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ABSTRACT 
 

Shells tend to be thin because their curvature enables them to carry distributed loads as membrane forces. 

The property of thinness stems from shells’ capacity to store membrane strain energy without much 

deformation. As a result, buckling failures often govern the design of shell structures. These buckling 

failures usually start locally, at a location where a combination of curvature and membrane forces is met. 

Moreover, shells tend to be imperfection-sensitive structures, that is, real-life shells (with initial geometric 

imperfections) usually cannot resist loads as high as the theoretically predicted critical buckling load. 

Advanced finite element analyses can accurately predict these so-called nonlinear buckling loads but 

require significant time and computation effort. On the other hand, current design equations are simple yet 

highly inaccurate and often penalize strength significantly. This treatise caters a Python script that executes 

nonlinear finite element analyses (using ANSYS Mechanical APDL) to generate a database of the nonlinear 

buckling loads of shell portions with varying membrane forces, curvatures and magnitudes of initial 

geometric imperfections. The aim, beyond the scope of this treatise, is to perform a parametric regression 

on said database to device design equation(s) that accurately predict the nonlinear buckling load of linear-

elastic shell structures with initial geometric imperfections based merely on the linear elastic results of a 

geometrically perfect shell model. 
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1. INTRODUCTION 
 

1.1. Thesis Statement 
 

Shells tend to be thin because their curvature enables them to carry distributed loads as membrane forces. 

As a result, buckling failure often governs the design of shell structures. Unlike frames, shell buckling starts 

locally, at a location where a combination of curvature and membrane forces is met. Shell analysis is 

difficult because the curvature is changed by the initial geometric imperfections and the membrane forces. 

Additionally, the membrane forces are strongly influenced by the changing curvature.  

 

While shell buckling can be predicted accurately using advanced finite element analyses, current design 

equations are not accurate. For instance, the influence of lateral curvature, lateral normal force and initial 

geometric imperfections are generally unknown. This lack of knowledge means these equations penalize 

strength significantly. More accurate design equations based on a parametric study would alleviate this. 

 

1.2. Research Purpose 
 

The objective of this treatise is to lay the foundation for subsequent research by providing a Python script 

capable of executing a batch of finite element analyses (using ANSYS Mechanical APDL) that determine 

the nonlinear buckling loads of shell portions with varying curvatures, membrane forces and initial 

geometric imperfections. This script would generate a database from which design equation(s) can be 

derived to predict the nonlinear buckling load of a shell portion based merely on the original curvature and 

linear-elastic membrane forces of a geometrically perfect shell model. This task falls beyond the scope of 

the current treatise. The nonlinear buckling loads are obtained by performing geometrically nonlinear 

analyses with initial geometric imperfections (GNIA). Physical nonlinearities are not accounted for. 

 

1.3. Thesis Overview 
 

This treatise is divided in 5 chapters which, save for this brief introduction, are outlined here. 

 

Chapter 2 summarizes the background knowledge. This encompasses the linear elastic theory, finite 

element method implementation, shell buckling and postbuckling theory, and finite element solution 

techniques. 

 

Chapter 3 presents the methodology, paying special attention to the ANSYS Mechanical APDL and Python 

code provided in the appendices. 

 

Chapter 4 accommodates an analytical solution for the linear elastic membrane forces of an externally 

pressurized thin-shell torus, its buckling modes, as well as sample results from the Python script. 

 

Chapter 5 evaluates potential shortcomings in the code and suggests a course of action for continuing the 

research upon the foundations laid herein, especially the generation of the database and parametric 

regression. 
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2. BACKGROUND 
 

2.1. Shell Linear Elastic Theory 
 

In this section, the coordinates and curvatures are defined and the Lamé parameters are introduced. The 

shell membrane theory is covered briefly. Shells can be described as plates with a curved middle surface. 

This curvature enables shells to carry out-of-plane pressure loads as membrane forces instead of bending 

moments (Blaauwendraad & Hoefakker, 2013, pp.1-2; Voyiadjis & Woelke, 2008, p. 1). The latter are 

restricted to so-called edge disturbances found at concentrated loads, edges and discontinuities. (Voyiadjis 

& Woelke, 2008, p. 1; Hoogenboom, 2017, p. 65). 

 

Assuming the existence of an orthogonal parametrization         
T

,,,,r vuzvuyvuxvu  , three 

coordinate systems can be defined: global, local and curvilinear (Hoogenboom, 2017, p.29). The global 

coordinate system  zyx ,,  describes the shell geometry. The curvilinear and local systems are based on 

 vu,r . The curvilinear x and y axes follow the u and v parameter lines, i.e.,  vu,r  with increasing u and 

v, respectively. The local x and y axes are tangential to their curvilinear counterparts. Both local and 

curvilinear systems’ z axis are orthogonal to the x and y axes, and point in the same direction. The local 

coordinate system is used to define curvatures, loading, internal force resultants and displacements. 

 

 
Figure 2.1. Shell coordinates (Hoogenboom, 2017, p. 29) 

 

Several definitions of curvature are considered. The shell surface curvature is described by two normal 

section curvatures, kxx and kyy, and a surface twist, kxy. The normal section curvatures are the inverse of the 

radii of the circles tangential to the shell on the local x-z and y-z planes. They are found using Eq. (2.1) 

and (2.2); the twist is given by Eq. (2.3) (Hoogenboom, 2017, p. 19): 

 

 22 xzkxx  , (2.1) 

 
22 yzk yy   (2.2) 

and   

 yxzkxy  2 . (2.3) 

 

The shell curvatures form a tensor which can be transformed to yield the principal curvatures; or Eq. (2.4) 

can be used (Hoogenboom, 2017, p. 21): 
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     22

2,1
4

1

2

1
xyyyxxyyxx kkkkkk  . (2.4) 

 

The curvature tensor has two invariants, namely the Gauss curvature, kG, and mean curvature, km 

(Hoogenboom, 2017, pp. 23-24): 

 

 
2

21 xyyyxxG kkkkkk   (2.5) 

and   

    yyxxm kkkkk 
2

1

2

1
21 . (2.6) 

 

Additionally, the kx and ky in-plane curvatures are defined as the inverse of the ry and rx radii of the circles 

in the plane normal to the local z-axis tangential to u and v (Hoogenboom, 2017, p. 35): 

 

 
y

k x

x

x









1
 (2.7) 

and   

 
x

k
y

y

y









1
. (2.8) 

 

The Lamé parameters, x and y , map the ratio of change in x with respect to a change in u and a change 

in y with respect to a change in v (Hoogenboom, 2017, pp. 30-31), i.e., 

 

 

























dv

du

dy

dx

y

x





0

0
. (2.9)  

 

If the shell is parametrized, the Lamé parameters can be used derive kxx, kyy and kxy. Figure 2.2 shows the 

normal section curvature and in-plane curvatures. 

 

 
Figure 2.2. (a) Normal section curvature (Hoogenboom, 2017, p.19), and (b) In-plane curvature 

(Hoogenboom, 2017, p.35) 

The geometry of a shell is described by its thickness and surface curvature. Thus, shells can be categorized 

based on their radius-to-thickness ratio (Blaauwendraad & Hoefakker, 2014, p.3). Table 2.1 shows such a 

classification, with suitable theories (Hoogenboom, 2017, pp. 13-14). 
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Table 2.1. Shell types and corresponding theory based on radius a and thickness t 

Type of shell Slenderness Theory 

Very thick shell a/t < 5 Solid elements (i.e., not a shell) 

Thick shell 5 < a/t < 30 Mindlin-Reissner (includes shear deformations) 

Thin-shell 30 < a/t < 4000 Sanders-Koiter (membrane forces and moments) 

Membrane 4000 < a/t Shell membrane (only membrane forces) 

 

As seen in Table 2.1, the analysis of thin shells involves two distinct theories: the shell membrane theory, 

which does not include bending and shear; and the Sanders-Koiter theory, which includes bending 

deformations and shear stresses but not shear deformations (Voyiadjis & Woelke, 2008, p. 2). The positive 

internal force resultants from the latter theory are shown in Fig. 2.3. 

 

 

Figure 2.3. Positive internal forces (Hoogenboom, 2017, p.13) 

 

Even though the Sanders-Koiter equations offer a more faithful representation of the internal forces of thin 

shell structures, membrane stresses are more important for practical purposes (Voyiadjis & Woelke, 2008, 

p.2). The shell membrane equations are also simpler to solve analytically. Such a solution is provided in 

section 4.1 to verify the finite element method results. This solution required only the shell membrane 

equilibrium equations shown next (Hoogenboom, 2017, p.35-36; see also Blaauwendraad & Hoefakker, 

2013, p. 27): 

 

 02)(  xxyxyyxxyxyxx pnknnkynxn , (2.10) 

 02)(  yxyyxxyyxxyyy pnknnkxnyn  (2.11) 

and   

 02  zyyyyxyxyxxxx pnknknk . (2.12) 

 

The reader is referred to Hoogenboom (2017), Blaauwendraad & Hoefakker (2013), and Voyiadjis & 

Woelke (2008) for a comprehensive coverage of the linear elastic theories and equations. 
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2.1.1. Finite Element Implementation 

 

The three most common shell finite elements are: flat shell elements, elements based on the Sanders-Koiter 

equations and reduced solid elements (Hoogenboom, 2017, p. 65). Flat shell elements combine plane stress 

with plate bending and drilling degrees of freedom (Hoogenboom 2017, p.65; Blaauwendraad & 

Hoefakker, 2013, p. 285). Their main disadvantage is that, by being flat, a fine mesh is required to preserve 

the curvature of the shell model (Chen, 2014, p. 12).   

 

 
Figure 2.4. Flat shell element (Hoogenboom, 2017, p. 65) 

 

Shell elements based on the Sanders-Koiter equations, such as the semi-loof element (Fig. 2.5), can be 

very accurate but are often difficult to implement in finite element software (Hoogenboom, 2017, p.66).  

 

 

Figure 2.5. Semi-loof element (Hoogenboom, 2017, p. 66) 

 

The most common element type is the reduced solid element (Fig. 2.6) in which degrees of freedom are 

combined and the constitutive equations are simplified (Hoogenboom, 2017, p.66; Blaauwendraad & 

Hoefakker, 2013, p. 286). 8-noded quadrilaterals can be curved, which reduces the need for fine meshes. 

The script provided in App. B uses this shell element to generate the shell models. 

 

 

Figure 2.6. Reduced solid element (Hoogenboom, 2017, p. 66) 
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2.2. Shell Buckling Theory 
 

Shells tend to be thin because their curvature enables them to carry distributed loads as membrane forces. 

The property of thinness stems from shells’ capacity to store membrane strain energy without much 

deformation. Yet, if this energy is converted into bending energy, shells may become statically unstable 

and fail dramatically (Bushnell, 1981, p.1187). 

 

2.2.1. Static Instability 

 

Static instability, loosely termed buckling, is the condition when a structural member or system exhibits a 

loss in its load-carrying capacity (Ziemian, 2010, p. 12). Buckling may be divided into two categories: 1) 

bifurcation of equilibrium (Fig. 2.7, point B) and 2) collapse at the limit load without prior bifurcation 

(point A). Bifurcation is exemplified by a sudden change in the load-carrying path, e.g., from axial (or 

membrane) forces to bending moments, and corresponding deformations. Columns, plates and cylindrical 

shells experience this type of instability. Shallow arches and spherical caps are examples of the second 

type of instability, also termed nonlinear buckling or “snap-through” (Ziemian, 2010, p.12; Bushnell, 1981, 

p. 1183-1187). However, given initial geometric imperfections, even arches and spherical caps are prone 

to fail in an asymmetric mode due to bifurcation prior to their limit load, i.e., curve 0-B-D in Fig. 2.7 

(Ziemian, 2010, p. 22; Hutchinson & Koiter, 1970, p. 1354; Bushnell, 1981, p. 1187).  

 

 
Figure 2.7. Load-deflection curves showing limit and bifurcation points: (a) General nonlinear analysis, 

and (b) Asymptotic analysis (Bushnell, 1981, p. 1187) 

 

The loads observed in Fig. 2.7 are expressed as a multiplier λ to some reference load. λC is the critical 

buckling load ratio at the bifurcation point. λL, or limit load ratio, is the maximum load that can be achieved 

without prior bifurcation. λS is the maximum load that can be achieved by a structure with initial geometric 

imperfections before static instability is reached (Hutchinson & Koiter, 1970, p. 1354). Chapter 1 refers 

to λS as the nonlinear buckling load because – just like for the limit load ratio – λS is obtained by means of 

a geometrically nonlinear analysis (GNA). However, estimating λS requires explicit modeling of the initial 

geometric imperfections in the finite element model. An analysis that includes such imperfections is 

referred to as a geometrically nonlinear analysis with initial geometric imperfections (GNIA). 
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2.2.2. Bifurcation Buckling 

 

The critical buckling load for discretized systems is the lowest eigenvalue from Eq. (2.22). It can also be 

obtained analytically for elementary shell types by solving a reduced eighth-order differential equation 

(Blaauwendraad & Hoefakker, 2013, p. 81). Equation (2.13) shows the theoretical buckling membrane 

force of an axially loaded thin-shell cylinder (Bushnell, 1981, p. 1189): 

 

  
a

Et

a

Et
nC

22
212 6.0)1(3 


 . (2.13) 

 

  212 )1(3


  is approximated as 0.6 for realistic values of  . Equation (2.13) is also valid for axially 

loaded hyperboloids and for externally pressurized closed cylinders, spherical shells, domes, and 

hyperbolic paraboloids (Hoogenboom, 2017, p. 111). The fact Eq. (2.13) makes no reference to the number 

of waves found in the buckling pattern helps to explain this wide range of applicability (Bushnell, 1981, 

p. 1190). This quality has further repercussions seen in subsection 2.2.4 which describes methods that 

estimate λS based on asymptotic analyses that rest on the theoretical foundations established by Koiter and 

use the postbuckling behavior as starting point (Hutchinson & Koiter, 1970, p. 1354). 

 

2.2.3. Postbuckling Behavior 

 

While relatively simple to solve, neither Eq. (2.22) nor Eq. (2.13) yield information on the postbuckling 

behavior (Hutchinson & Koiter, 1970, p. 1354), and thus also not about the stability of a structure after 

bifurcation (Bushnell, 1981, p. 1193). A general understanding of the postbuckling behavior of shells can 

be obtained by considering the simple model in Fig. 2.8, like the one proposed by Cox (1940, p. 231). 

 

 
Figure 2.8. Bifurcation buckling of initially perfect model: (a) prior to buckling, (b) postbuckling; and 

(c) initially imperfect model. Adapted from (Ziemian, 2010, pp. 13-18) 

 

The model consists of two rigid bars hinged to one another and supported laterally by a nonlinear elastic 

spring (or similar). The spring possesses an arch-like stiffness, which can be approximated by a cubic 

polynomial. Cox (1940, p. 231) and Koiter (1970, p. 2) provide a solution of the form 

 



CHAPTER 2. BACKGROUND 

8 

 

  21   baPP C
, (2.14) 

 

where 𝑃𝐶 is the critical buckling load, a and b are related to the spring coefficients, and 𝜀 = 𝑥 𝐿⁄ . In his 

dissertation, Koiter (1970, pp. 71-117) used perturbation analysis to generalize the theory of stability for 

elastic systems under conservative loading. He arrived at Eq. (2.15), which demonstrates an asymptotically 

exact relation between λ (the postbuckling load ratio) and λC near the bifurcation point (Hutchinson & 

Koiter, 1970, p. 1355; Bushnell, 1981, p. 1193): 

 

  21   ssC ba . (2.15) 

 

For shells,   represents the post-buckling deflection δ as a multiplier to the thickness, i.e., t  . 

Equation (2.15) can be visualized in Fig. 2.9. Koiter (1970, pp. 71-117) identified three postbuckling 

behaviors based on the parameters as and bs: stable, unstable and asymmetric.  

 

 
Figure 2.9. Postbuckling: (a) stable, (b) unstable, and (c) asymmetric (Bažant & Cedolin, 1991, p.470) 

Equation (2.15) agrees with buckling theories for different structural elements. Figure 2.10 shows how 

typical structural elements fall within these categories. 

 

 
Figure 2.10. Elastic postbuckling curves for compressed elements (Ziemian, 2010, p. 8) 

 

Koiter (1970, pp. 119-149) also noted that small initial geometric imperfections such as in Fig. 2.8(c) have 

a marked effect on systems with unstable postbuckling curves (dashed curves on Fig. 2.9 and 2.10). These 

imperfections cause those systems to fail at loads below the critical load (Ziemian, 2010, p. 19, Budiansky 

& Hutchinson, 1966, p. 1506). Such systems are referred to as imperfection-sensitive. 
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2.2.4. Imperfection Sensitivity 

 

The classical example of imperfection sensitivity is the axially loaded thin-shell cylinder. Figure 2.11 

shows the test results of 172 axially loaded thin-shell cylinders compared to the critical load predicted by 

Eq. (2.13). nS has values as low as one sixth of nC. Kármán and Tsien (1941, p. 303-312) attributed this 

discrepancies to the highly unstable postbuckling regimes seen in both cylindrical and spherical shells. 

 

 
Figure 2.11. Test results of axially loaded cylinders (from Weingarten, Morgan & Seide, 1965) 

 

Around the same time, Koiter found that asymptotically exact estimates of λS can be obtained by including 

the first-order effects of small initial geometric imperfections in the shape of the critical buckling mode 

(Hutchinson & Koiter, 1970, pp. 1355-1356; Bushnell, 1981, p. 1193). If the magnitude of the initial 

geometric imperfection is denoted  , then for as = 0 and bs < 0, λS can be estimated by 

 

    




 

3/23/1
4/31  SCS b , (2.16) 

 

where ρ is a constant that depends on the imperfection shape. On the other hand, for a postbuckling curve 

with as ≠ 0 and bs = 0, λS is estimated using 

 

  




 

2/1
21  SCS a . (2.17) 

 

In both cases, small values of   have a sizeable effect on λS (Hutchinson & Koiter, 1970, p. 1356) which 

further substantiates the claim by Kármán and Tsien (1941, p. 303-312). 

 

2.2.4.1. Externally pressurized thin-shell cylinder 

 

The externally pressurized thin-shell cylinder studied by Budiansky and Amazigo (1969, p. 223-235) is an 

illustrative example of Koiter’s theory. The solid curve on Fig. 2.12 (a) represents the pressure-deflection 

relation of the perfect structure given by  

 

 
























2

1
t

bpp C


. (2.18) 
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where p is the postbuckling pressure, pC is the critical buckling pressure and δ is the normal to surface 

buckling displacement amplitude. In turn, the solid curves in Fig. 2.12 (b) represent the asymptotic 

relationship between pS and   given by Eq. (2.19), which is the same form as (2.16): 

 

 

  






















C

S

C

S

P

P

t
b

p

p 21

23

2

33
1 . 

(2.19) 

 

 

However, Eq. (2.16) and (2.17) cannot be applied to the axially loaded thin-shell cylinder nor the externally 

pressurized spherical shell studied by Kármán and Tsien in 1941 (pp. 303-312) and 1939 (pp. 43-50) due 

to the multiplicity of buckling modes associated with λC (Budiansky & Hutchinson, 1966, p. 1506; 

Hutchinson & Koiter, 1970, pp. 1358-1360; Bushnell, 1981, p. 1189). The reader may recall that Eq. (2.13) 

– applicable to both cylinders and spheres – makes no mention of a buckling pattern, thus hinting at the 

fact these shells are susceptible to several mode-based geometric imperfections (Bushnell, 1981, p. 1190).  

 

 
Figure 2.12. (a) Postbuckling and imperfection sensitivity of externally pressurized cylinder, and (b) 

Imperfection sensitivity of various shells (modified from Budiansky & Hutchinson, 1966, p. 1506) 

 

2.2.4.2. Axially loaded thin-shell cylinder and externally pressurized spherical shell 

 

Even with this limitation, it is possible to give a close estimate of PS for the axially loaded thin-shell 

cylinder with the classical theory by using an imperfection in the shape of the axisymmetric buckling mode 

(Koiter, 1970, pp. 289-290, Hutchinson & Koiter, 1970, p. 1359): 

 

 
























C

S

C

S

P

P

t

c

P

P 

2

3
1

2

 (2.20) 

or   

 
















t

c

t

c

t

c

P

P

C

S 

4

3
2

4

3

4

3
1 ,  

 

where  213 c . Koiter (1970, pp. 289-290) also found that the cylinder’s length and boundary 

conditions play a negligible role. Similarly, Hutchinson (1967a, p. 52) developed an equation for a shallow 

section of an externally pressurized spherical shell, taking in consideration the interaction between 
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buckling modes. The highest reduction in pressure was observed for two operative buckling modes with 

one such mode having a zero wave-number associated with either the x- or y-coordinate: 

 

 
























C

S

C

S

p

p

t

c

p

p 

32

327
1

2

 (2.21) 

or   

 
















t

c

t

c

t

c

p

p

C

S 

4

81
332

1024

27

64

327
1 .  

 

Equations (2.20) and (2.21) are plotted in Fig. 2.12. Similar imperfection sensitivity studies were done on 

axially compressed oval thin-shell cylinders (Hutchinson, 1968), externally pressurized thin-shell 

spheroids (Danielson, 1969) and externally pressurized thin-shell toroidal segments (Hutchinson, 1967b). 

It appears that imperfection sensitivity disappears for toroidal segments of sufficiently large negative 

Gaussian curvature (Budiansky & Hutchinson, 1966, p. 1507). 

 

2.2.5. FEM Solution Techniques 

 

Two FEM procedures are described, each with its own strengths and pitfalls: linear buckling analysis 

(LBA) and geometrically nonlinear analysis (GNA). LBA is an eigenvalue analysis based on Eq. (2.22) 

(ANSYS Inc., 2009, p. 1008; McGuire, Gallagher & Ziemian, 2000, p.235): 

 

   0K+K igi  , (2.22) 

 

where K is the (linear elastic) stiffness matrix, Kg is the geometric stiffness matrix computed for a reference 

load, λi is an eigenvalue (buckling load factor) and i  is a corresponding eigenvector (buckling mode). 

LBA assumes negligible deflections prior to bifurcation of the loading path (McGuire, Gallagher & 

Ziemian, 2000, p. 218). The lowest eigenvector is referred to as the critical buckling load, that is, λC. 

 

The assumption of negligible displacements seldom holds: the transition to an alternate load path is usually 

gradual due to deflections which may be enhanced or even triggered by the presence of initial geometric 

imperfections. GNA accounts for these deformations by updating the geometry and satisfying equilibrium 

on the deformed geometry (McGuire, Gallagher & Ziemian, 2000, p. 219). 

 

GNA commonly tracks the equilibrium path via an incremental-iterative scheme: equilibrium is 

established to prescribed tolerances by means of iterations at each load increment (McGuire, Gallagher & 

Ziemian, 2000, p. 236-237). The reader is referred to (Borst & Crisfield, 2012) for a comprehensive 

treatment of such schemes. The script provided in App. H stipulates that analyses of this sort be executed 

using an arc-length controlled Newton-Raphson method.  

 

While GNA can yield a good approximation of λL, it fails to capture the effect of initial geometric 

imperfections. GNA with explicitly modelled initial geometric imperfections is referred to as a GNIA. 

Such analyses are typically required for cases in which the initial geometric imperfections play a crucial 

role in triggering the nonlinear behavior and account for a significant reduction from λC to λS. 
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2.2.6. Initial Imperfections 

 

Chen (2014, pp. 66-85) proposes four approaches to adding imperfections. The first approach is to update 

the geometry by rescaling the kth buckling mode. This is achieved via 

 

    vuvu k

k
,,

max

Imp 



  , (2.23) 

 

where  vu,Imp  is the imperfection,   is the prescribed magnitude,  vuk ,  is the deflection of the 𝑘th 

buckling mode and 
k

max  is the absolute maximum of
k . The second approach suggested by Chen (2014, 

p. 67) is to apply a uniform combination of n buckling modes based on 

 

  
 

 
 




n

k

k

n

k ji
k

vu
vu

vu
1

1

Imp ,
,max

, 



 .  (2.24) 

 

The denominator equals the maximum deflection of the sum of the n modes for all possible (ui, vj). Chen 

further suggests using 

 

    vuvu ,, rand

rand
max

Imp 



   (2.25) 

 

instead of Eq. (2.24), because the contribution of each buckling mode is randomized. The buckling modes 

are combined to yield
rand  using 

 

    vuAvu k
n

k

k ,,
1

rand  


 , (2.26) 

where   

    nkAk ,1;0,1rand  . (2.27) 

 

The remaining two approaches suggested by Chen are using random noise imperfections, a drawback of 

which is its mesh dependency; and imperfection patterns based on sinusoidal waves. Only Eq. (2.23) is 

implemented in the code in App. H. Nevertheless, using Eq. (2.24) or Eq. (2.25) could yield remarkable 

results as the first mode may not govern as shown by the axially-loaded thin-shell cylinder and the 

externally pressurized spherical shell (Budiansky & Hutchinson, 1966, p. 1506; Hutchinson & Koiter, 

1970, p. 1358). Chen (2014, p.85) also observed that for structures with closely spaced buckling loads the 

imperfection sensitivity tends to be significant and is often controlled by a combination of buckling modes. 
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3. METHODOLOGY 
 

3.1. General Procedure 
 

The goal of the current treatise is to cater a recipe to conveniently generate a comprehensive database 

composed of the parameters and results shown in Fig. 3.1. The database should later be employed to fit 

(some of) the parameters and membrane forces into equation(s) that can accurately predict λS. 

 

E t ν kxx kyy kxy   nxx nyy nxy λC λS 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
Figure 3.1. Table of parameters and results to be produced 

 

This database is to be produced using ANSYS® Mechanical APDL Release 18.1 (ANSYS Inc., 2017), 

hereinafter referred to as MAPDL (Mechanical ANSYS Parametric Design Language), and Python. The 

procedure has two main components: a MAPDL macro that executes a GNIA and a Python script that runs 

the macro multiple times while varying the parameters. 

 

 
 

 
 

 
 

  

 Solve linear elastic analysis (LE) 

 

 
 

Solve linear buckling analysis (LBA) 

 

 
 

 
 

 
 

 
 

 

 

E, t, ν, kxx, 

kyy, kxy,  , 

nxx, nyy, nxy 

 
 

λC 
 

 

 

 

 
λS 

 

 

 
 

 

 

 
 

 

 

 

 

Figure 3.2. ShellBuckling flow diagram 
 

The main MAPDL macro is named ShellBuckling. Its subroutines mirror MAPDL’s workflow: model 

creation, performing a linear elastic analysis (LE) to obtain the membrane forces, a linear buckling analysis 

(LBA) to obtain the mode-based initial geometric imperfections and λC, and a geometrically nonlinear 

analysis (GNA) to obtain 𝜆𝑆. The parameters and results of each analysis are appended, not overwritten, 

ShellModel 

Start 

End 

GeomNonlinearAnalysisResults 

GeomNonlinearAnalysis 

ShellBucklingResults 

ShellLinearElasticResults 

ShellBuckling.csv 

ShellBuckling.csv 

 

ShellBuckling.csv 
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onto a single line in a comma-separated-values file: ShellBuckling.csv. Figure 3.2 shows the flow diagram 

for ShellBuckling. Text in boxes is delegated to subroutines, distilled in sections 3.2 through 3.5. The Python 

script (section 3.6) provides the input parameters, runs MAPDL and waits for the output. 

 

ShellBuckling and all its subroutines are written in a single library file, named ShellBucklingLibrary.mac. 

ShellBuckling and the subroutines are included in the appendices, starting with ShellBuckling in App. A. 

To reassemble the library, copy the content of each appendix onto a .mac file titled ShellBucklingLibrary. 

The Python script is in App. K. Alternatively, the MATLAB (The MathWorks, Inc., 2017) script in App. L 

can be used in lieu of the Python one. 

 

3.2. Model Creation 
 

The idea is to model a portion of a shell subject to combinations of membrane forces and curvatures that 

will lead to buckling. This shell portion needs to be extended to minimize the effect of the boundary 

conditions on the buckled shape and load. The proposed models are a toroidal shell segment (Fig. 3.3) and 

a complete torus. The complete torus model is discussed amply in section 3.7, with the reasons for not 

choosing is as the main geometry in section 4.1. 

 

 
Figure 3.3. Model geometry 

 

The toroidal shell segment is parametrized by equations that model the inner walls of a torus; hence, it is 

easy to change the principal curvatures. To diminish the effects of the boundary conditions, the external 

pressure is only applied to the model area between 0.25 to 0.75 times its height. The top ring is restrained 

against displacement in the global x and y directions while the bottom ring is restrained against 

displacement in all directions (see subsection 3.2.3).  

 

The model uses reduced-solid 8-noded quadrilateral shell elements (SHELL281) of thickness t. The 

material is linear-elastic with modulus E and Poisson’s ratio ν. The element type is defined with ET, the 

thickness with R and the material properties with MP. All commands (in bold) are from (ANSYS Inc., 

2009). The code snippet in Fig. 3.4 defines the element type and material properties. Note that the Poisson’s 

ratio is represented by w to avoid confusion between the v-parameter and the Greek letter ν. 

 
! Create element type: shell 

!--------------------------------------------------------------------- 

ET,1,SHELL281        ! element type: 8 node quadrilateral 

R,1,t,t,t,t, , ,        ! element thickness 

 

! Create material properties 

!--------------------------------------------------------------------- 

MP,EX,1,E          ! Elastic modulus (linear elastic material) 

MP,PRXY,1,w         ! Poisson's ratio (linear elastic material) 

Figure 3.4. Element type and material properties code snippet (from ShellModel) 
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The toroidal shell segment is parametrized by 
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where v goes from 0 to 2π and u goes from –lu/2 to lu/2. lu, in turn, is calculated using 

 

 )/2/(sin2 1 bll zu

 . (3.2) 

 

The length lz is the total height of the model (i.e., from - lz/2 to lz/2). Subsections 3.2.1 and 3.2.2 illustrate 

the creation of nodes (N) and elements (E), respectively. Subsection 3.2.3 summarizes the enforcement of 

fixities (D) and imposition of surface loads (SFE). When creating the model, a series of nodes following 

the u-parameter from –lu to lu will be referred to as a nodal column and a series of nodes going along the v-

parameter from 0 to nv will be called a nodal row. The same nomenclature will be applied to elements. 

ShellModel, whose snippets are shown throughout section 3.2, is in App. B. 

 

3.2.1. Nodes 

 

Nodal counters, used exclusively for node creation, are denoted ni and nj. Nodes are created to accommodate 

nu rows by nv columns of 8-noded quadrilateral shell elements. 2nu + 1 nodal rows and 2nv nodal columns 

are required to accommodate all elements. The ‘2nv +1’ nodal column (at v = 2π) is omitted because it 

coincides with the first one (at v = 0). 

 

A nodal column is created in a loop with ni going from -nu to +nu. This loop is nested inside another loop 

with nj going from 0 to 2nv - 1 to create nodal columns along the v-parameter. The loop counters are chosen 

to fit the required number of nodal rows and columns and to ease calculation of the u and v parameters. The 

nodes are at equally spaced intervals of lu/2nu along u and π/nv along v. For each node, u and v are obtained 

from ni and nj using 

 

 )2/( uui nlnu   (3.3) 

and   

 )2/( nvj nlnv  . (3.4) 

 

Equation (3.1) then yields x , y  and z , and the node is created via N. The variables tx and ty are introduced 

that, when added together, act like a Boolean indicating when a node should or should not be created. If 

and only if tx + ty is less than 1, a node is created. Thus, nodes are omitted if ni and nj are simultaneously 

even. Figure 3.5 shows the code snippet in charge of node creation. Figure 3.6 shows the node creation 

pattern (for a > 0, b > 0, nu = 4 and nv = 12). The red lines follow the direction of node creation, stating at 

N1, in both the u-v plane and global coordinates. 
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! Create Shell nodes 

!--------------------------------------------------------------------- 

! ty and tx are dummy variables that, added together, act like a Boolean indicating when 

! a node should be created. If ty + tx is less than 1, then a node is created. 

ty=1 

*DO,nj,0,2*nv-1   ! Nodal columns going from nj = 0 to 2*nv-1, i.e., (2*nv) columns 

 ty=-ty 

 tx=1 

 v = nj*lv/nv/2         ! Parameter v (U-V plane) 

 *DO,ni,-nu,nu   ! Nodal rows going from ni = -nu to nu, i.e., (2*nu) rows 

  tx=-tx 

  *IF,tx+ty,LT,1,THEN       ! if tx+ty = 2 omit node creation 

   u = ni*lu/nu/2       ! Parameter u (U-V plane) 

   x = (aa+(1-COS(u))*bb)*COS(v)  ! x-coordinate x = x(u,v) 

   y = (aa+(1-COS(u))*bb)*SIN(v)  ! y-coordinate y = y(u,v) 

   z = bb*SIN(u)        ! z-coordinate z = z(u) 

   N,,x,y,z,,,        ! Create node 

  *ENDIF 

 *ENDDO 

*ENDDO 

Figure 3.5. Node creation code snippet (from ShellModel) 
 

 

 
Figure 3.6. Node creation: (a) in the u-v plane, and (b) in global coordinates 
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3.2.2. Elements 

 

Element rows and columns are denoted i and j respectively. An element column is created using a loop with 

i going from 1 to nu. This loop is nested within another loop with j going from 1 to nv that creates nv element 

columns along the v-parameter. An element is created using E whose arguments are the numbers identifying 

the surrounding 8 nodes. Equations (3.5), (3.6) and (3.7) identify the numbers of the bottom three nodes of 

an element, from left to right, based on i and j: 

 

 )23)(1()1(211  unjik , (3.5)  

 12)13(2  jnjik u  (3.6) 

and   

 )23()1(213  unjik . (3.7) 

 

These equations hold for all elements except those in the last column (j = nv) because, as noted in subsection 

3.2.1, the last nodal column is omitted. Instead, those nodes are identified using k1(j = 1), i.e., the first nodal 

column. Figure 3.7 shows the two cases that arise because of omitting this nodal column: (a) j < nv and (b) 

j = nv. Additionally, the arrows represent the direction of the arguments in E, starting with red, i.e., E, k3, 

k3+2, k1+2, k1, k3+1, k2+1, k1+1, k2. 

 

 
Figure 3.7. Two cases in element creation: (a) j < nv, and (b) j = nv 

Figure 3.8 shows the element creation code snippet. Figure 3.9 shows the element creation pattern starting 

with E1 for a shell model with a > 0, b > 0, nu = 4 and nv = 12. 

 
! Create Shell elements 

!--------------------------------------------------------------------- 

SHPP,OFF            ! no warning aspect ratio 

*DO,j,1,nv           ! j-th element column (along v-axis) 

  *DO,i,1,nu          ! i-th element row (along u-axis) 

  k1 = 1 + 2*(i-1) + (j-1)*(3*nu+2) 

  k2 = i + 2*j + (3*j - 1)*nu - 1 

  *IF,j,LT,nv,THEN        ! j < nv 

   k3 = 1 + 2*(i-1) + j*(3*nu+2) 

  *ELSE           ! j = nv 

   k3 = 1 + 2*(i-1) 

  *ENDIF 

  E,k3,k3+2,k1+2,k1,k3+1,k2+1,k1+1,k2 

 *ENDDO 

*ENDDO 

Figure 3.8. Element creation code snippet (from ShellModel) 
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Figure 3.9. Element creation: (a) in the u-v plane, and (b) in global coordinates 

 

3.2.3. Boundary Conditions 

Fixities (Dirichlet boundary conditions) are enforced with D. The pressure load (Neumann boundary 

condition) is applied on the elements using SFE. The top ring nodes are restrained against displacement in 

the global x  and y  directions while the bottom ring nodes are fully pinned. Equation (3.5) is used to select 

the bottom nodes by setting i = 1, i.e., k1(i = 1, j). In turn, the top nodes are selected using k1(i = nu, j) + 2. 

 

Uniform pressure is applied externally between -¼lu to ¼lu, which maps to roughly half the height. Elements 

are selected along the jth column with ibot ≤ i ≤ itop, where 

 

 )(top uu nNINTnji    (3.8) 

and   

 )()1(1bot uu nNINTnji   . (3.9) 

 

The NINT operation returns the closest integer. α (=¼) is half the proportion of the unloaded area. Figure 

3.10 shows the code snippet which enforces the boundary conditions on the model. 
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! Create Dirichlet boundary conditions 

!--------------------------------------------------------------------- 

! Top and bottom rings 

*DO,j,1,nv            ! j-th element column (along v-axis) 

 n_bot = 1 + (j-1)*(3*nu+2)     ! n_bot = k1(i = 1,j) 

 n_top = 3 + 2*(nu-1) + (j-1)*(3*nu+2)  ! n_top = k1(i = nu,j) + 2 

 D,n_top,UX,0,,,,UY, 

 D,n_bot,UX,0,,,,UY,UZ 

*ENDDO 

 

! Create Neumann boundary conditions 

!--------------------------------------------------------------------- 

ESEL,S,ELEM,,nu/2 

*DO,j,1,nv            ! j-th element column (along v-axis) 

 i_bot = 1+(j-1)*nu+NINT(alpha*nu)   ! i_bot-th element row 

 i_top = j*nu-NINT(alpha*nu)     ! i_top-th element row 

 ESEL,A,ELEM,,i_bot,i_top,1     ! Append elements from i_bot to i_top in steps of 1 

*ENDDO 

SFE, ALL, 1, PRES, 0, p,,,      ! Add uniform pressure on all selected elements 

ALLSEL            ! Reselect all elements 

Figure 3.10. Fixities and load code snippet (from ShellModel) 

 

Figure 3.11 shows a test model using nu = 40, nv = 120, a = 2000 mm and b = 5000 mm. 

 

 
Figure 3.11. Fixities and load on a test shell 
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3.3. Linear Elastic Analysis (LE) 
 

MAPDL’s solution procedure is preceded by /SOLU. The LE analysis is specified with ANTYPE, 

STATIC (ANSYS, 2009, p. 977). Additionally, PSTRES, ON (prestress effects) is required after 

ANTYPE to save the stress state for the LBA (ANSYS Inc., 2009, p.1007). Figure 3.12 shows the code 

snippet – within ShellBuckling – in charge of the LE analysis. 
 
! Linear Elastic Analysis (Find stresses for buckling analysis) 

!--------------------------------------------------------------------- 

/SOLU 

ANTYPE, STATIC        ! Linear elastic analysis 

PSTRES, ON          ! Prestress effects to be included in buckling analysis 

SOLVE 

FINISH 

*USE,ShellLinearElasticResults  ! Membrane forces 

Figure 3.12. Linear elastic analysis (LE) code snippet (from ShellBuckling) 

 

After the LE analysis, ShellLinearElasticResults (App. C) is run. Element-specific result variables such as 

membrane forces, moments and shears are defined in MAPDL’s /POST1 post-processor using ETABLE. 

Then, *GET stores said variables into parameters that are operated upon and later written to 

ShellBuckling.csv. The membrane forces in the loaded area are averaged to xxn , yyn and xyn . (written as 

nx_avg, ny_avg, and nxy_avg in the code). Membrane forces at mid-height are stored as nxx, nyy and nxy (nx, 

ny, and nxy). Figure 3.13 shows the code that extracts the element membrane forces and writes them to 

ShellBuckling.csv. 

 
/POST1 

ESEL,S,ELEM,,1,nu,1      ! Select elements from 1 to nu in increments of 1 

ETABLE,nxx,SMISC,1      ! Extract shell nxx membrane force 

ETABLE,nyy,SMISC,2      ! Extract shell nyy membrane force 

ETABLE,nxy,SMISC,3      ! Extract shell nxy membrane force 

ETABLE,mxx,SMISC,4      ! Extract shell mxx moment 

ETABLE,myy,SMISC,5      ! Extract shell myy moment 

ETABLE,mxy,SMISC,6      ! Extract shell mxy moment 

ETABLE,qx ,SMISC,7      ! Extract shell vx shear force 

ETABLE,qy ,SMISC,8      ! Extract shell vy shear force 

nx_avg = 0         ! Re-set nx_avg to 0 

ny_avg = 0         ! Re-set ny_avg to 0 

nxy_avg = 0         ! Re-set nxy_avg to 0 

i1 = NINT(alpha*nu)      ! element number 1 

i2 = NINT((1-alpha)*nu)     ! element number 2 

*DO,nele,i1,i2 

 *GET,nx,ETAB,1,ELEM,nele  $ nx_avg = nx_avg + nx 

 *GET,ny,ETAB,2,ELEM,nele  $ ny_avg = ny_avg + ny 

 *GET,nxy,ETAB,3,ELEM,nele  $ nxy_avg = nxy_avg + nxy 

*ENDDO 

nx_avg = nx_avg/(i2-i1+1)    ! nx_avg = Sum(nx)/(i2-i1+1) 

ny_avg = ny_avg/(i2-i1+1)    ! ny_avg = Sum(ny)/(i2-i1+1) 

nxy_avg = nxy_avg/(i2-i1+1)   ! nxy_avg = Sum(nxy)/(i2-i1+1) 

*GET,nx,ETAB,1,ELEM,NINT(nu/2) 

*GET,ny,ETAB,2,ELEM,NINT(nu/2) 

*GET,nxy,ETAB,3,ELEM,NINT(nu/2) 

*CFOPEN,ShellBuckling,csv,,APPEND 

*VWRITE,E,t,w,aa,bb,lv,nv,lz,nu 

(F10.0,',',F10.3,',',F10.3,',',F10.0,',',F10.0,',',F10.3,',',F10.0,',',F10.0,',',F10.0,',',$) 

*VWRITE,delta,nx,ny,nxy,nx_avg,ny_avg,nxy_avg 

(F10.3,',',F12.4,',',F12.4,',',F12.4,',',F12.4,',',F12.4,',',F12.4,',',$) 

*CFCLOS ! The $ sign suppreses \n (new line command) 

Figure 3.13. ETABLE results code snippet (from ShellLinearElasticResults) 
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Subsequently, the internal forces of all elements along the first element column (j = 1) are output to Shell.txt, 

which is overwritten at every analysis (Fig. 3.14). 

 
/OUTPUT,Shell,txt 

PRETAB,nxx,nyy,nxy 

PRETAB,qx,qy 

PRETAB,mxx,myy,mxy 

/OUT 

Figure 3.14. ETABLE results code snippet 2 (from ShellLinearElasticResults) 

 

Shell.txt may be processed with Matplotlib (Hunter, 2007) to check the correctness of the LE solution by 

plotting graphs like Fig. 3.15 (p = – 0.1MPa, E = 10000MPa, t = 5mm, ν = 0.3, a = 2000mm, b = 5000mm,  

lz = 4000mm, nu = 40 and nv =120). 

 

 
Figure 3.15. Element membrane forces along the z-coordinate of a test shell 

 

Additionally, a subroutine named NodalMembraneForces (App. D) may be used to extract nodal stresses 

in global coordinates, transform them to local coordinates using TransformationMatrix (App. J), and into 

membrane forces with Eq. (3.10) and (3.11): 

 

 tn mid  ,   (3.10) 

and   

 tq midz  ,
3

2
  . (3.11) 

 

𝛼 and 𝛽 represent x or y. NodalMembraneForces is not essential and may be left out, provided the command 

that calls it is commented out. Nodal and element results are nonetheless compared in Fig. 3.15, 4.2, 4.3 

and 4.4. The reader may note there is a discrepancy between the so-called nodal membrane forces and 

element forces. This discussion is deferred to chapter 4. 
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3.4. Linear Buckling Analysis (LBA) 
 

The LBA is solved using the Block Lanczos method. ANSYS Inc. (2009, p.1008) recommends requesting 

a few additional modes than needed to enhance the accuracy of the final solution. Figure 3.16. shows the 

code snippet – within ShellBuckling – in charge of performing the LBA. 

 
! Linear Buckling Analysis (Find buckling modes and buckling loads) 

!--------------------------------------------------------------------- 

/SOLU 

ANTYPE, BUCKLE        ! Linear buckling analysis 

BUCOPT, LANB, 5,0,,CENTER    ! Block Lanczos method, 5 buckling modes 

SOLVE 

FINISH 

*USE,ShellBucklingResults    ! Buckling mode & lambdaC 

Figure 3.16. Linear buckling analysis (LBA) code snippet (from ShellBuckling) 

 

After the LBA, ShellBucklingResults (App. E) is run. It plots the first two buckling modes by executing 

PlotBuckingModes (App. F). Fig. 3.17 is based on same parameters as Fig. 3.15.  

 

 
Figure 3.17. First and second buckling modes of a test shell 

 

The buckling load, λC, is extracted using the code in Fig. 3.18. 

 
/POST1 

buckling_mode = 1 

*USE,PlotBucklingModes     ! Plots 2 buckling modes (may be left commented out) 

SUBSET,1,buckling_mode,FACT,,,,  ! Load buckling mode 

*GET,lambdaC,ACTIVE,0,SET,FREQ  ! Get the buckling load factor lambdaC 

*CFOPEN,ShellBuckling,csv,,APPEND 

*VWRITE,lambdaC 

(F11.5,',',$) 

*CFCLOS 

Figure 3.18. Get buckling load code snippet (from ShellBucklingResults) 

 

Initial imperfections for the GNIA are based on Eq. (2.22). The code uses a similar nomenclature:   (delta) 

is the prescribed imperfection amplitude and k
max  (uz_max) is the maximum deflection. The latter is 
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obtained by looping through all the nodes and storing the largest |uz| (Fig. 3.19). The deflections are 

transformed to local coordinates using TransformationMatrix (App. J).  

 
!Loop to read deflection of node next to ith element 

uz_max = 0 

defl_max = 0 

*DO,j,1,nv              ! j-th element column (along v) 

 *DO,i,1,nu+1            ! i-th element row (along u) 

  nnode = 1 + 2*(i-1) + (j-1)*(3*nu+2)   ! nnode = k1(i,j) 

  *GET,u_x,NODE,nnode,U,X        ! Extract u_x from nnode 

  *GET,u_y,NODE,nnode,U,Y        ! Extract u_y from nnode 

  *GET,u_z,NODE,nnode,U,Z        ! Extract u_z from nnode 

  defl = SQRT(u_x*u_x+u_y*u_y+u_z*u_z)   ! Absolute deflection 

  u = (i-1)*(lu/nu)-lu/2        ! u-parameter 

  v = (j-1)*(lv/nv)          ! v-parameter 

  *USE,TransformationMatrix       ! Assemble Gamma matrix 

  *VEC,Defl_global,D,ALLOC,3,,,      ! Allocate space for Defl_global 

  *SET,Defl_global(1),u_x,u_y,u_z      ! Let Defl_global = [u_x;u_y;u_z] 

  *MULT, Gamma, , Defl_global, , Defl_local  ! Defl_local = Gamma*Defl_global 

  u_z = Defl_local(3)         ! local z-displacement 

  *IF,ABS(u_z),GT,uz_max,THEN 

   uz_max = ABS(u_z)         ! uz_max = max(u_z) 

   defl_max = ABS(defl)        ! defl_max = max(defl) 

   nnode_max = 1 + 2*(i-1) + (j-1)*(3*nu+2) ! node with highest deflection 

  *ENDIF 

 *ENDDO 

*ENDDO 

Figure 3.19. Get maximum deflection code snippet (from ShellBucklingResults) 

 

The optional NodalDisplacements subroutine (App. G) may be run to output the buckling mode nodal 

displacements to ShellLBA.csv, which can be processed in MATLAB to yield, for instance, Fig. 3.20 based 

on the test shell from Fig. 3.15. uz is an order of magnitude greater than ux and uy, as would be expected. 

 

 
Figure 3.20. Buckling mode local coordinate displacements of a test shell 
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3.5. Geometrically Nonlinear Analysis with Initial Geometric Imperfections (GNIA) 
 

GeomNonlinearAnalysis (App. H) updates the geometry using a buckling mode and 
k

max  (uz_max) from 

section 3.4. The geometry is updated with UPGEOM, whose arguments are the factor (delta/uz_max), load 

step, buckling mode, file and file extension (Fig. 3.21). The solution is then set up and executed (Fig. 3.22). 

 
! Update the geometry 

!--------------------------------------------------------------------- 

/PREP7 

FACTOR = delta/uz_max        ! Factor for UPGEOM 

UPGEOM,FACTOR,1,buckling_mode,'file','rst', ! Add imperfections 

/RESET $ /ERASE $  /REPLOT    ! Replot 

FINISH 

Figure 3.21. Update the geometry code snippet (from GeomNonlinearAnalysis) 

 
/SOLU 

! Set analysis type: GNA 

!--------------------------------------------------------------------- 

NCNV,0          ! Do not terminate program if not-converged 

NERR,,,-1         ! Do not terminate analysis if not-converged 

ANTYPE, STATIC        ! Static analysis 

NLGEOM, ON         ! Nonlinear geometry 

TIME, 1          ! Time at the end of load step 

 

! Set nonlinear controls / solution technique 

!--------------------------------------------------------------------- 

ARCLEN,ON          ! Arclength ON 

nsubstep = 200        ! # of substeps. Keep as par b/c it is used later in *VEC 

NSUBST,nsubstep,,       ! Number of substeps 

NEQIT,50,         ! Max. number of iterations 

CNVTOL,STAT         ! Convergence tolerance (default) 

 

! Set output controls 

!--------------------------------------------------------------------- 

RESCONTROL,DEFINE,ALL,1,     ! Write new files at every substep 

OUTRES,NSOL,ALL,,,,      ! Write nodal results at every substep 

OUTRES,ESOL,ALL,,,,      ! Write element results at every substep 

 

! Solve 

!--------------------------------------------------------------------- 

SOLVE 

FINISH 

Figure 3.22. Geometrically nonlinear analysis code snippet (from GeomNonlinearAnalysis) 

 

MAPDL uses TIME as the counter for both dynamic and nonlinear static analysis. In a non-proportional 

analysis, time acts as a counter for indexing each load step. For single load step analysis, time equals λ. 

Assuming λS does not exceed 1, GeomNonlinearAnalysisResults (App. I) retrieves λS with the time-

dependent post-processor: /POST26. A loop runs through the time variable and stores its maximum value.  

 
lambdaS = 0 

*DO,k,1,nn 

 *IF,time(k),GT,lambdaS,AND,time(k),LT,1,THEN 

  lambdaS = time(k) 

 *ENDIF 

*ENDDO 

Figure 3.23. Get GNIA load factor code snippet (from GeomNonlinearAnalysisResults) 
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Since time defaults to 1 at the end of each analysis, the loop ensures this value does not get saved. Prior to 

extracting λS, the time variable is stored in an array parameter using VGET. Likewise, the ux, uy and uz 

deflections of the node with highest initial imperfection are defined as variables and stored into 

homonymous vector parameters. VOPER operates element-wise on the ux, uy and uz vector parameters to 

yield δ = 222
zyx uuu  . δ (defl) and λ (time) of every analysis are appended to ShellGNIA.csv. Varying the 

number of elements on the test shell from Fig. 3.15, force-displacement curves like in Fig. 3.24 can be 

obtained. Such plots verify the efficacy of Eq. (3.12) and (3.13) from section 3.6 in dictating enough 

elements. Another salient feature is that λS exceeds λC as expected for a negatively curved toroidal segment. 

 
Figure 3.24. Force-displacement plot of a test shell 

 

3.6. Python Script 
 

The Python script consists of a function (RunAPDL in App. K) embedded in loops that iterate over set of 

input parameters. For RunAPDL to work properly, the main output files (ShellBuckling.csv and 

ShellGNIA.csv) must be closed and a valid ANSYS license must be reachable. Also, RunAPDL has a built-

in piece of code that ensures no lock file prevents MAPDL from running. 

 

RunAPDL executes three tasks: 1) write an input file with all the necessary parameters, 2) invoke MAPDL 

and 3) extract the critical buckling to update the input pressure for the following analysis. When writing the 

input file, a sufficient number of elements must be prescribed. The choice rests on the predicted number of 

buckling waves. The length of half a wave is approximately ta  . Based on the number of waves in 

Fig. 3.17, β is estimated to be between 5.2 and 8. Thus, for a shell segment of radius a and lz = 2a, setting  

 

  taanu  NINT2  (3.12) 

and   

 nv = 3nu (3.13) 

 

will ensure the presence of at least 5 to 8 elements per semi-wave in both x and y directions. For some given 

input parameters, the input file generated by RunAPDL may end up looking as in Fig. 3.25. 
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/NERR,200,10000,,OFF,0  

pi = acos(-1)  

E = 100000     ! N/mm2 Young's modulus 

t = 6.00       ! mm thickness 

w = 0.30       ! Poisson's ratio 

p =    -0.278483    ! N/mm2 external pressure 

aa = 1100.00   ! mm horizontal radius at u = 0 

bb = 3000.00   ! mm vertical radius 

lz = 4000.00   ! mm model height 

lu = 2*asin(lz/2/bb) !mm  

lv = 2*pi      ! model perimeter at u = 0  

nu = 2*NINT(ABS(aa)/SQRT(ABS(aa)*t))  

nv = 3*nu      ! number of elements along v-axis  

alpha = 0.25   ! ratio of lu that is not loaded by p  

delta = 5.00*t ! prescribed imperfection magnitude  

*ULIB,ShellBucklingLibrary,mac  

*USE,ShellBuckling,pi,E,t,w,p,aa,bb,lz,lu,nu,nv,alpha,delta  

/CLEAR 

Figure 3.25. ShellBucklingInput.inp 

 

Python then invokes MAPDL and passes ShellBucklingInput.inp via the subprocess module. Once an 

analysis finishes, λC is read from the last line of ShellBuckling.csv and p is updated for the next analysis per 

 

 pp C  2.1 ,  

 

where 1.2 is arbitrarily chosen to be large enough that λS is reached before all the load is applied (or else 

the analysis will simply terminate at λ = 1) and small enough so that there are enough load steps leading up 

to λS. When crafting loops for RunAPDL, some forethought is in order: 

 

1) Avoid choosing too small values of any variable, especially a and t to avoid large nu and nv. 

2) Negative values of a generate models with positive kG. E.g., – 2000 mm < a < – 5000 mm. 

3) Positive values of a generate models with negative kG. E.g., 2000 mm < a < 5000 mm. 

4) 2b should be larger than lz. E.g., if lz is 4000 mm, choose 3000 mm < b < 10000 mm.  

5) The shell should be thin, i.e., 30 < a/t < 4000. If a is 2000 mm, choose 1 mm < t < 10 mm. 

6) Choose  according to exponentially decreasing λS with increasing  , e.g., [0.01t, 0.1t, 0.5t, 1t, 2t]. 

7) The change in variable size should be gradual for pp C  2.1  to work properly. 

8) The initial value of p should be negative to apply the pressure from the outside inwards. 

 

Points 2) and 3) are illustrated by Fig. 3.26. 

 

 
Figure 3.26. (a) Model with negative Gausian curvature (b) model with positive Gaussian curvature 
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Figure 3.27 shows a possible assembly of loops. This example generates negatively curved shells. 

 
w = 0.3        # Poisson’s ratio 

p = -0.1       # Initial external pressure (note: negative) 

lz = 4000      # Model height (Can also be varied) 

alpha = 0.25   # Half of unloaded area 

modulus = [30000,60000,100000,200000] # MPa 

thickness = np.linspace(5,10,6)       # mm 

a = np.linspace(1000,2000,11)         # mm 

b = np.linspace(3000,6000,16)         # mm 

delta_init = [0.01,0.1,0.5,1,2]       # as a ratio of t 

 

for E in modulus: 

    for t in thickness: 

        for aa in a: 

            for bb in b: 

                for delta in delta_init: 

                    p = RunAPDL(E,t,w,p,aa,bb,lz,alpha,delta) 

Figure 3.27. Loops to iterate parameters around RunAPDL 

 

Additionally, it is possible to change the boundary conditions inside the MAPDL script, or even add axial 

loads (as with the axially compressed thin-shell cylinder from subsection 2.2.4.2). Appendix L contains an 

alternative version of the Python script written for MATLAB. 

 

3.7. Torus Model 

 

Figure 3.28 shows the torus model mentioned in section 3.2, which was considered and analyzed. 

 

 
Figure 3.28. Complete torus model 

 

The complete Torus model is parametrized by 
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where av 20  and bu 20  . It was envisaged this model would offer a gamut of curvature dyads 

ranging from positive to negative values of kG. A linear elastic solution for the membrane forces of an 

externally pressurized Torus shell was obtained analytically and using FEM (section 4.1). The analytically 

derived membrane forces are rather uniform. Localized additional membrane forces were later added to a 

segment of the torus as shown in Fig. 3.29 to instigate localized buckling.  

 

 
Figure 3.29. Additional forces on torus model 
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4. RESULTS 
 

4.1. Torus Results 
 

An analytical solution for the linear elastic membrane forces of a torus shell subject to uniform external 

pressure is presented hereinafter. Per (Hoogenboom, 2017, p. 30), the torus curvatures are 
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and   

 0xyk . (4.3) 

 

The Lamé parameters, in turn, are given by 
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Equations (2.7) and (2.8), and use of chain rule, yield the in-plane curvatures 
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and   
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Lastly, the external pressure is defined in local coordinates as 

 

 0 yx pp  and ppz  . (4.8) 

 

It is assumed that xxn is a constant obtained by Barlow’s formula (Hoogenboom, 2017, p. 8) and yyn is a 

function of v, i.e.,  vnn yyyy  . Force equilibrium at the cut in Fig. 4.1 yields 
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Figure 4.1. Calculation based on Barlow's formula 

 

Substituting the above relations into Eq. (2.12) yields 
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whose solution is 

 

 

b
a

v
a

C
a

v
a

ap

b
a

v
a

Cdv
ap

a

v

b
a

v
a

Cdvn
a

v

n
xx

yy








































































sin

sin

2
sin

2
cos

sin

cos

. (4.11) 

 

Further substitution of Eq. (4.9) and (4.11) into (2.10) yields 𝐶 =  2𝑏, i.e., yyn is given by 
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Substituting Eq. (4.9) and (4.12) into (2.10), (2.11), and (2.12) shows their correctness. Furthermore, they 

form the only solution. Fig. 4.2 compares the analytical solution to the FEM solution of a torus model with 

E = 10000MPa, t = 5mm, ν = 0.2, a = 2000mm, b = 10000mm, p = 0.001MPa, nv = 60 and nu = 180. 

 

 
Figure 4.2. Torus linear elastic membrane forces 
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Additional forces were added per Fig. 4.3. The result of adding forces at an angle of 10 degrees to each 

side (α = 10o) with a magnitude of half the analytical nxx is plotted in Fig. 4.3. 

 
Figure 4.3. Torus linear elastic membrane forces, nadd = 0.5 nxx 

 

Augmenting nxx due to pressure only by nadd yields an expected total of about 1.5nxx due to pressure alone. 

nxx also changes abruptly wherever km = 0 (at v = 0mm and v = 6283 mm). nyy, on the other hand, sees very 

slight difference except for a noticeably discrepancy between the results extracted directly at the element 

level and at the nodal level. Very similar patterns are observed for the case in which α = 10o and nadd = nxx. 

  

 

Figure 4.4. Torus linear elastic membrane forces, nadd = 1.0 nxx 

 

The discrepancy between the nodal and element results shall unfortunately remained unexplained, but the 

presence of bending moments at the locations where kG = 0 may have had some influence. Overall, nadd 

yields load peaks wherever kG = 0. Not surprisingly, buckling occurs at this location over the entire 

circumference. Remarkably, nadd has a negligible influence on the buckling modes and critical load. It is for 

this reason that the complete torus model was demoted and the script was instead provided for the toroidal 

shell segments which shows much more uniform membrane forces and much more localized sinusoidal 

buckling patterns. Figure 4.5 shows the buckling modes for nadd = 0.5 nxx. 
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Figure 4.5. Torus linear buckling modes, nadd = 0.5nxx 

 

4.2. Cylinder GNIA Results 
 

The capabilities of the MAPDL ShellBuckling macros were tested by comparing its results to the notorious 

axially compressed thin-shell cylinder. The cylindrical model was achieved by setting the input parameters 

to E = 100000MPa, t = 5mm, ν = 0.3, a = 2000mm, b = 50000000mm, lu = 5000mm, nu = 30, nv = 90 and 

replacing the external pressure by downward force applied at the top nodes. The force on each node equaled 

vntE /6.02 2  , such that the resulting nxx would equal the buckling load predicted by Eq. (2.13). The 

first three buckling modes corresponding to λC can be seen in Fig. 4.6. 

 

 
Figure 4.6. Thin-shell cylinder buckling modes 
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The initial imperfections are based on the non-axisymmetrical (second) buckling mode. The results of 

increasing the initial imperfections are shown in Fig. 4.7. The results are compared to Eq. (2.20) and (2.21). 

 

 
Figure 4.7. Thin-shell cylinder imperfection sensitivity 

 

There is reasonable agreement between the theoretical results and the finite element analysis results, 

especially at values of δ/t between 0.2 and 1. 

 

4.3. Example Results from the Python Script 
 

An excerpt of the test runs that have been performed is presented herein. Table 4.1 contains all prescribed 

fields from Fig. 3.1. The last column contains the percentage difference between the absolute deflection 

(defl_max) of the node with maximum deflection and the local z displacement (uz_max) of that same node 

after the LBA. This value should ideally be small (2~10). In the rare occurrence this value is large, it means 

the geometry update for the GNIA did not proceed as planned and discarding the results of said analysis 

would be recommended. 
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Table 4.1. Excerpt of test runs 
E t v a b lv nv lz nu δ nxx,avg nyy,avg nxy,avg nxx nyy nxy λC λS % 

100000 5 0.3 1100 3000 6.283 90 4000 30 0.5 35.0042 -196.1515 0 20.4376 -188.8473 0 0.83055 0.96321 8.7 

100000 5 0.3 1100 3000 6.283 90 4000 30 2.5 35.0042 -196.1515 0 20.4376 -188.8473 0 0.83055 0.94579 8.7 

100000 5 0.3 1100 3000 6.283 90 4000 30 5 35.0042 -196.1515 0 20.4376 -188.8473 0 0.83055 0.94649 9.2 

100000 5 0.3 1100 3000 6.283 90 4000 30 10 35.0042 -196.1515 0 20.4376 -188.8473 0 0.83055 0.94558 9.1 

100000 5 0.3 1100 3000 6.283 90 4000 30 25 34.8872 -195.496 0 20.3693 -188.2161 0 0.83334 0.82731 9.1 

100000 5 0.3 1100 3200 6.283 90 4000 30 0.5 30.1293 -187.5943 0 17.5912 -178.6537 0 0.85905 0.99994 1.5 

100000 5 0.3 1100 3200 6.283 90 4000 30 2.5 31.8031 -198.0162 0 18.5685 -188.5789 0 0.81384 0.94303 3.2 

100000 5 0.3 1100 3200 6.283 90 4000 30 5 31.8031 -198.0162 0 18.5685 -188.5789 0 0.81384 0.92708 3.4 

100000 5 0.3 1100 3200 6.283 90 4000 30 10 33.3459 -207.6221 0 19.4693 -197.727 0 0.77619 0.91111 3.2 

100000 5 0.3 1100 3200 6.283 90 4000 30 25 31.0594 -193.3858 0 18.1343 -184.1691 0 0.83333 0.87672 1.5 

100000 5 0.3 1100 3400 6.283 90 4000 30 0.05 42.7961 -292.3634 0 24.9879 -276.0395 0 0.54967 0.7033 8.6 

100000 5 0.3 1100 3400 6.283 90 4000 30 0.5 28.2284 -192.8436 0 16.4821 -182.0763 0 0.83333 0.99855 4.5 

100000 5 0.3 1100 3400 6.283 90 4000 30 2.5 28.2284 -192.8436 0 16.4821 -182.0763 0 0.83333 0.99174 3 

100000 5 0.3 1100 3400 6.283 90 4000 30 5 28.2283 -192.8425 0 16.482 -182.0753 0 0.83333 0.99335 3.9 

100000 5 0.3 1100 3400 6.283 90 4000 30 10 28.2281 -192.8415 0 16.4819 -182.0743 0 0.83334 0.95321 4 

100000 5 0.3 1100 3600 6.283 90 4000 30 0.05 26.1291 -193.9661 0 15.2574 -181.8573 0 0.80555 0.96819 1.4 

100000 5 0.3 1100 3600 6.283 90 4000 30 0.5 25.2579 -187.4994 0 14.7488 -175.7944 0 0.83334 0.99763 1 

100000 5 0.3 1100 3600 6.283 90 4000 30 2.5 25.2581 -187.5005 0 14.7488 -175.7954 0 0.83333 0.99595 1.3 

100000 5 0.3 1100 3600 6.283 90 4000 30 5 25.2579 -187.4994 0 14.7488 -175.7944 0 0.83334 0.98907 1.3 

100000 5 0.3 1100 3600 6.283 90 4000 30 10 25.2582 -187.5015 0 14.7489 -175.7964 0 0.83333 0.9634 1 

100000 5 0.3 1100 3800 6.283 90 4000 30 0.05 23.5343 -188.3836 0 13.7435 -175.5999 0 0.81709 0.99861 4.1 

100000 5 0.3 1100 3800 6.283 90 4000 30 0.5 23.0756 -184.7118 0 13.4757 -172.1772 0 0.83333 0.99686 4.7 

100000 5 0.3 1100 3800 6.283 90 4000 30 2.5 23.0754 -184.7107 0 13.4756 -172.1762 0 0.83334 0.99266 4.4 

100000 5 0.3 1100 3800 6.283 90 4000 30 5 23.0757 -184.7128 0 13.4757 -172.1782 0 0.83333 0.9684 4.6 

100000 5 0.3 1100 3800 6.283 90 4000 30 10 23.0756 -184.7118 0 13.4757 -172.1772 0 0.83333 0.97945 3.9 

100000 5 0.3 1100 4000 6.283 90 4000 30 0.05 21.6182 -185.4265 0 12.6259 -171.9987 0 0.82366 0.99961 0.6 

100000 5 0.3 1100 4000 6.283 90 4000 30 0.5 21.3672 -183.2741 0 12.4793 -170.0021 0 0.83334 0.99935 0.6 

100000 5 0.3 1100 4000 6.283 90 4000 30 2.5 21.3675 -183.2762 0 12.4795 -170.0041 0 0.83333 0.99781 0 

100000 5 0.3 1100 4000 6.283 90 4000 30 5 21.3673 -183.2751 0 12.4794 -170.0031 0 0.83333 0.97068 0 

100000 5 0.3 1100 4000 6.283 90 4000 30 10 21.3672 -183.2741 0 12.4793 -170.0021 0 0.83334 0.97018 0 
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5. CONCLUSIONS 
 

This treatise caters the MAPDL macros and Python code required to execute a batch of nonlinear finite 

element analyses to generate a database of the nonlinear buckling loads of shell portions with varying 

membrane forces, curvatures and magnitude of initial geometric imperfections. Some limitations deserve 

attention.  

 

While the input files prescribe enough number of elements and applied pressure to facilitate convergence, 

it is difficult to manually verify whether all analyses reached λS. To facilitate this task, the macros writes 

the data points of all force-displacement curves to ShellGNIA.csv. A new (Python) code could be written to 

examine said data points and verify whether the load did indeed plateau or (numerical) divergence occurred 

at an earlier stage.  

 

Currently the code only employs a single buckling mode to update the model geometry in preparation for 

the GNIA. It may be imperative to modify that code section to include a wider gamut of buckling modes, 

using either Eq. (2.24), (2.25) or another method. 

 

Another complication is the duration of each analysis. Test runs have recorded times between 300 to 1000 

seconds per analysis. The analyses’ duration gets especially large for shells with large radii and small 

thickness as more elements are needed. Given the sheer number of parameters that need to be varied to 

generate a comprehensive database the overall duration of the analyses could easily be prolonged. 

 

After completing the database, the task to fit equations to the data could be best accomplished using 

specialized software or code, and visualizing the effect of individual parameters or pairs of parameters on 

λS by generating various two- and three-dimensional plots. 
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APPENDIX A. ShellBuckling 
 

ShellBuckling 

!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

! ShellBuckling 

! Date:   22 November 2017 

! Author:  Erik Giesen Loo 

! 

! Performs LE, LBA and GNIA of a toroidal shell segment created using ShellModel. 

! 

! Subroutines: 

! ShellModel 

! ShellLinearElasticResults 

!  NodalMembraneForces (optional) 

!   TransformationMatrix (optional) 

! ShellBucklingResults 

!  PlotBucklingResults (optional) 

!  ShellMatrixTransformation 

!  NodalDisplacements (optional) 

!   TransformationMatrix (optional) 

! GeomNonlinearAnalysis 

! GeomNonlinearAnalysisResults 

! 

!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

! Preprocessing 

!--------------------------------------------------------------------- 

/UIS,MSGPOP,4        ! Sets pop-ups to YES 

/UIS,ABORT,OFF        ! No pop-ups about status of operation in progress 

*USE,ShellModel       ! Create toroidal segment 

 

! Linear Elastic Analysis (Find stresses for buckling analysis) 

!--------------------------------------------------------------------- 

/SOLU 

ANTYPE, STATIC        ! Linear elastic analysis 

PSTRES, ON          ! Prestress effects to be included in buckling analysis 

SOLVE 

FINISH 

*USE,ShellLinearElasticResults  ! Membrane forces 

 

! Linear Buckling Analysis (Find buckling modes and buckling loads) 

!--------------------------------------------------------------------- 

/SOLU 

ANTYPE, BUCKLE        ! Linear buckling analysis 

BUCOPT, LANB, 5,0,,CENTER    ! Block Lanczos method, 5 buckling modes 

SOLVE 

FINISH 

*USE,ShellBucklingResults    ! Buckling mode & lambdaC 

 

! Geometrically Nonlinear Analysis with Initial Geometrical Imperfections 

!--------------------------------------------------------------------- 

*USE,GeomNonlinearAnalysis 

*USE,GeomNonlinearAnalysisResults 

 

/EOF 
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APPENDIX B. ShellModel 
ShellModel 

!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

! Shell Model 

! Date:   22 November 2017 

! Author:  Erik Giesen Loo 

! Creates the model of a toroidal shell segment. 

! 

! Called by: 

! ShellBuckling 

! 

! Subroutines: 

! None 

! 

! Input: 

! t = thickness 

! E = Young's modulus 

! w = Poisson's ratio 

! p = external pressure 

! aa = Horizontal radius at u = 0, kyy = -1/aa 

!  bb = Vertical radius, kxx = 1/bb 

! nu = number of elements along u-axis 

! nv = number of elements along v-axis 

! lu = Total length of parameter u, from -lu/2 to lu/2 

! lv = Model perimeter at u = 0 as a ratio of aa, i.e., 2*pi 

! alpha = half of ratio of lu that is not loaded by constant pressure 

! 

! Output: 

! None 

! 

!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

/PREP7 

/VIEW, ALL, 0, -1, 0.2     ! all windows: camera at point (0,-1,0.2) 

 

! Create element type: shell 

!--------------------------------------------------------------------- 

ET,1,SHELL281        ! element type: 8 node quadrilateral 

R,1,t,t,t,t, , ,        ! element thickness 

 

! Create material properties 

!--------------------------------------------------------------------- 

MP,EX,1,E          ! Elastic modulus (linear elastic material) 

MP,PRXY,1,w         ! Poisson's ratio (linear elastic material) 

 

! Create Shell nodes 

!--------------------------------------------------------------------- 

! ty and tx are dummy variables that, added together, act like a Boolean indicating when 

! a node should be created. If ty + tx is less than 1, then a node is created. 

ty=1 

*DO,nj,0,2*nv-1   ! Nodal columns going from nj = 0 to 2*nv-1, i.e., (2*nv) columns 

 ty=-ty 

 tx=1 

 v = nj*lv/nv/2         ! Parameter v (U-V plane) 

 *DO,ni,-nu,nu   ! Nodal rows going from ni = -nu to nu, i.e., (2*nu) rows 

  tx=-tx 

  *IF,tx+ty,LT,1,THEN       ! if tx+ty = 2 omit node creation 

   u = ni*lu/nu/2       ! Parameter u (U-V plane) 

   x = (aa+(1-COS(u))*bb)*COS(v)  ! x-coordinate x = x(u,v) 

   y = (aa+(1-COS(u))*bb)*SIN(v)  ! y-coordinate y = y(u,v) 

   z = bb*SIN(u)        ! z-coordinate z = z(u) 

   N,,x,y,z,,,        ! Create node 

  *ENDIF 

 *ENDDO 

*ENDDO 
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! Create Shell elements 

!--------------------------------------------------------------------- 

SHPP,OFF            ! no warning aspect ratio 

*DO,j,1,nv           ! j-th element column (along v-axis) 

  *DO,i,1,nu          ! i-th element row (along u-axis) 

  k1 = 1 + 2*(i-1) + (j-1)*(3*nu+2) 

  k2 = i + 2*j + (3*j - 1)*nu - 1 

  *IF,j,LT,nv,THEN        ! j < nv 

   k3 = 1 + 2*(i-1) + j*(3*nu+2) 

  *ELSE           ! j = nv 

   k3 = 1 + 2*(i-1) 

  *ENDIF 

  E,k3,k3+2,k1+2,k1,k3+1,k2+1,k1+1,k2 

 *ENDDO 

*ENDDO 

 

! Create Dirichlet boundary conditions 

!--------------------------------------------------------------------- 

! Top and bottom rings 

*DO,j,1,nv            ! j-th element column (along v-axis) 

 n_bot = 1 + (j-1)*(3*nu+2)     ! n_bot = k1(i = 1,j) 

 n_top = 3 + 2*(nu-1) + (j-1)*(3*nu+2)  ! n_top = k1(i = nu,j) + 2 

 D,n_top,UX,0,,,,UY, 

 D,n_bot,UX,0,,,,UY,UZ 

*ENDDO 

 

! Create Neumann boundary conditions 

!--------------------------------------------------------------------- 

ESEL,S,ELEM,,nu/2 

*DO,j,1,nv            ! j-th element column (along v-axis) 

 i_bot = 1+(j-1)*nu+NINT(alpha*nu)   ! i_bot-th element row 

 i_top = j*nu-NINT(alpha*nu)     ! i_top-th element row 

 ESEL,A,ELEM,,i_bot,i_top,1     ! Append elements from i_bot to i_top in steps of 1 

*ENDDO 

SFE, ALL, 1, PRES, 0, p,,,      ! Add uniform pressure on all selected elements 

ALLSEL            ! Reselect all elements 

 

FINISH 

/EOF
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APPENDIX C. ShellLinearElasticResults 
ShellLinearElasticResults 

!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

! ShellLinearElasticResults 

! Date:   17 November 2017 

! Author:  Erik Giesen Loo 

! Writes model parameters and membrane forces to ShellBuckling.csv. 

! Writes shell internal forces (elements 1 through nu) in Shell.txt. 

! 

! Called by: 

! ShellBuckling 

! 

! Subroutines: 

! NodalMembraneForces (Optional) 

!  TransformationMatrix (Optional) 

! 

! Input: 

! E,t,w,aa,bb,lz,nu,lv,nv,alpha,delta 

! 

! Output: 

! nx,ny,nxy,nx_avg,ny_avg,nxy_avg 

! 

!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

/POST1 

ESEL,S,ELEM,,1,nu,1      ! Select elements from 1 to nu in increments of 1 

ETABLE,nxx,SMISC,1      ! Extract shell nxx membrane force 

ETABLE,nyy,SMISC,2      ! Extract shell nyy membrane force 

ETABLE,nxy,SMISC,3      ! Extract shell nxy membrane force 

ETABLE,mxx,SMISC,4      ! Extract shell mxx moment 

ETABLE,myy,SMISC,5      ! Extract shell myy moment 

ETABLE,mxy,SMISC,6      ! Extract shell mxy moment 

ETABLE,qx ,SMISC,7      ! Extract shell qx shear force 

ETABLE,qy ,SMISC,8      ! Extract shell qy shear force 

nx_avg = 0         ! Re-set nx_avg to 0 

ny_avg = 0         ! Re-set ny_avg to 0 

nxy_avg = 0         ! Re-set nxy_avg to 0 

i1 = NINT(alpha*nu)      ! element number 1 

i2 = NINT((1-alpha)*nu)     ! element number 2 

*DO,nele,i1,i2 

 *GET,nx,ETAB,1,ELEM,nele  $ nx_avg = nx_avg + nx 

 *GET,ny,ETAB,2,ELEM,nele  $ ny_avg = ny_avg + ny 

 *GET,nxy,ETAB,3,ELEM,nele  $ nxy_avg = nxy_avg + nxy 

*ENDDO 

nx_avg = nx_avg/(i2-i1+1)    ! nx_avg = Sum(nx)/(i2-i1+1) 

ny_avg = ny_avg/(i2-i1+1)    ! ny_avg = Sum(ny)/(i2-i1+1) 

nxy_avg = nxy_avg/(i2-i1+1)   ! nxy_avg = Sum(nxy)/(i2-i1+1) 

*GET,nx,ETAB,1,ELEM,NINT(nu/2) 

*GET,ny,ETAB,2,ELEM,NINT(nu/2) 

*GET,nxy,ETAB,3,ELEM,NINT(nu/2) 

*CFOPEN,ShellBuckling,csv,,APPEND 

*VWRITE,E,t,w,aa,bb,lv,nv,lz,nu 

(F10.0,',',F10.3,',',F10.3,',',F10.0,',',F10.0,',',F10.3,',',F10.0,',',F10.0,',',F10.0,',',$) 

*VWRITE,delta,nx,ny,nxy,nx_avg,ny_avg,nxy_avg 

(F10.3,',',F12.4,',',F12.4,',',F12.4,',',F12.4,',',F12.4,',',F12.4,',',$) 

*CFCLOS ! The $ sign suppreses \n (new line command) 

 

/OUTPUT,Shell,txt 

PRETAB,nxx,nyy,nxy 

PRETAB,qx,qy 

PRETAB,mxx,myy,mxy 

/OUT 

ALLSEL 

*USE,NodalMembraneForces 

FINISH 

/EOF 
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APPENDIX D. NodalMembraneForces (optional) 
 

NodalMembraneForces 

!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

! NodalMembraneForces 

! Date:   17 November 2017 

! Author:  Erik Giesen Loo 

! Writes 'nodal' membrane forces to ShellLE.csv. 

! 

! Called by: 

! ShellLinearElasticResults 

! 

! Subroutines: 

! TransformationMatrix 

! 

! Input: 

! E,t,w,p,aa,bb,lz,lu,nu,lv,nv 

! 

! Output: 

! nx, ny, nxy, qx, qy --> ShellLE.csv 

! 

!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

*CFOPEN,ShellLE,csv,, 

*VWRITE, 

E,t,w,p,a,b,lz,nu,nv 

*VWRITE, E,t,w,p,aa,bb,lz,nu,nv 

%16.4f,%16.4f,%16.4f,%16.4f,%16.4f,%16.4f,%16.4f,%16.4f,%16.4f 

*VWRITE, 

z-coordinate,n_xx,n_yy,n_xy,q_x,q_y 

 

*DO,i,1,nu+1        ! From element 1 to 'imaginary' element nu+1 

 nnode = 1+2*(i-1)      ! node number on X-Z plane (at j = 1) 

 u = (i-1)*(lu/nu)-lu/2    ! Parameter u 

 v = 0          ! Parameter v (at j = 1) 

 z = bb*sin(u)       ! z-coordinate 

 *GET,Sigx,NODE,nnode,S,X    ! Extract sigma x 

 *GET,Sigy,NODE,nnode,S,Y    ! Extract sigma y 

 *GET,Sigz,NODE,nnode,S,Z    ! Extract sigma z 

 *GET,Sigxy,NODE,nnode,S,XY   ! Extract xy shear stress 

 *GET,Sigyz,NODE,nnode,S,YZ   ! Extract yz shear stress 

 *GET,Sigxz,NODE,nnode,S,XZ   ! Extract xz shear stress 

 

 *DMAT,Sigma,D,ALLOC,3,3    ! Assemble global stress matrix 

 *SET,Sigma(1,1),Sigx,Sigxy,Sigxz 

 *SET,Sigma(1,2),Sigxy,Sigy,Sigyz 

 *SET,Sigma(1,3),Sigxz,Sigyz,Sigz 

 

 *USE,TransformationMatrix   ! Transformation matrix Gamma 

 *MULT,Sigma, ,Gamma,TRANS,M3  ! M3 = transpose(Gamma)*Sigma 

 *MULT,Gamma, ,M3, ,SigLocal  ! SigLocal = Gamma*M3 

 

 nx = SigLocal(1,1)*t     ! nx = sigx*t 

 ny = SigLocal(2,2)*t     ! ny = sigy*t 

 nxy = SigLocal(1,2)*t     ! nxy = sigxy*t 

 qx = SigLocal(1,3)*2*t/3    ! qx = max(sigxz)*1.5*t 

 qy = SigLocal(2,3)*2*t/3    ! qy = max(sigyz)*1.5*t 

 

 *CFOPEN,ShellLE,csv,,APPEND 

 *VWRITE,z,nx,ny,nxy,qx,qy 

%12.4f, %12.4f, %12.4f, %12.4f, %12.4f, %12.4f 

 *CFCLOS 

*ENDDO 

/EOF
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APPENDIX E. ShellBucklingResults 
ShellBucklingResults 

!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

! ShellBucklingResults 

! Date:   17 November 2017 

! Author:  Erik Giesen Loo 

! Writes the buckling load factor to ShellBuckling.txt. 

! Outputs the maximum deflection and corresponding node. 

! 

! Called by: 

! ShellBuckling 

! 

! Subroutines: 

! PlotBucklingModes (optional) 

! TransformationMatrix 

! NodalDisplacements (optional) 

!  TransformationMatrix (optional) 

! 

! Input: 

! E,t,w,p,aa,bb,lz,lu,nu,lv,nv 

! 

! Output: 

! lambdaC,defl_max,uz_max,nnode_max,defl_diff 

! 

!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

/POST1 

buckling_mode = 1 

*USE,PlotBucklingModes     ! Plots 2 buckling modes (may be left commented out) 

SUBSET,1,buckling_mode,FACT,,,,  ! Load buckling mode 

*GET,lambdaC,ACTIVE,0,SET,FREQ  ! Get the buckling load factor lambdaC 

*CFOPEN,ShellBuckling,csv,,APPEND 

*VWRITE,lambdaC 

(F11.5,',',$) 

*CFCLOS 

 

!Loop to read deflection of node next to ith element 

uz_max = 0 

defl_max = 0 

*DO,j,1,nv              ! j-th element column (along v) 

 *DO,i,1,nu+1            ! i-th element row (along u) 

  nnode = 1 + 2*(i-1) + (j-1)*(3*nu+2)   ! nnode = k1(i,j) 

  *GET,u_x,NODE,nnode,U,X        ! Extract u_x from nnode 

  *GET,u_y,NODE,nnode,U,Y        ! Extract u_y from nnode 

  *GET,u_z,NODE,nnode,U,Z        ! Extract u_z from nnode 

  defl = SQRT(u_x*u_x+u_y*u_y+u_z*u_z)   ! Absolute deflection 

  u = (i-1)*(lu/nu)-lu/2        ! u-parameter 

  v = (j-1)*(lv/nv)          ! v-parameter 

  *USE,TransformationMatrix       ! Assemble Gamma matrix 

  *VEC,Defl_global,D,ALLOC,3,,,      ! Allocate space for Defl_global 

  *SET,Defl_global(1),u_x,u_y,u_z      ! Let Defl_global = [u_x;u_y;u_z] 

  *MULT, Gamma, , Defl_global, , Defl_local  ! Defl_local = Gamma*Defl_global 

  u_z = Defl_local(3)         ! local z-displacement 

  *IF,ABS(u_z),GT,uz_max,THEN 

   uz_max = ABS(u_z)         ! uz_max = max(u_z) 

   defl_max = ABS(defl)        ! defl_max = max(defl) 

   nnode_max = 1 + 2*(i-1) + (j-1)*(3*nu+2) ! node with highest deflection 

  *ENDIF 

 *ENDDO 

*ENDDO 

 

defl_diff = (defl_max - uz_max)/uz_max*100   ! Control defl_max ~>> u_max 

*USE,NodalDisplacements ! Saves nodal disp to ShellLBA.csv (may be left commented out) 

 

FINISH 

/EOF
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APPENDIX F. PlotBucklingModes (optional) 
 

PlotBucklingModes 

!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

! PlotBucklingModes 

! Date:   17 November 2017 

! Author:  Erik Giesen Loo 

! Plots two consecutive buckling modes side-by-side. 

! 

! Called by: 

! ShellBucklingResults 

! 

! Subroutines: 

! None 

! 

! Input: 

! None 

! 

! Output: 

! None 

! 

!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

! Change background colors 

!--------------------------------------------------------------------- 

/RGB,INDEX,100,100,100, 0    ! RGB for index 0 

/RGB,INDEX, 80, 80, 80,13    ! RGB for index 13 

/RGB,INDEX, 60, 60, 60,14    ! RGB for index 14 

/RGB,INDEX, 0, 0, 0,15     ! RGB for index 15 

 

! Create two windows 

!--------------------------------------------------------------------- 

/WINDOW, 1,LEFT        ! Create window 1 on the left 

/WINDOW, 2,RIGHT        ! Create window 2 on the right 

 

! Set camera location, angle, and distance 

!--------------------------------------------------------------------- 

/PLOPT,INFO,0 

/VIEW, ALL, 0, -1, 0.2     ! all window: camera at point (0,-1,0.2) 

/ANGLE, ALL, 0        ! all windows: camera angle = 0 degrees 

/DIST, ALL, AUTO       ! all windows: distance = automatic 

 

! Plot 1st buckling mode in window 1 

!--------------------------------------------------------------------- 

/WINDOW,2,OFF        ! De-activate window 2 

SUBSET,1,buckling_mode,FACT,,,,  ! Load step 1, buckling mode 

PLNSOL, U,SUM, 0,1       ! Contour plot of USUM = u_x+u_y+u_z 

 

! Plot 2nd buckling mode in window 2 

!--------------------------------------------------------------------- 

/NOERASE          ! Do not erase window 1 

/WINDOW,1,OFF        ! De-activate window 1 

/WINDOW,2,ON         ! Re-activate window 2 

SUBSET,1,buckling_mode+1,FACT,,,, ! Load step 1, buckling mode + 1 

PLNSOL, U,SUM, 0,1       ! Contour plot of USUM = u_x+u_y+u_z 

/EOF
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APPENDIX G. NodalDisplacements (optional) 
 

NodalDisplacements 

!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

! NodalDisplacements 

! Date:   28 October 2017 

! Author:  Erik Giesen Loo 

! Writes the buckling mode nodal displacements to ShellLBA.csv. 

! 

! Called By: 

! ShellBucklingResults 

! 

! Subroutines: 

! TransformationMatrix 

! 

! Input: 

! E,t,w,p,aa,bb,lz,nu,nv 

! 

! Output: 

! u_x,u_y,u_z,defl --> ShellLBA.csv 

! 

!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

! Header 

!--------------------------------------------------------------------- 

*CFOPEN,ShellLBA,csv,, 

*VWRITE, E,t,w,p,aa,bb,lz,nu,nv 

%12.4f,%12.4f,%12.4f,%12.4f,%12.4f,%12.4f,%12.4f,%12.4f,%12.4f 

*CFCLOS 

 

!Loop to read deflection of node next to ith element 

!--------------------------------------------------------------------- 

*DO,j,1,nv              ! j-th element column (along v) 

 *DO,i,1,nu+1            ! i-th element row (along u) 

  nnode = 1 + 2*(i-1) + (j-1)*(3*nu+2)   ! nnode = k1(i,j) 

  *GET,u_x,NODE,nnode,U,X        ! Extract u_x from nnode 

  *GET,u_y,NODE,nnode,U,Y        ! Extract u_y from nnode 

  *GET,u_z,NODE,nnode,U,Z        ! Extract u_z from nnode 

  u = (i-1)*(lu/nu)-lu/2        ! u-parameter 

  v = (j-1)*(lv/nv)          ! v-parameter 

  *USE,TransformationMatrix       ! Assemble Gamma matrix 

  *VEC,Defl_global,D,ALLOC,3,,,      ! Allocate space for Defl_global 

  *SET,Defl_global(1),u_x,u_y,u_z      ! Defl_global = [u_x;u_y;u_z] 

  *MULT, Gamma, , Defl_global, , Defl_local  ! Defl_local = Gamma*Defl_global 

  u_x = Defl_local(1) 

  u_y = Defl_local(2) 

  u_z = Defl_local(3) 

  defl = SQRT(u_x*u_x+u_y*u_y+u_z*u_z) 

  *CFOPEN,ShellLBA,csv,,APPEND 

  *VWRITE,u_x,u_y,u_z,defl, 

  %16.8f,%16.8f,%16.8f,%16.8f 

  *CFCLOS 

 *ENDDO 

*ENDDO 

/EOF
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APPENDIX H. GeomNonlinearAnalysis 
 

GeomNonlinearAnalysis 

!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

! GeomNonlinearAnalysis 

! Date:   17 November 2017 

! Author:  Erik Giesen Loo 

! Performs a geometrically nonlinear analysis with imperfections (GNIA). 

! It updates the geometry using buckling mode(s), then solves the GNIA. 

! 

! Called by: 

! ShellBuckling 

! 

! Subroutines: 

! None 

! 

! Input: 

! delta,uz_max 

! 

! Output: 

! nsubstep 

! 

!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

! Update the geometry 

!--------------------------------------------------------------------- 

/PREP7 

FACTOR = delta/uz_max        ! Factor for UPGEOM 

UPGEOM,FACTOR,1,buckling_mode,'file','rst', ! Add imperfections 

/RESET $ /ERASE $  /REPLOT    ! Replot 

FINISH 

 

/SOLU 

! Set analysis type: GNA 

!--------------------------------------------------------------------- 

NCNV,0          ! Do not terminate program if not-converged 

NERR,,,-1         ! Do not terminate analysis if not-converged 

ANTYPE, STATIC        ! Static analysis 

NLGEOM, ON         ! Nonlinear geometry 

TIME, 1          ! Time at the end of load step 

 

! Set nonlinear controls / solution technique 

!--------------------------------------------------------------------- 

ARCLEN,ON          ! Arclength ON 

nsubstep = 200        ! # of substeps. Keep as par b/c it is used later in *VEC 

NSUBST,nsubstep,,       ! Number of substeps 

NEQIT,50,         ! Max. number of iterations 

CNVTOL,STAT         ! Convergence tolerance (default) 

 

! Set output controls 

!--------------------------------------------------------------------- 

RESCONTROL,DEFINE,ALL,1,     ! Write new files at every substep 

OUTRES,NSOL,ALL,,,,      ! Write nodal results at every substep 

OUTRES,ESOL,ALL,,,,      ! Write element results at every substep 

 

! Solve 

!--------------------------------------------------------------------- 

SOLVE 

FINISH 

/EOF 
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APPENDIX I. GeomNonlinearAnalysisResults 
 

GeomNonlinearAnalysisResults 

!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

! GeomNonlinearAnalysisResults 

! Date:   17 November 2017 

! Author:  Erik Giesen Loo 

! Writes the nonlinear buckling load factor to ShellBuckling.csv. 

! 

! Called by: 

! ShellBuckling 

! 

! Subroutines: 

! None 

! 

! Input: 

! nnode_max, nsubstep 

! 

! Output: 

! lambdaS 

! Defl, lambda --> ShellGNIA.csv 

! 

!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

*DO,K,1,2 

 

 /POST26 

 nn = nsubstep 

 ! Set vector arrays tinme, u_x, u_y, and u_z 

 !--------------------------------------------------------------------- 

 *DEL,time $*DIM,time,ARRAY,nn 

 *DEL,u_x  $*DIM,u_x,ARRAY,nn 

 *DEL,u_y  $*DIM,u_y,ARRAY,nn 

 *DEL,u_z  $*DIM,u_z,ARRAY,nn 

 *DEL,Defl $*DIM,Defl,ARRAY,nn 

 

 ! Extract u_x, u_y, and u_z from ANSYS database 

 !--------------------------------------------------------------------- 

 VGET,time(1),1 

 NSOL,2,nnode_max,U,X,  $VGET,u_x(1),2  !Var(2) = u_x 

 NSOL,3,nnode_max,U,Y,  $VGET,u_y(2),3  !Var(3) = u_y 

 NSOL,4,nnode_max,U,Z,  $VGET,u_z(3),4  !Var(4) = u_z 

 

 ! Do vector operation on u_x, u_y, and u_z to get Defl 

 !--------------------------------------------------------------------- 

 *VOPER,u_x,u_x,MULT,u_x     ! u_x = u_x^2 

 *VOPER,u_y,u_y,MULT,u_y     ! u_y = u_y^2 

 *VOPER,u_z,u_z,MULT,u_z     ! u_z = u_z^2 

 *VOPER,Defl,u_x,ADD,u_y     ! Defl = u_x^2+u_y^2 

 *VOPER,Defl,Defl,ADD,u_z    ! Defl = u_x^2+u_y^2+u_z^2 

 *VFUN,Defl,SQRT,Defl      ! Defl = SQRT(u_x^2+u_y^2+u_z^2) 

 FINISH 

 

*ENDDO 

 

lambdaS = 0 

*DO,k,1,nn 

 *IF,time(k),GT,lambdaS,AND,time(k),LT,1,THEN 

  lambdaS = time(k) 

 *ENDIF 

*ENDDO 

 

*CFOPEN,ShellBuckling,csv,,APPEND 

*VWRITE,lambdaS,defl_diff 

(F11.5,',',F11.1) 

*CFCLOS 
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*CFOPEN,ShellGNIA,csv,,APPEND 

*VWRITE, 

('E,t,w,p,aa,bb,lz,nu,nv,alpha,delta') 

*VWRITE,E,t,w,p,aa 

(F16.8,',',F16.8,',',F16.8,',',F16.8,',',F16.8,',',$) 

*VWRITE,bb,lz,nu,nv,alpha,delta 

(F16.8,',',F16.8,',',F16.8,',',F16.8,',',F16.8,',',F16.8) 

*VWRITE,Defl(1),time(1) 

(F16.8,',',F16.8) 

*CFCLOS 

 

/EOF 
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APPENDIX J. TransformationMatrix 
 

TransformationMatrix 

!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

! TransformationMatrix 

! Date:   17 November 2017 

! Author:  Erik Giesen Loo 

! 

! It generates the global to local transformation matrix 'Gamma' for the model parametrized by: 

!  x = (aa+(1-cos(u))*bb)*cos(v) 

!  y = (aa+(1-cos(u))*bb)*sin(v) 

!  z = bb*sin(u) 

! The local x- and y- axes follow the u- and v- parameters, respectively. 

! 

! Called by: 

! NodalMembraneForces (optional) 

! ShellBucklingResults 

! NodalDisplacements (optional) 

! 

! Subroutines: 

! None 

! 

! Input: 

! u, v, aa, bb 

! 

! Output: 

! Gamma 

! 

!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

! Assemble transformation matrix 

*DMAT,Gamma,D,ALLOC,3,3 

 

*VEC,i_vector,D,ALLOC,3        ! Create first row (i' = dr/du) 

 i_vector(1) = bb*sin(u)*cos(v) 

 i_vector(2) = bb*sin(u)*sin(v) 

 i_vector(3) = bb*cos(u) 

 *NRM, i_vector, NRM2, norm_i, YES    ! Normalize 

 

*VEC,j_vector,D,ALLOC,3        ! Create second row (j' = dr/dv) 

 j_vector(1) = -(aa+(1-cos(u))*bb)*sin(v) 

 j_vector(2) = (aa+(1-cos(u))*bb)*cos(v) 

 j_vector(3) = 0 

 *NRM, j_vector, NRM2, norm_j, YES    ! Normalize 

 

*VEC,k_vector,D,ALLOC,3        ! Create third row (k' = i' x j') 

 k_vector(1) = i_vector(2)*j_vector(3) - i_vector(3)*j_vector(2) 

 k_vector(2) = i_vector(1)*j_vector(3) - i_vector(3)*j_vector(1) 

 k_vector(3) = i_vector(1)*j_vector(2) - i_vector(2)*j_vector(1) 

 *NRM, k_vector, NRM2, norm_k, YES   ! Normalize 

 

*DO,k,1,3            ! Assemble Gamma matrix 

 Gamma(1,k) = i_vector(k) 

 Gamma(2,k) = j_vector(k) 

 Gamma(3,k) = k_vector(k) 

*ENDDO 

/EOF 
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APPENDIX K. Python Script 
 

import numpy as np 

import os, subprocess, csv, time 

 

def RunAPDL(E,t,w,p,aa,bb,lz,alpha,delta): 

 

    ansyspath = r'C:\Program Files\ANSYS Inc\v181\ansys\bin\winx64\MAPDL.exe' 

    directory = r'C:\Users\Erik\Documents\ANSYS' 

    jobname = 'file' 

    memory = '4096' 

    reserve = '1024' 

    inputfile = r'C:\Users\Erik\Documents\ANSYS\ShellBucklingInput.inp' 

    outputfile = r'C:\Users\Erik\Documents\ANSYS\OutputFile.txt' 

    resultsfile = r'C:\Users\Erik\Documents\ANSYS\ShellBuckling.csv'  
    lockfile = r'C:\Users\Erik\Documents\AnSYS\file.lock' 

 

    start = time.clock() 

 

    # Write input file 

    input_parameters = ('/NERR,200,10000,,OFF,0 \n' 

                        'pi = acos(-1) \n' 

                        'E = {:6.0f}     ! N/mm2 Young\'s modulus\n' 

                        't = {:4.2f}       ! mm thickness\n' 

                        'w = {:3.2f}       ! Poisson\'s ratio\n' 

                        'p = {:12.6f}    ! N/mm2 external pressure\n' 

                        'aa = {:6.2f}   ! mm horizontal radius at u = 0\n' 

                        'bb = {:6.2f}   ! mm vertical radius\n' 

                        'lz = {:6.2f}   ! mm model height\n' 

                        'lu = 2*asin(lz/2/bb) !mm \n' 

                        'lv = 2*pi      ! model perimeter at u = 0 \n' 

                        'nu = 2*NINT(ABS(aa)/SQRT(ABS(aa)*t)) \n' 

                        'nv = 3*nu      ! number of elements along v-axis \n' 

                        'alpha = {:4.2f}   ! ratio of lu that is not loaded by p \n' 

                        'delta = {:4.2f}*t ! prescribed imperfection magnitude \n' 

                        '*ULIB,ShellBucklingLibrary,mac \n' 

                        '*USE,ShellBuckling,pi,E,t,w,p,aa,bb,lz,lu,nu,nv,alpha,delta \n' 

                        '/CLEAR' 

                        ).format(E,t,w,p,aa,bb,lz,alpha,delta) 

    with open(inputfile,'w') as f: 

        f.write(input_parameters) 

 

    # Call ANSYS 

    try: 

        os.remove(lockfile) 

        print('lock file removed') 

    except: 

        print('lock file does not exist') 

    callstring = ('\"{}\" -p aa_t_a -dir \"{}\" -j \"{}\" -s read' 

                  ' -m {} -db {} -t -d win32 -b -i \"{}\" -o \"{}\"' 

                  ).format(ansyspath,directory,jobname,memory,reserve,inputfile,outputfile) 

    print('Invoking ANSYS with', callstring) 

    proc = subprocess.Popen(callstring).wait() 

     

    # Update pressure field for next analysis 

    with open(resultsfile,'r') as f: 

        lambdaS = float(list(csv.reader(f))[-1][16]) 

    p = 1.2*lambdaS*p 

    print('Updated pressure is',p,' N/mm2.') 

 

    stop = time.clock() 

    print('Elapsed time is ',stop-start,' seconds.') 

 

    return(p) 
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APPENDIX L. MATLAB Script 
 
function p = RunAPDL(E,t,w,p,aa,bb,lz,alpha,delta) 

tic 

  

%% Input Information: Modify when using on a different PC 

ansyspath = 'C:\Program Files\ANSYS Inc\v181\ansys\bin\winx64\MAPDL.exe'; 

directory = 'C:\Users\Erik\Documents\ANSYS'; 

jobname = 'file'; 

memory = '4096'; 

reserve = '1024'; 

inputfile = 'C:\Users\Erik\Documents\ANSYS\ShellBucklingInput.inp'; 

outputfile = 'C:\Users\Erik\Documents\ANSYS\OutputFile.txt'; 

addpath C:\Users\Erik\Documents\ANSYS 

resultsfile = 'ShellBuckling.csv'; 

  

%% Write input file 

input_parameters = sprintf(['/NERR,200,10000,,OFF,0 \n',... 

                        'pi = ACOS(-1) \n',... 

                        'E = %6.0f     ! N/mm2 Youngs modulus\n',... 

                        't = %4.2f       ! mm thickness\n',... 

                        'w = %3.2f       ! Poissons ratio\n',... 

                        'p = %12.6f  ! N/mm2 external pressure\n',... 

                        'aa = %6.2f   ! mm horizontal radius at u = 0\n',... 

                        'bb = %6.2f   ! mm vertical radius\n',... 

                        'lz = %6.2f   ! mm model height\n',... 

                        'lu = 2*asin(lz/2/bb) !mm \n',... 

                        'lv = 2*pi      ! model perimeter at u = 0 \n',... 

                        'nu = 2*NINT(ABS(aa)/SQRT(ABS(aa)*t)) \n',... 

                        'nv = 3*nu      ! number of elements along v-axis \n',... 

                        'alpha = %4.2f   ! ratio of lu that is not loaded by p \n',... 

                        'delta = %4.2f*t ! prescribed imperfection magnitude \n',... 

                        '*ULIB,ShellBucklingLibrary,mac \n',... 

                        '*USE,ShellBuckling,pi,E,t,w,p,aa,bb,lz,lu,nu,nv,alpha,delta \n',... 

                        '/CLEAR'],E,t,w,p,aa,bb,lz,alpha,delta); 

disp(input_parameters) 

fid = fopen(inputfile,'w'); 

fprintf(fid,input_parameters); 

fclose(fid); 

  

%% Call ANSYS 

callstring = ['SET KMP_STACKSIZE=5120k & ',... 

                    '"',ansyspath,'"',... 

                    ' -b ',... batch 

                    ' -p aa_t_a',... ansys academic teaching advanced 

                    ' -dir "',directory,'"',... 

                    ' -j "',jobname,'"',... 

                    ' -s read',... 

                    ' -m ',memory,... 

                    ' -db ',reserve,... 

                    ' -t -d win32',... 

                    ' -i "',inputfile,'"',... 

                    ' -o "',outputfile,'"']; 

  

disp(callstring) 

system(callstring,'-echo') 

  

%% Update pressure field for next analysis 

fid = fopen(resultsfile, 'rb'); 

fseek(fid, 0, 'eof');   % Set file position indicator at end of file 

fileSize = ftell(fid);  % Get file position indicator = fileSize 

frewind(fid);           % Set file position indicator at begin = fseek(fid,0,-1) 

data = fread(fid, fileSize, 'uint8'); 

last_row = sum(data == 10) - 1; 

lambdaS = csvread(resultsfile,last_row,16,[last_row 16 last_row 16]); 

fclose(fid); 

p = 1.2*lambdaS*p; 

  

toc 


