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Abstract

In the use of Machine Learning systems, attaining the trust of those that are the end-users can often be diffi-
cult. Many of the current state-of-the-art systems operate as Black-Boxes. Errors produced by these Black-Box
systems, without further explanation as to why these decisions were made, will deteriorate trust. This effect is
especially strong when these erroneous decisions are generated with high confidence. This thesis presents both a
data-driven as well as a human-in-the-Loop based methodology to characterize and mitigate high-confidence
errors. We propose an Iterative Expert Session based methodology. By engaging domain experts through a se-
ries of interaction sessions, we aim to reduce the disconnect and knowledge gap between data scientists and
domain experts, and to ultimately increase trust in the model. A practical approach was taken working in close
connection with the practice of the data scientists of the ILT, helping them in improving their model and pro-
viding a direct contribution. We study the problem in the context of Road and Transportation law violations,
by engaging inspectors (i.e., domain experts) in day-in-the-life and in-house interview sessions. A thorough
analysis is performed of the most important features for data instances that were in error with a high degree of
confidence. A method is presented that helps in characterizing these errors by predicting errors. We show that
by careful removal of biased data features, proper data selection and by bridging the knowledge gap between
domain experts and data scientists, we can improve the performance of the machine learning model. We show
an increase of model Precision from 0.56800 with a baseline of 0.32968 to a Precision of 0.52077 with a base-
line of 0.23473. Considering the baseline, this is an increase of 28.9% in Precision. We reduce biases existent
in the data by reducing variables that predict on inspector practice. The magnitude of High Confidence Errors
in the top 20% errors went from 0.70435 to 0.70465 showing an improvement taking into account the reduced
baseline and removal of overfitted variables.
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1
Introduction

The use of Machine Learning(ML) systems in real world scenarios is ever increasing. These systems help
us in making decisions based on large sets of data that are increasingly becoming available. Traditionally,
the effectiveness of these Machine Learning systems has been measured in terms of accuracy. However, in
recent years it has been shown to be too simple of a view when creating models for real-life scenarios. A good
example of needing to go beyond mere accuracy is in the field of Content Recommender Systems [26]. These
systems can be evaluated by how the end-users themselves experience the recommendations they produce.
To properly suit the user’s needs, the system should take into account the novelty or serendipity of certain
items in order to increase their effectiveness.

Similar considerations should be directed to the area of predictive Machine Learning systems. As the
sophistication and accuracy of these systems increase, so does their complexity. This increase in complexity
makes these systems suffer from issues of trust. Many of these trust issues can mainly be attributed to their
Black-Box nature. A Black-Box model is essentially a model of which the creator is only aware of the input and
the output, while only having vague or no knowledge about the inner workings. A popular example of such
a system is the Deep Neural Network, but there are many others like this, such as Random Forest models or
XGBoost models. This means that when you work with such a model for classification it will be unknown as
to what the prediction was based on and how it was made. This is especially detrimental for trust when the
predictions are erroneous.

This thesis covers these problems in the context of a wide area of contexts and topics. Among others, the
thesis touches on ML model development, Interpretable Machine Learning, High Confidence Errors, Domain
Expert interactions with Data scientists as well as End-User Trust.

1.1. Interpretable Machine Learning
The challenges of understanding and explaining the choices that a Machine Learning model makes have long
been an issue [43], and this has spawned a whole new field of Interpretable and Explainable Machine Learn-
ing. With new privacy and data regulations laws such as the GDPR [2] in 2018, the issue of interpretable
systems has become an even more pressing one. Creators of high-stakes Machine Learning systems can be
held accountable for the choices which the system makes [2, art. 21, 22]. However, the degree to which there
is an actual ’right to explanation’ is still a controversial topic, as you could make the case that the creators
are only required to provide meaningful information such that the user can choose to opt-out from an auto-
mated decision making system. New proposed regulation [57] on Artificial Intelligence systems does cover
the aspect of a user’s right to interpretation of model output, but this is still in an early stage. Either way, for
proper model use it is essential to understand the choices thoroughly. The issue of complex Black-Box mod-
els has become so troublesome in interpretation that some advocate for avoiding them entirely and using
more interpretable methods instead [59]. Using simpler, more interpretable models is a common approach,
however as Vaughan & Wallach stated: "... many of these techniques are based on commonly accepted as-
sumptions about intelligibility, which can be wrong" [65, p.13]. Instead they call for researchers to leverage
other human-centered fields such as social sciences to come to a better view of what is needed for inter-
pretable systems. They state that instead we need a solid understanding of who the relevant stakeholders are,
what their goals are, and how interpretability techniques can be designed to facilitate these.

1
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1.2. User Trust
There is an ever-increasing need for trustworthiness of Machine Learning models, Chandler, Foltz, and Elvevåg
[18] discuss the issues of trustworthiness of Machine Learning models in the field of psychiatry and call for
discussion on new policies. They mention the need for greater transparency, generalizabilty and explainabil-
ity. Thus we see that for these systems there exists a real lack of transparency, which is rife ground for issues
of trust. Secondly, due to this low transparency, when errors or biases are detected, it is usually a difficult
task to find the causes and have them fixed, i.e. there is no accountability. We can see that transparency,
accountability, and explainability are interconnected issues.

Xiong et al. [69] point out that not each system requires the same level of trust. As an example, they make
the distinction of the trust required for something as a Netflix ML algorithm as opposed to ML implemented in
autonomous vehicles. They lay out 4 best design principles for system adoption and fostering user trust and
propose further study into these. One of their most important principles is that of User Visibility. This factor
means that the end-user’s trust depends on how much insight they have in the system and how much control
they have on the data that goes into it. Although they also make it clear that there is as of yet still very little
study done into the issue of trust in the sphere of Machine Learning and security. Hengstler, Enkel, and Duelli
[30], who studied trust in the field of autonomous vehicles, found that early and proactive communication,
concrete and tangible information, and transparency in the development process are all of great importance
in the pursuit of achieving the end user’s trust.

1.2.1. High Confidence Errors
To give a better indication of how much u can trust a decision made by a Machine Learning system, you can
provide a measure of confidence of the prediction. This way, the user can be more certain of how seriously it
should take the prediction. With errors that happen when the system has low confidence in its prediction, the
user will judge more leniently. However, only a few wrong predictions that are generated with a high level of
confidence may already have a severe impact on the trustworthiness of the model. The psychological concept
of Negativity Bias is a well studied one [15, 4]. This shows that people have a tendency to remember and linger
much more on negative events rather than positive ones. This means that it is vital to reduce the impact of
these events. Such errors produced with a high confidence are commonly rooted in the incompleteness of
the model, and arise due to the biases in the training data. The issue of bias is well illustrated in Lakkaraju
et al. [38] where an example is shown of an image classification task where the training data is comprised only
of images of black dogs and of white and brown cats. The model trained on this data will label a white dog as
a cat with high confidence. These errors are challenging to detect because the system itself can not give us
any useful information.

1.2.2. Disconnect
Trust and proper interaction with the domain experts in a field and the data scientists is often a difficult and
interconnected issue. Thus we can see problems arising as a consequence of a disconnect between data sci-
entists and domain experts which is often present when using machine learning systems [66]. This disconnect
can be present on different levels, i.e., the concept or the process (how-to) level [51, 19, 21] and can lead to
decreased domain expert trust in the system.

Providing model outcomes to experts without insights into why the (potentially erroneous) predictions
were made could harm user trust even further and inhibit user-developer interactions. Understanding why
certain predictions are made is key to user engagement, system adoption, and sustainability [62].

The Data Scientists that design the model can usually only have their assumptions and hypotheses on the
underlying reality of a domain, which entirely depends on their own knowledge of the domain. This makes
this gap in knowledge a bottleneck in the process of developing a good model. Therefore, the data scientists
lack a lot of the vital domain knowledge that the domain experts do have. In order to make the model fit the
practice of the domain experts, there is a need for ways to transfer the domain expert knowledge to the data
scientist and consequentially to the model. In Section 3.2 of the Background we will go into further detail into
ways that this has previously been studied.

In the real world these models are mostly meant to aid the decision making of real-life experts, whether
it be medical professionals, legal professionals, or, as in our case, inspectors. It is thus essential to not only
tunnel vision on the data but to also focus on the needs of the user base. Combining all data into one risk
model may make sense from a purely data centered approach, as more vehicles inspected can serve for a
higher amount of data and thus it can improve the accuracy of the model, however this way you are merely
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generalizing over the data rather than facilitating the inspectors in their work.

1.3. Human-In-The-Loop Machine Learning
A concept increasing in popularity is that of Human-in-the-loop Machine Learning, which is fundamentally
the process of leveraging the knowledge of both machine and human intelligence in the process of creating
machine learning models. Holzinger [34] shows that in the health-informatics domain, where data is not al-
ways abundant, an interactive machine learning approach with a ’doctor-in-the-loop’ development cycle can
be better than automated machine learning models. Classic development cycles of machine learning systems
can be tedious and with little results. Xin et al. [68] discuss some of the challenges and give opportunities for
making the cycle more efficient. Challenges of development workflows include the reuse of intermediate re-
sults, as this can often be a difficult process especially for novice data scientists. This leads to the cumbersome
rerunning of the entire workflow and model, which can take a lot of time. Also the impact of certain changes
on the performance of the model is not always entirely clear. Using an optimized Human-In-The-Loop de-
velopment cycle with intermediate result reuse and impact assessment of changes, they try to tackle some
of these challenges. Although they show this solution to be promising in speeding up the machine learning
development workflow, it still only leverages the knowledge of the data scientists themselves.

1.4. Research Context
Now that we have outlined the problem of our research, we will discuss the context in which this research was
done. We work on this problem in the context of an internship at the Netherlands Human Environment and
Transport Inspectorate (ILT)1. Here we work on a predictive classification model that predicts for the risk of
law violations for the Road and Transportation Inspectors.

1.4.1. Vehicle Violation Inspections
The Road and Transportation inspectors have as a task to make sure that all trucks driving on the Dutch
roadways adhere to the laws that are in place for these vehicles. Those vehicles that do not adhere to a certain
law are referred to as Non-Compliant, or Violator. With the thousands of company vehicles that drive on the
Dutch roadways each day, the inspectors have the difficult job to select those that are at high risk of being
in violation of any laws. Their criteria for selection are based on, for the most part, visual characteristics
of the vehicle and/or the driver. Using their knowledge and experience, they in real-time and on-site make
decisions on whether a vehicle is to be selected for inspection or not.

In order to aid the inspectors with this task and augment their experience, the ILT has set out to develop
a Road and Transportation risk classification model. This model serves to assist the inspectors in those areas
where data is available but not directly available to the inspectors. Based on this data, we can provide the
inspectors with a score indicating the risk of non-compliance of the vehicle.

These inspectors are experienced professionals, sometimes working at the ILT already for decades, this
means that they prefer to rely entirely on their experience. This can be an issue when we want to introduce
new technologies to them especially if they are based on difficult to grasp concepts such as is the case with
Machine Learning. When we are dealing with technologies that might be wrongly interpreted as trying to
replace the inspectors or telling them how to do their work, the mistrust that this creates can only increase.
Rather, the technology should be there to aid the inspectors by increasing the precision of their inspections.
We need to gradually make the inspectors accustomed to these technologies such that they can clearly un-
derstand the use cases and the advantages that the model provides.

1.4.2. The Problem
We now come to the problem of our study. Essentially, the problem we have is two-sided. On the one hand we
are working with a model that we want to be as accurate as possible. This comes with plentiful of intricacies
such as choice of model, choice of data, and even issues of data bias. This choice of data and data biases can
then be a cause for high confidence errors to occur.

On the other hand, we have the human factor. As many Machine Learning models are being used as
decision making aids for end-users, these end-users should be willing to use the model and trust it. Since we
believe the model to be beneficial for the work of the ILT we want the inspectors to trust the model that we
are providing and encourage the inspectors to use it. However, as is often the case with use cases for machine

1Inspectie Leefomgeving en Transport (ILT), Ministerie van Infrastructuur en Waterstaat: https://www.ilent.nl/

https://www.ilent.nl/
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learning systems, there exists a disconnect between what we as the data scientists know and what the domain
experts (i.e. inspectors) know and do in their practice.

Working on this problem brings with it various challenges, it can be a difficult task to exactly know how
complex models will react to changes to the data, which makes characterizing those areas where improve-
ment is necessary particularly arduous. On top of this we have the human component. Introducing humans
into the development of a system is never an easy task, as all might have differing opinions on topics both in
their expertise as well as outside their expertise. Therefore, using their knowledge should be done in a careful
and concise way.

To work on these challenges, we will both provide a careful analysis of the model and the data, as well as
outline a methodology to interact with the experts.

1.4.3. Practical Approach
During the course of this thesis as part of the internship of the ILT a more practical approach was taken over
a purely theoretical one. During the internship a strong focus was put on helping the ILT with their Risk
Classification model as well as helping them in their interactions with the Domain Experts and how to im-
prove these interactions. One of the core aims of this thesis was to build a bridge between the data scientists
practice and the practice of the Inspectors. The work that was done was continually put into practice for the
actual model and for the experts. Data biases were made clear from the findings of this thesis, which helped
in improving the risk classification model. This also paves a new starting point for the ILT and how they are
looking to deal with data bias issues into the future.

HCOMP Paper During the course of the thesis, to complement and present the work that has been done,
a 2-page Work-In-Progress paper was written focusing on the domain expert based exploration of model er-
rors[35]. This paper focuses only on the domain expert driven part of this thesis and can be found in appendix
D.

1.5. Research questions:
We see that the issues of knowledge gaps, lack of trust in the model and high confidence errors are intercon-
nected problems in Machine Learning that are difficult to overcome. This research explores these problems
using both a data- and human-driven approach. Thus, we state the main research question for this thesis as
the following:

How can we best characterize and mitigate predictive errors that are produced with a high model
confidence?

In this research the important distinction is that of "What the model has learned vs. What the model
should know" this leads us to the following sub research questions:

• RQ 1: What Instances Best Characterize System Knowledge?

To answer this question, we need to perform a data driven analysis of the model itself. Through this analysis,
we will get a better idea of what features are important for the model, what features can cause issues and what
instances resemble what the model has learned best.

• RQ 2: How to best interpret what the model has learned?

Answering this research question means we have to perform a literature study on what ways of interpreting
the model would be best. Then applying what we have learned from the study to our model, combined with
the feedback from the experts, helps us to better answer this question.

• RQ 3: What knowledge do we want the model to have?

This research question we answer by involving the domain experts. By doing the Expert Sessions with the
domain experts we want to better our knowledge of what the model should know.

• RQ 4: What does the model not know?

Finally, this question will essentially be answered by combining what we have learned in the process of an-
swering RQs 1 and 3. By combining these two we can get an idea of the areas where the model is still lacking
and where it needs improvement.
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1.6. Contributions
This thesis explores the domains of High Confidence errors and human-driven development by studying
the effect of iterative experts’ engagement in a series of interaction sessions. It serves as an exploration for
aspects, among others, of data bias, machine learning errors, human-driven design, user trust and model
interpretability. Among others, some of the most noteworthy contributions that this thesis presents are the
following:

• A novel generalized methodology through the use of Iterative Expert Sessions that has as an aim to close
the knowledge gap between data scientists and domain experts.

• A data-driven methodology for characterizing High Confidence Errors. This allows us to better charac-
terize High Confidence Errors that are predicted both as False Positives and as False Negatives.

• The sessions performed during the thesis aid us in understanding the requirements and challenges,
and help us in characterizing:

– Model Errors

– False Positive HCEs

– False Negative HCEs

– Correctly predicted instances

We show these sessions to be a promising method to facilitate model development and build trust in
the model.

• Through the direct involvement of domain experts in the process of building the model, we provide an
interactive modeling method to reduce the presence of data biases.

• Scientific contribution through the submission of a paper for HCOMP 2021: The Ninth AAAI Confer-
ence on Human Computation and Crowdsourcing[35]

• Direct Practical contribution to the ILT by improvement of the model and lessons learned from the
sessions. This provides a direct contribution to the ILT and their model with the following:

– Improvement of the model performance with regards to the baseline performance.

– Creation of a general expert interaction model for the ILT’s interactions with their domain experts

– Reduction in features biased on inspection practice such as Location and Time.

– Making the experts of the ILT aware of feature bias issues, providing a new starting point for the
organization.

1.7. Thesis Overview
In the next section 2 we elaborate on the context in which the research has been performed under the guid-
ance of the ILT, we also discuss the workings of the model that was developed during the study and the data
that was used for training and validating it. Following this in section 3 we give an overview of the most im-
portant concepts to grasp and the previous related work that has been performed in this area of research. We
then give an overview of the data driven methodology in chapter 4, followed by the methodology of the iter-
ative expert sessions in chapter 5. Next in section 6 there will follow an extensive analysis of the domain and
system knowledge by a data driven analysis of the model and the important data variables. It will include an
overall model performance analysis, feature explanations, High Confidence Error analyses and model bias
studies. In chapter 7 we give a validation of our expert session methodology by providing the results from
the sessions performed with the inspectors. Using the findings from these sessions as well as the insights
from chapter 6, in chapter 8 we present the changes that were made to the model and how these changes im-
proved the model. We finish the thesis with a conclusion covering the main conclusions, recommendations,
limitations and future work.



2
Research Context and Model

This section covers the context in which this research was performed. We first outline the context and motiva-
tion of the use of the model and the research. Then, we motivate the choice of model, explain the confidence
measure and the evaluation metrics used, and lastly we give a description of the dataset used for the training
of the model.

2.1. Context
The Research is performed in the context of the work of the Inspectie Leefomgeving en Transport (ILT). This
is the Human Environment and Transport Inspectorate of the Dutch Government. The ILT has as its job,
ensuring road and transportation safety while also providing a level playing field on the market and protecting
companies and drivers from unfair circumstances or bad working conditions. In doing this, the ILT aims to
have an effective approach where only those owners that are law non-compliant (violators) are punished
while law compliant owners are minimally impacted by the ILT.

The core laws and violations that the inspectors of the ILT check for are the following:

• Vehicle Licenses: All vehicles that are transporting goods on the Dutch Roadways have certain licenses
they legally have to carry, depending on what goods they transport and what route they make.

• Rest and Driving times: All drivers of transport vehicles have a legally determined amount of hours
that they can drive until they must have rest time. This is to ensure safe road conditions and fair com-
petition between companies.

• Manipulation of Tachograph: A Tachograph is a small device fitted inside of a truck or vehicle that
records all of the vehicle’s speed and distance travelled. Sometimes these can be manipulated to be
able to drive for longer amounts of distances.

• Overweight of the vehicle: To ensure safe road conditions, each vehicle has a maximum amount of
load it is allowed to carry.

• Transport of dangerous goods and substances(ADR): Dangerous goods and substances can pose a
threat to health and environment, which means that there is a large amount of rules and regulations to
adhere to.

From the regulatory bodies of the European Union there has been a call for the wider adoption of digital
technologies to promote road safety. An example of this is the introduction of the use of Smart Tachographs
[1]. As part of the EU Commission Road safety policy framework [53] the ILT is also required to adhere to road
safety standards, which includes making use of technologies such as risk assessment ratings.

In 2019, as part of the Smart and Safe programme the Innovation and Data Lab (IDLab), which is a branch
of the ILT working on innovative and data driven technologies, started on the development of a risk classi-
fication system for road transport safety and fairness. There is a clear need for more advanced data-driven
models for the inspectors of the ILT. These inspectors traditionally work mostly based on inspection experi-
ence and decision rules. The risk model is developed by the data scientists at the IDLab.

As this is a novel technology introduced to the inspectors, the research of this thesis is particularly relevant
for the IDLab as it aims to help in generating trust and encouraging the smooth adoption of the model.

6
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2.2. Risk Model
The risk model that is used during the course of this thesis is the predictive Road and Transport risk classifica-
tion model developed by the data scientists at the ILT. The choice of model is a Random Forest based model.
Random Forest is a popular choice for models used by the ILT due to its good characteristics, some of these
include great versatility with various types of data, good performance with high dimensionality datasets, eas-
ily parallelizable and being relatively easy to understand. Here we explain how the Random Forest algorithm
works. As the Random Forest belongs to the category of Tree-based models, we first explain Tree-based mod-
els.

2.2.1. Tree-Based Models
Tree-based models work by the use of a series of if-then decision rules that are generated from training data.
These rules can then be used to generate predictions. These decision rules are created in the form of a branch-
ing tree structure. Tree-based models are particularly strong when used in an ensemble learning setting
where many (weak learner) trees are combined to get better results, such as Random Forests and Gradient
Boosting Machines(e.g. XGBoost).

Both Random Forest and Gradient Boosting methods work by combining decision trees, where the former
does this only at the end as an average(Bagging) while the latter combines the trees sequentially(Boosting).
Gradient Boosted trees in general show better performance than Random Forests [17]. However, Random
Forests can be more flexible as well as better resistant to noisy data.

The classic implementation of Decision Trees that can be used for classification purposes were first pro-
posed by Breiman et al. [14]. The tree structure has a root node and leaf nodes. The leaf nodes indicate the
final model decision, so in the case of binary classification either a 1 or 0. The non-leaf nodes indicate de-
cisions of the model based on feature criteria. Each non-leaf node makes a decision how to split based on
the feature value. For the classical [14] implementation, the splitting criterium is calculated based on Gini
Impurity. The formula for the Gini impurity is given in equation 2.1:

Gi ni =
C∑

i=1
_i (1−pi ) (2.1)

Here C is the total amount of classes and pi is the probability of class i. Thus for a binary two class scenario
this is simply:

p0(1−p0)+p1(1−p1)

The Gini impurity is essentially a metric for the probability of incorrectly classifying a randomly chosen
datapoint when randomly classifying the instance according to the class distributions. For each class (i.e.
leaf-node), the Gini impurity is calculated. For the splitting node the final Gini impurity is then the weighted
average of the two Gini impurities calculated. The Gini impurity obtained will then be compared to the im-
purity of the parent node. The aim is to have a decrease in Gini impurity that is as substantial as possible.
Meaning that the splitting of the features must be chosen such that you obtain the largest decrease in Gini
Impurity.

The use of tree-based models is popular in both classification as well as regression settings. The relative
simplicity of these models yet good performance makes them a desirable choice for models. These models
are flexible in their use as they can be applied to numerous types of data. They can deal with sparse data,
dense data, discrete data, continuous data, while also being able to deal with missing data points.

Though simple to explain, simple decision trees are not very robust, the model is quite naive in its use and
small changes in the dataset used can already cause the entire tree to have to be changed. Thus, most appli-
cations prefer to use them as part of a more complex model, a popular implementation being the Random
Forest algorithm.

2.2.2. Random Forest
The Random Forest [13] is what is known as an Ensemble method. Here essentially, to make the model more
stable and powerful, you take many decision trees and combine their result into one model. This is done
using a technique called Bagging, which stands for Bootstrapping and aggregating. For bootstrapping you
take your original sample and repeatedly draw random samples from this set. You can do this until you have
the same number of random samples as items in your original sample set. The aggregating part is that you
take the results from many different decision trees, each trained on their own bootstrapped set, and then
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Figure 2.1: Simplified representation of a Random Forest model (Source: https://medium.com/swlh/random-forest-and-its-
implementation-71824ced454 by Afroz Chakure)

.

combine these results into a weighted final result. A simplified representation of how the random forest
works is shown in figure 2.1

The choice of how many trees to aggregate over and how many bootstrap samples to take can have a big
effect on each model. The number of trees used can be set and tuned as a hyperparameter. Even though with
more trees accuracy could increase, so can storage and computation time requirements. Additionally, using
too many trees has shown to sometimes cause unnecessary increases in variance [29, p. 596]. This use of
bagging also consequently increases the complexity of the model, making it less explainable.

Another issue with this approach is that if you use all the same features on each tree, they will be heavily
correlated with each other. To solve this issue, we can take for each tree a random subset of only m features
to use for the training and splitting, this is a hyperparameter and is often also referred to as mtry. It has been
shown [29] that a common good choice for mtry is close to the square root of the total amount of features.
Note that this optimal choice of mtry differs when the random forest is used for regression instead of classifi-
cation.

The model for the ILT is created using the R package of randomForest [42] which is used in combination
with the caret [37] package which is a useful package that streamlines the pipeline of training for classification
and regression purposes.

2.3. Model Confidence
In order to give a better sense of the reliability of predictions, it is useful to accompany these with a confidence
score. Most commonly this confidence score is represented as a percentage score from 0 to 1. For the Random
Forest model we use a probability based confidence score. As we can not know the real class probabilities of
the classes, we need a way to estimate them. The simplest method using a Random Forest is to estimate based
on the proportion of the tree ensemble that predicts a certain class. This proportion is the total number
of votes of all trees that predict the specific class. This proportion then forms the probability score for the
prediction. There are other confidence metrics besides the simple probability score. However, Bakker [7] has
shown that for more complex models with high overall accuracies, such as a Random Forest, the probability
score can not be improved upon by using more complex confidence metrics such as the conformal prediction
framework presented in Bakker [7].

Alternatively, other methods exist for estimating the probability. A different approach to estimation is us-
ing the random forest in a regression setting, returning a value between 0 and 1 as output. Malley et al. [50]
show that for any non-parametric statistical method, this regression method, also referred to as a Probability

https://medium.com/swlh/random-forest-and-its-implementation-71824ced454
https://medium.com/swlh/random-forest-and-its-implementation-71824ced454
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Machine, returns consistent probability estimates. Another method is using the Out-of-Bag samples to esti-
mate the probability [12]. Due to the fact that when using bootstrapping you can choose the same samples
more than once, the Out-of-Bag samples are those samples in the original dataset which were not included
in the bootstrapped set. Using these samples, you can calculate the Out-of-Bag Error (see section 2.4.2). All
these have been shown to perform fairly similarly, with, on some datasets, the Out-of-Bag method perform-
ing better [41, 29]. As the focus of this thesis is not to compare the effectiveness of probability estimations and
confidence scores but rather to use these probabilities as a tool for analyzing issues with the data we choose
to stick with the simplest method of the tree majority vote.

2.4. Evaluation Metrics
Once you have a model that works satisfactory you want to have a way to measure its performance. In order
to evaluate the performance of a model you need to have metrics to evaluate them on.

2.4.1. Precision and Recall
To measure the performance of a predictive model popular metrics are those of Precision and Recall. Loosely
speaking Precision is a metric showing the quality of predictions and Recall the quantity. Precision is essen-
tially a measure of what number of positively classified items are actually positive. In our case this means
what fraction of vehicles selected for being high risk were actually in violation. The equation for Precision
can thus be written as in 2.2:

Tr ue Posi t i ves

Tr ue Posi t i ves +F al se Posi t i ves
(2.2)

True Positives and False Positives are calculated by comparing the true label of the instances with the
predicted label given by the model. If the model correctly predicts a positive class, this will be a True Positive.
In our case, the positive class is the violator classification. This means that if the model predicts the instance
to be a violator but the true label is a compliant vehicle, this will be a False Positive. If the opposite is the case,
meaning it predicts as a compliant vehicle but the vehicle was in violation, this would be a False Negative.

Another Metric that is often used in combination with Precision is the Recall. The Recall measures the
amount of true positives out of the set of all relevant items. In our case this means the total proportion of
violating vehicles that are selected out of the set of all vehicles that are in violation. The equation for Recall
can be written as in 2.3:

Tr ue Posi t i ves

Tr ue Posi t i ves +F al se Neg ati ves
(2.3)

A summary of these metrics and their relation are also shown and explained in figure 2.2.

Figure 2.2: Precision and Recall (Edited, https://upload.wikimedia.org/wikipedia/commons/2/26/Precisionrecall.svg by Walber, CC BY-
SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons

.

For our model we optimize based on Precision. Since the aim of the model is to have as large as possible
a proportion of non-compliant vehicles out of all vehicle that are selected, optimizing for the precision is the
best way to achieve this. The time of the road inspectors is valuable, they can only inspect a small amount of
vehicles per day, meaning that each vehicle that has been selected has to matter. If the vehicle was compliant
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after all, the inspectors have spent valuable time and resources and achieved no improvement in road safety.
You could make the argument that you want to catch all non-compliant vehicles and thus want higher Recall.
However, this is simply intractable due to the large amount of vehicles on the road. As we are optimizing for
Precision, the recall metric is usually on the lower end as these metrics are often in competition with each
other.

2.4.2. OOB Error
To measure how accurately the model performs on new data not previously seen, you can use a test set on
which the trained classifier is to be tested. The error calculated on this set is the generalization error of the
model. Another way to estimate this error is to use the Out-of-Bag(OOB) error using the Out-Of-Bag samples.
To calculate this, you take for each Out-of-Bag sample all trees that were not trained on this sample. Where the
Out-of-Bag samples are those samples in the original dataset which were not included in the bootstrapped
set. Taking the majority of votes of all these models (i.e. trees) and comparing this to the true value of the Out-
of-Bag sample will give the OOB error. You can repeat this for the whole data set, i.e. all Out-of-Bag samples,
and then take the average. Using the relative frequencies of the class, we can estimate the probability by
averaging this over all trees. Breiman [12] has shown the OOB error method to be a good estimate for the
generalization error and can thus be seen as an estimate for the error measured on a test set of the same size
as the training set. Thus, to assess the overall quality of the model, the OOB error is a good metric. We can
use it to compare models and see how they have improved after changes have been applied.

2.4.3. AUC Score
Additionally, we also look at the AUC score to evaluate our model performance. AUC stands for Area under the
curve. The often used metric for this is Area under the ROC curve(AUROC). The ROC curve essentially looks
at the rate of True Positives vs False Positives. This metric is effective at looking at how many true positives are
drawn before a false positive. In situations where false positives are equally as troublesome as false negatives,
this is a good metric to optimize. Although, as we have pointed out earlier, as our cost of false positives is
quite high, we choose to optimize for Precision. Nevertheless, AUC score can reflect the overall performance
of the model.

2.4.4. High Confidence Evaluation Metrics
Since we are trying to make changes to impact the presence of High Confidence errors, we need a way to
measure the actual magnitude of these errors. To measure the magnitude we look at the top 20% of the errors
and the top 5%. The distributions of the prediction probabilities have approximately a normal distribution.
For this normal distribution the top 20% of errors are approximately all those errors that are more than 1
standard deviation away from the mean, i.e. 80% of the predictions are within 1σ of the mean. For the the
top 5% we have all those errors that are more than 2 standard deviations away from the mean, i.e. 95%
of the predictions are within 2σ of the mean. This means that of all errors that the model has made, we
take the (two-sided) bottom and top highest confidence errors. As the model predicts a probability score
between 0 and 1, close to 0 means high confidence of compliance and close to 1 means high confidence
of non-compliance/violation. This means that for 20% we take the bottom 10% of highest confidence error
probabilities of compliance and the top 10% most confident errors of non-compliance. The top 20% looks
at most of the errors that can be seen as highly confident. Usually we find that the distribution is skewed to
predicting vehicles as compliant, meaning that the distributions are skewed to the left, this means that values
of 60% confidence are usually already seen as high confidence on the top end.

Alternatively, the measurement of the top 5% of errors should really give us an indication of the magnitude
of the highest confidence errors which have the highest chance of causing doubts in the performance of the
model. Equation 2.4 shows the formula for calculating the magnitude of the top 20% and equation 2.5 the
formula for the top 5% ∑

1−Bot tom Con f i dence +∑
Top Con f i dence

Tot al Er r or s i n 20%
(2.4)

∑
1−Bot tom Con f i dence +∑

Top Con f i dence

Tot al Er r or s i n 5%
(2.5)

2.5. Dataset
The Data used to train the risk model consists of 5 main parts. Here we will list and explain each part.
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Figure 2.3: Map of The Netherlands showing locations of WIM passages

2.5.1. Vehicle Inspections
The core part of the dataset is the Vehicle Inspection data. The data set is based on the data in the Holmes sys-
tem that the inspectors themselves use during their inspections. They annotate for each vehicle they inspect
important characteristics of the driver and the vehicle. For vehicles that are found to be violating, it is more
likely that more data about them will be annotated. The data contains the information of all vehicle and com-
pany inspections from May 2017 until October 2020. This dataset includes a total of 24.505 inspected license
plates/vehicles, of which a total of 8989 are Dutch vehicles. Additionally it includes 296 company inspections
which are linked based on the license plate and owner data.

2.5.2. Weigh-In-Motion Passages
The Weigh-in-Motion(WIM) Passages are a collection of 10 locations[36] on the Dutch roadways where au-
tomated weighing systems are used. Figure 2.3 shows a map of where these locations are located. These
systems are a collection of cameras, sensors and weighing platforms built into the road surface. These work
together to provide inspectors with an extensive insight into the weight distribution of the vehicle as well as
keeping track of different information such as the location,time and speed of the vehicle.

The WIM passage data includes data from January 2018 up to August 2019. In the data the license plate of
the vehicle is linked with the raw data received from the WIM passages.

2.5.3. Vehicle Registration
The vehicle registration data comes from the Dutch oversight of the Roadtransport registration, the Rijks-
dienst voor het Wegverkeer(RDW)1https://opendata.rdw.nl/ The open data of the RDW includes all general
vehicle aspects and characteristics. On top of that, it also includes all data on vehicle general maintenance
and previously found maintenance flaws. The open data is up to date up to the end of 2020.

Additionally, also a manually obtained dataset from the RDW from 2019 is used, which includes all vehicle
owner assignments. Note that this includes only the front truck part of the vehicles and not the trailer part,
which is registered separately.

2.5.4. Vehicle Licenses
From the national and international road transportation organisation (i.e. NIWO) we obtained the data of the
European and Dutch vehicle licenses required for road transportation vehicles and owners. This data consist
of data until the end of 2019.

1https://opendata.rdw.nl/
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2.5.5. Company Registration
The company registration data consists of all data that is available through the Dutch Chamber of Commerce
register, where owners of the vehicle can be linked through their company association, often based on the
address of the vehicle and the address of the company. This includes all data up to the end of 2020.

2.5.6. Missing Data
Much of the valuable data that is available for Dutch vehicles is missing for foreign vehicles, license and
company information is not available from foreign vehicles. This means that it is decided to leave the foreign
vehicles out of the model. This is an issue as the inspectors have the responsibility of checking all vehicles on
the Dutch Roadways, so including foreign vehicles. This means that the model is not as useful for these.

In this chapter we have outlined the entirety of the context in which the work of this thesis is performed.
We explained the role of the ILT in this and how the model that they are developing works. We explain the pre-
dictive classification model that is used by giving an explanation of tree-based models and Random Forests.
We show and explain which metrics are important in this research as well as the optimization of the model.
Lastly we outlined the datasets and its constituents that are used for the training of the model.



3
Background and Related Work

As covered in the introduction, this thesis incorporates many areas of Machine Learning and Human-Centered
Computing. The combination of Human Sciences and Computer Sciences makes it such that there is much
background to understand on how these two touch. To get a grasp of the previous work performed in the
literature and to understand the concepts required during the reading of this thesis, this chapter outlines
some of the concepts. We cover the work on Unknown-Unknowns and High confidence errors, this is a novel
area of research in the Machine Learning space and is yet to be thoroughly researched. Since we work on
human interactions with Machine Learning models, we cover previous work on Domain Expert Interaction.
Further, we lay out some concepts about the different kinds of distinctions in data bias that exist in the field of
Machine Learning. Lastly, we do an extensive literature survey on model interpretability and explainability,
which helps us in our goal of understanding our model outputs.

3.1. High-Confidence Errors
Errors produced by machine learning systems can be seen to belong to two broad categories: (1) Errors near
the decision boundaries of a model. These errors are mostly caused by the inherent variances within the data.
These errors are understandable from a practical point of view. Since the model is uncertain about how to
categorize an instance, it can cause an error in the prediction. (2) Errors made far from the decision boundary.
These errors usually hint at inherent issues with the data used to train the model. This can be a lack of data
or also an under-representation of certain types of data points. These errors are produced with a high model
confidence and we will refer to these as High-Confidence Errors (HCEs). These errors are detrimental to the
trust of a system and should as such be avoided. The first type of errors can also be referred to as Known-
Unknowns. The second type can be referred to as Unknown-Unknowns. These Unknown-Unknowns are the
High Confidence Errors.

At the center of the question of High Confidence Errors and how to characterize and mitigate these is the
fact that they happen at the outer edges of the domain space rather than near the decision boundary. The
fact that the decision is made with a high confidence but is still an error can hint at either the fact that there
are some vital Unknown-Unknowns in the domain space that we are missing or that the model over relies on
certain indicators and thus starts overfitting on these.

3.1.1. Unknown-Unknowns
Previous work has gone into the field of detection of errors, particularly in the detection of Unknown-Unknowns
by Attenberg, Ipeirotis, and Provost [6]. Here, participants were challenged to ’beat’ the model by providing it
with examples that would result in a high predictive error. The participants were able to identify many errors
where the model assumed it was correct, but was wrong due to missing data and/or biases. A system similar
to Beat The Machine has recently been developed as Facebook’s Dynabench.1

Vandenhof and Law [64] tried to improve on the method of Attenberg, Ipeirotis, and Provost [6] by using
a hybrid approach where the crowdsource method of [6] is combined with a set of decision rules on how
high confidence predictions are made –obtained from interpretability methods– as well as an algorithm that
intelligently serves the instances to the participants.

1https://dynabench.org/about
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Liu et al. [45] show that it is possible to extrapolate certain examples of Unknown-Unknowns by look-
ing for patterns of errors and using these as data for a classifier that can be used to find more examples of
Unknown-Unknowns.

3.2. Domain Expert Interaction
From the literature it looks to be the case that a vital aspect in combatting high confidence errors made by the
model is some intervention by a human participant in the loop. The human factor can help in determining
those areas where data bias or lack of proper data could be an issue. For each domain where Machine Learn-
ing is applied, there are always also experts in these domains. These are the so called Domain Experts. The
interaction between these experts and those Data Scientists creating the model is a critical aspect to proper
model development.

Data selection and feature construction can be seen as the main crux of classical machine learning. Pre-
vious work [24] has shown that for certain applications, a continuously interactive way of machine learning
can lead to improvements. A study into development tools for statistical ML by Patel et al. [56] has shown that
there is a need for an exploratory and iterative process in the process of data, and feature selection. In the
natural language processing domain, Park et al. [55] proposed interactive tools that enable sharing domain
knowledge through domain concept extraction and label justifications. Nonetheless, the role of the Domain
Experts themselves is often overlooked in the development of trustworthy machine learning systems.

Stumpf et al. [63] investigated the interactions between end-users and machine learning algorithms and
performed three experiments to study the potential for these interactions in increasing the users’ knowledge
of, and trust in the system while also aiding in improving the performance. They studied how to incorporate
feedback from the end-users into the model without negatively affecting the model’s accuracy. The partici-
pants of the experiments made suggestions and critiques on what to change: "... participants made a wide
variety of reasoning suggestions, including reweighting features, feature combinations, relational features,
and even wholesale changes to the algorithms."[63, p.23]. The researchers showed that the algorithm that
took the user feedback into account outperformed a simple online learning algorithm. Seymoens et al. [60]
propose a methodology of co-creation workshops for the development of decision support systems in the
health domain of rheumatology. We will come back to this in our chapter on the Expert Session Methodology
in chapter 5.

3.3. Data Biases
A Machine Learning model is only as powerful as the data you provide it. This means that if the data has
biased indicators in it this will also reflect itself in the output of the model. Throughout this thesis we deal
with different types of biases at different points of the development cycle. One of the main biases that is often
present in machine learning systems is called sample bias or selection bias. This bias is created by the envi-
ronment and training instances that the model is trained on being different from the real world scenario. A
model that is trained only on inspected vehicles will surely be at the mercy of the judgement that an inspector
puts on these vehicles. There is no way to know the true ’risk’ of a vehicle, only risk in the eyes of the inspector,
as the inspector is also the annotator for much of the data that is used. This leads to a generalization error,
where the model may perform well on data similar as to that which it is trained on, i.e. the inspection data.
But when this model is then applied in a real life environment the performance can differ.

This also points at the obvious other source of bias, the inspector or expert themselves. Each Inspector
works with their own set of presuppositions and assumptions of what a non-compliant vehicle is like. More-
over, not each Inspector is as strict as the other. This is essentially a form of Measurement Bias, since now each
data instance of the same type may be judged differently, causing inconsistent and conflicting information
for the model.

Furthermore, the data itself can have issues. The data can be overrelying on certain indicators which do
not give an accurate representation of the domain space. This is typically a consequence of the sample bias,
since the model overfits on these biased indicators.

3.4. Model Interpretability
The rise in the complexity of machine learning models has highlighted a new problem, namely that of under-
standing the decisions that these models make. It has become increasingly unclear what features in the data
are at the core of certain decisions, which has become especially troublesome for applications using pattern
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recognition or clustering models on unstructured data[8]. For there to be trust in and accountability of these
systems, we require both experts and users to understand how these systems work and what they base their
decisions on. This has given rise to the fields of interpretable and explainable AI(XAI)[27].

In order to answer our second research question, namely "How to best interpret what the model has
learned?", It is necessary to get a sense of what it means to interpret a model and what best approaches and
techniques currently exist for this purpose. Because of this, we preceded our research with a literature study
that included a study on the topic of interpretability.

In this section we outline the struggle of clearly defining interpretability, we give an overview of what
it takes to make an interpretable design and we outline some of the common interpretability techniques,
such as SHAP, LIME, feature dependencies and counterfactuals. We weigh their benefits while also giving the
justifications for our choice of techniques and how these relate to answering our research questions.

Right to Explanation As Machine Learning systems are being applied in real life applications, regulations
have been created in order to ensure proper use. Data regulations laws such as the GDPR [2], address the
issue of systems’ need to be interpretable. Systems that are in use are having real life consequences. This is
especially an issue when significant amounts of money or even human lives are at stake [9, 40]. Additionally,
in recent years, much controversy has been created by the introduction of ML systems in fields such as hiring
or risk assessment, where biases in training data have a big influence on citizens lives [22, 39]. This is also
relevant for the case of the ILT, where the decision making models can have an impact on the way inspections
are performed.

As explained also in the introduction chapter, the designers of the high-stakes Machine Learning systems
can be held accountable for the choices which the system makes[2, art. 21, 22]. This poses new challenges
for the creators, as they now have to take this interpretability factor into account when creating a model,
this is especially troublesome with more complex models such as Random Forests and Neural Networks [28].
However the degree to which there is an actual ’right to explanation’ is still a controversial topic, some ar-
gue that articles 21 and 22 of the GDPR merely requires creators of automated decision making systems to
provide the user with meaningful information such that the user can make an educated choice on their right
to opt-out from an automated decision making system. There have been new proposals in the European
Commission[57] on Artificial Intelligence systems that do cover the aspect of a user’s right to interpretation
of model output, although this is still only a proposal. Either way we can envision a future where creators are
required to explain their model’s decisions, meaning that it is even more important now with the future in
mind. Since we are using a Random Forest model for our case study, we need ways to explain what the model
is ’thinking’. Since we perform sessions where we present domain experts with model outputs, we require
some way to convey these outputs in a valuable and comprehensible way to the domain experts.

3.4.1. Interpretability vs. Explainability
Before we discuss methods for interpretability, it is important to clearly define what it means for a system to
be interpretable and to also point out the distinction between interpretability and explainability, as these are
often wrongly conflated. Commonly, interpretability can be defined as "the ability to explain or to present
in understandable terms to a human" [23]. However in reality a clear definition is difficult to set as there are
many distinct aspects to interpretability. Interpretability touches on many topics such as trust in the system,
causal relationships, informativeness of the model, robustness of the model to changes in data, privacy of
user data and even fairness [44]. These topics, often termed desiderata in the interpretable ML literature,
have been clearly summarised by Marcinkevičs and Vogt [52].

Differentiating the term Explainability from Interpretability is continuously under discussion in the Ma-
chine Learning community [52, 44, 59]. Some authors such as Lipton [44] state that in the case of inter-
pretability we want to know “How does the model work?”, whereas explainability methods try to answer
“What else can the model tell me?”. Alternatively Rudin [59] states that Interpretable ML is concerned with
inherently interpretable Machine Learning models, while Explainable ML is mostly concerned with providing
post-hoc explanations of existing models. Throughout this thesis we mostly stick to the more loose definition
of Lipton [44] where more focus is put on the transparency of the model. Since the focus of our research is on
High Confidence Errors rather than specific interpretability study, we need a definition which aids us in this
pursuit. Lipton [44] definition of "How does the model work" sticks close to our RQ2 of How to best interpret
what the model has learned.
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Local vs. Global Explanations There exist many different approaches to providing model explanations. Be-
fore we discuss several explanation methods, it is important to note the distinction between local and global
explanations. When we talk about local explanations, these are simply single data instance explanations,
concerned with only the feature values of that specific instance and potentially as it relates to the rest of the
feature set. Global explanations are explanations of the model as a whole, i.e. what features and concepts give
rise to the totality of the model classifications.[23, p. 7] In the case of our research we want to characterize
specific instances, namely those instances predicted with a high confidence but which were in error. This
means that we are not necessarily interested in interpreting the model as a whole globally, but rather we want
to interpret those instances that are of interest to our goal. This means that we put more focus on explaining
locally.

3.4.2. Interpretable Design
As shown in the previous section, interpretability is a broad concept that can be concerned with many differ-
ent aspects of the model. For the purpose of understanding models more clearly, we need to identify those
explanation methods that are most effective towards our aim. Visual analytics tools have been developed for
fields such as Deep Learning [33]. There have as well been surveys for more general predictive visual analytics
tools [46, 47]. Here we discuss an influential paper in the field of interpretability visualisations, namely that
of GAMUT [32]. For the creation of their Visual Analytics, GAMUT Hohman et al. [32] explored how inter-
active interfaces could better support model interpretation. Their work helps in answering questions about
human-centered approaches to model interpretability as well as some of its requirements.

This paper touches on those topics which are essential for our research in regard to interpretability. For
our research we are working on Human-centered approaches for helping us characterize and mitigate errors
created by the model. Interpretability is a tool in our toolkit that can help us in this effort. The paper of
[32] gives a clear outline of what interpretability techniques are needed for a proper interaction with human
participants. It clearly explains the benefits and drawbacks of these techniques and how to best use them in
a human-centered setting.

Based on the literature as well as interviews with both ML researchers and ML practitioners, Hohman et
al. [32] generate the following capabilities for an interpretation interface to have:

• Local instance explanation: Given a single data instance, what features contribute to what degree to
the ultimate prediction.

• Instance explanation comparison: Given a set of instances, what distinguishes them from each other,
what features are higher and what features are lower.

• Counterfactuals: What is the effect of modifying certain features on the ultimate prediction.

• Nearest Neighbours: Given an instance, what are other instances sharing similar features, predictions,
etc.

• Regions of (un)certainty: What regions of feature values cause higher uncertainty of the model.

• Feature importance: In the entirety of the model, what are those features that contribute the most to
the classification.

To evaluate their tool Hohman et al. [32] performed a user study involving data scientists and non data
scientists, 12 participants in total. During the study, the focus was on how these users understand the models
best.

The user study covered three important main topics:

1. Reasons for interpretability:

During the study participants used the model to confirm prior beliefs they had about the data. This
way they increased their trust in the model, by confirming these beliefs. Participants also mentioned
that there are trade-offs to be made between simplicity and completeness of the explanations, making
some participants promoting the use of simpler models which are easier to explain, even though they
might impact accuracy.

2. The use of global vs. local Explanations:
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During the study novices to machine learning gravitated more to local explanations. Intuitively these
explanations are easier to understand, but ultimately both global and local explanations were comple-
mentary.

3. The effect of interactivity:

From the user study it became quite clear that the interactivity of the tool is a vital aspect in the explor-
ing, comparing and understanding of different areas of the data and the model. Making the participants
claim that they could barely imagine the tool without it

3.4.3. Interpretation Methods
In this section we explain some of the most commonly used methods for the interpretation of ML models, as
well as pointing out their disadvantages and advantages and how they relate to our research.

SHAP SHapley Additive exPlanations or SHAP, as it is more commonly known, first proposed by Lundberg
and Lee [49], is an interpretability method for showing the feature contributions for a single data instance, a
set of instances, or the whole model. It calculates the feature contributions for a data instance by using the
concept of Shapley values [61]. Shapley values is a game theoretical concept of coalitional games of how to
fairly distribute a payout over a set of players. Shapley Values work by taking a coalition of all players φ and
removing the player φi for who you want to calculate the Shapley value. The difference between the value of
the coalition that includes φi and the one that does not include φi is the marginal contribution of φi . Then
perform this step for all permutations of possible coalitions that differ only by containing or not containing
φi . We now take the mean of all the marginal contributions to obtain the Shapley Value of φi . This Shapley
Value is the average contribution of player φi to the total value of the coalition.

Now to apply this method to the domain of model interpretability we can see the feature values acting as
players and the prediction output as the payout. Using this approach Lundberg and Lee [49] propose their
implementation named SHAP. They show that SHAP satisfies all properties of local accuracy, missingness and
consistency [49].

To calculate the individual contributions of the features to the final model output we calculate the Shapley
Value for each feature. The Shapley Value φ for feature value i can be calculated using equation 3.1:

φi ( f , x) = ∑
s⊂x

s|!(C −|s|−1)!

C !
( fx (s)− fx (s\i ) (3.1)

Here f is the model, x is the datapoint, s is a subset of features from that datapoint and C is the total number
of features. The first term in the equation is a weighting term for the total amount of features that are included
in the subset. This is performed since a large change in the model output is more significant when the subset
is large rather than when the subset is small. The second term calculates the difference in model output with
and without the feature included. Here we note that, to obtain a model output, you can not simply exclude
feature values and calculate the function value, for this reason, instead of excluding the features, SHAP takes
random feature values from the dataset. On average this will remove the relevance of these features and
thus be the same as removing the feature values. Since performing these calculations for all permutations
would be computationally impossible when the feature set is large, we need a way to approximate the values.
Lundberg and Lee [49] do this with their KernelShap method. KernelShap fits a linear regression model, where
the output of the model is the prediction value, the variables are given a value of 0 or 1 if the feature is present
and the coefficients of this model are the approximations of the Shapley Values. Other model-specific kernels
are also proposed, such as TreeSHAP [48] for tree-based models.

Overall SHAP is an excellent interpretation method with a good theoretical backbone, it satisfies the three
properties of local accuracy, missingness and consistency and produces fairly distributed explanations over
the feature values. With the TreeShap method, SHAP has a fast implementation that can quickly and ef-
ficiently calculate the feature importances for individual instance level explanations. Since our model is a
Random Forest model, SHAP is an excellent method to use. It allows us to get a clear view of each features
contribution while also providing a fast implementation. SHAP explanations are based on a relatively simple
to understand concept of including the feature or not including it and observing the impact. Since we want to
characterize certain specific instances that are in error we have a need to explain local instances and analyze
what features most contribute to these. Weighing the benefits, we find SHAP to be a good option for this.
SHAP is also a good option for our Expert sessions, as the SHAP feature contributions can help us in making
the model clearer to the experts which helps build trust in the system.
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Local Surrogate Models A different approach, but also widely used is the use of Local Surrogate Models.
This is essentially the use of simpler, more interpretable models which are trained on local neighbourhoods
of the data, to approximate the interpretation of the whole model. Ribeiro, Singh, and Guestrin [58] propose
their implementation of such a surrogate model, namely Local interpretable model-agnostic explanations
(LIME). LIME works by taking variations of the data and training the surrogate model on these, while weighing
those instances by how close they are to the instance of interest. The advantage of this method is that you can
train a more interpretable model, such as, for example, a decision tree on this local neighbourhood. Figure 3.1
shows an example2 of the process of selecting the instances, reweighing them and training the local model.

Figure 3.1: LIME: Process of selecting and reweighing the neighbourhood. The yellow dot indicates the instance of interest. The bottom
right square shows the reweighing of the instances in the local neighbourhood, the bottom left square shows the new classifications
based on training the model in the local neighbourhood.2

An advantage of this method is that it is quite flexible. You can change your underlying model while
keeping your surrogate model the same. The explanations produced by the surrogate can even use different
features from the ones used by the original model, making it a more flexible choice. Depending on what
type of surrogate model you choose, the explanations can be more intuitive for people not so proficient in
machine learning.

Despite these advantages, the main disadvantage is that doing local surrogate models right can be quite
challenging. The choice of neighbourhood can be quite tricky, the explanations are not always as robust, the
choice of neighbourhood can have a large impact on the quality of explanations, even two neighbourhoods
that are very close to each other can still have significantly different explanations [5], making it quite unstable.
Moreover, due to the fact that you are free to choose the surrogate model, this requires a lot of knowledge of
both the problem space and what models would perform well, making it a method that is difficult to apply
correctly.

Feature Interactions Sometimes we are not only interested in individual contributions of features, but also
their interactions with each other. One simple option to do this is through Partial Dependency Plots (PDP).
Here you would plot the values of a variable against the values of the target variable and see the effect of
changes on the output. A problem with this approach is that you can only perform it with 2 features at a time.
Doing this on a model where there is a large number of features will get unruly, for that reason this method is
only useful for small single feature impact analyses. However, it is still particularly useful for showing some
clear data biases for certain features, such as certain variable values that greatly impact the performance of
the model. For this reason we employ this method for analysing some of the model’s variables in chapter 6.

Another method that can be used to look at the interaction between two features is the Friedman H-
statistic [25]. This can also be extended to the interaction of a feature with all other features. Using the partial
dependence between variables, the H-statistic can give an interaction strength for each variable, plotting
these interaction strengths for all features can give a good sense of the importance of some features.

2Source: https://christophm.github.io/interpretable-ml-book/lime.html

https://christophm.github.io/interpretable-ml-book/lime.html
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Counterfactual Explanation To get a sense of the causality of some features, we can perform a counter-
factual explanation analysis. Counterfactuals look at the effect of changing individual feature values on the
prediction output. More specifically; an explanation using counterfactuals describes the smallest change to
the feature value that is needed in order to change the prediction to a certain output. An example of an im-
plementation of counterfactuals is that of Wachter, Mittelstadt, and Russell [67], where they minimize a loss
function of how far the predicted outcome of a counterfactual is from the the desired outcome

Counterfactuals can be a suitable choice, especially for when trying to give explanations for decisions of
automated decision-making systems, such as when causality explanations are needed for the GDPR [67].

SIRUS: Decision Rules Lastly, we also looked at what methods are especially good for interpreting Random
Forests, since we are working with a random forest. For this we found an approach by Bénard et al. [11]
named SIRUS (Stable and Interpretable Rulee Set). This is a method of generating a set of decision rules from
the Random Forest. The decision rules are generated by aggregating over the entire Random Forest itself,
rather than aggregating over the predictions generated by the trees. The most frequently occurring nodes in
the trees are used to create the set of decision rules. An example3 of such a set of rules, created using the
Titanic dataset is shown in figure 3.2.

This approach can give insights in the Random Forest as it can provide more insight on the specific feature
values that the model uses to make its decisions.

Figure 3.2: Set of SIRUS Decision Rules produced using the Titanic Dataset

In this chapter we have shown the previous work that has gone into characterizing and mitigating high
confidence errors through research into Unknown-Unknowns. We highlighted how domain expert involve-
ment has previously been used to great effect. Furthermore, we also provided a distinction of the different
types of bias that can exist for a model. Lastly, we ended with a literature study on model interpretatbility,
where we outlined some of the most important concepts and techniques that are used in the ever-emerging
field of Interpretable Machine Learning. We gave a description of the definitions of interpretability and ex-
plaibility that are out there in the literature while also noting the difficulty in defining these. As we are in-
terested in studying the workings of our model with the study of High Confidence Errors in mind, we chose
to go with the simpler defined definition of interpretability as being "How does the model work", which is
better suited to our goal of characterizing High-Confidence errors. We outlined the design of interpretability
interfaces as a tool for researching what techniques are most essential for us to use in our case study. Finally,
we outlined the interpretation methods, where we chose to go with SHAP as well as feature interaction as our
main techniques that we use. Feature interactions can be a great tool for showing certain data biases such as
outlier variable values that have a large impact on model performance.

3Source: https://github.com/cran/sirus

https://github.com/cran/sirus


4
Data Methodology

To improve the model and reduce the magnitude of high confidence errors, we need to first understand what
the model itself has learned. This section presents a methodology for a data driven approach for under-
standing the model’s knowledge. In such a way we answer our first research question RQ 1: What Instances
Best Characterize System Knowledge? For the Data methodology part we focus on understanding the model
instances both through an analysis of highly contributing variables as well as characterizing the High Confi-
dence errors. Furthermore, through the use of an error prediction model we characterize what instances are
more prone to be in error. A full graphical summary of the Data-driven methodology is shown in figure 4.1.

Figure 4.1: Graphical summary of Data driven model methodology

4.1. Dataset Split
For our efforts of characterizing the High Confidence Errors created by the model, we need a sufficiently large
set of test instances on which we can make predictions. For this a train/test split was made on the dataset.
We chose a split of 80/20 percent for train and test sets respectively. This choice was made weighing the size
(8584 data instances) of the set as well as the need for a representative test set. We need a sufficiently large
testset since we also need a sufficiently large amount of errors. The distribution of the confidence scores
of the errors generally follows a normal distribution or positively skewed normal distribution, meaning that
there will be, relative to the entire set, only a small amount of errors on the tail ends of the distribution. For
the purpose of the Analysis sessions, which are further explained in chapter 5, a 90/10 train test split was used
to keep the performance of the model as close as possible to that of the model trained on the full set.

The Train/Test splits are performed using a stratified split, this means that the proportions of the pre-
diction categories are preserved, meaning that each split will have the same proportion of non-compliant
vehicles vs. compliant vehicles as in the original dataset.

Alternatively, an option would be to use a Leave-One-Out Cross Valdation (LOOCV) approach, where you
train the model on the full dataset leaving one instance (or a set of instances) out on which you will test.

20
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4.2. Variable Importances
The risk model, as explained in section 2.2, learns from the training data what variables are most likely to con-
tribute highly to the risk of violation for a vehicle. In the case of the Random Forest model, the importance of
a variable is for the most part determined by its mean decrease in the Gini Impurity over all trees. Those deci-
sion nodes of the features with the highest decrease will have the largest contribution to correctly classifying
the instances. This gives us a good indication of what the model has learned. However, to further deepen
our understanding of these specific variables we perform a more thorough analysis for the top contributing
variables. For this, we take the top 20 highest contributing variables and we analyse what feature values have
the greatest occurrences. To see how these feature values contributed to the predictions, we compare these
feature values with those values for only the instances that were erroneously predicted. This way, by compar-
ing between the different sets of instances, we get a better understanding of the choices the model makes and
how these choices lead to errors.

4.3. High Confidence Error Analysis
In our research we are mostly interested in understanding not only what the model has learned but also how
this relates to the characterization of high confidence errors. How do the instances differ from the errors that
occur with a lower confidence score. For this we compare both the errors and the full set instances with a
subset of the highest confidence errors. Here we are faced with the difficulty of characterizing what is "High
Confidence". For this we want to take a subset of the errors which are produced with a sufficiently large
confidence score such that it would be troublesome for the trust in the model if these occur in a real world
scenario. We define our High Confidence errors as being on both sides of the distribution, meaning both
the False Positive (High probabilities) instances as well as the False Negative instances (Low probabilities).
Generally the confidence scores of the model predictions follow a (skewed) normal distribution, meaning
that there are a relatively low amount of High Confidence errors, as most predictions, and thus also most
errors aggregate around the mean. For this reason, to have a statistically sufficient amount of errors, we
choose to define High Confidence as relatively broad, where we take all errors produced with a confidence
score 1 standard deviation away from the mean on both tails of the distribution.

Those features that correlate with high occurrences of High Confidence errors are subjects for further
analysis and improvement. If the model is overfitting on these biased variables, this can cause the model to
be overly confident (wrongly) in real world scenarios, causing High Confidence errors.

4.4. Error Prediction
To answer our research questions of in particular RQ1: What instances best characterize system knowledge and
RQ4: What does the model not know? we need a data-driven approach to more reliably see what instances
and variables contribute to High Confidence errors. This helps us to better characterize these and as such to
find ways to mitigate these.

In the previous sections we have shown how we aim to find and analyse those important variables that
contribute to errors. Here we take a more proactive approach, where our aim is not to only post-hoc find
those contributing variables, but to predict those instances that are most likely to be predicted as error in the
original model. This way we want to get to the core of what characterizes a typical ’erroneous instance’. To do
this, we will train a new Random Forest model on a dataset where instead of the original violator/compliant
labels, we use the labels of Correct (correctly predicted) and Error (wrongly predicted). This means that we
build a model that has the job of predicting whether an instance is likely to be wrongly predicted. Looking
at the choices that this new model makes can give us insights into what pitfalls there are for our Risk model
and what variables are troublesome. We relabel all instances that were in error to have the label "Error" while
we label all other instances as "Correct" instances. This way we have a new binary classification problem. We
train the new Random Forest model using the relabeled Test Set data as the training data. We do note that
because of the size of the Testset, the number of instances that the model has been trained on is relatively
small.

4.5. SHAP Interpretation
As covered in section 3.4, model interpretation can serve as a strong tool for understanding the decisions a
model makes. Thus, model interpretability helps us in answering RQ1 and RQ4. Furthermore, for our expert
sessions, model interpretability helps us in conveying the model’s knowledge to the experts. This eases the



4.5. SHAP Interpretation 22

interactions between data scientists and domain experts.
For our model interpretation we use a SHAP variable contribution analysis (as explained in section 3.4.3)

for the top 30 highest contributing variables. Since our focus is on characterizing High Confidence Errors, we
perform this SHAP analysis on those instances predicted with a high confidence, both being a False Positive
as well as False Negative. This allows us to better see what variables and variable values can cause these errors
to occur. We then compare these with SHAP contributions from correctly predicted instances.

This chapter covered the Data driven methodology for characterizing errors and high confidence errors.
This methodology is applied on the ILT risk model to make improvements in the next iterations of the model.
The results of applying this methodology and also how it leads to the desired improvements are covered in
chapters 6 and 8.



5
Session Methodology

In many of the applications of Machine Learning data scientists have the job of creating a model for a use case
of which they will not necessarily be the final end-users. At the same time they also may or may not be domain
experts in the relevant field. Because of this disparity, it means that there often exists a disconnect between,
on the one side, what the data scientists know and are aware of, and on the other side, the knowledge and
expertise of experts in the domain. This has also been referred to in the literature as the knowledge acquisition
bottleneck[31].

To bridge the gap between Data Scientists and Domain Experts we propose a framework consisting of
expert interaction sessions to guide the Human-Centered interaction between the Machine Learning model,
Data Scientists and Domain Experts (i.e. inspectors).

This framework consists of a set of interaction sessions with the experts. Each session is to serve as a
stepping stone for the next session such as to create a ’pipeline’ of sessions where you build on knowledge
from the previous session. This process is meant to be an iterative process where at the end of the series of
sessions you can perform the process again but with new found knowledge and new found areas for improve-
ment. This method of interaction is meant to create an optimal environment to gather knowledge from the
experts while also familiarizing the experts with the workings of the model.

In this section, we start by giving an elaboration on the motivation for the methodology. Then, for each
type of session, we give a generalized outline of the structure of the sessions. Namely, the sessions are the Ex-
ploratory sessions, In Depth sessions and Analysis sessions. We will explain the purpose of each session, how
they work, and give their justifications. Finally a case study was performed in order to validate the methodol-
ogy. We will give a detailed setup of each of these sessions that were performed with the Road and Transport
Inspectors. The results gathered from the case study are outlined in Section 7.

5.1. Methodology Motivation
An interdisciplinary team consisting of members with diverse sets of backgrounds and knowledge can strug-
gle with the issue of how to achieve common ground among the participants. Achieving common ground is
vital in the process of closing the knowledge gap between multidisciplinary experts [54, 16]. Research into
common ground building and negotiation by Beers et al. [10] is particularly relevant for this. They explain
how participants have their own internal representations of ideas which have to be transferred to external
representations that the other participants can understand. In the research of Beers et al. [10] they propose
the use of formalisms, which are essentially a shared language and ways of communication that help in un-
derstanding what is being discussed. Formalisms are a framework for the participants to take a set of objects
and rules and transform this to an external representation of the knowledge. This helps in moving from ’un-
shared’ knowledge to ’external’ knowledge through the externalisation of the participants internal ideas. The
receivers of the knowledge should then, through the formalism and their internalisation, come to a shared
knowledge.

In order to maintain common ground, an active effort needs to be made to fix misunderstandings be-
tween the participants. Formalisms help in facilitating this. From the study it was shown that formalisms
were beneficial in the process of obtaining common ground. Nevertheless, the researchers admit that in a
professional real world setting, other factors such as interpersonal factors or competition factors may be at
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play.
These formalisms of how to transfer knowledge are part of the process common ground. Convertino et al.

[19] give a distinction between two types of common ground: Content Common Ground and Process Com-
mon Ground. Content common ground involves the actual knowledge of domain subjects and the working
practice. Process common ground, on the other hand, is concerned with all the shared rules, strategies and
manners of interaction.

Convertino et al. [19] looked at the development of process common ground over time. They found that
process common ground increases over time as explanations of rules and strategies of interaction become
clearer. They also studied the development of content common ground over time. They showed that content
common ground is formed through the continuous repetition, revision and clarification of relevant concepts
in the domain. Mao et al. [51] studied, through a set of interviews, the scientific collaborations and interac-
tions between data scientists and bio-medical scientists. They showed that the increase of process common
ground allows for an increased ability of updating the content common ground as well. Similar conclusions
came from the study of Convertino et al. [20].

These findings lead us to the conclusion that for the purpose of closing the knowledge gap between data
scientists and experts, there is a need for an iterative collaboration cycle with multiple consecutive sessions.
This is since, with each session and session iteration, the process common ground between the data scientists
and the experts increases, and as a consequence so does the ability to update the shared content common
ground.

5.1.1. Closing the Knowledge Gap
The methodology proposed by Seymoens et al. [60] shows a previous attempt at integrating domain expert
interactions into a generalized methodology by proposing a series of subsequent co-creation workshops per-
formed in the health domain. In their conclusion they call for the development of different methods for
efficiently involving the domain experts in knowledge capture processes. This research, even though it has
similarities to our approach, it differs in the sense that the researchers put more focus on increasing the inter-
pretability of the model with as their objective "... to enable the discovery of underlying skills and know-how
as they are provided through dialogue by professionals" [60, p. 212] in the field". On the other hand, our aim is
to build forward on this approach and to iteratively perform continuous interactions with the experts, even-
tually leading to modifications to the model. This is used to then reduce the magnitude of high confidence
errors, allowing us to preserve and increase trust in the system.

Seymoens et al. [60] propose their methodology through a series of workshops, starting with acquisition
workshops where experts propose and discuss certain examples of scenarios where they apply their tacit
domain knowledge. These sessions result in a series of flowcharts presenting the explicit and tacit knowl-
edge. Following this there is a series of Validation workshops to clarify any ambiguity that still exists in the
flowcharts regarding the knowledge needed for effective decision support systems. This methodology differs
from our proposed methodology in its open nature. The methodology has no pre-set goal besides the aim
of tackling the knowledge acquisition bottleneck for decision support systems. Our methodology has the aim
of using these sessions to not only learn implicit and explicit knowledge from the domain experts but to also
relate this to the trust in the model itself as well as explicitly reducing the (high confidence) errors that the
model makes.

Besides closing the knowledge gap, we are also interested in achieving user trust in the system. [30] call for
proactive communication, concrete and tangible information and transparency in the development process
in order to better achieve this trust. It is important to already early on in the development process involve
the end-users. Xiong et al. [69] point out in their design principle of User Visibility, that the more insight the
user has, the more they are willing to trust the system. This also means that there is a need to introduce the
experts to the actual inner workings of the model, calling for a session where we present the model results to
the experts and interpret the results together with them, making clarifications where needed.

5.1.2. Methodology Requirements
Based on the findings from the literature, we lay out a set of requirements that our methodology must adhere
to. These are the following:

• A generalized methodology providing a framework for the reduction of the knowledge gap between
Domain Experts and Data Scientists



5.1. Methodology Motivation 25

Figure 5.1: Graphical representation of Expert Sessions showing the relation between each. In the Expert domain the Exploratory ses-
sions, moving through the In-Depth sessions to the Model domain and finally presenting specific model instances in the Analysis ses-
sions. In the end the sessions can be repeated in an iterative fashion

.

• An iterable process that aids in the continuous increase of process common ground between partici-
pants, with as a consequence also an increase in content common ground.

• An improvement of the model through the reduction of High Confidence errors

• An increase of user trust in the model through early domain expert involvement by means of interac-
tions with the model, as well as the fostering of a better understanding of the model.

5.1.3. Session Methodology
Now we introduce our own proposed Methodology. It consists of three types of sessions, namely Exploratory,
In-Depth, and Analysis sessions, which have as their aim to address the requirements outlined in section 5.1.2.
Each session type serves a different purpose which we outline below. These sessions help us in answering
research questions 3 and 4, namely:

RQ 3: What knowledge do we want the model to have?

RQ 4: What does the model not know?

Through the experts knowledge we learn what indicators are essential to the model’s good functioning as
well as allowing us to pinpoint areas in the data that are still lacking. The sessions are structured such that
we start from a general point, exploring in the domain of the experts, gradually moving to a more model-
based domain with each session. Each type of session can be done in a single session or over the course of
several separate sessions. Multiple separate sessions give the opportunity to go deeper into the topics and
achieve more common ground, but also come at the cost of more time investment from the Domain Experts
and Data Scientists. This is a trade-off to be made which can be different for each domain. The sessions are
structured in a way that after each type of session changes are made to the model. The changes to the model
carry on to the next session such that there essentially is a ’pipeline’ of model improvements. The sessions are
meant to work iteratively, meaning that once the final session has finished and all model changes have been
performed it is up to the data scientists to reevaluate the state of the model and see if a new round of sessions
is justified. Those areas of the domain that are yet unexplored can serve as a starting point for the next round
of sessions. A graphical summary of all the sessions is displayed in Figure 5.1. A distinction is made between
those sessions that happen in the domain of the experts and those that are based on knowledge from the
domain of the model and data scientists.
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5.2. Exploratory Sessions
The first session is the Exploratory session. As this is the starting point of the sessions, we assume only a basic
understanding of the area of interest. However, even for those more advanced in the field, these sessions can
always give the opportunity for new insights. The aim of the Exploratory session is to get a deeper under-
standing of the domain knowledge and working practice of the Domain Experts. We want to learn which are
the indicators or features that experts use to ground their decisions on, and how they compare to how the
machine learning model is built.

During the course of the Exploratory sessions the driving question is "Where do the domain experts put
their focus when making their decision?". Due to the open nature of the Exploratory session the way of an-
swering this question can come in different forms. A good option to really get a feeling of what the working
practice of the experts is like, is a day-in-the-life style session where the Data Scientists join the experts in
their practice. During such a session the data scientists have ample time and opportunity to question the
experts on the knowledge they want to acquire from the session. Besides this, it also gives the data scientists
a great opportunity to evaluate and get a better sense of in what areas of the working practice the machine
learning system can help the experts the most. The downside of this type of session is that, due to its more
personal nature, it is less formal and thus it can be harder to stick to a predetermined format of what you
want to learn.

The other choice for the exploratory session is to perform it in the form of a semi-structured interview [3].
This is a common form of interview in qualitative research where the interviewer asks mostly open questions
where there is only a general framework of the topics that need to be discussed. This type of interview is a
good method for situations where you are mostly exploring uncharted territory [3], as it leaves room for a
broad set of ideas to be brought up by the participants. This setting leaves much room open for discussion
between the experts that are being interviewed. This approach, however, requires a good deal of sophistica-
tion from the interviewers end, as these interviews can be time and labor intensive and are prone to drift off
topic. The interviewer has to be able to adjust to the discussion smartly such that the topics are all covered
while also allowing the experts to put forth their ideas. Furthermore, it can be strenuous to extract from the
interviews all relevant information to your use case, as this can include going through many notes and/or
recordings of the session.

During the interview session it is the job of the data scientists to bring up those topics of expertise on
which they know they need more insight. This means that there has to be a preparation beforehand to analyse
what areas the data scientists think they are still missing valuable knowledge. During the sessions, domain
experts have the task of providing the data scientists with what they pay attention to with regards to the
topic presented by the data scientists. They need to accompany these insights with their reasoning as to why
they focus on these. It is the data scientists/interviewers job to probe the expert further if they feel that not
enough reasoning is provided. The insights from these sessions will provide the data scientists with a better
understanding of what features and data are essential for predictions.

Not all indicators that the experts give are always implementable within the data, it is up to the data sci-
entists to decide what indicators are necessary to support the work of the expert and what indicators should
be left for the expert’s judgement only. The experts can help in making this decision in the following type of
session, namely the In-Depth Session.

5.3. In-Depth Sessions
The In-Depth sessions are the next set of sessions, they follow the corresponding exploratory sessions. They
have the aim of focusing on those points from the exploratory session(s) that require further study. The fo-
cus lies on understanding what data is useful for the model and how much it contributes to the prediction:
extracting and ranking features that are vital to the models’ goal. The driving question of this session is "How
does the available data contribute to the classification goal?". Answering this question sometimes requires
further elaboration of information gathered from domain experts during the previous session. We are essen-
tially in a search to extract and pinpoint from all the data that we have access to, those features that are vital to
our goal, while also leaving room for new data sources to be incorporated in the model. Perhaps the domain
experts themselves have suggestions on what kind of data they would like to see represented in the model,
making suggestions like this is part of the In-Depth sessions. In this way, we incorporate the knowledge of the
domain experts in the process of feature selection and engineering. As opposed to the Exploratory sessions
where we were really open to any indicators that the experts propose, here we are only concerned with those
which are representable in actual data and features. In such a way these sessions serve as the bridge between
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the Expert Domain and the Model Domain.
The In-Depth Sessions are optimally performed in the form of Semi-Structured interviews, to offer space

for discussion. The data scientists choose those areas in the data that they still are uncertain about whether
they are beneficial for the model or not. They then ask from the domain experts to assess the relevance of
these to the classification. Domain experts have the job to evaluate whether this data is actually relevant or
not. When it is relevant, it is up to the data scientists to probe for further reasoning. This includes asking
questions on why it is relevant, what parts of it exactly are relevant, and how this should translate to the clas-
sification goal. To give an example in the field of road inspectors, you could look at the relevance of company
structures and nationality associations. Then it would be up to the experts to determine if this is relevant
for classifying non-compliance risk. In case it is relevant, they should elaborate on what specific aspects of
the company or nationality makes it a higher risk. Furthermore, they should clarify how it relates to the clas-
sification, meaning if different nationalities have a higher risk or rather lower risk of non-compliance. This
method should make it clear to data scientists how the model should behave, which helps them in assessing
the performance of the model when actually evaluating it. However, as we are proposing an expert-driven
development cycle, it should not only be up to the data scientists to evaluate. We also want to involve the
experts in this model evaluation. This leads us to the next type of session, the Analysis session.

5.4. Analysis sessions
The final session in the iterative interaction cycle is the Analysis session. It is called Analysis session since the
main goal here is to analyze specific predictions of the model and evaluate whether they perform as expected.
Essentially, these sessions serve two main purposes:

1. Present experts with data of real-world cases and model classifications to better compare the model deci-
sions with how experts make decisions in the same scenario

2. Provide the experts with a look into the decision making process of the model as well as hands-on expe-
rience to facilitate building of trust in the model

By studying experts decisions and model classifications on actual data instances, we can better compare the
model performance with how experts make decisions in real-world scenarios. Furthermore, we want to see
how much the experts trust these model classifications. The driving question of this session is "Do the domain
experts trust the model predictions?". The predictions made by the model need to be understandable to the
experts. Simply providing the experts with prediction results or confidence scores will not enlighten them
much. The model predictions need to be accompanied with appropriate interpretation methods. In section
3.4 we discussed model interpretability and gave some common interpretability methods. The data scientist
should choose those methods that are appropriate for their domain and their model. In general the use of a
SHAP value feature contribution analysis [49] is a good approach as these give a clear indication of which are
the highest contributing variables to present to the experts on top of more benefits mentioned in section 3.4.

The Analysis sessions are performed in the form of structured interviews. This means that beforehand the
data scientists preselect data instances for which experts’ input is informative, this can include data instances
that the model has trouble with such as high confidence errors. However this can also include correct pre-
diction by the model, to evaluate whether the experts would make a similar prediction. The choice of what
instances to present is an important part of these sessions and can decide entirely the value that these ses-
sions bring. Choosing these instances also means choosing what impression you want to give the experts of
the model. Picking only erroneous predictions may give the experts the impression that the model performs
badly in general. While only providing correct predictions may be not as valuable to get new knowledge or
can even make the experts suspicious why the model is always correct. The key here is good communica-
tion. The data scientists need to communicate to the experts the reasons why they chose these instances in
particular and what information they hope to get from the experts.

During the session the domain experts are presented with the data instances and their representation.
The correct choice and presentation of the instances is vital for these sessions, as this choice highly influ-
ences the decision making of the experts. Choosing those variables and aspects of the data to show case also
inherently introduces some bias from the data scientists’ side, making the judgement of the experts reliant
on this. Maybe the data scientists have an idea of what variables the experts would pay attention to and only
choose to showcase these, this would essentially only confirm the data scientists presupposed hypotheses
rather than leaving it up to the experts entirely. The other choice is to leave the variable selection entirely
up to the interpretation method you are using, meaning in the case of SHAP values, as an example, you only
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show the experts the top 10 contributing variables. This also entails, however, the issue of the session design.
How to present the data instance can differ. You can simply give a list of features, or you can give the features
in the form of a story which is easier to understand for the experts and perhaps fits their normal working
setting better. Whatever decision you make, it is necessary to be aware of its consequences and the impact it
has on the final result of the session.

Having presented the experts with the data instance it is up to them to first give their assessment and
classification of the instance. This means that they give their judgement as to what class the instance be-
longs to, which can also be accompanied with how certain they are about this judgement. Following this,
the model prediction is revealed accompanied with other relevant information about the prediction such as
model confidence scores. Now a discussion should follow on any similarities or differences in the judgement
of the experts vs. the model. From these discussions new indicators can arise or indicators that the model
used to make its judgement can be reevaluated if the experts do not agree with them.

By finishing the Analysis sessions and answering this session’s question we can finish this iteration of the
sessions and apply what we have learned to the model. We can reevaluate and iterate over the session model
again.

In the previous chapter 4 we explained our data driven approach. We can now combine this approach
with the approach described in this chapter to have a full model improvement methodology. In figure 5.2
we show a graphical summary of the full model methodology. Instead of going straight from the first model
to the final model, we have now added an additional intermediate model phase. This model will use the
findings from the data-driven analysis as well as the findings from the previous expert sessions to generate
an improved model. In such a way, we have a pipeline for iterative model improvement.

Figure 5.2: Graphical summary of Expert driven methodology from the sessions combined with the Data driven methodology. The
Methodology is separated between the Expert Driven methodology(blue) and the Data Driven methodology(red).

5.5. Case Study
The case study sessions with the Road and Transportation inspectors of the ILT. We performed 2 Exploratory
Sessions, 1 In-Depth session and 1 Analysis session. We will outline each session and some of the decisions
that were made for each.

5.5.1. Exploratory
For the exploratory sessions a total of two sessions were held, one preliminary day-in-the-life style session
with the inspectors of the dangerous goods inspectors (ADR) and one semi-structured interview session with
the other road inspectors.
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For the day-in-the life session we had the aim to gauge the need for a risk model for the ADR inspectors.
We as the data scientists spent the day with the group of 4 ADR inspectors at their location in Geldrop and
observed their working practice. The initial model was built with all vehicle violations included, this also
means violations on Dangerous substance (ADR) laws. However, as this area is a bit niche, whether a general
risk model is needed is up to debate. We observed only the inspection of the vehicles and not the selection
process. The selection process of the vehicles was performed by a separate inspector who goes on the road to
choose a vehicle to inspect. Due to COVID-19 regulations, we were not able to join to observe this process.

For the other exploratory session, a semi-structured interview session was held with 7 Road and Trans-
portation inspectors, 4 data scientists and 2 interview coordinators. The interview coordinators were there to
facilitate a proper interview flow and to guide and keep the discussions on topic. During this session the data
scientists proposed 3 areas of exploration to the inspectors: overload, rest and driving times, and cabotage.
For each area the inspectors are asked the question:

"What aspects and features do you pay attention for when looking for non-compliance in this
area?"

The inspectors brainstorm in order to identify the most important indicators. After this they have 10 minutes
to write down their most important indicators using a collaborative writing tool (e.g. Mural1) and rank them
according to their judgement. At this stage, data scientists can ask clarifying questions.

5.5.2. In-Depth
An In-Depth session was held in the form of a Semi-Structured interview. This session was performed with 4
inspectors and 4 data scientists. As this session was held with a smaller set of inspectors there were no inter-
view coordinators present. Inspectors were queried on the following areas of interest regarding model data:
moment and location of inspection, cargo, vehicle maintenance, vehicle ownership, and company structures.
For each separate topic they were given the opportunity to discuss the topic with each other while the data
scientists could ask clarifying questions.

For the moment of inspection, inspectors were asked:

"Which temporal aspects are important for the compliance of a vehicle?"

Examples were given from previous sessions being: Time, day/night time, day of the week, weekend, month,
specific periods, and holidays.

For the location of inspection the inspectors were asked the question:

"Which elements of the location may say something about compliance of a vehicle?"

Examples were provided of elements that were found from the previous Exploratory session. These were:
Region of the country and specific common routes.

On the topic of vehicle cargo, the inspectors were asked:

"What types of transport have an impact on the cargo that is being transported and how do these
relate to the compliance of a vehicle?"

Again, examples found from previous sessions were provided such as: Open transport vehicles, animal trans-
port, construction transport.

For vehicle ownership we make the distinction between the tractor (pulling) part of the vehicle and the
truck (pulled) part of the vehicle. The inspectors were asked:

"Lease vehicle violations come on the name of the lease company, how does this have an impact?"

"Does a tractor usually drive with it’s one equipment or from a different owner?"

"Are there combinations of Dutch trucks and foreign tractors? What other combinations of vehi-
cle and owner are there?"

For vehicle maintenance, we focused on shrinking the list of vehicle maintenance features. Here we asked
the inspectors:

1https://www.mural.co/
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"Is vehicle examination data relevant for the risk profile?"

"Which categories of vehicle examination are of importance?"

For company structure the following questions were asked:

"International transport organisation with Dutch parent company, how does it have an impact
and which countries are involved?"

"How does being an own carrier(with own transport vehicles) have an impact?"

Besides these specific guiding questions we also gave room to deviate and brainstorm about ideas that the
inspectors brought up. The results of the answers that the inspectors gave were noted down, extracting the
important main points of their discussion. The results of the interview are given in chapter 7. Following the
interview, us as the data scientists discussed our notes from the session and converged on the main points
from the session for each topic. These then lead to improvements of the model explained in chapter 8.

5.5.3. Analysis
An Analysis session was held with 3 inspectors and 4 data scientists. The session was held in the form of an in-
terview. The inspectors were presented with 8 data instances in total. The feature for the model were selected
by the data scientists out of the set of high contributing features based on the SHAP feature contributions. We
note that we made choices in what features to showcase, which means that we are at risk of introducing some
of our own biases, still we presented mostly only the highly contributing features. We made the feature values
more comprehensible for the Experts. This means that as an example we would not present them with: "The
mass of the vehicle was 10256 kg", but rather: "The mass of the vehicle was in the category of large and heavy
vehicles (supported by the distribution of the vehicles)". Lastly, as the working practice of these inspectors is
highly based on visual characteristics, we provided the predictions with a visual image of the vehicles that the
instances were based on. Giving this visual representation can potentially skew the judgement of the inspec-
tor. Either way, it can also help in the process of understanding the sessions for the inspectors. In figure 5.3a
we show an example of a case that was presented, you can see the image of the vehicle on the right side.

The data instances consisted of 5 instances which were high confidence errors and 3 correct predictions.
Since our analysis aims to reduce high confidence errors, we focused on presenting these mostly. However,
as we want to give the experts a more balanced view, and not give them the impression that the model is
always erroneous, we also presented them with 3 correct predictions. For each instance we asked the experts
judgement on whether they think it is a compliant or non-compliant vehicle, we also asked them how high of
a risk they would deem the vehicle. After this, we presented them with the actual decision of the model and
the confidence score. We discussed the similarities and differences in judgement. In figure 5.3b we present
the view that the inspectors would see after they made their predictions, on the right hand side it contains
the SHAP feature contributions of the instance and on the left hand side the model score and whether it was
an error or not.

In this Chapter we covered our Sessions Methodology for the Iterative Domain Expert Sessions. We gave
our motivation for the structure of these sessions by giving an overview of some of the relevant literature and
previous work on this field. We gave a general outline of the aim of the sessions and how they should be
structured. Lastly we presented our case study that we used to validate the session model with the inspectors
of the ILT.
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(a) Truck and Variable View

(b) Model Prediction View

Figure 5.3: Example of case during the Analysis Session in (a) we present the view that the inspectors are presented with to make their
judgement on. After the inspectors make their decision and explain their reasoning they are shown view (b) where the model’s decision
is shown accompanied by the confidence score. To explain the decision of the model we show a SHAP feature contribution plot for the
data instance.



6
Model Domain

In order to improve the model we need to understand the underlying domain of the model. This means that
we have to understand what the model bases its choices on in order to improve upon these. This section aims
to understand everything ranging from the performance of the model, those variables that are most impor-
tant in achieving the final prediction and to give an understanding of the errors that the model produces. We
performed an analysis of the High Confidence errors and built a new model using the errors as a label, such
that we can try to predict which instances are most likely to be in error. This helps us in better characteriz-
ing the nature of the High Confidence errors. Thus, this section answers the research question RQ1: What
instances characterize system knowledge.

6.1. System Knowledge
As explained in chapter 4 a train/test split was made on the dataset. We chose a split of 80/20 percent for train
and test sets respectively. This choice was made weighing the size (8584 data instances) of the set as well as
the need for a representative test set.

The total set of instances consists of a set of 8584 vehicle inspections. With the split of these we have a
Training set of 6868 instances and a Test set of 1716 instances. In the set we have a total of 2830 vehicles that
had a violation during the inspection. This gives us a baseline precision for this set of 0.3297.

We use the Random Forest model which is trained on a train set consisting of 6868 vehicles. For the model
we used a total of 1500 trees and we tuned, using a tunegrid, the mtry to be around the optimal value of 18. We
do this by choosing the best performing mtry in the range of

p
Featur eCount −2 and

p
Featur eCount +8.

The square root of the amount of features has shown to be a good optimal for the mtry variable as presented
in section 2.2.2. For the amount of trees to aggregate over(i.e. ntree) a default value would be 500 trees, we
found that a tree count of 1500 gives the best performance for our model for this reason we set ntree to 1500.
The model was trained using a 10 fold cross-validation. As discussed in section 2.4 the model was optimized
for Precision. The final average precision of all folds is 0.5679999. The AUC score is 0.4496914.We have an
Out-of-Bag(OOB) error estimate of 32.25%. For the High Confidence errors we saw that the values in the top
20% had a total average magnitude of 0.70435, whereas for the top 5% this was 0.78047.

Table 6.1 gives a summary of all metrics and their values.

Metric Value
Precision 0.56800
AUC 0.44969
OOB error 32.25
HCE 20 0.70435
HCE 5 0.78047

Table 6.1: Table displaying the performance metric values for the First Model

32
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6.1.1. Variable Importance
We performed an analysis of the model of the first iteration to get an insight into what variables of the model
contribute to the prediction score.

We used the trained model to make new predictions on the test set of 1716 vehicle instances. Figure 6.1
shows the distribution of the probability scores of all the predictions made.

Figure 6.1: Distribution of Probability Scores

The entire model is trained on a set of 137 variables, of these we present the top 100 variable importances
in figure 6.2. From this figure, we can see that there is a set of variables with a large variable importance, after
which there is a long tail with variables that are only contributing weakly. For this reason, we choose to focus
in on only the top 20 most important variables, these are displayed in figure 6.3.

Figure 6.2: Variable Importance as a mean decrease in the Gini index of each variable of the model
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Figure 6.3: Subset of the top 20 most Important Variables

The variables are given in their Dutch and abbreviated names. A description of these variables is given
in table 6.2. These descriptions are listed in order of variable importance. From the variable importances
we can see a trend of the model putting a strong emphasis on the location and time that the inspections
were performed. Additionally there is also a significant amount of variables related to the mass of the vehicle
and the percentage overweight of the owner/vehicle. These variables are thus good candidates for a more
thorough analysis.

Variable Name Description

insp_maand The month in which the inspection was performed

lon_insp_loc Longitude coordinate of the inspection location

lat_insp_loc Latitude coordinate of the inspection location

insp_weekdag The day of the week on which the inspection was performed

LAT_RDW Latitude coordinate of company at which the vehicle is registered

LONG_RDW Longitude coordinate of company at which the vehicle is registered

Det_num Years from first accession of vehicle to NL to the inspection date

Massa.ledig.voertuig The mass of the empty vehicle

Dtn_num Years from registration of vehicle to RDW owner to the inspection date

Oprichting_eig The age of the company at the time of inspection

passages Amount of passages of the vehicle over a WIM location

gem_perc_overbelading The average percentage of overweight measured for the vehicle on the WIM location

Merk_cat The Brand of the vehicle

gem_perc_EIGENAAR The average of overweight measured for the owner of all vehicles on the WIM location

Lengte The length of the vehicle

avg_MLV The average mass of all vehicles on the name of the RDW owner

inrichting_cat The vehicle type

SRT_GEBR_BESTURING_EIG Vehicle maintenance problem

Cilinderinhoud Cylinder capacity of the vehicle

aant_ovt Amount of measured violations for the vehicle on passage of the WIM location

Table 6.2: Description of the top 20 most important variables, listed in order of importance

6.1.2. Model Errors
As we know the true values for the test set, we can see whether the predictions that the model made were
correct or not. We perform a check for all predictions to compare the predicted label of violator/compliant to
the true label. All predicted labels that differ from the true label will be classified as being in error.

On the Test set we have a total of 534 Errors out of the 1716 predicted instances. We plot the confusion
matrix for the test set in figure 6.4. We can observe a preference for the model for predicting instances as
being compliant (Dutch: nalever) rather than violator (Dutch: overtreder).
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Figure 6.4: Confusion Matrix for Predictions made by the model on the Test Set. Prediction are shown for (Dutch: nalever) and Violator
(Dutch: overtreder) vs. the True label values

We want to analyse what variables contribute to the occurences of these errors and how these relate to
the Test set and the set of violators within the set.

We focus in on some of the most important variables featured in table 6.2. We first look at the variable
that is ranked the highest by a significant amount: The Month of the inspection. In figure 6.5 we show a
distribution of the months of the instances. We show both the months for the entire test set as well as the
errors overlaid in red and the violators in blue. We see that the distributions for both the errors as well as the
violators follow quite closely the entire set, with only some months with small deviations. When we look at
the fractions of the errors vs the total set in figure 6.6 this becomes even more clear. From the plot you can
see that most bars are even with only slight deviations for months such as April, June and September.

Figure 6.5: Plots for Month Errors (Red) and Violators (Blue)
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Figure 6.6: Plot for Fractions of Month Errors vs Test set

Doing the same for the other temporal variable: the Day of inspection, we get the distribution in figure
6.7. Plotting the fractions in figure 6.8 shows a clear outlier for inspections made on Saturday for errors to
occur. Looking at the full plot, this gives us the insight that there is a very low number of inspections on the
weekend days, which can likely contribute to the uncertainty of the model for these days.

Figure 6.7: Plots for Day Errors (Red) and Violators (Blue)

Figure 6.8: Plot for Fractions of Day Errors vs Test set

Next, we want to look at the location aspects which have also been ranked as highly important for the
prediction. In figure 6.10 we plot the locations of where the inspections were performed. The plot is in the
form of a heatmap showcasing the latitude and longitude information. As a reference, to get a better sense of
what locations the plots are showing, we present again in figure 6.9 the map of the Netherlands with the WIM
locations, which often also coincide with important inspection locations.



6.1. System Knowledge 37

From the plot of the inspection locations we can see that there are two hot spots for inspection locations,
one around the Zwolle area and one around the West/Randstad area. The latter is likely also caused due to
the larger density of WIM locations in the west/Randstad area as can be observed in figure 6.9. From the
density map showing the errors in the top right, we can see that the errors follow closely also the distribution
of the test set, while we can see that for the violators (as seen in the bottom right) there is a slightly larger
amount of occurrences in the eastern Zwolle hotspot. In figure 6.11 we show a Ceteris Paribus plot, further
highlighting the relation between the prediction score and the hotspot locations. This plot shows the effect
on the prediction score by only changing the values of the latitude and longitude of the instances.

Figure 6.9: Map of The Netherlands showing locations of WIM passages

Figure 6.10: Plots for Inspection Locations Errors (Top Right) and Violators (Bottom Right)
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Figure 6.11: Plot showing the risk prediction score relative to the longitude and latitude of the inspection location

We ran the same analyses for most of the remaining variables in the top 20 from table 6.2. These can be
found in appendix A

6.2. High Confidence Analysis
We have shown some of the distributions of errors and how they relate to the distribution of the set as a whole.
However, as our aim is to characterize and mitigate High Confidence Errors, this is what we spend this next
section on.

For the selection of our high confidence errors, we want to take a subset of the errors which are produced
with a sufficiently large confidence score such that it would be troublesome for the trust of the model if these
occur in a real scenario. We show the distribution of the confidence scores for all errors In figure 6.12. We
see that the distribution is slightly more of a negatively skewed normal distribution than the positive skew
that we saw in 6.1. Since we are dealing with a relatively small set of errors (534), we also have a relatively
small number of High Confidence Errors. We define our high confidence errors as being on both sides of
the distribution, meaning both the False Positive (High probabilities) instances as well as the False Negative
instances (Low probabilities). Since our model is naturally more inclined to predict vehicles as compliant,
we have a larger amount of High Confidence errors on the low probability end. Taking into account the low
amount of HCEs we found that the (double sided) Top 50 and Bottom 50 errors to be an appropriate cut off.
This cutoff accounts for all errors that occur with a confidence score of more than 1 standard deviation from
the mean. We highlight these parts as red in figure 6.12. Where the left hand side are the Bottom 50 errors
and the right hand side the Top 50 errors. These are the High Confidence Errors that we analyse.

Figure 6.12: Distribution of Probability Scores for all Errors made by the model. The red areas denote the High Confidence Errors that
we want to mitigate.
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Similar to the approach in the previous section, we will start by analyzing some of the most important
variables. In figure 6.13a we plot the top 50 and bottom 50 high confidence errors for the month variable.
We also plot the fractions of the errors vs the total test set in 6.13b. From the plots we can clearly see a bias
for high confidence errors to occur more often for certain months such as April and September. This is in
agreement with the findings that we also found in the previous section. We make a similar plots for the Day
variable in figures 6.14a,6.14b we note an increased occurrence of errors for inspections on weekend days.

(a) Plots for Top 50 and Bottom 50 Errors (b) Plots for Month Fractions

Figure 6.13: Plots for Month High Confidence Errors

(a) Plots for Top 50 and Bottom 50 Errors (b) Plots for Day Fractions

Figure 6.14: Plots for Day High Confidence Errors

We next make the heatmap plots for the top 50 and bottom 50 errors of the inspection locations. These
plots show an interesting finding that the top 50 errors are mostly made in the hotspot around Zwolle where
also the occurrence of violators was the highest, while the bottom 50 errors show the opposite pattern, where
it shows mostly all the spots not in that area. This shows a clear bias for the model to predict on the locations
where a high number of violators has been found.
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Figure 6.15: Plots for Inspection Locations High Confidence Errors, Top 50 and Bottom 50 Errors

Lastly we want to look at some of the continuous variables. We will focus on the variables Massa.ledig.voertuig
indicating the empty vehicle mass and Oprichting_eig indicating the age of the company. We see an interest-
ing observation for the vehicle mass in figure 6.16a, here the top 50 errors show a mostly even distribution
over all vehicle masses, while for the bottom 50 errors the errors follow the test set. The total set of errors
also follows the density of the test set. For the age of the company that owns the inspected vehicle in figure
6.16b we see that the top 50 errors happen more often for the younger companies and the bottom 50 errors
have a drift towards the midrange, for older vehicles. This indicates the models preference to predict younger
vehicles as being violators more often.

(a) Density for Mass of empty Vehicle High Confidence Errors, Top 50 and
Bottom 50 Errors

(b) Density for age of the company High Confidence Errors, Top 50 and Bot-
tom 50 Errors

Figure 6.16: High Confidence Error Densities for the Mass of the empty vehicle and the Age of the company

From these analyses we can see that the most important variables to the model are often also the cause
of most of the high confidence errors. The model overrelies on these few variables when making predictions,
meaning that when the reality is different, the model will wrongly predict these instances with a high confi-
dence. The most clear examples are those of the locations and the age of the vehicle as well as some of the
time and weight related variables that we have shown. Analyses for the remaining top 20 variables can again
be found in the appendix A.

6.2.1. Predicting Errors
As a last step to finalize our search for those instances that are most likely to cause errors, we want to use
a more data driven approach. For this, we want to try to predict, using our found errors, what instances
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would be likely to be erroneously predicted. As explained in chapter 4, we relabeled all instances that were
in error to have the label "Error" while we labeled all other instances as "Correct" instances. We then trained
a new Random Forest model using the relabeled Test Set data as the training data. We do note that because
of the size of the Test set, the number of instances that the model has been trained on is relatively small. The
hyperparameters for this model were chosen to be mtry of 20 as being the optimal mtry and ntree of 1500,
calculated similarly to the original model. The model was trained using 10 fold cross-validation. The original
Training set is used as a Test set to evaluate the trained model on. The model has a precision of 0.70225 and
AUC of 0.76154. The OOB error estimate is 32.46%. These are summarized in table 6.3.

Metric Value
Precision 0.70225
AUC 0.76154
OOB error 32.46%

Table 6.3: Table displaying the performance metric values for the Error Prediction Model

We analyse the top 20 variables that contribute to the classification of the errors. These are presented
in figure 6.17. We observe that for the prediction of errors, those same variables that were important for
the original classification are also the most contributing to classifying errors. This is in concordance with
our earlier findings that the model relies on a set of important variables for its predictions, which causes
these variables to produce more errors when predictions are made. We see that the impact of the inspection
month variable is even more exaggerated in this model. Further, we can observe that the latitude coordinate
of the location is deemed less important than in the risk model and also the mass of vehicle is deemed less
important than before.

Having created and analyzed our model we now want to make some predictions. We perform our predic-
tions on our original train set of the risk model. This gives us a distribution of probabilities given in figure
6.18. As we are interested in characterizing High Confidence Errors we will compare both those cases pre-
dicted as being in error as well as those predicted with a high confidence (26 data instances in total). For this,
we choose the cutoff of 0.7 probability confidence of being in error. We will compare for a set of important
features the effect of all errors vs those predicted with a high chance of being in error.

Figure 6.17: Top 20 Most important Variables for predicting Errors
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Figure 6.18: Distribution of Probabilities of predicted instances for the Error Prediction model.

We first look at by far the strongest predictor, namely the Month feature. this feature is plotted in figure
6.19. Where we show both the error predictions as well as the high chance predictions. We see a clear spike
at the July month, whereas contrary to what we have seen before, the months of April and September do not
occur often in the set of high error chance instances. In figure 6.20 we show the weekdays plotted for the error
instances. Here we note no large differences in the occurrences, however, whereas previously we saw a large
impact on those instances that were on weekends, here this effect is less pronounced. We also looked at the
effect of the Brand of the vehicle on whether the model would deem it an error. This is visible in the plot in
figure 6.21. Here we observe that mostly SCANIA vehicle and vehicles of which the brand is unknown (Dutch:
onbekend) are highly contributing to the errors.

Figure 6.19: Plots for Month distribution for Predicted Errors, All Errors vs. High Error Chance(probability > 0.7)



6.2. High Confidence Analysis 43

Figure 6.20: Plots for Day distribution for Predicted Errors, All Errors vs. High Error Chance(probability > 0.7)

Figure 6.21: Plots for Brand distribution for Predicted Errors, All Errors vs. High Error Chance(probability > 0.7)

Next, plotting the location variables in figure 6.22 we note that the hotspots that we previously observed
are again seen as occurring most often for the error instances. An interesting observation that we did make is
for the RDW owner locations in figure 6.23. Previously, in figures A.12, A.13 we noted no real impact from this
variable on whether an instance is in error or not, both for the normal errors as well as the High Confidence
errors. However, in this model we see that there is a large hotspot for the High chance errors in the eastern
North-Brabant/Limburg area.
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Figure 6.22: Heatmap Density Plot for Location distribution for Predicted Errors, All Errors vs. High Error Chance(probability > 0.7)

Figure 6.23: Heatmap Density Plot for RDW owner locations for Predicted Errors, All Errors vs. High Error Chance(probability > 0.7)

Lastly, we present two density plots, namely of the mass of the empty vehicle in figure 6.24 as well as the
age of the company in figure 6.25. The Mass of the empty vehicle seems to follow the same pattern for both
the high chance errors as well as the normal errors. For the age of the companies we see a clear peak for the
high confidence errors for the older aged companies.

Figure 6.24: Density Plot for Mass empty vehicle for Predicted Errors, All Errors vs. High Error Chance(probability > 0.7)
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Figure 6.25: Density for age of the company for Predicted Errors, All Errors vs. High Error Chance(probability > 0.7)

The plots of all remaining error predictions can be found in the appendix B. In this chapter we have seen
that there is a large reliance on a set of a few essential variables for the model. These most important variables
are also one of the main causes for the occurrence of High Confidence errors. Common variables that have
shown bias for the model are those of time, place and weight. The Month feature especially has shown a
strong bias for predicting whether a vehicle is in violation. This can likely be due to some of the seasonality of
the work that the inspectors do, but this does not exclude other factors that can be at play for this bias to occur.
Furthermore, we note a strong overreliance on some hotspot locations where a large number of violators are
found. Especially the Zwolle area and the Randstad area show two large hotspots, where the large number of
violators in the Zwolle area is particularly prone to cause High Confidence errors. These variables essentially
tell us more about the practice of the inspectors rather than the actual risk of the vehicle being in violation.
These findings give a sense of what areas in the data need more attention and potential changes to the feature
set. More on this is outlined in section 8.

6.3. Further Domain Analysis
Repeat Violations An interesting question in the context of risk assessments is the question of do the vehi-
cles/owners perform subsequent violations, meaning that some are at an increased risk of relapse into vio-
lating behaviour. To see if there was any effect we first wanted to see whether the data contained a sufficient
amount of repeat occurrences of inspections. We plotted the number of repeat occurrences of vehicles in the
dataset, as can be seen in figure 6.26. We see that only a total of 676 out of the 8584( 7%) have more than one
inspection occurrence and of this only 118( 1%) are repeat violations. Less than 100( 1%) vehicles have been
inspected more than 2 times. This means that checking for repeat violators will not have an impact on the
model output.

Figure 6.26: The amount of Vehicles that have repeat occurrences, meaning more than N occurrences
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Zero Values The annotation of the data instances is for the most part done by the inspectors. Besides this,
other sources are also used to gather the data for the model. A more detailed description of all these sources
can be found in section 2.5. Due to the human factor of annotation and the disparate data sets that are joined
together, there are still many instances that have missing values. Due to the way Random Forest models are
designed, this is not inherently an issue, however, the missingness of data may still have an impact on the
performance.

We analyze the effect of missing variable values on the model errors. Missing values can be either numeric,
as a 0 or null for other variable types. As the majority of variables in use are of a numeric nature we will
only focus on the zero values. To check for the effect of data missingness, we count the amount of zeros
for each instance of the full dataset and of the errors, and observe whether the outcomes of these instances’
predictions show a significant difference when looking at the total zero count. In figure 6.27 we plot the
probability chance of a violation vs. the total amount of zero’s for an instance. From a visual we can see that
in figures 6.27a and 6.27b for the full set and the entire set of errors there does not appear to be a significant
linear effect. For the top 50 and bottom 50 High confidence errors in figures 6.27c and 6.27d there does appear
to be a small effect of that the zero count increases the probability of a vehicle being classified as violator.

(a) Change in Probability depending on the total amount of Zero Values for
an instance: Full Set

(b) Change in Probability depending on the total amount of Zero Values for
an instance: Errors

(c) Change in Probability depending on the total amount of Zero Values for
an instance: Top 50 Errors

(d) Change in Probability depending on the total amount of Zero Values for
an instance: Bottom 50 Errors

Figure 6.27: Plots showing effect of total amount of Zero Values on the prediction probabilities

To see how significant this effect really is we want to perform a statistical test to see if the distributions
differ. We perform a Student’s t-test to essentially check whether the errors come from the same distribution
as the whole set, by checking whether they have the same mean. This gives us the p-values shown in table
6.4. A p-value of < 0.05 is significant, showing that the errors come from a different distribution, showing that
there is a significant effect.

Set Mean Zeros p-value ttest
Full Set 65.2 NA
Errors 68.0 0.0065
Top 50 Errors 78.9 0.0015
Bottom 50 Errors 71.2 0.0949

Table 6.4: Means of total amount of zeros per set with the p-values for the t-tests

From the results we see that there is a significant effect for the entire set of errors as well as the top 50
errors. However, here it is good to note the key assumption of the t-test, which is that the data should be
normally distributed. To check for this we first plot the distributions in figure 6.28.
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(a) Distribution of Zero Values for Errors (b) Distribution of Zero Values for Top and Bottom 50 Errors

Figure 6.28: Distributions of Zero Values for Errors

When looking at the distributions in figures 6.28 we can see that these are most likely not normally dis-
tributed, which is an assumption for the t-test to work. To confirm this, we plot a Quantile-Quantile(QQ)
plot. For it to be distributed normally, the quantiles should show approximately a straight line. We plot the
QQ quantiles in figure 6.29.

Figure 6.29: Quantile-Quantile plot showing the quantiles for the data vs the normal distribution quantiles

The quantiles show a large deviation at the tails. Additionally, performing a Shapiro-Wilk normality test
gives a p-value of 2.2e-16, meaning we can reject the Null-hypothesis of the set being normally distributed.
Since the zero values are not normally distributed we need to perform a non-parametric test to see if the effect
is significant. For this we perform a Wilcoxon rank sum test(or Mann-Whitney). This test is non-parametric
and checks essentially whether two independent sample groups originate from the same distribution. The
p-values for these tests are shown in table 6.5

Set Mean Zeros p-value wilcox
Full Set 65.2 NA
Errors 68.0 0.0634
Top 50 Errors 78.9 0.0204
Bottom 50 Errors 71.2 0.0342

Table 6.5: Means of total amount of zeros per set with the p-values for the Wilcoxon tests

Here we see that the p-values for the Top and Bottom errors are sufficiently low for us to conclude that
they are from different distributions. This means that the presence of zeros or missingness of data does have
an effect on instances being high confidence errors.

SIRUS Decision Rules In section 3.4.3 we mentioned SIRUS as a method that can be used to help inter-
pret the choices of a model. SIRUS provides the user with a set of decision rules which are extracted from
the nodes of the Random Forest. We created a SIRUS model and ran this on the dataset. We use SIRUS’s
built in cross validation approach to come to the optimal set of decision rules. This gives us a set of deci-
sion rules displayed in figure 6.30a. We can see that an often repeating rule is one based on the location of
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the vehicle. We have seen the location features to be important in characterizing errors. To have a clearer
picture of what other variables are essential, we chose to remove the location variables and rerun the op-
timal SIRUS model on this set. This gives us the set of decision rules in figure 6.30b. Looking at this set
of decision rules we make some notable observations that differ from the findings in section 6.1.1. We see
that the SIRUS model puts a greater emphasis on the overweight related variables such as sd_MLV (standard
deviation),avg_MLV and gem_perc_EIGENAAR, gem_perc_overbelading. Further we note the inclusion of Eu-
ropese.voertuigscategorie(English: European.vehiclecategory) in the set of rules. This variable was not pre-
viously seen as being highly influential, but in the SIRUS model it repeats many times, also combined with
some of the weight-related variables, indicating some relation between vehicle categories and overweight
violations.

(a) Optimal set of SIRUS decision rules with location (b) Optimal set of SIRUS decision rules with location variable removed

Figure 6.30: Optimal set of SIRUS decision rules
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Expert Session Findings

In this chapter we present the results from the sessions that were performed as part of the the case study as
outlined in section 5.5. The significance of these findings for the model and the changes that were made to
the model as a result, are discussed in chapter 8.

Prior to the sessions, an initial Team Review meeting was held with inspectors. Here we already noticed
some points to pay attention to, namely that the inspectors can have some triggers. Examples given were
trucks that keep their windows open can hint at the driver working over-hours. Another example given was
trucks that have valuable cargo, such as transport of cars are potentially less at risk for being overweight than
for example sand trucks. With this idea of inspector triggers in mind we went into the Expert sessions.

7.1. Exploratory Session Findings
Here we present the results from the exploratory sessions. In total, 2 exploratory sessions were held. 1 day-
in-the-life sessions with 4 ADR inspectors, during which we followed the inspectors in their evening session
where we attended from the afternoon until the early evening. For the second exploratory session, one 3-
hour long interview session was held with 7 Road and Transportation inspectors. For the first Exploratory
session we had a specific goal. The goal being to assess if a risk model is applicable to the inspectors’ working
practice. For the second Exploratory session we performed a semi-structured interview session with the Road
and Transportation inspectors. Here our goal was to better understand what indicators the inspectors look at
when performing their selection of vehicles for inspection. A more elaborate explanation of the sessions was
given in section 5.5.

7.1.1. Day-in-the-life session: ADR Inspectors
During the day-in-the-life session we, as the data scientists of the ILT, spent the day with the ADR inspectors
on their location in Geldrop. Here we could see how inspections are performed. The selection of the vehicles
on the highway was not observed due to corona measures that were in place at the time. These measures
restricted multiple people from being in a vehicle at the same time. This is a pity as the model’s main focus is
on aiding the selection of vehicles.

During the inspection of the vehicles we were able to ask questions on what the inspectors look at when
making their selections while also giving the inspectors ample opportunity to tell us what they find important
during their inspection of the vehicle.

During the day the inspectors inspected around a dozen or so vehicles. The majority of the vehicles that
were inspected were compliant vehicles with only some remarks or minor issues for some. There was only 1
vehicle in violation on multiple levels. The nationality of the vehicles was well distributed in the amount of
Dutch and foreign vehicles. Some examples of issues that were noted: One vehicle had an issue where the
freight was not properly secured. Another vehicle had small containers that were not properly secured on
the outside of the vehicle. One vehicle had two tankers close to each other, which made reading the tanker
information difficult.

The vehicle that was in violation had many issues. The vehicle was transporting a container with an old
and rusty appearance. Paperwork of the driver was not in order, with no correct paperwork of what freight was

49
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in the container. Furthermore other safety requirements, such as the necessity for a working fire extinguisher
were not met. The container had to be opened and the freight inspected, the driver was issued a fine.

General Observations From the session we learned that the ADR inspections and the other Road and Trans-
port inspections work separately from each other. The ADR inspectors do not put their focus on violations
regarding laws such as rest and driving times manipulation or vehicle overweight. The ADR inspectors are
concerned with the cargo that the vehicle is transporting. There is no way to precisely know the contents of
a vehicle until after the vehicle has been stopped. This means that in the selection process of the vehicles
the inspectors mostly look at whether the vehicle has an orange Kemler ADR indicator sign, as well as if it
has any stickers indicating that dangerous substances are being transported. A description and example1 of
such signs is given in figure 7.1. The inspectors explain that they go from their experience to decide on which
vehicle they select for inspection. When asked if they can pinpoint certain aspects that they focus on they
said it is difficult for them to say.

Figure 7.1: Graphic displaying the various ADR signs that a vehicle transporting dangerous goods should have.

It is important for the inspectors to know what type of cargo the vehicles are transporting. This is usually
easier to see for tank container vehicles (which have clear stickers and details on them) as opposed to regular
logistics trucks. At the same time, the tank containers usually carry more potentially dangerous freight, which
may be a bigger risk. Regular trucks, that only show their orange ADR sign, do not always show what kind of
substances they are carrying. If there is an indication for further inspection (such as leaking fluids) this is
performed. The inspectors do not necessarily annotate many details about the appearance of the vehicle.
However, if there are problems or violations of the vehicle, there will also be checks for further issues. This
means that there is more data generally available for those vehicles that were in violation, which may give
a skewed prediction when trying to model these. The responsibility for the freight may sometimes be for
the producer only and sometimes for both the driver and producer Some aspects of the vehicle that are of
importance are country specific, such as French vehicles that require stickers for blindspots.

Selection of vehicles happens a lot on sight and experience. No real rules were specified by the inspectors
when queried on this. Some aspects the inspectors do pay attention to are:

• Driving behavior: rushed driving or slow driving

• Differing ownership of container or trailer

1Source: https://www.hibiscus-plc.co.uk/adr-plate-adr-panel-hazchem/

https://www.hibiscus-plc.co.uk/adr-plate-adr-panel-hazchem/
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• Companies known to have had violations in the past

Some amount of random selection is also at play since the inspectors pick those vehicles that drive by at the
moment that they are driving on the road.

The findings of these sessions are ofcourse only a small slice of the entirety of the work and focus of the
inspectors, there is simply no way to capture all this knowledge from one session, either way the session
helped us in getting a better grasp of the practice through the findings explained above.

7.1.2. Interview Session with Inspectors
The core part of the sessions were the interview sessions held with the Road and Transportation inspectors. As
part of the first Exploratory session, we wanted to get a deeper understanding of the reality of the inspectors
and what aspects they pay much attention to during their inspection practice. For the interview sessions we
chose to focus on those inspection types that are most often violated on and which the inspectors check the
most for. These inspections we focused on were the following (for an explanation of these see section 2.1):

• Rest and Driving Times/Tachograph Manipulation

• Vehicle Overload

• Cabotage2

The Road and Transportation inspectors have a tough job, where with little information they have to make
judgements about vehicles and have to spend their time and resources in inspecting these. For this they
largely rely on their expertise in the field of what locations they should be present, when they should be
present there and what to look for in a potential violator.

For each inspection type we asked the inspectors to brainstorm to give their indicators and to afterwards
rank these indicators by their importance. The inspectors gave a plethora of indicators that could be seen
as indicative of a non-compliant vehicle. The assumption here is that even though there can be personal
bias and experience involved in each of these indicators, the overall sum of inspectors and their indications
provide a reasonable insight into the reality of a non-compliant vehicle

The following is a list (in no specific order of importance), for each inspection type, of what indicators
are of interest. This is by no means an exhaustive list, merely a set of indicators that the inspectors deemed
important enough to mention during the session.

• Rest and Driving Times

– Combination of type of freight with inspection location and time/date

¦ Foreign cars on Monday near Flower auction on Monday (how do they get there so fast)

¦ Ferry transport to Scandinavia/England

¦ Near the Eastern border transport

– Known non-compliant companies

– The layout of the vehicle, e.g. advertisements or blank trailers.

– Type of tachograph: analog or digital

– Container transport (changing containers wrongly seen as rest)

– Semi trailers with no owner/owner unclear

– The appearance of the vehicle. e.g., rusty or well kept, but also different personalizations/modifications
made to the vehicles

• Vehicle Overload

– Number of axles: less axles means less chance of overload

– LHV(longer heavier vehicle), vehicle with all axles down

2Cabotage is defined as a restriction of the operation of transport services within a particular country. In essence this means that if a
foreign EU-member truck comes into the Netherlands loaded with freight, and transports freight between two points in the border, it is
known as cabotage. After delivering its freight it can do a maximum total of 3 routes within the Netherlands after this the 4th route has
to be an international route. This can be checked through the Tachograph data. Source: https://www.ilent.nl/onderwerpen/cabotage

https://www.ilent.nl/onderwerpen/cabotage
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– How does the load appear to be distributed

– Visual aspects indicating potential overload e.g. sagging vehicle, deformation of tires

– Sector of transport, agriculture and construction

– Seasonality of certain types of freight

• Cabotage

– Monitoring of parking lots with people overstaying

– Location of the transport: the port area can have higher risk

– Truck and trailer with distinct types of license plates

– Type of transport (container/ferry/packages)

– Foreign carriers

– Trailers of known unaccompanied (RoRo) vehicles

– Dutch company with foreign location

– Visual aspects: Blank truck, Is the truck the owner of the trailer/transport? i.e how well does the
trailer fit the tractor truck

7.2. In Depth Session Results
Following the Exploratory sessions we held the In-Depth sessions. The aim of the In Depth Sessions is to
further narrow in on certain points of interest for the model and to find those features from the data that are
the most useful and contribute to the prediction the most. Based on the information and feedback that we
have received we question the inspectors on certain areas. Here we present the results obtained from the
session performed with the inspectors.

7.2.1. Interview Session with Inspectors
During the In-Depth interview session we questioned in total 4 Road and Transportation inspectors on the
addition of data from 5 areas. These areas are:

• Location data of the vehicles (in particular WIM3 passage location data)

Vehicles pass through WIM locations which collect lots of data on how many times the vehicles pass
through which locations, this can give indications of riskful driving patterns, as such give a risk profile
for the individual vehicle.

• Driving Times and Freight

The Time and Freight factor was already seen to be important in the Exploratory session. We want to
see how to use the data to better represent these in our model.

• Vehicle Ownership

The ownership of the vehicle and the violations can be different for vehicles. All violations are put under
the name of the owner, also when a vehicle is leased the violation is put on the lease company’s name.
Also the ownership of the truck and trailer can differ.

• Corporate Group Structures

Different corporate structures can be created especially for the purposes of saving costs, such as hiring
foreign workforces which can provide cheaper labor. Moreover, license plates and vehicle licenses can
belong to different companies with some structures.

• Vehicle Maintenance (APK)

We want to know whether the maintenance data of the vehicles can be relevant for the risk profile, and
if so, which aspects of vehicle maintenance are most indicative.

3a collection of 10 locations[36] on the Dutch roadways where automated weighing systems are used.For more info see 2.5.2
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We want to learn from the inspectors how this data can contribute to the classification. The following is a list
of points of interest resulting from the In-Depth session:

• Location

– There are only 10 WIM passage locations, which means that there are many roadways not covered,
which can lead to tunnel vision on these WIM locations

– Locations need to be expanded, especially in the north end of the country, where there is little
coverage.

– Important to look at the effective use of smart tachograph4

• Driving Times and Freight

– Certain specific periods and holidays combined with freight type.

– Certain Time intervals of the day can prove interesting for the model.

– Freight companies that store information about their journeys give potential for more data. Hard
to get specific information

• Vehicle Ownership

– Leasing of vehicles happens often 40% of vehicles however it is not necessarily indication of risk.

– Temporary renting of vehicles can indicate risk.

– Important for data collection is to also annotate the license plate at the back.

– Older companies have more capital to have their own vehicles, starters do not usually.

– Lack of data about leasing companies.

– Vehicle combinations change per sector.

• Corporate Group

– No differences in risk for specific nationalities of foreign enterprises.

– The nationality of a vehicle does not necessarily have to be the same as that of a company.

– The existence of foreign parent companies is not of interest for the inspectors.

– Dutch companies are under Dutch government jurisdiction, meaning sometimes stricter control.

• Vehicle Maintenance(APK)

– Vehicle maintenance is not always an indicator of risk.

– This indicator can be bound to the reputation of the company.

– Maintenance problems of the bodywork of the vehicle can indicate risk.

– Structure of the vehicle is of importance

This is by no means an exhaustive list, rather a collection of everything we could cover in the short time
of the interview session. How these findings were used to make improvements to the model will be further
covered in chapter 8.

7.3. Analysis Session Results
Following the Exploratory sessions and the In-Depth session, we held the Analysis Session. During the ses-
sion, 8 cases of data instances predicted by the model were presented, 5 High Confidence Errors and 3 correct
predictions. These cases were the following shown in table 7.1, shown in the order that they were presented
to the inspectors:

The 3 Road and Transportation inspectors were first presented with a view such as in figure 5.3a, showing
the data of the vehicle. After they gave their judgement on the data instance they were presented with a

4Smart tachograph is an improved version of the digital tachograph that is able to automatically store and send location data using
short-range communications technology, such that roadside inspection authorities have an easier job finding non-compliant vehicles



7.3. Analysis Session Results 54

Type Confidence Prediction True Value

Correct Prediction 0.684 Violation Violation

High Confidence Error 0.045 Compliant Violation

High Confidence Error 0.914 Violation Compliant

Correct Prediction 0.014 Compliant Compliant

High Confidence Error 0.783 Violation Compliant

High Confidence Error 0.516 Violation Compliant

High Confidence Error 0.092 Compliant Violation

Correct Prediction 0.85 Violation Violation

Table 7.1: 8 cases presented during the analysis session in order of appearance to the inspectors. The inspectors were shown 3 correct
predictions and 5 high confidence errors.

view such as in figure 5.3b, showing the model’s prediction score and feature contribution. Both views were
accompanied with a discussion between the data scientists and the inspectors.

There are certain variables and combinations of variables that the model deems as being high risk. But
this does not always reflect the actual risk of a vehicle. We want to discern those variables that are biased from
variables that truly indicate risk We look at certain variables that have a large effect on these predictions. We
look at what the experts would think and with what reasons. Would they make the same error? This indicates
a bias that better reflects reality.

During the session we found that the inspectors gave the same judgements of the vehicles as those of the
model for all 8 data instances. We also asked them to give their relative confidence of how certain they are.
These were surprisingly also similar to those confidence scores given by the model.

From the Analysis sessions some additional points of action could also be extracted as a result of the
discussions following the data instances and feature contributions shown. This is not an exhaustive list, but
some of those most worth mentioning.

• There are certain dates and years where regulations or devices used, such as Tachographs were changed.
These can lead to interesting data shifts.

• More information on the calibration date of tachographs could be included.

• A feature indicating the type of tachograph can prove useful.

• More useful information can be extracted from WIM data, e.g. the maximum speed when passing these
locations. As speed violations can indicate a profile of riskful behaviour

• Variable values that cause misinterpretation by the model can be changed, e.g. -1 (or -100) default value
instead of 0.

This concludes the findings of the final Analysis session and as such also the chapter on the findings of the
Expert sessions. The choice of what findings to include into the model for improvement depends on different
factors such as the availability of data and the feasibility of the feature. These results will be further discussed
in chapter 8 together with the findings obtained in chapter 6.
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Model Improvements

In this chapter we discuss the improvements that were made as a result of the analyses done in chapter 6 as
well as the findings from the sessions outlined in chapter 7. We started off with a biased model that mainly
predicted based on inspector practice. From a simple accuracy perspective, this would be sufficient, but
when the model is to be used in the real world, from a practical point of view this over reliance on biased
indicators would be undesirable. In this chapter we discuss the findings of the Expert sessions and their
impact on the model. We also cover some of the problems encountered during the sessions and how these
could have impacted the results. Furthermore, we outline the improvements for each Model iteration. We
cover our Intermediate model which was made as a consequence of the findings of the data analysis part
in section 6 as well as our findings during the Exploratory sessions and In-Depth sessions. We outline the
model performance as a result of the changes and to what degree this helped in our aim of mitigating High
Confidence errors.

8.1. Session Discussion
In this section we discuss findings from the sessions with the inspectors. We cover some of the conclusions
we took from these sessions and what pitfalls we encountered.

ADR Session During the Day-in-the-life ADR session we quickly discovered that the ADR inspections hap-
pen separate from the other inspection types. The risk model of the ILT is a more general model that covers
all law violations, this means that since the risks are different for the ADR it is wise to remove the ADR as a
target for the classification model.

Regarding risk for ADR vehicles, perhaps risk analysis can be of more use for logistics trucks as these
vehicles do not display well from their outside appearance what cargo they are carrying. As the inspectors
have no need for a predictive risk model, the model will no longer predict on the ADR violations. Older mixed
inspections with ADR violations will still be used but single ADR violations will not be used.

Exploratory Interview Session During the Exploratory interview session it became clear that for the in-
spectors there are many visual characteristics that they pay attention to when selecting vehicles for inspec-
tion. They look at the state of the vehicle itself, the state of the driver, behaviours and modifications. They
also pay attention to aspects such as seasonality, transport sectors, and locations of the transport. Many of
the visual aspects we are not able to capture well in data, thus we should leave these aspects to the judgement
and experience of the inspectors. We should rather focus on those aspects that we are able to capture in data
that can give a real support in the decision making of the inspectors. This means using more features of data
that are, at the moment of selection, unknown to the inspectors.

With regard to Rest and Driving Times, we can capture the state and appearance of vehicles by focusing
on vehicle maintenance data. We can capture more company and vehicle owner related features such as
previous violations and company registration data. Further, with regard to Vehicle Overload, we can use
extensive data from vehicle weighing points (WIM) to support and give a substitute for the visual aspects
mentioned, such as number of axles, sagging vehicles or tire deformations. The WIM data can give more
information into both the individual vehicle as well as the owner’s patterns of overload percentages. Besides
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this, the WIM data can also give more information into the time and location patterns of a vehicle. This can
mean whether the vehicle drives more at night, or during the weekends, or on specific days or specific times
of the day or even if it drives often on specific holidays.

In-Depth Question Session Following the Exploratory session we had many areas in the data to question
the Experts further on. The In-Depth session gave us the opportunity to go deeper in on these. To capture
more aspects such as location data and driving patterns as well as information about overweight, the ex-
pansion of the WIM features mentioned above was the best approach to take. The information from these
WIM locations give not only a view on the overweight risk of drivers but also provide a broader insight into
where and when and how often these violations happens, helping in creating a general risk profile. However,
some coverage of these points is still lacking, especially in the northern parts of the country, meaning that
for drivers operating mostly in this area, the model can give a skewed view. Further, adding better integra-
tion of the historical owner of the vehicle can give more information about the owner’s company. Combining
this with vehicle type and combinations information, we can get a broader view of the transport sector that
the vehicle works in, which from the sessions has shown to indicate risk, particularly when combined with
seasonality aspects. Corporate information does not seem to be of much importance to the risk of violation
according to the experts. Lastly, vehicle maintenance information is vital to capture latent indicators of vio-
lation risk, however, not all maintenance indicators are equally important, picking the right ones is essential.
As a result of the knowledge gained from the session, more focus will go on the vehicle problems concerning
the structure and bodywork of the vehicle.

The sample size of inspectors was smaller in the In-Depth session compared to the Exploratory session,
4 vs. 7, which may have influenced some of the significance. Either way, much valuable information was
gathered. The more open setting of the In-Depth interview gave more room for discussion. The Exploratory
session was more constrained due to the large number of indicators that had to be covered in a short amount
of time.

Analysis Showcase Session During the Analysis session the inspectors were presented with 8 instances. For
all 8 instances the inspectors agreed with the prediction as well as the confidence of the prediction. For the
lower confidence values the inspectors were also slightly more hesitant to make a judgement, while for the
highly confident predictions the inspectors showed the same confidence. This is beneficial for the trust in
the model from the inspectors side. However, we should still be cautious to make any hard conclusions. The
sample size of vehicles chosen was small, on top of this the vehicles that we picked were partially known to the
inspectors. This is both because these were known vehicles/companies but also because the data instances
are based on the set of inspections from the inspectors themselves. In a real world scenario, the inspectors will
pick new vehicles to inspect and will not have the same prior knowledge. Either way the results are positive
for the aim that we had with the sessions: building trust in the model.

From the session we learned that there are different types of tachographs which can create different pro-
files of violations. Analog tachographs make it easier to violate rest and driving time laws than the new gener-
ation of Smartachs. Using data of tachograph installation and important dates for tachograph changes should
give more insight into these risk profiles. During the sessions the inspectors also noted that violators are more
prone to commit speed violations. WIM location data also measures the maximum speed and whether it was
violated, this is a valuable feature to add to the risk model. Lastly, during the session some instances had
a company age value of 0, this could cause confusion for both the inspectors as well as the model. To deal
with missing values in the data we should set these to more distinct values such as -1 (or -100 for more of a
distinction on a continuous scale).

In retrospect of the Analysis session we found that The inclusion of the visual picture of the vehicles pre-
sumably had a big impact on the judgement of the inspectors. In hindsight, we note that this may have
impacted their judgement as in their practice they prefer visuals over data. Additionally, the experts had the
option to look up the vehicle in their own system, even though for most cases they responded quite quickly,
before having the chance to look up anything, but either way this could have impacted their judgement.

8.2. Model Changes
Following the sessions and the data-driven analysis, changes were made to the model in a sequential manner.
In this section we give a description of these changes and their impact on the performance both of the model
in general, as well as on the mitigation of the High Confidence errors. The entire model improvement process
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is displayed graphically in figure 8.1. Here the green areas show the concrete changes to the data and con-
sequently the model. The blue area shows the expert-driven changes through the iterative expert sessions,
while the red area shows the data-driven part and the changes as a result.

Figure 8.1: Graphical Representation of Model Improvement Process. The green squares show the improvements made as a result of
both the sessions and the data analysis. The blue area shows the Expert Sessions and the red part the Data driven approaches.

8.2.1. Intermediate Model Iteration
Analysis of the model in chapter 6 found that an overreliance on certain variables, such as inspection month
and location caused bias in the model. This, in a sense, modeled the practice of an inspector rather than
the actual risk of a vehicle. For instance, certain locations where inspectors performed many inspections
caused these locations to be weighed as overly important in the model, as these increased inspections also
caused an increased number of violations. These locations do not necessarily indicate risk by themselves,
rather the inspectors choose those locations where they know that violations are more prone to be found.
This indicates that the model mirrors the inspectors’ practice, rather than predicting the risk of the vehicles.
Thus this knowledge would not add value to the model when used in a real world scenario.

This led to the removal of these variables, namely: Location (Latitude, Longitude), inspection Month and
inspection Day. Although the time variables are useful as seasonality indicators, these seasonality factors are
now instead captured by the WIM location data. There were additional changes to the model as a result of the
ADR, Exploratory and In-Depth sessions, as discussed in the previous section. These are also visible in figure
8.1.

The changes made led to the Intermediate model. This model was created in the same way as the First
Model as covered in chapter 6. A 80/20 stratified Train-Test split was used. The optimal mtry parameter with
the best performance was found to be and mtry of 20. The ntree was kept at 1500 similar as for the first
model. The performance metrics of the new Intermediate model are displayed and compared with the First
model in table 8.1. We can see a reduction in most of metrics in absolute terms, with only the Out-of-bag Error
improving. However, we have to look at these metrics in a relative sense due to the removal of the ADR vehicle
violations as a model target. Because we removed the violations based on ADR the overall baseline precision
of the model has significantly decreased, from 0.32968 in the first model to 0.23473 in the new model. This
means that taken relative to the baseline, our model performance has increased. This is a 25.1% increase in
precision considering the reduced baseline. We do note an increase in High Confidence Errors in the top 20%
and top 5% as a result of the removal of some of the high contributing variables that were overfitting on the
inspection set, increasing some of the uncertainty in the model.
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Parameter First Model Intermediate Model
mtry 18 20
ntree 1500 1500
Metric First Model Intermediate Model
Baseline
Precision

0.32968 0.23473

Precision 0.56800 0.50605
AUC 0.44969 0.38702
OOB error 32.25% 23.53%
HCE 20 0.70435 0.75914
HCE 5 0.78047 0.84073

Table 8.1: Table displaying the performance metric values for the Intermediate model and comparing these with the First Model

The Intermediate model uses a total set of 195 features, of these features we calculated the variable im-
portances similarly to chapter 6. Of this we display the top 100 variables importances in figure 8.2. Because
this set of variables is so large and most variables near the end are only weakly contributing, we want to fo-
cus in on only the top 20 variables. We show the calculated top 20 variable importances for the Intermediate
model in figure 8.3. The description of these variables is give in table 8.2, in order of importance. We can
see that the majority of highly contributing variables are now based on the WIM data. Interestingly, now the
Oprichting_eig variable, or the age of the company, is the most highly contributing variable. Where younger
companies are more often seen to be violators by the model. We also note that despite the removal of the
weekday variable, the WIM data has now in essence taken the place of this variable as many of the highly
contributing variables are based on the WIM passages on certain days or certain times of the day. This is in
agreement with the earlier found fact in the Exploratory session that the day of the week has a real effect on
the risk.

Figure 8.2: Top 100 Most important Variables for the Intermediate Model
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Figure 8.3: Top 20 Most important Variables for the Intermediate Model

Variable Name Description

Oprichting_eig The age of the company at the time of inspection.

GEM_overbeladingpercentage_WIM The average percentage of overweight of the vehicle.

PERC_overbeladen_passages_WIM The percentage of passages over the WIM location of the vehicle with overweight detected.

Massa.ledig.voertuig The mass of the empty. vehicle

max_MLV The maximum mass of an empty vehicle on the name of the RDW owner.

avg_MLV The average mass of all vehicles on the name of the RDW owner.

GEM_overbeladingpercentage_WIM_eigenaar The average percentage of overweight of all vehicles of an owner.

min_MLV The minimum mass of an empty vehicle on the name of the RDW owner.

Merk_cat The Brand of the vehicle.

PERC_passages_donderdag The percentage of passages over the WIM location done on a Thursday.

aant_passages The total amount of passages over the WIM location.

avg_CILINH The average cylinder capacity of the vehicles on the name of the RDW owner.

PERC_passages_tussen_1200_en_1500_uur The percentage of WIM passages done between the hours of 12 and 15.

PERC_passages_vrijdag_eigenaar The percentage of passages over the WIM location done on a Friday of all vehicles of an owner.

PERC_passages_dinsdag_eigenaar The percentage of passages over the WIM location done on a Tuesday of all vehicles of an owner.

PERC_passages_donderdag_eigenaar The percentage of passages over the WIM location done on a Thursday of all vehicles of an owner.

PERC_passages_tussen_0900_en_1200_uur The percentage of WIM passages done between the hours of 9 and 12 in the morning.

PERC_passages_woensdag_eigenaar The percentage of passages over the WIM location done on a Wednesday of all vehicles of an owner.

PERC_passages_woensdag The percentage of passages over the WIM location done on a Wednesday.

PERC_passages_tussen_1200_en_1500_uur_eigenaar The percentage of WIM passages done between the hours of 12 and 15 of all vehicles of an owner.

Table 8.2: Description of the top 20 most important variables for Intermediate Model, listed in order of importance

From this we highlight plots of 4 of the most important variables. In figures 8.4a and 8.4b we show respec-
tively the number of overweight passages on the WIM locations, as well as the average percentage of actual
overweight on these passages. We can see that the bottom 50 errors are usually occurring for lower percent-
ages of overweight while for the top 50 it is much more spread out over the entire range. This indicates that
the model is more prone to miss violations when the vehicle displays no larger pattern of overweight risk. In
figure 8.5a we display the plot of the age of the company, which according to the variable importance is the
strongest predicting feature. We see here that younger companies are more often classified as violators than
older companies, which also causes the top 50 errors to more often occur on younger companies. Lastly, we
show an interesting new important feature, namely the amount of passage over the WIM on a Thursday. In
figure 8.5b we see that the bottom 50 errors closely follow the Test set distribution, while the top 50 errors
seem to be more spread out, indicating some risk for vehicles that deviate from the norm in terms of how
much they drive on Thursday, where vehicles that drive less on Thursday seem to be more often wrongly
classified as violator.
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(a) Density Plot for the amount of overweight passages on the WIM locations
for the Intermediate Model

(b) Density Plot for the average percentage of overweight for the passages on
the WIM locations.

Figure 8.4: Density Plots for the Intermediate model for PERC_overbeladen_passage_WIM & GEM_overbeladingpercentage_WIM

(a) Density Plot for the age of the company of the owner for the Intermediate
Model

(b) Density Plot for the percentage of passages on the WIM locations on a
Thursday.

Figure 8.5: Density Plots for the Intermediate model for Oprichting_eig & PERC_passages_donderdag

8.2.2. SHAP Interpretation
For the purpose of the Analysis sessions mentioned in section 5.5.3, we need to have interpretable instances
of High Confidence errors, such that we can present these to the inspectors. These instances help us not
only by showing what variables are causing these errors to happen but also what variable values are more
likely to cause errors in the model. We created plots for the top 5 High Confidence Errors for the violator/top
side as well as the top 5 for the compliant/bottom side. In figure 8.6 we show the plots for the top 2 and
In figure 8.7 for the bottom 2 errors. Here we can see that for the 2 top errors there is a high contribution
of features indicating previous violations. The model this way indicates that having had previous violations
will indicate a risk of repeat violation. We also see that the company of the vehicle owner being a young
company contributes. However, in plot 8.6a the age of the company (Oprichting_eig) is 0 meaning the data
was unavailable. Interestingly, for the bottom 2 errors in plot 8.7a we can see that the lowest probability was
given for a vehicle where no data was available, as all feature values are 0. This shows the model’s tendency
to predict more vehicles as compliant due to the distribution of compliant vs violator in the dataset. Further,
in 8.7b we can see for the age of the company that we are dealing with an older company (27.34 years), this
makes the model more prone to classify it as compliant, however, in this case the vehicle was in violation.

The plots for all 10 instances are displayed in appendix C we also display the top 10 correct predictions.
For the Analysis session a different set of instances were used where 5 high confidence errors and also 3
correct instances were shown. This is covered in section 5.5.3.
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(a) SHAP contribution plots for top 1 High Confidence Error (b) SHAP contribution plots for top 2 High Confidence Error

Figure 8.6: SHAP contribution plots for the top High Confidence Error instances

(a) SHAP contribution plots for bottom 1 High Confidence Error (b) SHAP contribution plots for bottom 2 High Confidence Error

Figure 8.7: SHAP contribution plots for the bottom High Confidence Error instances

8.2.3. Final Model
Taking into account the results of the Analysis session and all previous sessions and analyses, we come to
the Final model. As stated earlier, the most concrete changes were the addition of the feature of vehicle
maximum speed violations, the addition of -100 default values for missing data, additional date information
on tachographs and lastly we also changed the violations of company inspections to only be counted for
those that happened before the inspection date, else the data was biased with company inspection data that
happened after the inspection was done, sometimes causing an overly negative risk view for a vehicle. The
final model was run in a similar fashion as the previous models, this time using an optimally calculated mtry
of 17. In table 8.3 we show the performance results of the Final model, comparing them with the previous
models. The table shows that the precision of the model went up from 0.50605 in the previous model to
0.52077 in the final model. We also note a large decrease in the magnitude of High Confidence errors in the
top 20% of errors, namely from 0.75914 in the previous model to 0.70465 in the new model.

The improvements made after the insights from the analysis sessions show to have an increase in the
model performance as well as a significant decrease in magnitude of High Confidence errors.
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Parameter First Model Intermediate Model Final Model
mtry 18 20 17
ntree 1500 1500 1500
Metric First Model Intermediate Model Final Model
Precision 0.56800 0.50605 0.52077
Baseline
Precision

0.32968 0.23473 0.23473

AUC 0.44969 0.38702 0.39282
OOB error 32.25% 23.53% 23.37%
HCE 20% 0.70435 0.75914 0.70465
HCE 5% 0.78047 0.84073 0.82857

Table 8.3: Table Comparing the parameters and performance metrics for all model iterations.

The top 20 variable importances for the final model are displayed in figure 8.8. The variables that the
model uses are close to the same as those for the Intermediate model. We do see the addition of a new impor-
tant variable, namely PERC_gem_snelh_overschrijding_WIM in position 5, which is the average percentage of
vehicle passages of the owner where driving speed violations were committed. This is one of the newly added
variables as a result of the analysis session.

Figure 8.8: Top 20 Most important Variables for the Final Model

8.2.4. Error Predictions
To compare this model’s errors with the first model, we run the Error Prediction model on the new data as
well. The model has a precision of 0.76905 and AUC of 0.83701. The OOB error estimate is 24.28%. These are
summarized in table 8.4.

Metric Value
Precision 0.76905
AUC 0.83701
OOB error 24.28%

Table 8.4: Table displaying the performance metric values for the Error Prediction Model for the Final Model

We display the top 20 most important variables for the error prediction model in figure 8.9. We see many
of the deciding variables from the original final model also returning in the top end of the Error Prediction
model. However, it is interesting to note that in the top 3 we have two time of day related variables from WIM,
while in the original model these were ranked only in the bottom end of the top contributing variables.



8.2. Model Changes 63

Figure 8.9: Top 20 Most important Variables for the Final Error Prediction Model



9
Conclusion

With this thesis we set out to tackle the issue of model accuracy and end-user trust by exploring the nature
of High Confidence Model errors and the knowledge acquisition gap between Data Scientists and Domain
Experts and working out methods to keep these at a minimum.

This thesis had the aim of answering the following question:

How can we best characterize, and mitigate predictive errors that are produced with a high model
confidence?

In order to answer this question we have explored both data-driven as well as human-centered ways to
come to an answer. Namely, we have shown that a detailed analysis of the dataset used can highlight certain
biases in the data, which can help in characterizing the nature of High Confidence Errors. In order to mit-
igate these errors, we have proposed a Human-In-The-Loop based methodology to leverage the knowledge
of domain experts to improve the model, while also increasing end-user trust. we used this methodology to
answer the following sub-research questions:

RQ 1: What Instances Best Characterize System Knowledge?

RQ 2: How to best interpret what the model has learned?

RQ 3: What knowledge do we want the model to have?

RQ 4: What does the model not know?

9.1. Summary
To summarise the thesis, we provided a background on previous methods of reducing and characterizing
Unknown-Unknowns. We outlined what previous work has gone into Human-Computer interaction meth-
ods. To facilitate proper Human-In-The-Loop interactions a good foundation of interpretable machine learn-
ing was needed. For this we also performed a study of the core aspects of interpretable machine learning and
outlined some of the most valuable interpretation methods. We then gave a data-driven analysis of the model
in use by the ILT. We explored areas of data bias and outlined on what the model bases its predictions. From
this we showed areas of the data that lead to High Confidence Errors. We gave a methodology of Iterative
Expert Sessions and validated this methodology by applying it to Data Scientist/Domain Expert sessions with
the Road and Transportation Inspectors of the ILT in a series of sessions. The first session being the Ex-
ploratory session where our aim was to get a general view of the working practice of the inspectors. Following
this was the In-Depth session, where we dived deeper into the specific data that is required for a good risk
profile of the vehicle. Lastly we performed an Analysis session with the inspectors, where we showcased sev-
eral instances and compared the model’s results to the judgement of the inspectors. We presented the results
from these sessions and outlined how these results lead to which model changes with the aim of improving
the model and reducing High Confidence Errors.
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9.2. Conclusions
To answer our first research question: What Instances Best Characterize System Knowledge? a data driven ap-
proach was required. A data-driven analysis of the model found that an over-reliance on certain variables,
such as inspection month and location caused bias in the model. Through our prediction of errors in sec-
tion 6.2.1 we find that those features that are highly contributing to the prediction are also most likely to
cause High Confidence errors to occur. Certain variable values, such as highly occurring inspection locations
or months with many violations cause the model to over rely on these features and predict based on these
features with high confidence.

These features in a sense modeled the practice of an inspector rather than the actual risk of an individual
vehicle or vehicle owner to be in violation. The inspectors, through their planning, experience and expertise,
have certain preferences for important locations and times of inspections,

This connects to our question of How to best interpret what the model has learned?. A study of model
interpretability shows SHAP to be the most suitable method for our use of interpreting (High Confidence)
individual instances. These interpretations can be used for both the Data Scientists to analyze the instances
as well as being a tool for the Analysis sessions with the Domain Experts. These sessions help all participants
to better understand the decisions of the model, and SHAP serves as a tool for this.

Based on the Iterative Session methodology that we proposed, interview and in-person sessions were
held with the experts and data scientists of the ILT. Through these we answer our research question of: What
knowledge do we want the model to have? From the results of the sessions we saw that we could validate
the iterative session model as being valuable for the process of bridging the knowledge gap between Data
Scientist and Expert. The In-person Exploratory session gave us the insight of removing ADR inspections
from the model and the Interview session gave us clear indicators that the experts focus on. Much of the
inspectors intuitions are based on visual characteristics of the vehicle, but they combine this with previous
known violators, as well as what type of freight they are dealing with. The In-Depth session helps us to narrow
down those features that are valuable for our classification goal of assessing vehicle risk. The session lead to
a broadening in the use of WIM location passage data as well as a clearer view of what vehicle maintenance
aspects are important to the assessment of risk. Lastly, the Analysis session proved to be a good method
of familiarizing the experts with the model. The experts found the decisions of the model to be reasonable
and in alignment with their own judgement. Despite being in error the model preserves the trust of the
experts. The session also sparked discussion on certain features that we might have missed such as vehicle
speed violations which can serve as an indicator for a pattern of riskful behaviour. These features found to
be missing during the sessions also connect to answering the research question of: What does the model not
know?. The model essentially does not learn enough of what it means to be a violating vehicle, rather it prefers
to rely on approximations such as locations or periods with many violations.

9.2.1. Model Improvements
As a result of the data-driven analysis and the Exploratory and In-Depth sessions, improvements were made
to the initial model. The initial model had a precision of 0.56800 with a baseline of 0.32968 with an average
confidence score of 0.70435 in the top 20% of errors. After the improvements of the first two sessions, the
removal of the ADR inspections from the prediction target, as well as the removal of biased variables on loca-
tion and time of inspection, the models’ precision went to 0.50605 with a baseline of 0.23473 with an average
confidence score of 0.75914 in the top 20% of errors. This is a 25.1% increase in precision considering the
reduced baseline due to the removal of the ADR targets. The data bias was removed but at the cost of an
increase in High Confidence errors in the top 20 %. Following the Analysis session, new improvements were
made which led to the final model. The final model has a precision of 0.52077 with a baseline of 0.23473.
The average High Confidence score in the top 20% of errors is 0.70465. This is an improvement of 28.8% in
precision when compared to the initial model as well as a 2.9% increase compared to the intermediate model.
We also see an improvement in the magnitude of High Confidence Errors when compared to the previously
improved Intermediate model. All metrics are compared and shown in table 8.3.

From the sessions we have found that the continuous integration style development helps bridging the
gap between domain experts and data scientists in the context of road and transportation law violations while
also fostering trust in the model. It helps aid in reducing data bias issues that cause High Confidence Errors
to be made. The improvements made during the Exploratory and In-Depth sessions provided the inspectors
with a more coherent prediction. Data biases were filtered out and important new opportunities for data
variables that can indicate risk were discovered. Finally we observed that some HCEs reflect a nature of risk
of the vehicle, even though they are errors at the moment of inspection. Future inspections of these can still
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identify irregularities, making it difficult to distinguish real errors from model errors due to the temporal and
transient nature of being a violator.

In conclusion we can validate that the Iterative Session Methodology proposed shows to be a good method
for domain expert interaction. These sessions combined with the analysis of the data shows a reduction in
overall sample bias. We show an improvement in terms of model performance as a result of the changes
made. Finally, we have presented a better characterization of High Confidence errors and a decrease in mag-
nitude of these errors after the removal of data biases based on inspection practice.

9.3. Contributions
Some of the core contributions(also see section 1.6 for full list) that come from this thesis are the following:

• A novel approach to Domain Expert interaction through and Iterative Session Model, validated in a real
life scenario setting with inspectors of Road and Transporation of the ILT

• A Direct improvement in performance for the Road and Transportation risk assessment model.

• Data-driven method for characterizing High Confidence errors and a reduction of magnitude of High
Confidence errors, following the removal of data biases. This allows us to better characterize High
Confidence Errors that are predicted both as False Positives and as False Negatives.

• Through the direct involvement of domain experts in the process of building the model, we provide an
interactive modeling method to reduce the presence of data issues and biases, as well as recommenda-
tions and lessons learned on how to elicit Expert Feedback for model development.

9.4. Limitations and Recommendations
During the thesis some limitations of the research were encountered. One of the primary is of course the
issue with human-centered studies, which is the availability of participants. It is a difficult task to have a
significant amount of Domain Experts available at the same moment for the interview sessions. The fact
that these sessions are quite time consuming means that much prior preparation and scheduling is needed,
leading to only a three interview sessions being able to be held, while more sessions is always better for
the quality of the results. Optimally you would like to have as much input as possible from many Experts,
during the first Exploratory session this was on a relatively good level. However, with only 3 inspectors for our
Analysis Session especially, the lack of domain experts could potentially be an issue for the significance of the
findings.

Due to the small sample size of experts it can be difficult to get solid quantitative results from the sessions.
Instead much of the focus is on those qualitative results that we did get. A combination of interview sessions,
surveys and questionnaires can improve the quantitative results.

Furthermore, we sometimes found it difficult to make experts focus on the data and the model rather than
their expertise during the sessions, for this we would recommend to guide the experts as much as possible to
step out of their comfort zone and focus their attention on the data. This connects to the fact that how the
sessions are set up and what you show (e.g. showing vehicles and showing SHAP plots) can have an impact
on the results of the sessions and what you are measuring. This means that you have to be careful with these
choices.

Finally, another limitation to consider is that of the thesis research being done as part of the ILT internship.
The ILT has its own goals and interests and it can be a challenge to align these with the goals of the scientific
research pursuits.

9.5. Future Work
As future work, further research is to be done into the optimal setting for each session. As has been stated
before in the Introduction in chapter 1and Background in chapter 3, the research into Human-Centered Ma-
chine Learning is still in its early stages, so a lot is still unknown as to the optimal workflow. This thesis pro-
vides a good general methodology to work further on. Having the session model deployed in other contexts
can further validate the methodology.

More research needs to go into the field of High Confidence errors as well. The question of what is "high
confidence" and in how far these errors are simply a consequence of the natural distribution of prediction
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probabilities is still to be further researched. The lessons learned from the prediction of errors can be used to
develop methods to find and predict changes in the data.

Regarding the risk model itself, we plan to improve the effectiveness of the model by using a hybrid ap-
proach consisting of a predicted risk score, as well as providing feature contribution values and decision rules,
based on what the model has learned. This should help the inspectors in their practice, as they will see not
only the risk score but also some indicators that they find of interest.
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Variable Plots First Model

Figure A.1: Plots for Month Errors and Violators

Figure A.2: Plots for Month High Confidence Errors, Top 50 and Bottom 50 Errors
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Figure A.3: Plots for Month Fractions

Figure A.4: Plots for Day Errors and Violators

Figure A.5: Plots for Day High Confidence Errors, Top 50 and Bottom 50 Errors
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Figure A.6: Plots for Day Fractions

Figure A.7: Plots for Brand Errors and Violators

Figure A.8: Plots for Brand High Confidence Errors, Top 50 and Bottom 50 Errors
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Figure A.9: Plots for Brand Fractions

Figure A.10: Plots for Inspection Locations Errors and Violators

Figure A.11: Plots for Inspection Locations High Confidence Errors, Top 50 and Bottom 50 Errors
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Figure A.12: Plots for RDW Owner Locations Errors and Violators

Figure A.13: Plots for RDW Owner Locations High Confidence Errors, Top 50 and Bottom 50 Errors

Figure A.14: Density for Mass of empty Vehicle High Confidence Errors, Top 50 and Bottom 50 Errors



73

Figure A.15: Density for Average Mass of Vehicles owner High Confidence Errors, Top 50 and Bottom 50 Errors

Figure A.16: Density for Percentage Overweight of Vehicle High Confidence Errors, Top 50 and Bottom 50 Errors

Figure A.17: Density for Percentage Overweight of Owner High Confidence Errors, Top 50 and Bottom 50 Errors
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Figure A.18: Density for age of the company High Confidence Errors, Top 50 and Bottom 50 Errors

Figure A.19: Density for years since first accession High Confidence Errors, Top 50 and Bottom 50 Errors

Figure A.20: Density for years since registration High Confidence Errors, Top 50 and Bottom 50 Errors
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Figure A.21: Density for Length of Vehicle High Confidence Errors, Top 50 and Bottom 50 Errors

Figure A.22: Density for amount of WIM passages High Confidence Errors, Top 50 and Bottom 50 Errors

Figure A.23: Density for violations on WIM passages High Confidence Errors, Top 50 and Bottom 50 Errors
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Variable Plots For First Error Prediction

Model

Figure B.1: Plots for Month distribution for Predicted Errors, All Errors vs. High Error Chance(probability > 0.7)
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Figure B.2: Plots for Day distribution for Predicted Errors, All Errors vs. High Error Chance(probability > 0.7)

Figure B.3: Plots for Brand distribution for Predicted Errors, All Errors vs. High Error Chance(probability > 0.7)

Figure B.4: Heatmap Density Plot for Location distribution for Predicted Errors, All Errors vs. High Error Chance(probability > 0.7)
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Figure B.5: Heatmap Density Plot for RDW owner locations for Predicted Errors, All Errors vs. High Error Chance(probability > 0.7)

Figure B.6: Density Plot for Mass empty vehicle for Predicted Errors, All Errors vs. High Error Chance(probability > 0.7)

Figure B.7: Density for Average Mass of Vehicles owner for Predicted Errors, All Errors vs. High Error Chance(probability > 0.7)
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Figure B.8: Density for Percentage Overweight of Vehicle for Predicted Errors, All Errors vs. High Error Chance(probability > 0.7)

Figure B.9: Density for Percentage Overweight of Owner for Predicted Errors, All Errors vs. High Error Chance(probability > 0.7)

Figure B.10: Density for age of the company for Predicted Errors, All Errors vs. High Error Chance(probability > 0.7)
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Figure B.11: Density for years since first accession for Predicted Errors, All Errors vs. High Error Chance(probability > 0.7)

Figure B.12: Density for years since registration for Predicted Errors, All Errors vs. High Error Chance(probability > 0.7)

Figure B.13: Density for Length of Vehicle for Predicted Errors, All Errors vs. High Error Chance(probability > 0.7)



81

Figure B.14: Density for amount of WIM passages for Predicted Errors, All Errors vs. High Error Chance(probability > 0.7)

Figure B.15: Density for violations on WIM passages for Predicted Errors, All Errors vs. High Error Chance(probability > 0.7)
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SHAP Plots: High Confidence Error

Instances

C.1. Top High Confidence Error SHAP plots

(a) SHAP contribution plots for top 1 High Confidence Error (b) SHAP contribution plots for top 2 High Confidence Error

Figure C.1: SHAP contribution plots for the top High Confidence Error instances
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(a) SHAP contribution plots for top 3 High Confidence Error (b) SHAP contribution plots for top 4 High Confidence Error

Figure C.2: SHAP contribution plots for the top High Confidence Error instances

(a) SHAP contribution plots for top 5 High Confidence Error (b) SHAP contribution plots for bottom 1 High Confidence Error

Figure C.3: SHAP contribution plots for the top and bottom High Confidence Error instances
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(a) SHAP contribution plots for top 3 High Confidence Error (b) SHAP contribution plots for top 4 High Confidence Error

Figure C.4: SHAP contribution plots for the bottom High Confidence Error instances

(a) SHAP contribution plots for top 4 High Confidence Error (b) SHAP contribution plots for top 5 High Confidence Error

Figure C.5: SHAP contribution plots for the bottom High Confidence Error instances
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C.2. Top Correct Predictions SHAP plots

(a) SHAP contribution plots for top 1 Correct Prediction (b) SHAP contribution plots for top 2 Correct Prediction

Figure C.6: SHAP contribution plots for the top Correct Predictions

(a) SHAP contribution plots for top 3 Correct Prediction (b) SHAP contribution plots for top 4 Correct Prediction

Figure C.7: SHAP contribution plots for the top Correct Predictions
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(a) SHAP contribution plots for top 5 Correct Prediction (b) SHAP contribution plots for bottom 1 Correct Prediction

Figure C.8: SHAP contribution plots for the top and bottom Correct Predictions

(a) SHAP contribution plots for bottom 2 Correct Prediction (b) SHAP contribution plots for bottom 3 Correct Prediction

Figure C.9: SHAP contribution plots for the bottom Correct Predictions
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(a) SHAP contribution plots for bottom 4 Correct Prediction (b) SHAP contribution plots for bottom 5 Correct Prediction

Figure C.10: SHAP contribution plots for the bottom Correct Predictions
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Abstract

In the use of machine learning systems, end-users’ trust can
often be hard to attain as many state-of-the-art systems oper-
ate as black-boxes. Errors produced by these systems, with-
out further explanation as to why the decisions are made,
will deteriorate trust. This effect is especially strong when
these erroneous decisions are generated with a high confi-
dence. This paper presents a human-in-the-loop methodology
to characterize and mitigate high-confidence errors by engag-
ing domain experts through a series of interaction sessions.
We study the problem in the context of Road and Transporta-
tion law violations, by engaging inspectors in day-in-the-life
and in-house interview sessions. We show that by bridging
the knowledge gap between domain experts and data scien-
tists through these iterative expert sessions, we can improve
the model predictions and achieve increased user trust.

Introduction
The problem of a disconnect between data scientists and do-
main experts is often present when using machine learning
(ML) systems (Viaene 2013). This disconnect can be present
on different levels, i.e., the concept or the process (how-to)
level (Mao et al. 2019; Convertino et al. 2008, 2009) and can
lead to decreased domain experts trust in the system. Pro-
viding model outcomes without insights into why the pre-
dictions were made, could harm user trust even further and
inhibit user-developer interactions. This is particularly the
case for erroneous outcomes. Thus, understanding why cer-
tain predictions are made, is key to user engagement, system
adoption, and sustainability (Sousa, Lamas, and Dias 2014).

Errors produced by machine learning systems fall into
two broad categories. Errors near the decision boundaries
of a model are more understandable as they are caused by
the inherent variances within the data. However, when an
erroneous decision is made far from the decision boundary
it can hint at inherent issues with the data used to train the
model, whether it be a lack or under-representation of data
points. These errors are produced with a high model confi-
dence, namely the High-Confidence Errors (HCEs). These
should be avoided and kept to a minimum to preserve trust.

Data selection and feature construction can be seen as
the main crux of classical machine learning. Previous work

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(Fails and Olsen 2003) has shown that for certain applica-
tions, a continuously interactive way of machine learning
can lead to improvements. A study into development tools
for statistical ML (Patel et al. 2008) has shown that there is
a need for an exploratory and iterative process in the process
of data, and feature selection. In the natural language pro-
cessing domain, (Park et al. 2021) proposed interactive tools
that enable sharing domain knowledge through domain con-
cept extraction and label justifications. Nonetheless, the role
of the domain experts themselves is often overlooked in the
development of trustworthy machine learning systems.

This paper explores the effect of iterative experts’ engage-
ment in a series of interaction sessions on understanding the
requirements, challenges, and characterizing system errors.
We show that these sessions are a promising method to fa-
cilitate model development and build trust with the model.

Methodology
We start by describing our proposed Iterative Expert Ses-
sions to bridge the knowledge gap between domain experts
and data scientists. It consists of three types of sessions,
namely exploratory, in-depth, and analysis, aiming to close
the knowledge gap and help data scientists improve the
model in an iterative manner. A graphical summary of the
sessions is displayed in Figure 1.

Exploratory sessions aim to get a deeper understanding
of the working practice of the domain experts; learn which
are the indicators or features that experts use to ground their
decisions on, and how they compare to how the machine
learning model is built. The driving question of these ses-
sions is ”Where do the domain experts put their focus when
making their decision?”. To assess this, we propose either
a day-in-the-life style session where the data scientists join
the experts in their practice, or an interview setting where
data scientists choose topics of expertise for which they
need more insight. In this session, domain experts provide
data scientists with insights in their reasoning, to help them
better understand what features and data are essential for
predictions.

In-Depth sessions aim to focus on those points from the
exploratory session(s) that require further study. The focus
lies on understanding what data is useful for the model and
how much it contributes to the prediction – extracting and
ranking features that are vital to the model’s goal. The driv-



Figure 1: Graphical representation of Expert Sessions
.

ing question of this session is ”How does the available data
contribute to the classification goal?”. Answering this ques-
tion sometimes requires further elaboration of information
gathered from domain experts during the previous session.
The in-depth sessions are performed as interviews, to offer
space for discussions. The data scientists choose those areas
in the data that they still have doubts in and ask from the
domain experts to assess their relevance to the classification.

Analysis sessions serve two purposes: (1) present experts
with actual use case data instances and model classifications
and (2) provide hands-on experience with the model. By
studying experts decisions and model classifications on ac-
tual data instances, we can better compare the model perfor-
mance with how experts make decisions in real-world sce-
narios. Furthermore, we want to see how much the experts
trust these model classifications. The driving question of this
session is ”Do the domain experts trust the model predic-
tions?”. By accompanying model predictions with appro-
priate interpretation methods (we use a SHAP value vari-
able contribution analysis (Lundberg and Lee 2017)), we
offer domain experts hands-on experience with the model.
The analysis sessions are performed as interviews. The data
scientists present pre-selected data instances for which ex-
perts’ input is informative, such as HCEs. The domain ex-
perts are to first give their assessment and classification of
the instance. Then the model prediction is revealed and ex-
perts discuss similarities or differences in their judgement.

Case Study
We conducted this study in collaboration with the Nether-
lands Human Environment and Transport Inspectorate
(ILT)1. The case study consists of assessing the risk of non-
compliance for transportation vehicles on the Dutch road-
ways. The aim is to help road inspectors (i.e., domain ex-
perts) to identify vehicles that are potentially non-compliant
with road and transportation laws.

Data scientists at ILT developed a random forest based
classifier which provides a risk score for potentially non-
compliant vehicles, and thus can help select vehicles for
examination. The classifier is trained on historical inspec-
tion data of Dutch vehicles. The historical inspection data is
combined with data from other data sources such as vehicle
and company registration.

1Inspectie Leefomgeving en Transport (ILT), Ministerie van In-
frastructuur en Waterstaat: https://www.ilent.nl/

An exploratory session was held with 7 inspectors, 4 data
scientists and 2 discussion coordinators. During this session
the data scientists proposed 3 areas of exploration to the in-
spectors: overload, rest and driving times and cabotage. The
inspectors brainstormed to identify and rank the most impor-
tant indicators, while collaboratively taking notes. At this
stage, data scientists can also ask clarifying questions. An
in-depth interview session was held with 4 inspectors and 4
data scientists. Inspectors were queried on the following ar-
eas of interest regarding model data: moment and location of
inspection, cargo, and maintenance, vehicle-ownership and
company structures. Finally, an analysis session was held
with 3 inspectors and 4 data scientists. The inspectors were
presented with 8 data instances, the feature contributions
(SHAP plot) and outcome of the model: 5 HCEs and 3 cor-
rect predictions. An image of the vehicle was also provided.
Their judgement was used to assess the model performance.

Results
In the exploratory session, the inspectors concluded that ve-
hicle violations are more prone to happen for certain types of
freight/vehicles and on certain periods or days. This lead to
revisiting of the feature set to better represent these aspects.
The in-depth sessions led to conclude that more information
about the vehicle maintenance and overload is needed. The
vehicle maintenance information can hint at problems with
the vehicle signaling a risk of error, and vehicle overload
information can hint at overload risk. After making these
changes, we saw a slight model performance improvement,
but also less overfitting on biased historical data. In the anal-
ysis session, we found that experts agreed with all shown
model predictions, disregarding the correctness of the pre-
diction. Thus, at least for these cases, the model’s judge-
ment closely mirrors that of the inspectors and the presented
HCEs do not deteriorate trust, since they still do indicate a
potential risk.

In addition, we found that on-site visual characteristics
of vehicles are extremely insightful for inspectors, but dif-
ficult to capture in the data. Nevertheless, even with a lack
of visual features, the model still provides strong support for
inspectors in the decision-making process.

Conclusion
We show that our proposed iterative session model can
bridge the knowledge gap between data scientists and do-
main experts, in the context of road and transportation law
violations. The model improvements made during the ex-
ploratory and in-depth sessions provided the inspectors with
a more coherent prediction. We observed that some HCEs,
even though an error at the time of inspection, still reflect
a nature of risk of the vehicle - which helps in maintain-
ing user trust in the system. Future inspections of these can
still identify irregularities, making it difficult to distinguish
real errors from model errors due to the temporal aspect.
As future work, we plan to improve the effectiveness of the
model by using a hybrid approach consisting of a predicted
risk score, as well as providing feature importance values
and decision rules, based on what the model has learned.
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[52] Ričards Marcinkevičs and Julia E. Vogt. Interpretability and Explainability: A Machine Learning Zoo
Mini-tour. 2020. arXiv: 2012.01805 [cs.LG].

[53] European Commission. Directorate General for Mobility and Transport. Next Steps Towards ’Vision
Zero’: EU Road Safety Policy Framework 2021-2030. Publications Office of the European Union, 2020.
ISBN: 9789276132196. URL: https://books.google.nl/books?id=pISBzQEACAAJ.

[54] Andrew Monk. “Common Ground in Electronically Mediated Communication: Clark’s Theory of Lan-
guage Use”. In: (Dec. 2003). DOI: 10.1016/B978-155860808-5/50010-1.

[55] Soya Park et al. “Facilitating Knowledge Sharing from Domain Experts to Data Scientists for Building
NLP Models”. In: 26th International Conference on Intelligent User Interfaces. IUI ’21. College Station,
TX, USA: Association for Computing Machinery, 2021, pp. 585–596. ISBN: 9781450380171. DOI: 10.
1145/3397481.3450637. URL: https://doi.org/10.1145/3397481.3450637.

https://www.ilent.nl/documenten/publicaties/2013/11/08/overzicht-weegpunten-in-nederland
https://www.ilent.nl/documenten/publicaties/2013/11/08/overzicht-weegpunten-in-nederland
https://CRAN.R-project.org/package=caret
https://CRAN.R-project.org/package=caret
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.theguardian.com/technology/2018/mar/19/uber-self-driving-car-kills-woman-arizona-tempe
https://www.theguardian.com/technology/2018/mar/19/uber-self-driving-car-kills-woman-arizona-tempe
https://CRAN.R-project.org/doc/Rnews/
https://doi.org/10.3390/e23010018
https://arxiv.org/abs/1606.03490
https://doi.org/10.1145/3366423.3380306
https://doi.org/10.1145/3366423.3380306
https://doi.org/10.1007/s11704-016-6028-y
https://doi.org/https://doi.org/10.1111/cgf.13210
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13210
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13210
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13210
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13210
https://arxiv.org/abs/1802.03888
https://doi.org/10.1145/3361118
https://doi.org/10.1145/3361118
https://arxiv.org/abs/2012.01805
https://books.google.nl/books?id=pISBzQEACAAJ
https://doi.org/10.1016/B978-155860808-5/50010-1
https://doi.org/10.1145/3397481.3450637
https://doi.org/10.1145/3397481.3450637
https://doi.org/10.1145/3397481.3450637


Bibliography 95

[56] Kayur Patel et al. “Investigating Statistical Machine Learning as a Tool for Software Development”.
In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. CHI ’08. Florence,
Italy: Association for Computing Machinery, 2008, pp. 667–676. ISBN: 9781605580111. DOI: 10.1145/
1357054.1357160. URL: https://doi.org/10.1145/1357054.1357160.

[57] Proposal for a REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL LAYING DOWN
HARMONISED RULES ON ARTIFICIAL INTELLIGENCE (ARTIFICIAL INTELLIGENCE ACT) AND AMEND-
ING CERTAIN UNION LEGISLATIVE ACTS. European Commission. Apr. 21, 2018. URL: https://eur-
lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%5C%3A52021PC0206.

[58] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "Why Should I Trust You?": Explaining the
Predictions of Any Classifier. 2016. arXiv: 1602.04938 [cs.LG].

[59] Cynthia Rudin. Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use
Interpretable Models Instead. 2019. arXiv: 1811.10154 [stat.ML].

[60] Tom Seymoens et al. “A Methodology to Involve Domain Experts and Machine Learning Techniques in
the Design of Human-Centered Algorithms”. In: Human Work Interaction Design. Designing Engaging
Automation. Ed. by Barbara Rita Barricelli et al. Cham: Springer International Publishing, 2019, pp. 200–
214. ISBN: 978-3-030-05297-3.

[61] L. S. Shapley. 17. A Value for n-Person Games. Dec. 1953. DOI: 10.1515/9781400881970-018. URL:
http://dx.doi.org/10.1515/9781400881970-018.

[62] Sonia Sousa, David Lamas, and Paulo Dias. “A Model for Human-Computer Trust”. In: Learning and
Collaboration Technologies. Designing and Developing Novel Learning Experiences. Ed. by Panayiotis
Zaphiris and Andri Ioannou. Cham: Springer International Publishing, 2014, pp. 128–137. ISBN: 978-3-
319-07482-5.

[63] Simone Stumpf et al. “Interacting meaningfully with machine learning systems: Three experiments”.
In: International Journal of Human-Computer Studies 67.8 (Aug. 1, 2009), pp. 639–662. ISSN: 1071-5819.
DOI: 10.1016/j.ijhcs.2009.03.004. URL: https://doi.org/10.1016/j.ijhcs.2009.03.004
(visited on 04/22/2021).

[64] Colin Vandenhof and Edith Law. “Contradict the Machine: A Hybrid Approach to Identifying Unknown
Unknowns”. In: Proceedings of the 18th International Conference on Autonomous Agents and MultiA-
gent Systems. AAMAS ’19. Richland, SC: International Foundation for Autonomous Agents and Multia-
gent Systems, May 8, 2019, pp. 2238–2240. ISBN: 978-1-4503-6309-9. (Visited on 03/23/2021).

[65] Jennifer Wortman Vaughan and Hanna Wallach. “A Human-Centered Agenda for Intelligible Machine
Learning”. In: (Aug. 31, 2020). URL: https://www.microsoft.com/en-us/research/publication/
a-human-centered-agenda-for-intelligible-machine-learning/ (visited on 03/23/2021).

[66] Stijn Viaene. “Data Scientists Aren’t Domain Experts”. In: IT Professional 15.6 (2013), pp. 12–17. DOI:
10.1109/MITP.2013.93.

[67] Sandra Wachter, Brent Mittelstadt, and Chris Russell. Counterfactual Explanations without Opening
the Black Box: Automated Decisions and the GDPR. 2018. arXiv: 1711.00399 [cs.AI].

[68] Doris Xin et al. “Accelerating Human-in-the-Loop Machine Learning: Challenges and Opportunities”.
In: Proceedings of the Second Workshop on Data Management for End-To-End Machine Learning. DEEM’18.
Houston, TX, USA: Association for Computing Machinery, 2018. ISBN: 9781450358286. DOI: 10.1145/
3209889.3209897. URL: https://doi.org/10.1145/3209889.3209897.

[69] Pulei Xiong et al. Towards a Robust and Trustworthy Machine Learning System Development. 2021.
arXiv: 2101.03042 [cs.LG].

https://doi.org/10.1145/1357054.1357160
https://doi.org/10.1145/1357054.1357160
https://doi.org/10.1145/1357054.1357160
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%5C%3A52021PC0206
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%5C%3A52021PC0206
https://arxiv.org/abs/1602.04938
https://arxiv.org/abs/1811.10154
https://doi.org/10.1515/9781400881970-018
http://dx.doi.org/10.1515/9781400881970-018
https://doi.org/10.1016/j.ijhcs.2009.03.004
https://doi.org/10.1016/j.ijhcs.2009.03.004
https://www.microsoft.com/en-us/research/publication/a-human-centered-agenda-for-intelligible-machine-learning/
https://www.microsoft.com/en-us/research/publication/a-human-centered-agenda-for-intelligible-machine-learning/
https://doi.org/10.1109/MITP.2013.93
https://arxiv.org/abs/1711.00399
https://doi.org/10.1145/3209889.3209897
https://doi.org/10.1145/3209889.3209897
https://doi.org/10.1145/3209889.3209897
https://arxiv.org/abs/2101.03042

	Introduction
	Interpretable Machine Learning
	User Trust
	High Confidence Errors
	Disconnect

	Human-In-The-Loop Machine Learning
	Research Context
	Vehicle Violation Inspections
	The Problem
	Practical Approach

	Research questions:
	Contributions
	Thesis Overview

	Research Context and Model
	Context
	Risk Model
	Tree-Based Models
	Random Forest

	Model Confidence
	Evaluation Metrics
	Precision and Recall
	OOB Error
	AUC Score
	High Confidence Evaluation Metrics

	Dataset
	Vehicle Inspections
	Weigh-In-Motion Passages
	Vehicle Registration
	Vehicle Licenses
	Company Registration
	Missing Data


	Background and Related Work
	High-Confidence Errors
	Unknown-Unknowns

	Domain Expert Interaction
	Data Biases
	Model Interpretability
	Interpretability vs. Explainability
	Interpretable Design
	Interpretation Methods


	Data Methodology
	Dataset Split
	Variable Importances
	High Confidence Error Analysis
	Error Prediction
	SHAP Interpretation

	Session Methodology
	Methodology Motivation
	Closing the Knowledge Gap
	Methodology Requirements
	Session Methodology

	Exploratory Sessions
	In-Depth Sessions
	Analysis sessions
	Case Study
	Exploratory
	In-Depth
	Analysis


	Model Domain
	System Knowledge
	Variable Importance
	Model Errors

	High Confidence Analysis
	Predicting Errors

	Further Domain Analysis

	Expert Session Findings
	Exploratory Session Findings
	Day-in-the-life session: ADR Inspectors
	Interview Session with Inspectors

	In Depth Session Results
	Interview Session with Inspectors

	Analysis Session Results

	Model Improvements
	Session Discussion
	Model Changes
	Intermediate Model Iteration
	SHAP Interpretation
	Final Model
	Error Predictions


	Conclusion
	Summary
	Conclusions
	Model Improvements

	Contributions
	Limitations and Recommendations
	Future Work

	Variable Plots First Model
	Variable Plots For First Error Prediction Model
	SHAP Plots: High Confidence Error Instances
	Top High Confidence Error SHAP plots
	Top Correct Predictions SHAP plots

	HCOMP 2021 Paper

