 5.26 mg/cm2 of hydrocer-
ussite, respectively.

3.2 | Application to a painting

In the selected painting by Jacob Cornelisz van Oostsa-
nen, the Pb-L map (Figure 6b) reports the presence of Pb
over the entire painting, except for small areas of restora-
tion, implying the use of a lead white priming layer. As
mentioned before, the Pb-M map (Figure 6c) is surface-
specific and therefore shows the presence of Pb also on
the surface paint layers throughout most of the painting,
but most predominantly in the sky in the background
and in the skin of the figure. Cu (Figure 6d) was identi-
fied in the landscape background, most intensely in the
water and rearmost section of trees, and less intensely in
the clothing of the figure. Other MA-XRF maps of the
painting are presented in Figures S13 and S14.

The azurite signal (Figure 6e) is identified in amounts
above the LOD in the background in the water, the sky,
and the rearmost section of trees. Other areas show azur-
ite signals below the LOD, but they are not highly spa-
tially correlated, implying they are likely due to
measurement noise. A hydrocerussite signal (Figure 6f)
above the LOD is present in the open sky in the back-
ground and the skin of the figure, whilst signals below
the LOD appear in the other sections of the outdoor
background, a section of the background arch and the fur
vest of the figure.

Since a component for gypsum was included in the
fitting, a map for this feature could be produced as well
(Figure 6g). This gypsum signal is present most intensely
in areas of restoration, where it was used to fill the long
cracks which formed along the direction of the wood
grain of the supporting panel, a common practice in the
restoration of panel paintings. The signal is also mapped
in other areas of the painting, with a strong correlation to
the areas with a hydrocerussite signal. The Ca-K maps
produced with MA-XRF (Figure 6h) show the presence of
Ca in similar areas of restoration, but a low-intensity
Ca-K signal is also present in the clothing of the figure
and darker areas of the background. Lacking a reference
sample, which could be used to determine the LODs for
gypsum and Ca, an area of the painting was used to
determine the blank signal. The area used was the small
area of open sky between the figure's face and the trees
on the right, as this was the area with the lowest Ca-K
signal.

4 | DISCUSSION

Regarding pigment identification, SWIR RIS yields mixed
results. It mostly compares well with the results achieved
with MA-XRF, but notable differences are apparent. In
the mixture samples (Figure 3), SWIR RIS method strug-
gles to identify either azurite or hydrocerussite
(Figure 3e,f) when they are present in amounts close to
the LODs, the values of which are poor (higher LOD
values) compared to those achievable with MA-XRF
(Figure 3b–d). This can be seen in several of the samples
including 5% of either blue verditer or lead white which
are not correctly mapped. However, in the samples with
larger blue verditer (>50 mg/cm2) and lead white
(>25 mg/cm2) areal densities, MA-XRF fails to clearly
differentiate between samples of different thickness, as
the samples approach infinite thickness from the point of
the discussed XRF lines, as can be seen in Figure 7a,b.
The SWIR RIS method does manage to differentiate
between these samples, showing a greater information
depth, which is the depth that provides 99.5% of the mea-
sured signal in an infinitely thick sample. However, the
exact information depth cannot be accurately determined
as it seems to exceed the maximum tested layer thickness
of 150 μm.

For reference, paint layers are often between 10 and
100 μm,38 which, assuming similar oil ratios as those
recommended by modern suppliers, would equate to
between 2.5 and 25 mg/cm2 for a pure blue verditer paint
and 5.1–51 mg/cm2 for a pure lead white paint. Given
that these pigments are often used in mixtures, common
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areal density values are expected to be lower. However,
lead white is commonly used as a ground, often resulting
in much thicker layers39 and therefore higher areal
densities.

The layer samples (Figure 4) mostly support prior
observations, as not only the method differentiates
between the different layer thicknesses, but also the areas
where the film applicator pooled the paint into thicker
layers have much stronger SWIR RIS signals than the rest
of the samples (Figure 4e,f). MA-XRF signals do not
exhibit significant variation after a certain thickness as
they become infinitely thick from the point of the dis-
cussed XRF line (Figure 4b–d). For both hydrocerussite
and azurite, the SWIR RIS signals show a substantial
improvement in penetration of overlying paint layers
when compared to the corresponding MA-XRF fluores-
cence lines (Values for paint layer escape depth for MA-
XRF presented in Figure S12). The SWIR RIS signals are
attenuated, but not as strongly as the MA-XRF signals,
although the level of attenuation depends on the nature
of the overlying layer, as yellow ochre layers seem to
block more of the signal than the other two paints.

As previously mentioned, there is an issue where
SWIR RIS misidentifies higher densities of azurite as low
amounts of hydrocerussite. In the case of pure blue verdi-
ter samples, the problem is so pronounced that the
hydrocerussite signal they present falls slightly above
the calculated LOD, as can be seen in the central and
right areas of Figure 4f. Figure 8 shows a spectral exam-
ple of this issue. The cause seems to be a small peak
around 1420 nm which is fit as a combination of the sup-
port and hydrocerussite components. This peak is likely a
contribution of the support material and only causes
issues with azurite samples as the other two pigments
have features that either fully or partially cover this peak.

Regarding the semi-quantitative analysis, when
directly comparing the relationships between the signals
of both methods and the associated pigment areal densi-
ties (Figure 7), it can be seen that the SWIR RIS signals
exhibit a much larger linear range than the MA-XRF
ones. However, certain MA-XRF lines, like Pb-M, exhibit
a strong linear correlation to pigment areal density, but
these are limited to surface-specific information (roughly
top 13 μm). Their usefulness for the quantification of
multi-layer paint systems is therefore limited, especially
as overlying varnish layers can further dampen the sig-
nal. The relatively poor LODs for SWIR RIS show that it
is less suitable for quantification of the pigments when
present in low amounts. However, in these regions, the
MA-XRF signal still exhibits a roughly linear relation
with pigment areal density, and therefore the two
methods can be used complementarily to achieve a
broader quantification range.

In the test of the painting (Figure 6), significant differ-
ences can be seen between the MA-XRF and SWIR RIS
signals. The maps of hydrocerussite (Figure 6f) and Pb-M
(Figure 6c) have some differences, namely the black
clothing and pupils of the figure, and some background
elements, like the window wall and the bridge, all of
which exhibit a Pb-M signal, but no hydrocerussite sig-
nal, implying either the presence of Pb in a form different
from hydrocerussite or the presence of a strongly IR
absorbing compound which is masking the hydrocerus-
site signal. Certain areas in the background exhibit a
hydrocerussite and Pb-L signal (Figure 6b), but no signifi-
cant Pb-M signal. This indicates that a lead white layer is
present underneath; the surface paint layer(s) absorb(s)
the low energy Pb-M radiation but do(es) not strongly
absorb IR radiation. Some of these areas also exhibit a
Cu-K signal and have a dark green color, which would
imply the presence of a Cu-based pigment layer on top of
an underlying lead white layer, most likely malachite or
verdigris, given the lack of an azurite signal. The spatial
correlation of the hydrocerussite signals below the LOD
shows that how LODs are currently described may not be
entirely appropriate for this kind of (spatial) data, as the
calculations ignore the spatial components and neighbor-
hood relationships within the data. Defining a new limit
that considers both spatial and spectral data, a limit of
detection for imaging, would be perhaps more
appropriate.

Comparing the Cu-K (Figure 6d) and azurite
(Figure 6e) maps yields similar deviations. Whilst Cu-K
signals are present throughout the outdoor background
as well as the figure clothing, the azurite is only present
in the sky, water, and rearmost trees, which are the bluer
areas of the background. The differences in the back-
ground can be attributed to the use of another (green)

FIGURE 8 Spectra example showing the fitting of a small

hydrocerussite signal in a sample without hydrocerussite (Mixture

sample, 95% blue verditer/5% yellow ochre, 150 μm).
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Cu-based pigment. The difference in the clothing could
be attributed to the use of a Cu-based pigment mixed in
with the primary black pigment, or the use of a Cu-based
dryer, like verdigris, to reduce the long drying times com-
mon to black paints.

The gypsum signal (Figure 6g) is also of interest due
to its strong correlation with the hydrocerussite signal.
This could be due to a misfitting of the two features, as
the most prominent of the gypsum features is the one
that directly overlaps the hydrocerussite OH feature.
However, it is known from cross-section samples that
there is gypsum present in the ground layer of the paint-
ing. What could be happening is more a negative correla-
tion with the darker areas of the painting. In these areas,
the more strongly IR-absorbing paints block the ground
layer gypsum signal, which is mostly unobstructed in the
brighter areas of the painting, which happens to be
where lead white is most prominently used.

Using the relations between RIS signal intensity and
pigment areal densities derived from the paint samples,
the average pigment areal densities of certain areas of the
painting are calculated. Based on the paints prepared for
the mock-up samples, these areal densities can also be
converted to the equivalent layer thickness of a single
pigment paint layer, to facilitate direct comparison to the
paint mock-ups, but they are not actual measurements of
the layer thickness in the painting. The target areas are
marked in Figure 6a. For lead white, the sky (area 1) has
a pigment areal density of 21.4 mg/cm2 (the equivalent of
a 36 μm layer of pure lead white paint), the face (area 3)
has 19.7 mg/cm2 (33 μm), the background water (area 4)
has 10.28 mg/cm2 (17 μm), and the grass (area 5) has
8.16 mg/cm2 (14 μm). For azurite, the sky (area 1) has a
pigment areal density of 16.1 mg/cm2 (the equivalent of
a 50 μm layer of pure blue verditer paint), the back-
ground trees (area 2) have 12.4 mg/cm2 (38 μm), and the
background water (area 4) has 20.1 mg/cm2 (62 μm). All
these areas present the considered pigments in either
mixture with other pigments or as underlayers and have
average areal densities above the LODs and values within
the common areal density values described earlier.

The achieved results of the novel SWIR RIS data pro-
cessing method in both specially prepared samples and
historical samples show promise in the general applica-
bility of the method for mapping the considered pig-
ments. The production of reasonable chemical
distribution maps using standard fitting features based
on reference materials provides an improvement in both
reproducibility and automation over the highly dataset-
specific methods currently used for RIS data processing.
However, it is also clear that the method suffers when
dealing with reflectance features with a strong overlap,
like hydrocerussite and gypsum.

5 | CONCLUSION

The results achieved using MA-XRF and the proposed
SWIR RIS data processing method, focusing on charac-
teristic absorption features in specific spectral regions,
have shown their potential for both pigment identifica-
tion and semi-quantitative mapping in a more automated
and easily reproducible fashion than the more commonly
used endmember-based RIS data processing methods. If
properly streamlined, the process can be reduced to
roughly 15–20 min of computational time, which does
not require user intervention. The application of the
SWIR RIS method on the prepared paint mock-ups shows
an ability to identify the considered pigments more con-
clusively than with only MA-XRF, albeit with compara-
tively poor LODs. However, the ability of the SWIR RIS
method to differentiate between samples with high pig-
ment concentration and layer thickness shows a greater
information depth than that achieved with MA-XRF.

The strong correlation between the SWIR RIS signal
intensity and pigment areal density shows great potential
for semi-quantitative analysis, but the relatively poor
LODs mean it is less suitable for low pigment areal densi-
ties. The exploration of the relationship between signal
intensity and pigment areal density is limited by the fact
that the pigment areal density values used were assump-
tions based on the amounts mixed during the preparation
of the paints, and not directly measured from the pre-
pared sample. The analysis of the samples using x-ray
powder diffraction (XRPD), which provides relatively
robust quantitative analysis of inorganic compounds,
could provide more accurate pigment densities with
which to better define their relationship to SWIR RIS sig-
nal intensities. However, the complex absorption effects
that happen within a paint layer in the SWIR range make
full quantification very difficult and remain a major limi-
tation of the method.

The application of the method on the three objects
studied highlights a few issues that must be overcome
before the method can be considered sufficiently reliable,
the primary being the possibility of overlapping features
from different compounds. Some of these issues might be
overcome by the inclusion of a greater number of charac-
teristic RIS features in the fitting procedure. For example,
azurite presents two other absorption features in the
SWIR range at 2245 and 2351 nm. Expanding the method
to fit those features as well would make the azurite maps
more reliable.

Moreover, some of these shortcomings could also be
addressed with a combined MA-XRF and RIS approach.
Whilst MA-XRF is very reliable at identifying the elemen-
tal presence, there is only so much information that can
be extracted from these results, in particular when
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dealing with different pigments that have the same ele-
mental footprint. And while this RIS method can fail if
several compounds with overlapping features are present,
the likelihood of these pigments also having the same ele-
mental footprint is low, as is the case between gypsum
and azurite. Moreover, absorption effects are much better
understood for XRF, which could help increase the reli-
ability for quantitative analysis. The difference in infor-
mation depth alongside differences in calculated areal
densities between the two methods could also provide
valuable insight into paint layer stratigraphy, assisting in
the identification of areas of interest for further analysis.
Further development and refinement of such a multi-
modal method would be very beneficial to the reliability
and repeatability of pigment identification procedures.

Another possible area of development is the use of
the Gaussian fitting method for the analysis of RIS data
in other spectral ranges. While pigments often lack reflec-
tance features in visible to near-infrared range (VNIR,
400–1000 nm) that could be fit with this method, the
mid-infrared range (MIR, 2500–25,000 nm) is rich in
these kinds of features.40 MIR RIS is not currently a com-
monly used method in the analysis of cultural heritage
objects, but as advances in MIR spectrometers make their
use more practical in museum contexts, the method is
likely to become more relevant and the development of
data processing methods well-suited for the analysis
of artist's pigments will be of great interest.

However, whilst the method shows promise for its
applicability for the identification of other pigments
based on prominent and characteristic reflectance fea-
tures, it is inherently limited to pigments that exhibit
such prominent features, and it must be tailored to these
specific features. This method should not be seen as a
universal solution for the question of RIS data processing,
but as an automation tool for specific common questions
often addressed using RIS. A practical implementation of
this method would allow non-expert users to produce
specific pigment distribution maps with a comparable or
lower amount of effort than that required for the acquisi-
tion of MA-XRF maps. This would be a significant
improvement in both speed and reproducibility over the
highly labor-intensive methods in use currently.
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