

QUANTIFYING THE INFLUENCE OF MEMBRANE FORCES, CURVATURE, AND

IMPERFECTIONS ON THE NONLINEAR BUCKLING LOAD OF THIN-SHELLS

Version of December 8th, 2017

Erik J. Giesen Loo

ii

QUANTIFYING THE INFLUENCE OF MEMBRANE FORCES, CURVATURE, AND

IMPERFECTIONS ON THE NONLINEAR BUCKLING LOAD OF THIN-SHELLS

by

Erik Johannes Giesen Loo

Student number: 4625064

ADDITIONAL MASTER THESIS

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE

in

CIVIL ENGINEERING

at

Delft University of Technology

Supervisors:

Dr. ir. P.C.J. Hoogenboom

Dr. ir. drs. C.R. Braam

Department of Structural Mechanics

Faculty of Civil Engineering and Geoscience

Delft University of Technology

Delft, The Netherlands

ii

iii

To Maximilian E. Ororbia

iv

v

QUANTIFYING THE INFLUENCE OF MEMBRANE FORCES, CURVATURES, AND

IMPERFECTIONS ON THE NONLINEAR BUCKLING LOAD OF THIN-SHELLS

Author: Erik Johannes Giesen Loo

Student I.D.: 4625064

Email E.J.Giesen@student.tudelt.nl

ABSTRACT

Shells tend to be thin because their curvature enables them to carry distributed loads as membrane forces.

The property of thinness stems from shells’ capacity to store membrane strain energy without much

deformation. As a result, buckling failures often govern the design of shell structures. These buckling

failures usually start locally, at a location where a combination of curvature and membrane forces is met.

Moreover, shells tend to be imperfection-sensitive structures, that is, real-life shells (with initial geometric

imperfections) usually cannot resist loads as high as the theoretically predicted critical buckling load.

Advanced finite element analyses can accurately predict these so-called nonlinear buckling loads but

require significant time and computation effort. On the other hand, current design equations are simple yet

highly inaccurate and often penalize strength significantly. This treatise caters a Python script that executes

nonlinear finite element analyses (using ANSYS Mechanical APDL) to generate a database of the nonlinear

buckling loads of shell portions with varying membrane forces, curvatures and magnitudes of initial

geometric imperfections. The aim, beyond the scope of this treatise, is to perform a parametric regression

on said database to device design equation(s) that accurately predict the nonlinear buckling load of linear-

elastic shell structures with initial geometric imperfections based merely on the linear elastic results of a

geometrically perfect shell model.

Supervisors:

Dr. ir. P.C.J. Hoogenboom

Dr. ir. drs. C.R. Braam

vi

vii

TABLE OF CONTENTS

ABSTRACT .. v

TABLE OF CONTENTS .. vii

LIST OF FIGURES ... ix

LIST OF TABLES ... xi

1. INTRODUCTION .. 1

1.1. Thesis Statement ... 1

1.2. Research Purpose .. 1

1.3. Thesis Overview ... 1

2. BACKGROUND .. 2

2.1. Shell Linear Elastic Theory... 2

2.1.1. Finite Element Implementation ... 5

2.2. Shell Buckling Theory .. 6

2.2.1. Static Instability .. 6

2.2.2. Bifurcation Buckling ... 7

2.2.3. Postbuckling Behavior .. 7

2.2.4. Imperfection Sensitivity .. 9

2.2.5. FEM Solution Techniques .. 11

2.2.6. Initial Imperfections .. 12

3. METHODOLOGY ... 13

3.1. General Procedure ... 13

3.2. Model Creation ... 14

3.2.1. Nodes .. 15

3.2.2. Elements .. 17

3.2.3. Boundary Conditions .. 18

viii

3.3. Linear Elastic Analysis (LE) ... 20

3.4. Linear Buckling Analysis (LBA) .. 22

3.5. Geometrically Nonlinear Analysis with Initial Geometric Imperfections (GNIA) 24

3.6. Python Script ... 25

3.7. Torus Model .. 27

4. RESULTS ... 29

4.1. Torus Results .. 29

4.2. Cylinder GNIA Results ... 32

4.3. Example Results from the Python Script .. 33

5. CONCLUSIONS ... 35

REFERENCES ... 36

APPENDIX A. ShellBuckling .. 38

APPENDIX B. ShellModel .. 39

APPENDIX C. ShellLinearElasticResults .. 41

APPENDIX D. NodalMembraneForces (optional)... 42

APPENDIX E. ShellBucklingResults ... 43

APPENDIX F. PlotBucklingModes (optional) ... 44

APPENDIX G. NodalDisplacements (optional) ... 45

APPENDIX H. GeomNonlinearAnalysis ... 46

APPENDIX I. GeomNonlinearAnalysisResults ... 47

APPENDIX J. TransformationMatrix... 49

APPENDIX K. Python Script ... 50

APPENDIX L. MATLAB Script .. 51

ix

LIST OF FIGURES

Figure 2.1. Shell coordinates (Hoogenboom, 2017, p. 29) ... 2

Figure 2.2. (a) Normal section curvature (Hoogenboom, 2017, p.19), and (b) In-plane curvature

(Hoogenboom, 2017, p.35) ... 3

Figure 2.3. Positive internal forces (Hoogenboom, 2017, p.13) ... 4

Figure 2.4. Flat shell element (Hoogenboom, 2017, p. 65) .. 5

Figure 2.5. Semi-loof element (Hoogenboom, 2017, p. 66) ... 5

Figure 2.6. Reduced solid element (Hoogenboom, 2017, p. 66) .. 5

Figure 2.7. Load-deflection curves showing limit and bifurcation points: (a) General nonlinear analysis,

and (b) Asymptotic analysis (Bushnell, 1981, p. 1187) .. 6

Figure 2.8. Bifurcation buckling of initially perfect model: (a) prior to buckling, (b) postbuckling; and (c)

initially imperfect model. Adapted from (Ziemian, 2010, pp. 13-18) .. 7

Figure 2.9. Postbuckling: (a) stable, (b) unstable, and (c) asymmetric (Bažant & Cedolin, 1991, p.470) ... 8

Figure 2.10. Elastic postbuckling curves for compressed elements (Ziemian, 2010, p. 8) 8

Figure 2.11. Test results of axially loaded cylinders (from Weingarten, Morgan & Seide, 1965) 9

Figure 2.12. (a) Postbuckling and imperfection sensitivity of externally pressurized cylinder, and (b)

Imperfection sensitivity of various shells (modified from Budiansky & Hutchinson, 1966, p. 1506) 10

Figure 3.1. Table of parameters and results to be produced ... 13

Figure 3.2. ShellBuckling flow diagram ... 13

Figure 3.3. Model geometry .. 14

Figure 3.4. Element type and material properties code snippet (from ShellModel) 14

Figure 3.5. Node creation code snippet (from ShellModel) .. 16

Figure 3.6. Node creation: (a) in the u-v plane, and (b) in global coordinates ... 16

Figure 3.7. Two cases in element creation: (a) j < nv, and (b) j = nv ... 17

Figure 3.8. Element creation code snippet (from ShellModel) ... 17

x

Figure 3.9. Element creation: (a) in the u-v plane, and (b) in global coordinates 18

Figure 3.10. Fixities and load code snippet (from ShellModel) ... 19

Figure 3.11. Fixities and load on a test shell ... 19

Figure 3.12. Linear elastic analysis (LE) code snippet (from ShellBuckling) .. 20

Figure 3.13. ETABLE results code snippet (from ShellLinearElasticResults) ... 20

Figure 3.14. ETABLE results code snippet 2 (from ShellLinearElasticResults) .. 21

Figure 3.15. Element membrane forces along the z-coordinate of a test shell ... 21

Figure 3.16. Linear buckling analysis (LBA) code snippet (from ShellBuckling) 22

Figure 3.17. First and second buckling modes of a test shell ... 22

Figure 3.18. Get buckling load code snippet (from ShellBucklingResults).. 22

Figure 3.19. Get maximum deflection code snippet (from ShellBucklingResults) 23

Figure 3.20. Buckling mode local coordinate displacements of a test shell ... 23

Figure 3.21. Update the geometry code snippet (from GeomNonlinearAnalysis) 24

Figure 3.22. Geometrically nonlinear analysis code snippet (from GeomNonlinearAnalysis) 24

Figure 3.23. Get GNIA load factor code snippet (from GeomNonlinearAnalysisResults) 24

Figure 3.24. Force-displacement plot of a test shell ... 25

Figure 3.25. ShellBucklingInput.inp ... 26

Figure 3.26. (a) Model with negative Gausian curvature (b) model with positive Gaussian curvature 26

Figure 3.27. Loops to iterate parameters around RunAPDL .. 27

Figure 3.28. Complete torus model ... 27

Figure 3.29. Additional forces on torus model ... 28

Figure 4.1. Calculation based on Barlow's formula .. 30

Figure 4.2. Torus linear elastic membrane forces ... 30

Figure 4.3. Torus linear elastic membrane forces, nadd = 0.5 nxx ... 31

Figure 4.4. Torus linear elastic membrane forces, nadd = 1.0 nxx ... 31

Figure 4.5. Torus linear buckling modes, nadd = 0.5nxx ... 32

xi

Figure 4.6. Thin-shell cylinder buckling modes ... 32

Figure 4.7. Thin-shell cylinder imperfection sensitivity ... 33

LIST OF TABLES

Table 2.1. Shell types and corresponding theory based on radius a and thickness t 4

Table 4.1. Excerpt of test runs .. 34

xii

CHAPTER 1. INTRODUCTION

1

1. INTRODUCTION

1.1. Thesis Statement

Shells tend to be thin because their curvature enables them to carry distributed loads as membrane forces.

As a result, buckling failure often governs the design of shell structures. Unlike frames, shell buckling starts

locally, at a location where a combination of curvature and membrane forces is met. Shell analysis is

difficult because the curvature is changed by the initial geometric imperfections and the membrane forces.

Additionally, the membrane forces are strongly influenced by the changing curvature.

While shell buckling can be predicted accurately using advanced finite element analyses, current design

equations are not accurate. For instance, the influence of lateral curvature, lateral normal force and initial

geometric imperfections are generally unknown. This lack of knowledge means these equations penalize

strength significantly. More accurate design equations based on a parametric study would alleviate this.

1.2. Research Purpose

The objective of this treatise is to lay the foundation for subsequent research by providing a Python script

capable of executing a batch of finite element analyses (using ANSYS Mechanical APDL) that determine

the nonlinear buckling loads of shell portions with varying curvatures, membrane forces and initial

geometric imperfections. This script would generate a database from which design equation(s) can be

derived to predict the nonlinear buckling load of a shell portion based merely on the original curvature and

linear-elastic membrane forces of a geometrically perfect shell model. This task falls beyond the scope of

the current treatise. The nonlinear buckling loads are obtained by performing geometrically nonlinear

analyses with initial geometric imperfections (GNIA). Physical nonlinearities are not accounted for.

1.3. Thesis Overview

This treatise is divided in 5 chapters which, save for this brief introduction, are outlined here.

Chapter 2 summarizes the background knowledge. This encompasses the linear elastic theory, finite

element method implementation, shell buckling and postbuckling theory, and finite element solution

techniques.

Chapter 3 presents the methodology, paying special attention to the ANSYS Mechanical APDL and Python

code provided in the appendices.

Chapter 4 accommodates an analytical solution for the linear elastic membrane forces of an externally

pressurized thin-shell torus, its buckling modes, as well as sample results from the Python script.

Chapter 5 evaluates potential shortcomings in the code and suggests a course of action for continuing the

research upon the foundations laid herein, especially the generation of the database and parametric

regression.

CHAPTER 2. BACKGROUND

2

2. BACKGROUND

2.1. Shell Linear Elastic Theory

In this section, the coordinates and curvatures are defined and the Lamé parameters are introduced. The

shell membrane theory is covered briefly. Shells can be described as plates with a curved middle surface.

This curvature enables shells to carry out-of-plane pressure loads as membrane forces instead of bending

moments (Blaauwendraad & Hoefakker, 2013, pp.1-2; Voyiadjis & Woelke, 2008, p. 1). The latter are

restricted to so-called edge disturbances found at concentrated loads, edges and discontinuities. (Voyiadjis

& Woelke, 2008, p. 1; Hoogenboom, 2017, p. 65).

Assuming the existence of an orthogonal parametrization         
T

,,,,r vuzvuyvuxvu  , three

coordinate systems can be defined: global, local and curvilinear (Hoogenboom, 2017, p.29). The global

coordinate system  zyx ,, describes the shell geometry. The curvilinear and local systems are based on

 vu,r . The curvilinear x and y axes follow the u and v parameter lines, i.e.,  vu,r with increasing u and

v, respectively. The local x and y axes are tangential to their curvilinear counterparts. Both local and

curvilinear systems’ z axis are orthogonal to the x and y axes, and point in the same direction. The local

coordinate system is used to define curvatures, loading, internal force resultants and displacements.

Figure 2.1. Shell coordinates (Hoogenboom, 2017, p. 29)

Several definitions of curvature are considered. The shell surface curvature is described by two normal

section curvatures, kxx and kyy, and a surface twist, kxy. The normal section curvatures are the inverse of the

radii of the circles tangential to the shell on the local x-z and y-z planes. They are found using Eq. (2.1)

and (2.2); the twist is given by Eq. (2.3) (Hoogenboom, 2017, p. 19):

 22 xzkxx  , (2.1)

22 yzk yy  (2.2)

and

 yxzkxy  2 . (2.3)

The shell curvatures form a tensor which can be transformed to yield the principal curvatures; or Eq. (2.4)

can be used (Hoogenboom, 2017, p. 21):

CHAPTER 2. BACKGROUND

3

     22

2,1
4

1

2

1
xyyyxxyyxx kkkkkk  . (2.4)

The curvature tensor has two invariants, namely the Gauss curvature, kG, and mean curvature, km

(Hoogenboom, 2017, pp. 23-24):

2

21 xyyyxxG kkkkkk  (2.5)

and

    yyxxm kkkkk 
2

1

2

1
21 . (2.6)

Additionally, the kx and ky in-plane curvatures are defined as the inverse of the ry and rx radii of the circles

in the plane normal to the local z-axis tangential to u and v (Hoogenboom, 2017, p. 35):

y

k x

x

x









1
 (2.7)

and

x

k
y

y

y









1
. (2.8)

The Lamé parameters, x and y , map the ratio of change in x with respect to a change in u and a change

in y with respect to a change in v (Hoogenboom, 2017, pp. 30-31), i.e.,


























dv

du

dy

dx

y

x





0

0
. (2.9)

If the shell is parametrized, the Lamé parameters can be used derive kxx, kyy and kxy. Figure 2.2 shows the

normal section curvature and in-plane curvatures.

Figure 2.2. (a) Normal section curvature (Hoogenboom, 2017, p.19), and (b) In-plane curvature

(Hoogenboom, 2017, p.35)

The geometry of a shell is described by its thickness and surface curvature. Thus, shells can be categorized

based on their radius-to-thickness ratio (Blaauwendraad & Hoefakker, 2014, p.3). Table 2.1 shows such a

classification, with suitable theories (Hoogenboom, 2017, pp. 13-14).

CHAPTER 2. BACKGROUND

4

Table 2.1. Shell types and corresponding theory based on radius a and thickness t

Type of shell Slenderness Theory

Very thick shell a/t < 5 Solid elements (i.e., not a shell)

Thick shell 5 < a/t < 30 Mindlin-Reissner (includes shear deformations)

Thin-shell 30 < a/t < 4000 Sanders-Koiter (membrane forces and moments)

Membrane 4000 < a/t Shell membrane (only membrane forces)

As seen in Table 2.1, the analysis of thin shells involves two distinct theories: the shell membrane theory,

which does not include bending and shear; and the Sanders-Koiter theory, which includes bending

deformations and shear stresses but not shear deformations (Voyiadjis & Woelke, 2008, p. 2). The positive

internal force resultants from the latter theory are shown in Fig. 2.3.

Figure 2.3. Positive internal forces (Hoogenboom, 2017, p.13)

Even though the Sanders-Koiter equations offer a more faithful representation of the internal forces of thin

shell structures, membrane stresses are more important for practical purposes (Voyiadjis & Woelke, 2008,

p.2). The shell membrane equations are also simpler to solve analytically. Such a solution is provided in

section 4.1 to verify the finite element method results. This solution required only the shell membrane

equilibrium equations shown next (Hoogenboom, 2017, p.35-36; see also Blaauwendraad & Hoefakker,

2013, p. 27):

 02)( xxyxyyxxyxyxx pnknnkynxn , (2.10)

 02)( yxyyxxyyxxyyy pnknnkxnyn (2.11)

and

 02  zyyyyxyxyxxxx pnknknk . (2.12)

The reader is referred to Hoogenboom (2017), Blaauwendraad & Hoefakker (2013), and Voyiadjis &

Woelke (2008) for a comprehensive coverage of the linear elastic theories and equations.

CHAPTER 2. BACKGROUND

5

2.1.1. Finite Element Implementation

The three most common shell finite elements are: flat shell elements, elements based on the Sanders-Koiter

equations and reduced solid elements (Hoogenboom, 2017, p. 65). Flat shell elements combine plane stress

with plate bending and drilling degrees of freedom (Hoogenboom 2017, p.65; Blaauwendraad &

Hoefakker, 2013, p. 285). Their main disadvantage is that, by being flat, a fine mesh is required to preserve

the curvature of the shell model (Chen, 2014, p. 12).

Figure 2.4. Flat shell element (Hoogenboom, 2017, p. 65)

Shell elements based on the Sanders-Koiter equations, such as the semi-loof element (Fig. 2.5), can be

very accurate but are often difficult to implement in finite element software (Hoogenboom, 2017, p.66).

Figure 2.5. Semi-loof element (Hoogenboom, 2017, p. 66)

The most common element type is the reduced solid element (Fig. 2.6) in which degrees of freedom are

combined and the constitutive equations are simplified (Hoogenboom, 2017, p.66; Blaauwendraad &

Hoefakker, 2013, p. 286). 8-noded quadrilaterals can be curved, which reduces the need for fine meshes.

The script provided in App. B uses this shell element to generate the shell models.

Figure 2.6. Reduced solid element (Hoogenboom, 2017, p. 66)

CHAPTER 2. BACKGROUND

6

2.2. Shell Buckling Theory

Shells tend to be thin because their curvature enables them to carry distributed loads as membrane forces.

The property of thinness stems from shells’ capacity to store membrane strain energy without much

deformation. Yet, if this energy is converted into bending energy, shells may become statically unstable

and fail dramatically (Bushnell, 1981, p.1187).

2.2.1. Static Instability

Static instability, loosely termed buckling, is the condition when a structural member or system exhibits a

loss in its load-carrying capacity (Ziemian, 2010, p. 12). Buckling may be divided into two categories: 1)

bifurcation of equilibrium (Fig. 2.7, point B) and 2) collapse at the limit load without prior bifurcation

(point A). Bifurcation is exemplified by a sudden change in the load-carrying path, e.g., from axial (or

membrane) forces to bending moments, and corresponding deformations. Columns, plates and cylindrical

shells experience this type of instability. Shallow arches and spherical caps are examples of the second

type of instability, also termed nonlinear buckling or “snap-through” (Ziemian, 2010, p.12; Bushnell, 1981,

p. 1183-1187). However, given initial geometric imperfections, even arches and spherical caps are prone

to fail in an asymmetric mode due to bifurcation prior to their limit load, i.e., curve 0-B-D in Fig. 2.7

(Ziemian, 2010, p. 22; Hutchinson & Koiter, 1970, p. 1354; Bushnell, 1981, p. 1187).

Figure 2.7. Load-deflection curves showing limit and bifurcation points: (a) General nonlinear analysis,

and (b) Asymptotic analysis (Bushnell, 1981, p. 1187)

The loads observed in Fig. 2.7 are expressed as a multiplier λ to some reference load. λC is the critical

buckling load ratio at the bifurcation point. λL, or limit load ratio, is the maximum load that can be achieved

without prior bifurcation. λS is the maximum load that can be achieved by a structure with initial geometric

imperfections before static instability is reached (Hutchinson & Koiter, 1970, p. 1354). Chapter 1 refers

to λS as the nonlinear buckling load because – just like for the limit load ratio – λS is obtained by means of

a geometrically nonlinear analysis (GNA). However, estimating λS requires explicit modeling of the initial

geometric imperfections in the finite element model. An analysis that includes such imperfections is

referred to as a geometrically nonlinear analysis with initial geometric imperfections (GNIA).

CHAPTER 2. BACKGROUND

7

2.2.2. Bifurcation Buckling

The critical buckling load for discretized systems is the lowest eigenvalue from Eq. (2.22). It can also be

obtained analytically for elementary shell types by solving a reduced eighth-order differential equation

(Blaauwendraad & Hoefakker, 2013, p. 81). Equation (2.13) shows the theoretical buckling membrane

force of an axially loaded thin-shell cylinder (Bushnell, 1981, p. 1189):

  
a

Et

a

Et
nC

22
212 6.0)1(3 


 . (2.13)

  212)1(3


 is approximated as 0.6 for realistic values of  . Equation (2.13) is also valid for axially

loaded hyperboloids and for externally pressurized closed cylinders, spherical shells, domes, and

hyperbolic paraboloids (Hoogenboom, 2017, p. 111). The fact Eq. (2.13) makes no reference to the number

of waves found in the buckling pattern helps to explain this wide range of applicability (Bushnell, 1981,

p. 1190). This quality has further repercussions seen in subsection 2.2.4 which describes methods that

estimate λS based on asymptotic analyses that rest on the theoretical foundations established by Koiter and

use the postbuckling behavior as starting point (Hutchinson & Koiter, 1970, p. 1354).

2.2.3. Postbuckling Behavior

While relatively simple to solve, neither Eq. (2.22) nor Eq. (2.13) yield information on the postbuckling

behavior (Hutchinson & Koiter, 1970, p. 1354), and thus also not about the stability of a structure after

bifurcation (Bushnell, 1981, p. 1193). A general understanding of the postbuckling behavior of shells can

be obtained by considering the simple model in Fig. 2.8, like the one proposed by Cox (1940, p. 231).

Figure 2.8. Bifurcation buckling of initially perfect model: (a) prior to buckling, (b) postbuckling; and

(c) initially imperfect model. Adapted from (Ziemian, 2010, pp. 13-18)

The model consists of two rigid bars hinged to one another and supported laterally by a nonlinear elastic

spring (or similar). The spring possesses an arch-like stiffness, which can be approximated by a cubic

polynomial. Cox (1940, p. 231) and Koiter (1970, p. 2) provide a solution of the form

CHAPTER 2. BACKGROUND

8

  21   baPP C
, (2.14)

where 𝑃𝐶 is the critical buckling load, a and b are related to the spring coefficients, and 𝜀 = 𝑥 𝐿⁄ . In his

dissertation, Koiter (1970, pp. 71-117) used perturbation analysis to generalize the theory of stability for

elastic systems under conservative loading. He arrived at Eq. (2.15), which demonstrates an asymptotically

exact relation between λ (the postbuckling load ratio) and λC near the bifurcation point (Hutchinson &

Koiter, 1970, p. 1355; Bushnell, 1981, p. 1193):

  21   ssC ba . (2.15)

For shells,  represents the post-buckling deflection δ as a multiplier to the thickness, i.e., t  .

Equation (2.15) can be visualized in Fig. 2.9. Koiter (1970, pp. 71-117) identified three postbuckling

behaviors based on the parameters as and bs: stable, unstable and asymmetric.

Figure 2.9. Postbuckling: (a) stable, (b) unstable, and (c) asymmetric (Bažant & Cedolin, 1991, p.470)

Equation (2.15) agrees with buckling theories for different structural elements. Figure 2.10 shows how

typical structural elements fall within these categories.

Figure 2.10. Elastic postbuckling curves for compressed elements (Ziemian, 2010, p. 8)

Koiter (1970, pp. 119-149) also noted that small initial geometric imperfections such as in Fig. 2.8(c) have

a marked effect on systems with unstable postbuckling curves (dashed curves on Fig. 2.9 and 2.10). These

imperfections cause those systems to fail at loads below the critical load (Ziemian, 2010, p. 19, Budiansky

& Hutchinson, 1966, p. 1506). Such systems are referred to as imperfection-sensitive.

CHAPTER 2. BACKGROUND

9

2.2.4. Imperfection Sensitivity

The classical example of imperfection sensitivity is the axially loaded thin-shell cylinder. Figure 2.11

shows the test results of 172 axially loaded thin-shell cylinders compared to the critical load predicted by

Eq. (2.13). nS has values as low as one sixth of nC. Kármán and Tsien (1941, p. 303-312) attributed this

discrepancies to the highly unstable postbuckling regimes seen in both cylindrical and spherical shells.

Figure 2.11. Test results of axially loaded cylinders (from Weingarten, Morgan & Seide, 1965)

Around the same time, Koiter found that asymptotically exact estimates of λS can be obtained by including

the first-order effects of small initial geometric imperfections in the shape of the critical buckling mode

(Hutchinson & Koiter, 1970, pp. 1355-1356; Bushnell, 1981, p. 1193). If the magnitude of the initial

geometric imperfection is denoted  , then for as = 0 and bs < 0, λS can be estimated by

    




 

3/23/1
4/31  SCS b , (2.16)

where ρ is a constant that depends on the imperfection shape. On the other hand, for a postbuckling curve

with as ≠ 0 and bs = 0, λS is estimated using

  




 

2/1
21  SCS a . (2.17)

In both cases, small values of  have a sizeable effect on λS (Hutchinson & Koiter, 1970, p. 1356) which

further substantiates the claim by Kármán and Tsien (1941, p. 303-312).

2.2.4.1. Externally pressurized thin-shell cylinder

The externally pressurized thin-shell cylinder studied by Budiansky and Amazigo (1969, p. 223-235) is an

illustrative example of Koiter’s theory. The solid curve on Fig. 2.12 (a) represents the pressure-deflection

relation of the perfect structure given by
























2

1
t

bpp C


. (2.18)

CHAPTER 2. BACKGROUND

10

where p is the postbuckling pressure, pC is the critical buckling pressure and δ is the normal to surface

buckling displacement amplitude. In turn, the solid curves in Fig. 2.12 (b) represent the asymptotic

relationship between pS and  given by Eq. (2.19), which is the same form as (2.16):

  






















C

S

C

S

P

P

t
b

p

p 21

23

2

33
1 .

(2.19)

However, Eq. (2.16) and (2.17) cannot be applied to the axially loaded thin-shell cylinder nor the externally

pressurized spherical shell studied by Kármán and Tsien in 1941 (pp. 303-312) and 1939 (pp. 43-50) due

to the multiplicity of buckling modes associated with λC (Budiansky & Hutchinson, 1966, p. 1506;

Hutchinson & Koiter, 1970, pp. 1358-1360; Bushnell, 1981, p. 1189). The reader may recall that Eq. (2.13)

– applicable to both cylinders and spheres – makes no mention of a buckling pattern, thus hinting at the

fact these shells are susceptible to several mode-based geometric imperfections (Bushnell, 1981, p. 1190).

Figure 2.12. (a) Postbuckling and imperfection sensitivity of externally pressurized cylinder, and (b)

Imperfection sensitivity of various shells (modified from Budiansky & Hutchinson, 1966, p. 1506)

2.2.4.2. Axially loaded thin-shell cylinder and externally pressurized spherical shell

Even with this limitation, it is possible to give a close estimate of PS for the axially loaded thin-shell

cylinder with the classical theory by using an imperfection in the shape of the axisymmetric buckling mode

(Koiter, 1970, pp. 289-290, Hutchinson & Koiter, 1970, p. 1359):
























C

S

C

S

P

P

t

c

P

P 

2

3
1

2

 (2.20)

or
















t

c

t

c

t

c

P

P

C

S 

4

3
2

4

3

4

3
1 ,

where  213 c . Koiter (1970, pp. 289-290) also found that the cylinder’s length and boundary

conditions play a negligible role. Similarly, Hutchinson (1967a, p. 52) developed an equation for a shallow

section of an externally pressurized spherical shell, taking in consideration the interaction between

CHAPTER 2. BACKGROUND

11

buckling modes. The highest reduction in pressure was observed for two operative buckling modes with

one such mode having a zero wave-number associated with either the x- or y-coordinate:
























C

S

C

S

p

p

t

c

p

p 

32

327
1

2

 (2.21)

or
















t

c

t

c

t

c

p

p

C

S 

4

81
332

1024

27

64

327
1 .

Equations (2.20) and (2.21) are plotted in Fig. 2.12. Similar imperfection sensitivity studies were done on

axially compressed oval thin-shell cylinders (Hutchinson, 1968), externally pressurized thin-shell

spheroids (Danielson, 1969) and externally pressurized thin-shell toroidal segments (Hutchinson, 1967b).

It appears that imperfection sensitivity disappears for toroidal segments of sufficiently large negative

Gaussian curvature (Budiansky & Hutchinson, 1966, p. 1507).

2.2.5. FEM Solution Techniques

Two FEM procedures are described, each with its own strengths and pitfalls: linear buckling analysis

(LBA) and geometrically nonlinear analysis (GNA). LBA is an eigenvalue analysis based on Eq. (2.22)

(ANSYS Inc., 2009, p. 1008; McGuire, Gallagher & Ziemian, 2000, p.235):

   0K+K igi  , (2.22)

where K is the (linear elastic) stiffness matrix, Kg is the geometric stiffness matrix computed for a reference

load, λi is an eigenvalue (buckling load factor) and i is a corresponding eigenvector (buckling mode).

LBA assumes negligible deflections prior to bifurcation of the loading path (McGuire, Gallagher &

Ziemian, 2000, p. 218). The lowest eigenvector is referred to as the critical buckling load, that is, λC.

The assumption of negligible displacements seldom holds: the transition to an alternate load path is usually

gradual due to deflections which may be enhanced or even triggered by the presence of initial geometric

imperfections. GNA accounts for these deformations by updating the geometry and satisfying equilibrium

on the deformed geometry (McGuire, Gallagher & Ziemian, 2000, p. 219).

GNA commonly tracks the equilibrium path via an incremental-iterative scheme: equilibrium is

established to prescribed tolerances by means of iterations at each load increment (McGuire, Gallagher &

Ziemian, 2000, p. 236-237). The reader is referred to (Borst & Crisfield, 2012) for a comprehensive

treatment of such schemes. The script provided in App. H stipulates that analyses of this sort be executed

using an arc-length controlled Newton-Raphson method.

While GNA can yield a good approximation of λL, it fails to capture the effect of initial geometric

imperfections. GNA with explicitly modelled initial geometric imperfections is referred to as a GNIA.

Such analyses are typically required for cases in which the initial geometric imperfections play a crucial

role in triggering the nonlinear behavior and account for a significant reduction from λC to λS.

CHAPTER 2. BACKGROUND

12

2.2.6. Initial Imperfections

Chen (2014, pp. 66-85) proposes four approaches to adding imperfections. The first approach is to update

the geometry by rescaling the kth buckling mode. This is achieved via

    vuvu k

k
,,

max

Imp 



  , (2.23)

where  vu,Imp is the imperfection,  is the prescribed magnitude,  vuk , is the deflection of the 𝑘th

buckling mode and
k

max is the absolute maximum of
k . The second approach suggested by Chen (2014,

p. 67) is to apply a uniform combination of n buckling modes based on

  
 

 
 




n

k

k

n

k ji
k

vu
vu

vu
1

1

Imp ,
,max

, 



 . (2.24)

The denominator equals the maximum deflection of the sum of the n modes for all possible (ui, vj). Chen

further suggests using

    vuvu ,, rand

rand
max

Imp 



  (2.25)

instead of Eq. (2.24), because the contribution of each buckling mode is randomized. The buckling modes

are combined to yield
rand using

    vuAvu k
n

k

k ,,
1

rand  


 , (2.26)

where

    nkAk ,1;0,1rand  . (2.27)

The remaining two approaches suggested by Chen are using random noise imperfections, a drawback of

which is its mesh dependency; and imperfection patterns based on sinusoidal waves. Only Eq. (2.23) is

implemented in the code in App. H. Nevertheless, using Eq. (2.24) or Eq. (2.25) could yield remarkable

results as the first mode may not govern as shown by the axially-loaded thin-shell cylinder and the

externally pressurized spherical shell (Budiansky & Hutchinson, 1966, p. 1506; Hutchinson & Koiter,

1970, p. 1358). Chen (2014, p.85) also observed that for structures with closely spaced buckling loads the

imperfection sensitivity tends to be significant and is often controlled by a combination of buckling modes.

CHAPTER 3. METHODOLOGY

13

3. METHODOLOGY

3.1. General Procedure

The goal of the current treatise is to cater a recipe to conveniently generate a comprehensive database

composed of the parameters and results shown in Fig. 3.1. The database should later be employed to fit

(some of) the parameters and membrane forces into equation(s) that can accurately predict λS.

E t ν kxx kyy kxy  nxx nyy nxy λC λS

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
Figure 3.1. Table of parameters and results to be produced

This database is to be produced using ANSYS® Mechanical APDL Release 18.1 (ANSYS Inc., 2017),

hereinafter referred to as MAPDL (Mechanical ANSYS Parametric Design Language), and Python. The

procedure has two main components: a MAPDL macro that executes a GNIA and a Python script that runs

the macro multiple times while varying the parameters.

 Solve linear elastic analysis (LE)

Solve linear buckling analysis (LBA)

E, t, ν, kxx,

kyy, kxy,  ,

nxx, nyy, nxy

λC

λS

Figure 3.2. ShellBuckling flow diagram

The main MAPDL macro is named ShellBuckling. Its subroutines mirror MAPDL’s workflow: model

creation, performing a linear elastic analysis (LE) to obtain the membrane forces, a linear buckling analysis

(LBA) to obtain the mode-based initial geometric imperfections and λC, and a geometrically nonlinear

analysis (GNA) to obtain 𝜆𝑆. The parameters and results of each analysis are appended, not overwritten,

ShellModel

Start

End

GeomNonlinearAnalysisResults

GeomNonlinearAnalysis

ShellBucklingResults

ShellLinearElasticResults

ShellBuckling.csv

ShellBuckling.csv

ShellBuckling.csv

CHAPTER 3. METHODOLOGY

14

onto a single line in a comma-separated-values file: ShellBuckling.csv. Figure 3.2 shows the flow diagram

for ShellBuckling. Text in boxes is delegated to subroutines, distilled in sections 3.2 through 3.5. The Python

script (section 3.6) provides the input parameters, runs MAPDL and waits for the output.

ShellBuckling and all its subroutines are written in a single library file, named ShellBucklingLibrary.mac.

ShellBuckling and the subroutines are included in the appendices, starting with ShellBuckling in App. A.

To reassemble the library, copy the content of each appendix onto a .mac file titled ShellBucklingLibrary.

The Python script is in App. K. Alternatively, the MATLAB (The MathWorks, Inc., 2017) script in App. L

can be used in lieu of the Python one.

3.2. Model Creation

The idea is to model a portion of a shell subject to combinations of membrane forces and curvatures that

will lead to buckling. This shell portion needs to be extended to minimize the effect of the boundary

conditions on the buckled shape and load. The proposed models are a toroidal shell segment (Fig. 3.3) and

a complete torus. The complete torus model is discussed amply in section 3.7, with the reasons for not

choosing is as the main geometry in section 4.1.

Figure 3.3. Model geometry

The toroidal shell segment is parametrized by equations that model the inner walls of a torus; hence, it is

easy to change the principal curvatures. To diminish the effects of the boundary conditions, the external

pressure is only applied to the model area between 0.25 to 0.75 times its height. The top ring is restrained

against displacement in the global x and y directions while the bottom ring is restrained against

displacement in all directions (see subsection 3.2.3).

The model uses reduced-solid 8-noded quadrilateral shell elements (SHELL281) of thickness t. The

material is linear-elastic with modulus E and Poisson’s ratio ν. The element type is defined with ET, the

thickness with R and the material properties with MP. All commands (in bold) are from (ANSYS Inc.,

2009). The code snippet in Fig. 3.4 defines the element type and material properties. Note that the Poisson’s

ratio is represented by w to avoid confusion between the v-parameter and the Greek letter ν.

! Create element type: shell

!---

ET,1,SHELL281 ! element type: 8 node quadrilateral

R,1,t,t,t,t, , , ! element thickness

! Create material properties

!---

MP,EX,1,E ! Elastic modulus (linear elastic material)

MP,PRXY,1,w ! Poisson's ratio (linear elastic material)

Figure 3.4. Element type and material properties code snippet (from ShellModel)

CHAPTER 3. METHODOLOGY

15

The toroidal shell segment is parametrized by











































)sin(

)sin()))cos(1((

)cos()))cos(1((

)(

),(

),(

),(r

ub

vbua

vbua

uz

vuy

vux

vu . (3.1)

where v goes from 0 to 2π and u goes from –lu/2 to lu/2. lu, in turn, is calculated using

)/2/(sin2 1 bll zu

 . (3.2)

The length lz is the total height of the model (i.e., from - lz/2 to lz/2). Subsections 3.2.1 and 3.2.2 illustrate

the creation of nodes (N) and elements (E), respectively. Subsection 3.2.3 summarizes the enforcement of

fixities (D) and imposition of surface loads (SFE). When creating the model, a series of nodes following

the u-parameter from –lu to lu will be referred to as a nodal column and a series of nodes going along the v-

parameter from 0 to nv will be called a nodal row. The same nomenclature will be applied to elements.

ShellModel, whose snippets are shown throughout section 3.2, is in App. B.

3.2.1. Nodes

Nodal counters, used exclusively for node creation, are denoted ni and nj. Nodes are created to accommodate

nu rows by nv columns of 8-noded quadrilateral shell elements. 2nu + 1 nodal rows and 2nv nodal columns

are required to accommodate all elements. The ‘2nv +1’ nodal column (at v = 2π) is omitted because it

coincides with the first one (at v = 0).

A nodal column is created in a loop with ni going from -nu to +nu. This loop is nested inside another loop

with nj going from 0 to 2nv - 1 to create nodal columns along the v-parameter. The loop counters are chosen

to fit the required number of nodal rows and columns and to ease calculation of the u and v parameters. The

nodes are at equally spaced intervals of lu/2nu along u and π/nv along v. For each node, u and v are obtained

from ni and nj using

)2/(uui nlnu  (3.3)

and

)2/(nvj nlnv  . (3.4)

Equation (3.1) then yields x , y and z , and the node is created via N. The variables tx and ty are introduced

that, when added together, act like a Boolean indicating when a node should or should not be created. If

and only if tx + ty is less than 1, a node is created. Thus, nodes are omitted if ni and nj are simultaneously

even. Figure 3.5 shows the code snippet in charge of node creation. Figure 3.6 shows the node creation

pattern (for a > 0, b > 0, nu = 4 and nv = 12). The red lines follow the direction of node creation, stating at

N1, in both the u-v plane and global coordinates.

CHAPTER 3. METHODOLOGY

16

! Create Shell nodes

!---

! ty and tx are dummy variables that, added together, act like a Boolean indicating when

! a node should be created. If ty + tx is less than 1, then a node is created.

ty=1

*DO,nj,0,2*nv-1 ! Nodal columns going from nj = 0 to 2*nv-1, i.e., (2*nv) columns

 ty=-ty

 tx=1

 v = nj*lv/nv/2 ! Parameter v (U-V plane)

 *DO,ni,-nu,nu ! Nodal rows going from ni = -nu to nu, i.e., (2*nu) rows

 tx=-tx

 *IF,tx+ty,LT,1,THEN ! if tx+ty = 2 omit node creation

 u = ni*lu/nu/2 ! Parameter u (U-V plane)

 x = (aa+(1-COS(u))*bb)*COS(v) ! x-coordinate x = x(u,v)

 y = (aa+(1-COS(u))*bb)*SIN(v) ! y-coordinate y = y(u,v)

 z = bb*SIN(u) ! z-coordinate z = z(u)

 N,,x,y,z,,, ! Create node

 *ENDIF

 *ENDDO

*ENDDO

Figure 3.5. Node creation code snippet (from ShellModel)

Figure 3.6. Node creation: (a) in the u-v plane, and (b) in global coordinates

CHAPTER 3. METHODOLOGY

17

3.2.2. Elements

Element rows and columns are denoted i and j respectively. An element column is created using a loop with

i going from 1 to nu. This loop is nested within another loop with j going from 1 to nv that creates nv element

columns along the v-parameter. An element is created using E whose arguments are the numbers identifying

the surrounding 8 nodes. Equations (3.5), (3.6) and (3.7) identify the numbers of the bottom three nodes of

an element, from left to right, based on i and j:

)23)(1()1(211  unjik , (3.5)

 12)13(2  jnjik u (3.6)

and

)23()1(213  unjik . (3.7)

These equations hold for all elements except those in the last column (j = nv) because, as noted in subsection

3.2.1, the last nodal column is omitted. Instead, those nodes are identified using k1(j = 1), i.e., the first nodal

column. Figure 3.7 shows the two cases that arise because of omitting this nodal column: (a) j < nv and (b)

j = nv. Additionally, the arrows represent the direction of the arguments in E, starting with red, i.e., E, k3,

k3+2, k1+2, k1, k3+1, k2+1, k1+1, k2.

Figure 3.7. Two cases in element creation: (a) j < nv, and (b) j = nv

Figure 3.8 shows the element creation code snippet. Figure 3.9 shows the element creation pattern starting

with E1 for a shell model with a > 0, b > 0, nu = 4 and nv = 12.

! Create Shell elements

!---

SHPP,OFF ! no warning aspect ratio

*DO,j,1,nv ! j-th element column (along v-axis)

 *DO,i,1,nu ! i-th element row (along u-axis)

 k1 = 1 + 2*(i-1) + (j-1)*(3*nu+2)

 k2 = i + 2*j + (3*j - 1)*nu - 1

 *IF,j,LT,nv,THEN ! j < nv

 k3 = 1 + 2*(i-1) + j*(3*nu+2)

 *ELSE ! j = nv

 k3 = 1 + 2*(i-1)

 *ENDIF

 E,k3,k3+2,k1+2,k1,k3+1,k2+1,k1+1,k2

 *ENDDO

*ENDDO

Figure 3.8. Element creation code snippet (from ShellModel)

CHAPTER 3. METHODOLOGY

18

Figure 3.9. Element creation: (a) in the u-v plane, and (b) in global coordinates

3.2.3. Boundary Conditions

Fixities (Dirichlet boundary conditions) are enforced with D. The pressure load (Neumann boundary

condition) is applied on the elements using SFE. The top ring nodes are restrained against displacement in

the global x and y directions while the bottom ring nodes are fully pinned. Equation (3.5) is used to select

the bottom nodes by setting i = 1, i.e., k1(i = 1, j). In turn, the top nodes are selected using k1(i = nu, j) + 2.

Uniform pressure is applied externally between -¼lu to ¼lu, which maps to roughly half the height. Elements

are selected along the jth column with ibot ≤ i ≤ itop, where

)(top uu nNINTnji   (3.8)

and

)()1(1bot uu nNINTnji   . (3.9)

The NINT operation returns the closest integer. α (=¼) is half the proportion of the unloaded area. Figure

3.10 shows the code snippet which enforces the boundary conditions on the model.

CHAPTER 3. METHODOLOGY

19

! Create Dirichlet boundary conditions

!---

! Top and bottom rings

*DO,j,1,nv ! j-th element column (along v-axis)

 n_bot = 1 + (j-1)*(3*nu+2) ! n_bot = k1(i = 1,j)

 n_top = 3 + 2*(nu-1) + (j-1)*(3*nu+2) ! n_top = k1(i = nu,j) + 2

 D,n_top,UX,0,,,,UY,

 D,n_bot,UX,0,,,,UY,UZ

*ENDDO

! Create Neumann boundary conditions

!---

ESEL,S,ELEM,,nu/2

*DO,j,1,nv ! j-th element column (along v-axis)

 i_bot = 1+(j-1)*nu+NINT(alpha*nu) ! i_bot-th element row

 i_top = j*nu-NINT(alpha*nu) ! i_top-th element row

 ESEL,A,ELEM,,i_bot,i_top,1 ! Append elements from i_bot to i_top in steps of 1

*ENDDO

SFE, ALL, 1, PRES, 0, p,,, ! Add uniform pressure on all selected elements

ALLSEL ! Reselect all elements

Figure 3.10. Fixities and load code snippet (from ShellModel)

Figure 3.11 shows a test model using nu = 40, nv = 120, a = 2000 mm and b = 5000 mm.

Figure 3.11. Fixities and load on a test shell

CHAPTER 3. METHODOLOGY

20

3.3. Linear Elastic Analysis (LE)

MAPDL’s solution procedure is preceded by /SOLU. The LE analysis is specified with ANTYPE,

STATIC (ANSYS, 2009, p. 977). Additionally, PSTRES, ON (prestress effects) is required after

ANTYPE to save the stress state for the LBA (ANSYS Inc., 2009, p.1007). Figure 3.12 shows the code

snippet – within ShellBuckling – in charge of the LE analysis.

! Linear Elastic Analysis (Find stresses for buckling analysis)

!---

/SOLU

ANTYPE, STATIC ! Linear elastic analysis

PSTRES, ON ! Prestress effects to be included in buckling analysis

SOLVE

FINISH

*USE,ShellLinearElasticResults ! Membrane forces

Figure 3.12. Linear elastic analysis (LE) code snippet (from ShellBuckling)

After the LE analysis, ShellLinearElasticResults (App. C) is run. Element-specific result variables such as

membrane forces, moments and shears are defined in MAPDL’s /POST1 post-processor using ETABLE.

Then, *GET stores said variables into parameters that are operated upon and later written to

ShellBuckling.csv. The membrane forces in the loaded area are averaged to xxn , yyn and xyn . (written as

nx_avg, ny_avg, and nxy_avg in the code). Membrane forces at mid-height are stored as nxx, nyy and nxy (nx,

ny, and nxy). Figure 3.13 shows the code that extracts the element membrane forces and writes them to

ShellBuckling.csv.

/POST1

ESEL,S,ELEM,,1,nu,1 ! Select elements from 1 to nu in increments of 1

ETABLE,nxx,SMISC,1 ! Extract shell nxx membrane force

ETABLE,nyy,SMISC,2 ! Extract shell nyy membrane force

ETABLE,nxy,SMISC,3 ! Extract shell nxy membrane force

ETABLE,mxx,SMISC,4 ! Extract shell mxx moment

ETABLE,myy,SMISC,5 ! Extract shell myy moment

ETABLE,mxy,SMISC,6 ! Extract shell mxy moment

ETABLE,qx ,SMISC,7 ! Extract shell vx shear force

ETABLE,qy ,SMISC,8 ! Extract shell vy shear force

nx_avg = 0 ! Re-set nx_avg to 0

ny_avg = 0 ! Re-set ny_avg to 0

nxy_avg = 0 ! Re-set nxy_avg to 0

i1 = NINT(alpha*nu) ! element number 1

i2 = NINT((1-alpha)*nu) ! element number 2

*DO,nele,i1,i2

 *GET,nx,ETAB,1,ELEM,nele $ nx_avg = nx_avg + nx

 *GET,ny,ETAB,2,ELEM,nele $ ny_avg = ny_avg + ny

 *GET,nxy,ETAB,3,ELEM,nele $ nxy_avg = nxy_avg + nxy

*ENDDO

nx_avg = nx_avg/(i2-i1+1) ! nx_avg = Sum(nx)/(i2-i1+1)

ny_avg = ny_avg/(i2-i1+1) ! ny_avg = Sum(ny)/(i2-i1+1)

nxy_avg = nxy_avg/(i2-i1+1) ! nxy_avg = Sum(nxy)/(i2-i1+1)

*GET,nx,ETAB,1,ELEM,NINT(nu/2)

*GET,ny,ETAB,2,ELEM,NINT(nu/2)

*GET,nxy,ETAB,3,ELEM,NINT(nu/2)

*CFOPEN,ShellBuckling,csv,,APPEND

*VWRITE,E,t,w,aa,bb,lv,nv,lz,nu

(F10.0,',',F10.3,',',F10.3,',',F10.0,',',F10.0,',',F10.3,',',F10.0,',',F10.0,',',F10.0,',',$)

*VWRITE,delta,nx,ny,nxy,nx_avg,ny_avg,nxy_avg

(F10.3,',',F12.4,',',F12.4,',',F12.4,',',F12.4,',',F12.4,',',F12.4,',',$)

*CFCLOS ! The $ sign suppreses \n (new line command)

Figure 3.13. ETABLE results code snippet (from ShellLinearElasticResults)

CHAPTER 3. METHODOLOGY

21

Subsequently, the internal forces of all elements along the first element column (j = 1) are output to Shell.txt,

which is overwritten at every analysis (Fig. 3.14).

/OUTPUT,Shell,txt

PRETAB,nxx,nyy,nxy

PRETAB,qx,qy

PRETAB,mxx,myy,mxy

/OUT

Figure 3.14. ETABLE results code snippet 2 (from ShellLinearElasticResults)

Shell.txt may be processed with Matplotlib (Hunter, 2007) to check the correctness of the LE solution by

plotting graphs like Fig. 3.15 (p = – 0.1MPa, E = 10000MPa, t = 5mm, ν = 0.3, a = 2000mm, b = 5000mm,

lz = 4000mm, nu = 40 and nv =120).

Figure 3.15. Element membrane forces along the z-coordinate of a test shell

Additionally, a subroutine named NodalMembraneForces (App. D) may be used to extract nodal stresses

in global coordinates, transform them to local coordinates using TransformationMatrix (App. J), and into

membrane forces with Eq. (3.10) and (3.11):

 tn mid  ,  (3.10)

and

 tq midz  ,
3

2
  . (3.11)

𝛼 and 𝛽 represent x or y. NodalMembraneForces is not essential and may be left out, provided the command

that calls it is commented out. Nodal and element results are nonetheless compared in Fig. 3.15, 4.2, 4.3

and 4.4. The reader may note there is a discrepancy between the so-called nodal membrane forces and

element forces. This discussion is deferred to chapter 4.

CHAPTER 3. METHODOLOGY

22

3.4. Linear Buckling Analysis (LBA)

The LBA is solved using the Block Lanczos method. ANSYS Inc. (2009, p.1008) recommends requesting

a few additional modes than needed to enhance the accuracy of the final solution. Figure 3.16. shows the

code snippet – within ShellBuckling – in charge of performing the LBA.

! Linear Buckling Analysis (Find buckling modes and buckling loads)

!---

/SOLU

ANTYPE, BUCKLE ! Linear buckling analysis

BUCOPT, LANB, 5,0,,CENTER ! Block Lanczos method, 5 buckling modes

SOLVE

FINISH

*USE,ShellBucklingResults ! Buckling mode & lambdaC

Figure 3.16. Linear buckling analysis (LBA) code snippet (from ShellBuckling)

After the LBA, ShellBucklingResults (App. E) is run. It plots the first two buckling modes by executing

PlotBuckingModes (App. F). Fig. 3.17 is based on same parameters as Fig. 3.15.

Figure 3.17. First and second buckling modes of a test shell

The buckling load, λC, is extracted using the code in Fig. 3.18.

/POST1

buckling_mode = 1

*USE,PlotBucklingModes ! Plots 2 buckling modes (may be left commented out)

SUBSET,1,buckling_mode,FACT,,,, ! Load buckling mode

*GET,lambdaC,ACTIVE,0,SET,FREQ ! Get the buckling load factor lambdaC

*CFOPEN,ShellBuckling,csv,,APPEND

*VWRITE,lambdaC

(F11.5,',',$)

*CFCLOS

Figure 3.18. Get buckling load code snippet (from ShellBucklingResults)

Initial imperfections for the GNIA are based on Eq. (2.22). The code uses a similar nomenclature:  (delta)

is the prescribed imperfection amplitude and k
max (uz_max) is the maximum deflection. The latter is

CHAPTER 3. METHODOLOGY

23

obtained by looping through all the nodes and storing the largest |uz| (Fig. 3.19). The deflections are

transformed to local coordinates using TransformationMatrix (App. J).

!Loop to read deflection of node next to ith element

uz_max = 0

defl_max = 0

*DO,j,1,nv ! j-th element column (along v)

 *DO,i,1,nu+1 ! i-th element row (along u)

 nnode = 1 + 2*(i-1) + (j-1)*(3*nu+2) ! nnode = k1(i,j)

 *GET,u_x,NODE,nnode,U,X ! Extract u_x from nnode

 *GET,u_y,NODE,nnode,U,Y ! Extract u_y from nnode

 *GET,u_z,NODE,nnode,U,Z ! Extract u_z from nnode

 defl = SQRT(u_x*u_x+u_y*u_y+u_z*u_z) ! Absolute deflection

 u = (i-1)*(lu/nu)-lu/2 ! u-parameter

 v = (j-1)*(lv/nv) ! v-parameter

 *USE,TransformationMatrix ! Assemble Gamma matrix

 *VEC,Defl_global,D,ALLOC,3,,, ! Allocate space for Defl_global

 *SET,Defl_global(1),u_x,u_y,u_z ! Let Defl_global = [u_x;u_y;u_z]

 *MULT, Gamma, , Defl_global, , Defl_local ! Defl_local = Gamma*Defl_global

 u_z = Defl_local(3) ! local z-displacement

 *IF,ABS(u_z),GT,uz_max,THEN

 uz_max = ABS(u_z) ! uz_max = max(u_z)

 defl_max = ABS(defl) ! defl_max = max(defl)

 nnode_max = 1 + 2*(i-1) + (j-1)*(3*nu+2) ! node with highest deflection

 *ENDIF

 *ENDDO

*ENDDO

Figure 3.19. Get maximum deflection code snippet (from ShellBucklingResults)

The optional NodalDisplacements subroutine (App. G) may be run to output the buckling mode nodal

displacements to ShellLBA.csv, which can be processed in MATLAB to yield, for instance, Fig. 3.20 based

on the test shell from Fig. 3.15. uz is an order of magnitude greater than ux and uy, as would be expected.

Figure 3.20. Buckling mode local coordinate displacements of a test shell

CHAPTER 3. METHODOLOGY

24

3.5. Geometrically Nonlinear Analysis with Initial Geometric Imperfections (GNIA)

GeomNonlinearAnalysis (App. H) updates the geometry using a buckling mode and
k

max (uz_max) from

section 3.4. The geometry is updated with UPGEOM, whose arguments are the factor (delta/uz_max), load

step, buckling mode, file and file extension (Fig. 3.21). The solution is then set up and executed (Fig. 3.22).

! Update the geometry

!---

/PREP7

FACTOR = delta/uz_max ! Factor for UPGEOM

UPGEOM,FACTOR,1,buckling_mode,'file','rst', ! Add imperfections

/RESET $ /ERASE $ /REPLOT ! Replot

FINISH

Figure 3.21. Update the geometry code snippet (from GeomNonlinearAnalysis)

/SOLU

! Set analysis type: GNA

!---

NCNV,0 ! Do not terminate program if not-converged

NERR,,,-1 ! Do not terminate analysis if not-converged

ANTYPE, STATIC ! Static analysis

NLGEOM, ON ! Nonlinear geometry

TIME, 1 ! Time at the end of load step

! Set nonlinear controls / solution technique

!---

ARCLEN,ON ! Arclength ON

nsubstep = 200 ! # of substeps. Keep as par b/c it is used later in *VEC

NSUBST,nsubstep,, ! Number of substeps

NEQIT,50, ! Max. number of iterations

CNVTOL,STAT ! Convergence tolerance (default)

! Set output controls

!---

RESCONTROL,DEFINE,ALL,1, ! Write new files at every substep

OUTRES,NSOL,ALL,,,, ! Write nodal results at every substep

OUTRES,ESOL,ALL,,,, ! Write element results at every substep

! Solve

!---

SOLVE

FINISH

Figure 3.22. Geometrically nonlinear analysis code snippet (from GeomNonlinearAnalysis)

MAPDL uses TIME as the counter for both dynamic and nonlinear static analysis. In a non-proportional

analysis, time acts as a counter for indexing each load step. For single load step analysis, time equals λ.

Assuming λS does not exceed 1, GeomNonlinearAnalysisResults (App. I) retrieves λS with the time-

dependent post-processor: /POST26. A loop runs through the time variable and stores its maximum value.

lambdaS = 0

*DO,k,1,nn

 *IF,time(k),GT,lambdaS,AND,time(k),LT,1,THEN

 lambdaS = time(k)

 *ENDIF

*ENDDO

Figure 3.23. Get GNIA load factor code snippet (from GeomNonlinearAnalysisResults)

CHAPTER 3. METHODOLOGY

25

Since time defaults to 1 at the end of each analysis, the loop ensures this value does not get saved. Prior to

extracting λS, the time variable is stored in an array parameter using VGET. Likewise, the ux, uy and uz

deflections of the node with highest initial imperfection are defined as variables and stored into

homonymous vector parameters. VOPER operates element-wise on the ux, uy and uz vector parameters to

yield δ = 222
zyx uuu  . δ (defl) and λ (time) of every analysis are appended to ShellGNIA.csv. Varying the

number of elements on the test shell from Fig. 3.15, force-displacement curves like in Fig. 3.24 can be

obtained. Such plots verify the efficacy of Eq. (3.12) and (3.13) from section 3.6 in dictating enough

elements. Another salient feature is that λS exceeds λC as expected for a negatively curved toroidal segment.

Figure 3.24. Force-displacement plot of a test shell

3.6. Python Script

The Python script consists of a function (RunAPDL in App. K) embedded in loops that iterate over set of

input parameters. For RunAPDL to work properly, the main output files (ShellBuckling.csv and

ShellGNIA.csv) must be closed and a valid ANSYS license must be reachable. Also, RunAPDL has a built-

in piece of code that ensures no lock file prevents MAPDL from running.

RunAPDL executes three tasks: 1) write an input file with all the necessary parameters, 2) invoke MAPDL

and 3) extract the critical buckling to update the input pressure for the following analysis. When writing the

input file, a sufficient number of elements must be prescribed. The choice rests on the predicted number of

buckling waves. The length of half a wave is approximately ta  . Based on the number of waves in

Fig. 3.17, β is estimated to be between 5.2 and 8. Thus, for a shell segment of radius a and lz = 2a, setting

  taanu  NINT2 (3.12)

and

 nv = 3nu (3.13)

will ensure the presence of at least 5 to 8 elements per semi-wave in both x and y directions. For some given

input parameters, the input file generated by RunAPDL may end up looking as in Fig. 3.25.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

λ

δ

nu = 60, nv = 180

nu = 40, nv = 120

nu = 20, nv = 60

LBA

CHAPTER 3. METHODOLOGY

26

/NERR,200,10000,,OFF,0

pi = acos(-1)

E = 100000 ! N/mm2 Young's modulus

t = 6.00 ! mm thickness

w = 0.30 ! Poisson's ratio

p = -0.278483 ! N/mm2 external pressure

aa = 1100.00 ! mm horizontal radius at u = 0

bb = 3000.00 ! mm vertical radius

lz = 4000.00 ! mm model height

lu = 2*asin(lz/2/bb) !mm

lv = 2*pi ! model perimeter at u = 0

nu = 2*NINT(ABS(aa)/SQRT(ABS(aa)*t))

nv = 3*nu ! number of elements along v-axis

alpha = 0.25 ! ratio of lu that is not loaded by p

delta = 5.00*t ! prescribed imperfection magnitude

*ULIB,ShellBucklingLibrary,mac

*USE,ShellBuckling,pi,E,t,w,p,aa,bb,lz,lu,nu,nv,alpha,delta

/CLEAR

Figure 3.25. ShellBucklingInput.inp

Python then invokes MAPDL and passes ShellBucklingInput.inp via the subprocess module. Once an

analysis finishes, λC is read from the last line of ShellBuckling.csv and p is updated for the next analysis per

 pp C  2.1 ,

where 1.2 is arbitrarily chosen to be large enough that λS is reached before all the load is applied (or else

the analysis will simply terminate at λ = 1) and small enough so that there are enough load steps leading up

to λS. When crafting loops for RunAPDL, some forethought is in order:

1) Avoid choosing too small values of any variable, especially a and t to avoid large nu and nv.

2) Negative values of a generate models with positive kG. E.g., – 2000 mm < a < – 5000 mm.

3) Positive values of a generate models with negative kG. E.g., 2000 mm < a < 5000 mm.

4) 2b should be larger than lz. E.g., if lz is 4000 mm, choose 3000 mm < b < 10000 mm.

5) The shell should be thin, i.e., 30 < a/t < 4000. If a is 2000 mm, choose 1 mm < t < 10 mm.

6) Choose according to exponentially decreasing λS with increasing  , e.g., [0.01t, 0.1t, 0.5t, 1t, 2t].

7) The change in variable size should be gradual for pp C  2.1 to work properly.

8) The initial value of p should be negative to apply the pressure from the outside inwards.

Points 2) and 3) are illustrated by Fig. 3.26.

Figure 3.26. (a) Model with negative Gausian curvature (b) model with positive Gaussian curvature

CHAPTER 3. METHODOLOGY

27

Figure 3.27 shows a possible assembly of loops. This example generates negatively curved shells.

w = 0.3 # Poisson’s ratio

p = -0.1 # Initial external pressure (note: negative)

lz = 4000 # Model height (Can also be varied)

alpha = 0.25 # Half of unloaded area

modulus = [30000,60000,100000,200000] # MPa

thickness = np.linspace(5,10,6) # mm

a = np.linspace(1000,2000,11) # mm

b = np.linspace(3000,6000,16) # mm

delta_init = [0.01,0.1,0.5,1,2] # as a ratio of t

for E in modulus:

 for t in thickness:

 for aa in a:

 for bb in b:

 for delta in delta_init:

 p = RunAPDL(E,t,w,p,aa,bb,lz,alpha,delta)

Figure 3.27. Loops to iterate parameters around RunAPDL

Additionally, it is possible to change the boundary conditions inside the MAPDL script, or even add axial

loads (as with the axially compressed thin-shell cylinder from subsection 2.2.4.2). Appendix L contains an

alternative version of the Python script written for MATLAB.

3.7. Torus Model

Figure 3.28 shows the torus model mentioned in section 3.2, which was considered and analyzed.

Figure 3.28. Complete torus model

The complete Torus model is parametrized by





















































































































a

v
a

b

u

a

v
ab

b

u

a

v
ab

uz

vuy

vux

vu

cos

cossin

sinsin

)(

),(

),(

),(r , (3.14)

CHAPTER 3. METHODOLOGY

28

where av 20  and bu 20  . It was envisaged this model would offer a gamut of curvature dyads

ranging from positive to negative values of kG. A linear elastic solution for the membrane forces of an

externally pressurized Torus shell was obtained analytically and using FEM (section 4.1). The analytically

derived membrane forces are rather uniform. Localized additional membrane forces were later added to a

segment of the torus as shown in Fig. 3.29 to instigate localized buckling.

Figure 3.29. Additional forces on torus model

CHAPTER 4. RESULTS

29

4. RESULTS

4.1. Torus Results

An analytical solution for the linear elastic membrane forces of a torus shell subject to uniform external

pressure is presented hereinafter. Per (Hoogenboom, 2017, p. 30), the torus curvatures are

 

1

sin













av

b
akxx ,

(4.1)

a
k yy

1


(4.2)

and

 0xyk . (4.3)

The Lamé parameters, in turn, are given by











a

v

b

a
x sin1 (4.4)

and

 1y . (4.5)

Equations (2.7) and (2.8), and use of chain rule, yield the in-plane curvatures

 1

sincos
11






































 b

a

v
a

a

v

vy
k x

yx

x

x

x








 (4.6)

and

0

1







u
k

y

yx

y




. (4.7)

Lastly, the external pressure is defined in local coordinates as

 0 yx pp and ppz  . (4.8)

It is assumed that xxn is a constant obtained by Barlow’s formula (Hoogenboom, 2017, p. 8) and yyn is a

function of v, i.e.,  vnn yyyy  . Force equilibrium at the cut in Fig. 4.1 yields

2

ap
nxx


 . (4.9)

CHAPTER 4. RESULTS

30

Figure 4.1. Calculation based on Barlow's formula

Substituting the above relations into Eq. (2.12) yields

1

sincos)()(


































b

a

v
a

a

v
nnknn

v

n
yyxxxyyxx

yy
, (4.10)

whose solution is

b
a

v
a

C
a

v
a

ap

b
a

v
a

Cdv
ap

a

v

b
a

v
a

Cdvn
a

v

n
xx

yy








































































sin

sin

2
sin

2
cos

sin

cos

. (4.11)

Further substitution of Eq. (4.9) and (4.11) into (2.10) yields 𝐶 = 2𝑏, i.e., yyn is given by

1

sin2sin
2









































 b

a

v
ab

a

v
a

ap
nyy . (4.12)

Substituting Eq. (4.9) and (4.12) into (2.10), (2.11), and (2.12) shows their correctness. Furthermore, they

form the only solution. Fig. 4.2 compares the analytical solution to the FEM solution of a torus model with

E = 10000MPa, t = 5mm, ν = 0.2, a = 2000mm, b = 10000mm, p = 0.001MPa, nv = 60 and nu = 180.

Figure 4.2. Torus linear elastic membrane forces

CHAPTER 4. RESULTS

31

Additional forces were added per Fig. 4.3. The result of adding forces at an angle of 10 degrees to each

side (α = 10o) with a magnitude of half the analytical nxx is plotted in Fig. 4.3.

Figure 4.3. Torus linear elastic membrane forces, nadd = 0.5 nxx

Augmenting nxx due to pressure only by nadd yields an expected total of about 1.5nxx due to pressure alone.

nxx also changes abruptly wherever km = 0 (at v = 0mm and v = 6283 mm). nyy, on the other hand, sees very

slight difference except for a noticeably discrepancy between the results extracted directly at the element

level and at the nodal level. Very similar patterns are observed for the case in which α = 10o and nadd = nxx.

Figure 4.4. Torus linear elastic membrane forces, nadd = 1.0 nxx

The discrepancy between the nodal and element results shall unfortunately remained unexplained, but the

presence of bending moments at the locations where kG = 0 may have had some influence. Overall, nadd

yields load peaks wherever kG = 0. Not surprisingly, buckling occurs at this location over the entire

circumference. Remarkably, nadd has a negligible influence on the buckling modes and critical load. It is for

this reason that the complete torus model was demoted and the script was instead provided for the toroidal

shell segments which shows much more uniform membrane forces and much more localized sinusoidal

buckling patterns. Figure 4.5 shows the buckling modes for nadd = 0.5 nxx.

CHAPTER 4. RESULTS

32

Figure 4.5. Torus linear buckling modes, nadd = 0.5nxx

4.2. Cylinder GNIA Results

The capabilities of the MAPDL ShellBuckling macros were tested by comparing its results to the notorious

axially compressed thin-shell cylinder. The cylindrical model was achieved by setting the input parameters

to E = 100000MPa, t = 5mm, ν = 0.3, a = 2000mm, b = 50000000mm, lu = 5000mm, nu = 30, nv = 90 and

replacing the external pressure by downward force applied at the top nodes. The force on each node equaled

vntE /6.02 2  , such that the resulting nxx would equal the buckling load predicted by Eq. (2.13). The

first three buckling modes corresponding to λC can be seen in Fig. 4.6.

Figure 4.6. Thin-shell cylinder buckling modes

CHAPTER 4. RESULTS

33

The initial imperfections are based on the non-axisymmetrical (second) buckling mode. The results of

increasing the initial imperfections are shown in Fig. 4.7. The results are compared to Eq. (2.20) and (2.21).

Figure 4.7. Thin-shell cylinder imperfection sensitivity

There is reasonable agreement between the theoretical results and the finite element analysis results,

especially at values of δ/t between 0.2 and 1.

4.3. Example Results from the Python Script

An excerpt of the test runs that have been performed is presented herein. Table 4.1 contains all prescribed

fields from Fig. 3.1. The last column contains the percentage difference between the absolute deflection

(defl_max) of the node with maximum deflection and the local z displacement (uz_max) of that same node

after the LBA. This value should ideally be small (2~10). In the rare occurrence this value is large, it means

the geometry update for the GNIA did not proceed as planned and discarding the results of said analysis

would be recommended.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

λ

δ/t

sphere

Cylinder

MAPDL

34

Table 4.1. Excerpt of test runs
E t v a b lv nv lz nu δ nxx,avg nyy,avg nxy,avg nxx nyy nxy λC λS %

100000 5 0.3 1100 3000 6.283 90 4000 30 0.5 35.0042 -196.1515 0 20.4376 -188.8473 0 0.83055 0.96321 8.7

100000 5 0.3 1100 3000 6.283 90 4000 30 2.5 35.0042 -196.1515 0 20.4376 -188.8473 0 0.83055 0.94579 8.7

100000 5 0.3 1100 3000 6.283 90 4000 30 5 35.0042 -196.1515 0 20.4376 -188.8473 0 0.83055 0.94649 9.2

100000 5 0.3 1100 3000 6.283 90 4000 30 10 35.0042 -196.1515 0 20.4376 -188.8473 0 0.83055 0.94558 9.1

100000 5 0.3 1100 3000 6.283 90 4000 30 25 34.8872 -195.496 0 20.3693 -188.2161 0 0.83334 0.82731 9.1

100000 5 0.3 1100 3200 6.283 90 4000 30 0.5 30.1293 -187.5943 0 17.5912 -178.6537 0 0.85905 0.99994 1.5

100000 5 0.3 1100 3200 6.283 90 4000 30 2.5 31.8031 -198.0162 0 18.5685 -188.5789 0 0.81384 0.94303 3.2

100000 5 0.3 1100 3200 6.283 90 4000 30 5 31.8031 -198.0162 0 18.5685 -188.5789 0 0.81384 0.92708 3.4

100000 5 0.3 1100 3200 6.283 90 4000 30 10 33.3459 -207.6221 0 19.4693 -197.727 0 0.77619 0.91111 3.2

100000 5 0.3 1100 3200 6.283 90 4000 30 25 31.0594 -193.3858 0 18.1343 -184.1691 0 0.83333 0.87672 1.5

100000 5 0.3 1100 3400 6.283 90 4000 30 0.05 42.7961 -292.3634 0 24.9879 -276.0395 0 0.54967 0.7033 8.6

100000 5 0.3 1100 3400 6.283 90 4000 30 0.5 28.2284 -192.8436 0 16.4821 -182.0763 0 0.83333 0.99855 4.5

100000 5 0.3 1100 3400 6.283 90 4000 30 2.5 28.2284 -192.8436 0 16.4821 -182.0763 0 0.83333 0.99174 3

100000 5 0.3 1100 3400 6.283 90 4000 30 5 28.2283 -192.8425 0 16.482 -182.0753 0 0.83333 0.99335 3.9

100000 5 0.3 1100 3400 6.283 90 4000 30 10 28.2281 -192.8415 0 16.4819 -182.0743 0 0.83334 0.95321 4

100000 5 0.3 1100 3600 6.283 90 4000 30 0.05 26.1291 -193.9661 0 15.2574 -181.8573 0 0.80555 0.96819 1.4

100000 5 0.3 1100 3600 6.283 90 4000 30 0.5 25.2579 -187.4994 0 14.7488 -175.7944 0 0.83334 0.99763 1

100000 5 0.3 1100 3600 6.283 90 4000 30 2.5 25.2581 -187.5005 0 14.7488 -175.7954 0 0.83333 0.99595 1.3

100000 5 0.3 1100 3600 6.283 90 4000 30 5 25.2579 -187.4994 0 14.7488 -175.7944 0 0.83334 0.98907 1.3

100000 5 0.3 1100 3600 6.283 90 4000 30 10 25.2582 -187.5015 0 14.7489 -175.7964 0 0.83333 0.9634 1

100000 5 0.3 1100 3800 6.283 90 4000 30 0.05 23.5343 -188.3836 0 13.7435 -175.5999 0 0.81709 0.99861 4.1

100000 5 0.3 1100 3800 6.283 90 4000 30 0.5 23.0756 -184.7118 0 13.4757 -172.1772 0 0.83333 0.99686 4.7

100000 5 0.3 1100 3800 6.283 90 4000 30 2.5 23.0754 -184.7107 0 13.4756 -172.1762 0 0.83334 0.99266 4.4

100000 5 0.3 1100 3800 6.283 90 4000 30 5 23.0757 -184.7128 0 13.4757 -172.1782 0 0.83333 0.9684 4.6

100000 5 0.3 1100 3800 6.283 90 4000 30 10 23.0756 -184.7118 0 13.4757 -172.1772 0 0.83333 0.97945 3.9

100000 5 0.3 1100 4000 6.283 90 4000 30 0.05 21.6182 -185.4265 0 12.6259 -171.9987 0 0.82366 0.99961 0.6

100000 5 0.3 1100 4000 6.283 90 4000 30 0.5 21.3672 -183.2741 0 12.4793 -170.0021 0 0.83334 0.99935 0.6

100000 5 0.3 1100 4000 6.283 90 4000 30 2.5 21.3675 -183.2762 0 12.4795 -170.0041 0 0.83333 0.99781 0

100000 5 0.3 1100 4000 6.283 90 4000 30 5 21.3673 -183.2751 0 12.4794 -170.0031 0 0.83333 0.97068 0

100000 5 0.3 1100 4000 6.283 90 4000 30 10 21.3672 -183.2741 0 12.4793 -170.0021 0 0.83334 0.97018 0

CHAPTER 5. CONCLUSIONS

35

5. CONCLUSIONS

This treatise caters the MAPDL macros and Python code required to execute a batch of nonlinear finite

element analyses to generate a database of the nonlinear buckling loads of shell portions with varying

membrane forces, curvatures and magnitude of initial geometric imperfections. Some limitations deserve

attention.

While the input files prescribe enough number of elements and applied pressure to facilitate convergence,

it is difficult to manually verify whether all analyses reached λS. To facilitate this task, the macros writes

the data points of all force-displacement curves to ShellGNIA.csv. A new (Python) code could be written to

examine said data points and verify whether the load did indeed plateau or (numerical) divergence occurred

at an earlier stage.

Currently the code only employs a single buckling mode to update the model geometry in preparation for

the GNIA. It may be imperative to modify that code section to include a wider gamut of buckling modes,

using either Eq. (2.24), (2.25) or another method.

Another complication is the duration of each analysis. Test runs have recorded times between 300 to 1000

seconds per analysis. The analyses’ duration gets especially large for shells with large radii and small

thickness as more elements are needed. Given the sheer number of parameters that need to be varied to

generate a comprehensive database the overall duration of the analyses could easily be prolonged.

After completing the database, the task to fit equations to the data could be best accomplished using

specialized software or code, and visualizing the effect of individual parameters or pairs of parameters on

λS by generating various two- and three-dimensional plots.

REFERENCES

36

REFERENCES

ANSYS Inc. (2017). ANSYS® Academic Research Mechanical, Release 18.1 [Computer software].

Canonsburg, PA., U.S. Retrieved from TU Delft student software portal: https://software.tudelft.nl/

ANSYS Inc. (2009). Command Reference for the Mechanical APDL. ANSYS Manual, 15317, 1-1920.

Canonsburg, PA: ANSYS, Inc.

ANSYS Inc. (2009). Theory Reference for the Mechanical APDL and Mechanical Applications, ANSYS

Manual. 3304, Canonsburg, PA: ANSYS, Inc.

Bažant, Z.P., Cedolin L. (1991). Stability of Structures, Elastic, Inelastic, Fracture and Damage theories,

Oxford University Press, New York, 1991.

Budiansky, B., & Hutchinson, J.W. (1966). A Survey of Some Buckling Problems. AAIA Journal, 4(9),

1505-1510.

Budiansky, B., & Amazigo, J.C. (1969). Initial Postbuckling Behavior of Cylindrical Shells Under External

Pressure. Journal of Mathematics and Physics. 47, 223-235

Blaauwendraad, J., & Hoefakker, J.H. (2013). Structural Shell Analysis: Understanding and Application

(Solid mechanics and its applications, v. 200). Dordrecht, The Netherlands: Springer.

Borst, R., & Crisfield, M. (2012). Nonlinear finite element analysis of solids and structures (2nd ed., Wiley

series in computational mechanics). Chichester, West Sussex, United Kingdom: Wiley.

Bushnell, D. (1981). Buckling of Shells-Pitfall for Designers. AIAA Journal, 19(9), 1183-1226.

Chen, T. (2014). On Introduction Imperfection in the Non-Linear Analysis of Buckling of Thin-shell

Structures (Master’s Thesis) TU Delft, Delft, The Netherlands

Cox, H.L. (1940). Stress Analysis of Thin Metal Construction, Journal Royal Aeronautical Society. 44, 231

Danielson, D.A. (1970). Buckling and Initial Postbuckling Behavior of Spheroidal Shells Under Pressure.

AAIA Journal, 7(5), 936-944.

Hoogenboom. P.C.J. (2017). CIE4143 Shell Analysis, Theory and Application. [lecture notes]. Retrieved

from http://homepage.tudelft.nl/p3r3s/b17_schedule.html

Hunter J., (2007). Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering, 9(3),

90-94.

Hutchinson, J.W. (1967a). Imperfection Sensitivity of Externally Pressurized Spherical Shells. Journal

of Applied Mechanics, 34(1), 49-55

Hutchinson, J.W. (1967b). Initial Postbuckling Behavior of Toroidal Shell Segments. International

Journal of Solids and Structures, 3, 97-115.

https://software.tudelft.nl/
http://homepage.tudelft.nl/p3r3s/b17_schedule.html

REFERENCES

37

Hutchinson, J.W. (1968). Buckling and Initial Postbuckling Behavior of Oval Cylindrical Shells Under

Axial Compression. Journal of Applied Mechanics, 35(1), 66-72

Hutchinson, J.W., & Koiter W.T. (1970). Postbuckling Theory, Applied Mechanics Reviews, 23(12),

1353-1363.

Kármán, T. & Tsien, H.S. (1939). The Buckling of Spherical Shells by External Pressure. Journal of the

Aeronautical Sciences, 7(2), 43-50.

Kármán, T. & Tsien, H.S. (1941). The Buckling of Thin Cylindrical Shells Under Axial Compression.

Journal of the Aeronautical Sciences, 8(8), 303-312.

Koiter, W.T. (1970). On the Stability of Elastic Equilibrium. Tech. Rep. No. AFFDLTR-70-25, Ohio: Air

Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base.

McGuire, W., Gallagher, R. H., & Ziemian, R.D., (2000). Matrix Structural Analysis (2nd Ed.). Retrieved

from: http://mastan2.com/textbook.html

The MathWorks, Inc. (2017). MATLAB® Release 2017a [Computer software]. Natick, MA, U.S.

License retrieved from TU Delft student software portal: https://software.tudelft.nl/

Voyiadjis, G.Z., & Woelke, P. (2008). Elasto-Plastic and Damage Analysis of Plates and Shells. Berlin:

Springer.

Weingarten, V.I., Morgan, E.J., & Seide, P. (1965). Elastic Stability of Thin-Walled Cylindrical and

Conical Shells under combined Internal Pressure and Axial Compression. AIAA Journal, 3, 500-

505.

Ziemian, R. D. (ed.) (2010). Guide to stability design criteria for metal structures. (6th Ed.). Structural

Stability Research Council, Hoboken, N.J., U.S.: John Wiley and Sons.

http://mastan2.com/textbook.html
https://software.tudelft.nl/

APPENDIX A. ShellBuckling

38

APPENDIX A. ShellBuckling

ShellBuckling

!%%

! ShellBuckling

! Date: 22 November 2017

! Author: Erik Giesen Loo

!

! Performs LE, LBA and GNIA of a toroidal shell segment created using ShellModel.

!

! Subroutines:

! ShellModel

! ShellLinearElasticResults

! NodalMembraneForces (optional)

! TransformationMatrix (optional)

! ShellBucklingResults

! PlotBucklingResults (optional)

! ShellMatrixTransformation

! NodalDisplacements (optional)

! TransformationMatrix (optional)

! GeomNonlinearAnalysis

! GeomNonlinearAnalysisResults

!

!%%

! Preprocessing

!---

/UIS,MSGPOP,4 ! Sets pop-ups to YES

/UIS,ABORT,OFF ! No pop-ups about status of operation in progress

*USE,ShellModel ! Create toroidal segment

! Linear Elastic Analysis (Find stresses for buckling analysis)

!---

/SOLU

ANTYPE, STATIC ! Linear elastic analysis

PSTRES, ON ! Prestress effects to be included in buckling analysis

SOLVE

FINISH

*USE,ShellLinearElasticResults ! Membrane forces

! Linear Buckling Analysis (Find buckling modes and buckling loads)

!---

/SOLU

ANTYPE, BUCKLE ! Linear buckling analysis

BUCOPT, LANB, 5,0,,CENTER ! Block Lanczos method, 5 buckling modes

SOLVE

FINISH

*USE,ShellBucklingResults ! Buckling mode & lambdaC

! Geometrically Nonlinear Analysis with Initial Geometrical Imperfections

!---

*USE,GeomNonlinearAnalysis

*USE,GeomNonlinearAnalysisResults

/EOF

APPENDIX B. ShellModel

39

APPENDIX B. ShellModel
ShellModel

!%%

! Shell Model

! Date: 22 November 2017

! Author: Erik Giesen Loo

! Creates the model of a toroidal shell segment.

!

! Called by:

! ShellBuckling

!

! Subroutines:

! None

!

! Input:

! t = thickness

! E = Young's modulus

! w = Poisson's ratio

! p = external pressure

! aa = Horizontal radius at u = 0, kyy = -1/aa

! bb = Vertical radius, kxx = 1/bb

! nu = number of elements along u-axis

! nv = number of elements along v-axis

! lu = Total length of parameter u, from -lu/2 to lu/2

! lv = Model perimeter at u = 0 as a ratio of aa, i.e., 2*pi

! alpha = half of ratio of lu that is not loaded by constant pressure

!

! Output:

! None

!

!%%

/PREP7

/VIEW, ALL, 0, -1, 0.2 ! all windows: camera at point (0,-1,0.2)

! Create element type: shell

!---

ET,1,SHELL281 ! element type: 8 node quadrilateral

R,1,t,t,t,t, , , ! element thickness

! Create material properties

!---

MP,EX,1,E ! Elastic modulus (linear elastic material)

MP,PRXY,1,w ! Poisson's ratio (linear elastic material)

! Create Shell nodes

!---

! ty and tx are dummy variables that, added together, act like a Boolean indicating when

! a node should be created. If ty + tx is less than 1, then a node is created.

ty=1

*DO,nj,0,2*nv-1 ! Nodal columns going from nj = 0 to 2*nv-1, i.e., (2*nv) columns

 ty=-ty

 tx=1

 v = nj*lv/nv/2 ! Parameter v (U-V plane)

 *DO,ni,-nu,nu ! Nodal rows going from ni = -nu to nu, i.e., (2*nu) rows

 tx=-tx

 *IF,tx+ty,LT,1,THEN ! if tx+ty = 2 omit node creation

 u = ni*lu/nu/2 ! Parameter u (U-V plane)

 x = (aa+(1-COS(u))*bb)*COS(v) ! x-coordinate x = x(u,v)

 y = (aa+(1-COS(u))*bb)*SIN(v) ! y-coordinate y = y(u,v)

 z = bb*SIN(u) ! z-coordinate z = z(u)

 N,,x,y,z,,, ! Create node

 *ENDIF

 *ENDDO

*ENDDO

APPENDIX B. ShellModel

40

! Create Shell elements

!---

SHPP,OFF ! no warning aspect ratio

*DO,j,1,nv ! j-th element column (along v-axis)

 *DO,i,1,nu ! i-th element row (along u-axis)

 k1 = 1 + 2*(i-1) + (j-1)*(3*nu+2)

 k2 = i + 2*j + (3*j - 1)*nu - 1

 *IF,j,LT,nv,THEN ! j < nv

 k3 = 1 + 2*(i-1) + j*(3*nu+2)

 *ELSE ! j = nv

 k3 = 1 + 2*(i-1)

 *ENDIF

 E,k3,k3+2,k1+2,k1,k3+1,k2+1,k1+1,k2

 *ENDDO

*ENDDO

! Create Dirichlet boundary conditions

!---

! Top and bottom rings

*DO,j,1,nv ! j-th element column (along v-axis)

 n_bot = 1 + (j-1)*(3*nu+2) ! n_bot = k1(i = 1,j)

 n_top = 3 + 2*(nu-1) + (j-1)*(3*nu+2) ! n_top = k1(i = nu,j) + 2

 D,n_top,UX,0,,,,UY,

 D,n_bot,UX,0,,,,UY,UZ

*ENDDO

! Create Neumann boundary conditions

!---

ESEL,S,ELEM,,nu/2

*DO,j,1,nv ! j-th element column (along v-axis)

 i_bot = 1+(j-1)*nu+NINT(alpha*nu) ! i_bot-th element row

 i_top = j*nu-NINT(alpha*nu) ! i_top-th element row

 ESEL,A,ELEM,,i_bot,i_top,1 ! Append elements from i_bot to i_top in steps of 1

*ENDDO

SFE, ALL, 1, PRES, 0, p,,, ! Add uniform pressure on all selected elements

ALLSEL ! Reselect all elements

FINISH

/EOF

APPENDIX C. ShellLinearElasticResults

41

APPENDIX C. ShellLinearElasticResults
ShellLinearElasticResults

!%%

! ShellLinearElasticResults

! Date: 17 November 2017

! Author: Erik Giesen Loo

! Writes model parameters and membrane forces to ShellBuckling.csv.

! Writes shell internal forces (elements 1 through nu) in Shell.txt.

!

! Called by:

! ShellBuckling

!

! Subroutines:

! NodalMembraneForces (Optional)

! TransformationMatrix (Optional)

!

! Input:

! E,t,w,aa,bb,lz,nu,lv,nv,alpha,delta

!

! Output:

! nx,ny,nxy,nx_avg,ny_avg,nxy_avg

!

!%%

/POST1

ESEL,S,ELEM,,1,nu,1 ! Select elements from 1 to nu in increments of 1

ETABLE,nxx,SMISC,1 ! Extract shell nxx membrane force

ETABLE,nyy,SMISC,2 ! Extract shell nyy membrane force

ETABLE,nxy,SMISC,3 ! Extract shell nxy membrane force

ETABLE,mxx,SMISC,4 ! Extract shell mxx moment

ETABLE,myy,SMISC,5 ! Extract shell myy moment

ETABLE,mxy,SMISC,6 ! Extract shell mxy moment

ETABLE,qx ,SMISC,7 ! Extract shell qx shear force

ETABLE,qy ,SMISC,8 ! Extract shell qy shear force

nx_avg = 0 ! Re-set nx_avg to 0

ny_avg = 0 ! Re-set ny_avg to 0

nxy_avg = 0 ! Re-set nxy_avg to 0

i1 = NINT(alpha*nu) ! element number 1

i2 = NINT((1-alpha)*nu) ! element number 2

*DO,nele,i1,i2

 *GET,nx,ETAB,1,ELEM,nele $ nx_avg = nx_avg + nx

 *GET,ny,ETAB,2,ELEM,nele $ ny_avg = ny_avg + ny

 *GET,nxy,ETAB,3,ELEM,nele $ nxy_avg = nxy_avg + nxy

*ENDDO

nx_avg = nx_avg/(i2-i1+1) ! nx_avg = Sum(nx)/(i2-i1+1)

ny_avg = ny_avg/(i2-i1+1) ! ny_avg = Sum(ny)/(i2-i1+1)

nxy_avg = nxy_avg/(i2-i1+1) ! nxy_avg = Sum(nxy)/(i2-i1+1)

*GET,nx,ETAB,1,ELEM,NINT(nu/2)

*GET,ny,ETAB,2,ELEM,NINT(nu/2)

*GET,nxy,ETAB,3,ELEM,NINT(nu/2)

*CFOPEN,ShellBuckling,csv,,APPEND

*VWRITE,E,t,w,aa,bb,lv,nv,lz,nu

(F10.0,',',F10.3,',',F10.3,',',F10.0,',',F10.0,',',F10.3,',',F10.0,',',F10.0,',',F10.0,',',$)

*VWRITE,delta,nx,ny,nxy,nx_avg,ny_avg,nxy_avg

(F10.3,',',F12.4,',',F12.4,',',F12.4,',',F12.4,',',F12.4,',',F12.4,',',$)

*CFCLOS ! The $ sign suppreses \n (new line command)

/OUTPUT,Shell,txt

PRETAB,nxx,nyy,nxy

PRETAB,qx,qy

PRETAB,mxx,myy,mxy

/OUT

ALLSEL

*USE,NodalMembraneForces

FINISH

/EOF

APPENDIX D. NodalMembraneForces (optional)

42

APPENDIX D. NodalMembraneForces (optional)

NodalMembraneForces

!%%

! NodalMembraneForces

! Date: 17 November 2017

! Author: Erik Giesen Loo

! Writes 'nodal' membrane forces to ShellLE.csv.

!

! Called by:

! ShellLinearElasticResults

!

! Subroutines:

! TransformationMatrix

!

! Input:

! E,t,w,p,aa,bb,lz,lu,nu,lv,nv

!

! Output:

! nx, ny, nxy, qx, qy --> ShellLE.csv

!

!%%

*CFOPEN,ShellLE,csv,,

*VWRITE,

E,t,w,p,a,b,lz,nu,nv

*VWRITE, E,t,w,p,aa,bb,lz,nu,nv

%16.4f,%16.4f,%16.4f,%16.4f,%16.4f,%16.4f,%16.4f,%16.4f,%16.4f

*VWRITE,

z-coordinate,n_xx,n_yy,n_xy,q_x,q_y

*DO,i,1,nu+1 ! From element 1 to 'imaginary' element nu+1

 nnode = 1+2*(i-1) ! node number on X-Z plane (at j = 1)

 u = (i-1)*(lu/nu)-lu/2 ! Parameter u

 v = 0 ! Parameter v (at j = 1)

 z = bb*sin(u) ! z-coordinate

 *GET,Sigx,NODE,nnode,S,X ! Extract sigma x

 *GET,Sigy,NODE,nnode,S,Y ! Extract sigma y

 *GET,Sigz,NODE,nnode,S,Z ! Extract sigma z

 *GET,Sigxy,NODE,nnode,S,XY ! Extract xy shear stress

 *GET,Sigyz,NODE,nnode,S,YZ ! Extract yz shear stress

 *GET,Sigxz,NODE,nnode,S,XZ ! Extract xz shear stress

 *DMAT,Sigma,D,ALLOC,3,3 ! Assemble global stress matrix

 *SET,Sigma(1,1),Sigx,Sigxy,Sigxz

 *SET,Sigma(1,2),Sigxy,Sigy,Sigyz

 *SET,Sigma(1,3),Sigxz,Sigyz,Sigz

 *USE,TransformationMatrix ! Transformation matrix Gamma

 *MULT,Sigma, ,Gamma,TRANS,M3 ! M3 = transpose(Gamma)*Sigma

 *MULT,Gamma, ,M3, ,SigLocal ! SigLocal = Gamma*M3

 nx = SigLocal(1,1)*t ! nx = sigx*t

 ny = SigLocal(2,2)*t ! ny = sigy*t

 nxy = SigLocal(1,2)*t ! nxy = sigxy*t

 qx = SigLocal(1,3)*2*t/3 ! qx = max(sigxz)*1.5*t

 qy = SigLocal(2,3)*2*t/3 ! qy = max(sigyz)*1.5*t

 *CFOPEN,ShellLE,csv,,APPEND

 *VWRITE,z,nx,ny,nxy,qx,qy

%12.4f, %12.4f, %12.4f, %12.4f, %12.4f, %12.4f

 *CFCLOS

*ENDDO

/EOF

APPENDIX E. ShellBucklingResults

43

APPENDIX E. ShellBucklingResults
ShellBucklingResults

!%%

! ShellBucklingResults

! Date: 17 November 2017

! Author: Erik Giesen Loo

! Writes the buckling load factor to ShellBuckling.txt.

! Outputs the maximum deflection and corresponding node.

!

! Called by:

! ShellBuckling

!

! Subroutines:

! PlotBucklingModes (optional)

! TransformationMatrix

! NodalDisplacements (optional)

! TransformationMatrix (optional)

!

! Input:

! E,t,w,p,aa,bb,lz,lu,nu,lv,nv

!

! Output:

! lambdaC,defl_max,uz_max,nnode_max,defl_diff

!

!%%

/POST1

buckling_mode = 1

*USE,PlotBucklingModes ! Plots 2 buckling modes (may be left commented out)

SUBSET,1,buckling_mode,FACT,,,, ! Load buckling mode

*GET,lambdaC,ACTIVE,0,SET,FREQ ! Get the buckling load factor lambdaC

*CFOPEN,ShellBuckling,csv,,APPEND

*VWRITE,lambdaC

(F11.5,',',$)

*CFCLOS

!Loop to read deflection of node next to ith element

uz_max = 0

defl_max = 0

*DO,j,1,nv ! j-th element column (along v)

 *DO,i,1,nu+1 ! i-th element row (along u)

 nnode = 1 + 2*(i-1) + (j-1)*(3*nu+2) ! nnode = k1(i,j)

 *GET,u_x,NODE,nnode,U,X ! Extract u_x from nnode

 *GET,u_y,NODE,nnode,U,Y ! Extract u_y from nnode

 *GET,u_z,NODE,nnode,U,Z ! Extract u_z from nnode

 defl = SQRT(u_x*u_x+u_y*u_y+u_z*u_z) ! Absolute deflection

 u = (i-1)*(lu/nu)-lu/2 ! u-parameter

 v = (j-1)*(lv/nv) ! v-parameter

 *USE,TransformationMatrix ! Assemble Gamma matrix

 *VEC,Defl_global,D,ALLOC,3,,, ! Allocate space for Defl_global

 *SET,Defl_global(1),u_x,u_y,u_z ! Let Defl_global = [u_x;u_y;u_z]

 *MULT, Gamma, , Defl_global, , Defl_local ! Defl_local = Gamma*Defl_global

 u_z = Defl_local(3) ! local z-displacement

 *IF,ABS(u_z),GT,uz_max,THEN

 uz_max = ABS(u_z) ! uz_max = max(u_z)

 defl_max = ABS(defl) ! defl_max = max(defl)

 nnode_max = 1 + 2*(i-1) + (j-1)*(3*nu+2) ! node with highest deflection

 *ENDIF

 *ENDDO

*ENDDO

defl_diff = (defl_max - uz_max)/uz_max*100 ! Control defl_max ~>> u_max

*USE,NodalDisplacements ! Saves nodal disp to ShellLBA.csv (may be left commented out)

FINISH

/EOF

APPENDIX F. PlotBucklingModes (optional)

44

APPENDIX F. PlotBucklingModes (optional)

PlotBucklingModes

!%%

! PlotBucklingModes

! Date: 17 November 2017

! Author: Erik Giesen Loo

! Plots two consecutive buckling modes side-by-side.

!

! Called by:

! ShellBucklingResults

!

! Subroutines:

! None

!

! Input:

! None

!

! Output:

! None

!

!%%

! Change background colors

!---

/RGB,INDEX,100,100,100, 0 ! RGB for index 0

/RGB,INDEX, 80, 80, 80,13 ! RGB for index 13

/RGB,INDEX, 60, 60, 60,14 ! RGB for index 14

/RGB,INDEX, 0, 0, 0,15 ! RGB for index 15

! Create two windows

!---

/WINDOW, 1,LEFT ! Create window 1 on the left

/WINDOW, 2,RIGHT ! Create window 2 on the right

! Set camera location, angle, and distance

!---

/PLOPT,INFO,0

/VIEW, ALL, 0, -1, 0.2 ! all window: camera at point (0,-1,0.2)

/ANGLE, ALL, 0 ! all windows: camera angle = 0 degrees

/DIST, ALL, AUTO ! all windows: distance = automatic

! Plot 1st buckling mode in window 1

!---

/WINDOW,2,OFF ! De-activate window 2

SUBSET,1,buckling_mode,FACT,,,, ! Load step 1, buckling mode

PLNSOL, U,SUM, 0,1 ! Contour plot of USUM = u_x+u_y+u_z

! Plot 2nd buckling mode in window 2

!---

/NOERASE ! Do not erase window 1

/WINDOW,1,OFF ! De-activate window 1

/WINDOW,2,ON ! Re-activate window 2

SUBSET,1,buckling_mode+1,FACT,,,, ! Load step 1, buckling mode + 1

PLNSOL, U,SUM, 0,1 ! Contour plot of USUM = u_x+u_y+u_z

/EOF

APPENDIX G. NodalDisplacements (optional)

45

APPENDIX G. NodalDisplacements (optional)

NodalDisplacements

!%%

! NodalDisplacements

! Date: 28 October 2017

! Author: Erik Giesen Loo

! Writes the buckling mode nodal displacements to ShellLBA.csv.

!

! Called By:

! ShellBucklingResults

!

! Subroutines:

! TransformationMatrix

!

! Input:

! E,t,w,p,aa,bb,lz,nu,nv

!

! Output:

! u_x,u_y,u_z,defl --> ShellLBA.csv

!

!%%

! Header

!---

*CFOPEN,ShellLBA,csv,,

*VWRITE, E,t,w,p,aa,bb,lz,nu,nv

%12.4f,%12.4f,%12.4f,%12.4f,%12.4f,%12.4f,%12.4f,%12.4f,%12.4f

*CFCLOS

!Loop to read deflection of node next to ith element

!---

*DO,j,1,nv ! j-th element column (along v)

 *DO,i,1,nu+1 ! i-th element row (along u)

 nnode = 1 + 2*(i-1) + (j-1)*(3*nu+2) ! nnode = k1(i,j)

 *GET,u_x,NODE,nnode,U,X ! Extract u_x from nnode

 *GET,u_y,NODE,nnode,U,Y ! Extract u_y from nnode

 *GET,u_z,NODE,nnode,U,Z ! Extract u_z from nnode

 u = (i-1)*(lu/nu)-lu/2 ! u-parameter

 v = (j-1)*(lv/nv) ! v-parameter

 *USE,TransformationMatrix ! Assemble Gamma matrix

 *VEC,Defl_global,D,ALLOC,3,,, ! Allocate space for Defl_global

 *SET,Defl_global(1),u_x,u_y,u_z ! Defl_global = [u_x;u_y;u_z]

 *MULT, Gamma, , Defl_global, , Defl_local ! Defl_local = Gamma*Defl_global

 u_x = Defl_local(1)

 u_y = Defl_local(2)

 u_z = Defl_local(3)

 defl = SQRT(u_x*u_x+u_y*u_y+u_z*u_z)

 *CFOPEN,ShellLBA,csv,,APPEND

 *VWRITE,u_x,u_y,u_z,defl,

 %16.8f,%16.8f,%16.8f,%16.8f

 *CFCLOS

 *ENDDO

*ENDDO

/EOF

APPENDIX H. GeomNonlinearAnalysis

46

APPENDIX H. GeomNonlinearAnalysis

GeomNonlinearAnalysis

!%%

! GeomNonlinearAnalysis

! Date: 17 November 2017

! Author: Erik Giesen Loo

! Performs a geometrically nonlinear analysis with imperfections (GNIA).

! It updates the geometry using buckling mode(s), then solves the GNIA.

!

! Called by:

! ShellBuckling

!

! Subroutines:

! None

!

! Input:

! delta,uz_max

!

! Output:

! nsubstep

!

!%%

! Update the geometry

!---

/PREP7

FACTOR = delta/uz_max ! Factor for UPGEOM

UPGEOM,FACTOR,1,buckling_mode,'file','rst', ! Add imperfections

/RESET $ /ERASE $ /REPLOT ! Replot

FINISH

/SOLU

! Set analysis type: GNA

!---

NCNV,0 ! Do not terminate program if not-converged

NERR,,,-1 ! Do not terminate analysis if not-converged

ANTYPE, STATIC ! Static analysis

NLGEOM, ON ! Nonlinear geometry

TIME, 1 ! Time at the end of load step

! Set nonlinear controls / solution technique

!---

ARCLEN,ON ! Arclength ON

nsubstep = 200 ! # of substeps. Keep as par b/c it is used later in *VEC

NSUBST,nsubstep,, ! Number of substeps

NEQIT,50, ! Max. number of iterations

CNVTOL,STAT ! Convergence tolerance (default)

! Set output controls

!---

RESCONTROL,DEFINE,ALL,1, ! Write new files at every substep

OUTRES,NSOL,ALL,,,, ! Write nodal results at every substep

OUTRES,ESOL,ALL,,,, ! Write element results at every substep

! Solve

!---

SOLVE

FINISH

/EOF

APPENDIX I. GeomNonlinearAnalysisResults

47

APPENDIX I. GeomNonlinearAnalysisResults

GeomNonlinearAnalysisResults

!%%

! GeomNonlinearAnalysisResults

! Date: 17 November 2017

! Author: Erik Giesen Loo

! Writes the nonlinear buckling load factor to ShellBuckling.csv.

!

! Called by:

! ShellBuckling

!

! Subroutines:

! None

!

! Input:

! nnode_max, nsubstep

!

! Output:

! lambdaS

! Defl, lambda --> ShellGNIA.csv

!

!%%

*DO,K,1,2

 /POST26

 nn = nsubstep

 ! Set vector arrays tinme, u_x, u_y, and u_z

 !---

 *DEL,time $*DIM,time,ARRAY,nn

 *DEL,u_x $*DIM,u_x,ARRAY,nn

 *DEL,u_y $*DIM,u_y,ARRAY,nn

 *DEL,u_z $*DIM,u_z,ARRAY,nn

 *DEL,Defl $*DIM,Defl,ARRAY,nn

 ! Extract u_x, u_y, and u_z from ANSYS database

 !---

 VGET,time(1),1

 NSOL,2,nnode_max,U,X, $VGET,u_x(1),2 !Var(2) = u_x

 NSOL,3,nnode_max,U,Y, $VGET,u_y(2),3 !Var(3) = u_y

 NSOL,4,nnode_max,U,Z, $VGET,u_z(3),4 !Var(4) = u_z

 ! Do vector operation on u_x, u_y, and u_z to get Defl

 !---

 *VOPER,u_x,u_x,MULT,u_x ! u_x = u_x^2

 *VOPER,u_y,u_y,MULT,u_y ! u_y = u_y^2

 *VOPER,u_z,u_z,MULT,u_z ! u_z = u_z^2

 *VOPER,Defl,u_x,ADD,u_y ! Defl = u_x^2+u_y^2

 *VOPER,Defl,Defl,ADD,u_z ! Defl = u_x^2+u_y^2+u_z^2

 *VFUN,Defl,SQRT,Defl ! Defl = SQRT(u_x^2+u_y^2+u_z^2)

 FINISH

*ENDDO

lambdaS = 0

*DO,k,1,nn

 *IF,time(k),GT,lambdaS,AND,time(k),LT,1,THEN

 lambdaS = time(k)

 *ENDIF

*ENDDO

*CFOPEN,ShellBuckling,csv,,APPEND

*VWRITE,lambdaS,defl_diff

(F11.5,',',F11.1)

*CFCLOS

APPENDIX I. GeomNonlinearAnalysisResults

48

*CFOPEN,ShellGNIA,csv,,APPEND

*VWRITE,

('E,t,w,p,aa,bb,lz,nu,nv,alpha,delta')

*VWRITE,E,t,w,p,aa

(F16.8,',',F16.8,',',F16.8,',',F16.8,',',F16.8,',',$)

*VWRITE,bb,lz,nu,nv,alpha,delta

(F16.8,',',F16.8,',',F16.8,',',F16.8,',',F16.8,',',F16.8)

*VWRITE,Defl(1),time(1)

(F16.8,',',F16.8)

*CFCLOS

/EOF

APPENDIX J. TransformationMatrix

49

APPENDIX J. TransformationMatrix

TransformationMatrix

!%%

! TransformationMatrix

! Date: 17 November 2017

! Author: Erik Giesen Loo

!

! It generates the global to local transformation matrix 'Gamma' for the model parametrized by:

! x = (aa+(1-cos(u))*bb)*cos(v)

! y = (aa+(1-cos(u))*bb)*sin(v)

! z = bb*sin(u)

! The local x- and y- axes follow the u- and v- parameters, respectively.

!

! Called by:

! NodalMembraneForces (optional)

! ShellBucklingResults

! NodalDisplacements (optional)

!

! Subroutines:

! None

!

! Input:

! u, v, aa, bb

!

! Output:

! Gamma

!

!%%

! Assemble transformation matrix

*DMAT,Gamma,D,ALLOC,3,3

*VEC,i_vector,D,ALLOC,3 ! Create first row (i' = dr/du)

 i_vector(1) = bb*sin(u)*cos(v)

 i_vector(2) = bb*sin(u)*sin(v)

 i_vector(3) = bb*cos(u)

 *NRM, i_vector, NRM2, norm_i, YES ! Normalize

*VEC,j_vector,D,ALLOC,3 ! Create second row (j' = dr/dv)

 j_vector(1) = -(aa+(1-cos(u))*bb)*sin(v)

 j_vector(2) = (aa+(1-cos(u))*bb)*cos(v)

 j_vector(3) = 0

 *NRM, j_vector, NRM2, norm_j, YES ! Normalize

*VEC,k_vector,D,ALLOC,3 ! Create third row (k' = i' x j')

 k_vector(1) = i_vector(2)*j_vector(3) - i_vector(3)*j_vector(2)

 k_vector(2) = i_vector(1)*j_vector(3) - i_vector(3)*j_vector(1)

 k_vector(3) = i_vector(1)*j_vector(2) - i_vector(2)*j_vector(1)

 *NRM, k_vector, NRM2, norm_k, YES ! Normalize

*DO,k,1,3 ! Assemble Gamma matrix

 Gamma(1,k) = i_vector(k)

 Gamma(2,k) = j_vector(k)

 Gamma(3,k) = k_vector(k)

*ENDDO

/EOF

APPENDIX K. Python Script

50

APPENDIX K. Python Script

import numpy as np

import os, subprocess, csv, time

def RunAPDL(E,t,w,p,aa,bb,lz,alpha,delta):

 ansyspath = r'C:\Program Files\ANSYS Inc\v181\ansys\bin\winx64\MAPDL.exe'

 directory = r'C:\Users\Erik\Documents\ANSYS'

 jobname = 'file'

 memory = '4096'

 reserve = '1024'

 inputfile = r'C:\Users\Erik\Documents\ANSYS\ShellBucklingInput.inp'

 outputfile = r'C:\Users\Erik\Documents\ANSYS\OutputFile.txt'

 resultsfile = r'C:\Users\Erik\Documents\ANSYS\ShellBuckling.csv'
 lockfile = r'C:\Users\Erik\Documents\AnSYS\file.lock'

 start = time.clock()

 # Write input file

 input_parameters = ('/NERR,200,10000,,OFF,0 \n'

 'pi = acos(-1) \n'

 'E = {:6.0f} ! N/mm2 Young\'s modulus\n'

 't = {:4.2f} ! mm thickness\n'

 'w = {:3.2f} ! Poisson\'s ratio\n'

 'p = {:12.6f} ! N/mm2 external pressure\n'

 'aa = {:6.2f} ! mm horizontal radius at u = 0\n'

 'bb = {:6.2f} ! mm vertical radius\n'

 'lz = {:6.2f} ! mm model height\n'

 'lu = 2*asin(lz/2/bb) !mm \n'

 'lv = 2*pi ! model perimeter at u = 0 \n'

 'nu = 2*NINT(ABS(aa)/SQRT(ABS(aa)*t)) \n'

 'nv = 3*nu ! number of elements along v-axis \n'

 'alpha = {:4.2f} ! ratio of lu that is not loaded by p \n'

 'delta = {:4.2f}*t ! prescribed imperfection magnitude \n'

 '*ULIB,ShellBucklingLibrary,mac \n'

 '*USE,ShellBuckling,pi,E,t,w,p,aa,bb,lz,lu,nu,nv,alpha,delta \n'

 '/CLEAR'

).format(E,t,w,p,aa,bb,lz,alpha,delta)

 with open(inputfile,'w') as f:

 f.write(input_parameters)

 # Call ANSYS

 try:

 os.remove(lockfile)

 print('lock file removed')

 except:

 print('lock file does not exist')

 callstring = ('\"{}\" -p aa_t_a -dir \"{}\" -j \"{}\" -s read'

 ' -m {} -db {} -t -d win32 -b -i \"{}\" -o \"{}\"'

).format(ansyspath,directory,jobname,memory,reserve,inputfile,outputfile)

 print('Invoking ANSYS with', callstring)

 proc = subprocess.Popen(callstring).wait()

 # Update pressure field for next analysis

 with open(resultsfile,'r') as f:

 lambdaS = float(list(csv.reader(f))[-1][16])

 p = 1.2*lambdaS*p

 print('Updated pressure is',p,' N/mm2.')

 stop = time.clock()

 print('Elapsed time is ',stop-start,' seconds.')

 return(p)

APPENDIX L. MATLAB script

51

APPENDIX L. MATLAB Script

function p = RunAPDL(E,t,w,p,aa,bb,lz,alpha,delta)

tic

%% Input Information: Modify when using on a different PC

ansyspath = 'C:\Program Files\ANSYS Inc\v181\ansys\bin\winx64\MAPDL.exe';

directory = 'C:\Users\Erik\Documents\ANSYS';

jobname = 'file';

memory = '4096';

reserve = '1024';

inputfile = 'C:\Users\Erik\Documents\ANSYS\ShellBucklingInput.inp';

outputfile = 'C:\Users\Erik\Documents\ANSYS\OutputFile.txt';

addpath C:\Users\Erik\Documents\ANSYS

resultsfile = 'ShellBuckling.csv';

%% Write input file

input_parameters = sprintf(['/NERR,200,10000,,OFF,0 \n',...

 'pi = ACOS(-1) \n',...

 'E = %6.0f ! N/mm2 Youngs modulus\n',...

 't = %4.2f ! mm thickness\n',...

 'w = %3.2f ! Poissons ratio\n',...

 'p = %12.6f ! N/mm2 external pressure\n',...

 'aa = %6.2f ! mm horizontal radius at u = 0\n',...

 'bb = %6.2f ! mm vertical radius\n',...

 'lz = %6.2f ! mm model height\n',...

 'lu = 2*asin(lz/2/bb) !mm \n',...

 'lv = 2*pi ! model perimeter at u = 0 \n',...

 'nu = 2*NINT(ABS(aa)/SQRT(ABS(aa)*t)) \n',...

 'nv = 3*nu ! number of elements along v-axis \n',...

 'alpha = %4.2f ! ratio of lu that is not loaded by p \n',...

 'delta = %4.2f*t ! prescribed imperfection magnitude \n',...

 '*ULIB,ShellBucklingLibrary,mac \n',...

 '*USE,ShellBuckling,pi,E,t,w,p,aa,bb,lz,lu,nu,nv,alpha,delta \n',...

 '/CLEAR'],E,t,w,p,aa,bb,lz,alpha,delta);

disp(input_parameters)

fid = fopen(inputfile,'w');

fprintf(fid,input_parameters);

fclose(fid);

%% Call ANSYS

callstring = ['SET KMP_STACKSIZE=5120k & ',...

 '"',ansyspath,'"',...

 ' -b ',... batch

 ' -p aa_t_a',... ansys academic teaching advanced

 ' -dir "',directory,'"',...

 ' -j "',jobname,'"',...

 ' -s read',...

 ' -m ',memory,...

 ' -db ',reserve,...

 ' -t -d win32',...

 ' -i "',inputfile,'"',...

 ' -o "',outputfile,'"'];

disp(callstring)

system(callstring,'-echo')

%% Update pressure field for next analysis

fid = fopen(resultsfile, 'rb');

fseek(fid, 0, 'eof'); % Set file position indicator at end of file

fileSize = ftell(fid); % Get file position indicator = fileSize

frewind(fid); % Set file position indicator at begin = fseek(fid,0,-1)

data = fread(fid, fileSize, 'uint8');

last_row = sum(data == 10) - 1;

lambdaS = csvread(resultsfile,last_row,16,[last_row 16 last_row 16]);

fclose(fid);

p = 1.2*lambdaS*p;

toc

