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ARTICLE

Deep learning for the rare-event rational design
of 3D printed multi-material mechanical
metamaterials
Helda Pahlavani 1✉, Muhamad Amani 1, Mauricio Cruz Saldívar 1, Jie Zhou1, Mohammad J. Mirzaali 1 &

Amir A. Zadpoor 1

Emerging multi-material 3D printing techniques enables the rational design of metamaterials

with not only complex geometries but also arbitrary distributions of multiple materials within

those geometries, yielding unique combinations of elastic properties. However, discovering

the rare designs that lead to highly unusual combinations of material properties, such as

double-auxeticity and high elastic moduli, remains a non-trivial crucial task. Here, we use

computational models and deep learning algorithms to identify rare-event designs. In parti-

cular, we study the relationship between random distributions of hard and soft phases in

three types of planar lattices and the resulting mechanical properties of the two-dimensional

networks. By creating a mapping from the space of design parameters to the space of

mechanical properties, we are able to reduce the computational time required for evaluating

each design to ≈2.4 × 10−6 s, and to make the process of evaluating different designs highly

parallelizable. We then select ten designs to be 3D printed, mechanically test them, and

characterize their behavior using digital image correlation to validate the accuracy of our

computational models. Our simulation results show that our deep learning-based algorithms

can accurately predict the mechanical behavior of the different designs and that our modeling

results match experimental observations.
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The rational design of architected materials with anisotropic
properties enables them to offer optimal, multi-functional
performance. For example, nature uses evolutionarily

optimized micro-architectures to combine extremely high stiff-
ness (in selected directions) with a light weight (e.g., in wood and
bone1–3) or to combine ultrahigh stiffness values with ultrahigh
toughness (e.g., in nacre4–6). In man-made designer materials
that are also known as metamaterials, other combinations of
mechanical properties may be sought, as they allow for devising
novel functionalities. For example, a combination of auxetic
behavior in various orthogonal directions and high stiffness is
instrumental for the structural applications of auxetic
materials7–9.

To achieve a desired combination of material properties, the
primary challenge is to find the specific micro-architectures that
give rise to the desired properties. Once the micro-architecture is
determined, the metamaterial can be fabricated using additive
manufacturing (=3D printing) techniques. The recent emergence
of powerful multi-material 3D printing techniques means that the
micro-architecture not only consists of rationally designed,
complex geometries but can also combine multiple materials with
different mechanical properties. Many other design features
found in nature, such as hierarchical micro-architectures10–13,
functional gradients (in terms of both geometries and material
properties)14,15, and soft–hard composites (similar to the organic
and mineral phases in bone11,16,17) can be also realized to expand
the range of the achievable properties.

Given such a wide range of possibilities for the fabrication of
metamaterials with complex (multi-scale) geometries and com-
plex spatial distributions of material properties, the space of
possible design parameters is formidably large. Optimizing the
design parameters is, therefore, challenging and requires an
excessively large number of computational models to be solved.
Such simulations are required not only to understand how the
design parameters relate to the anisotropic elastic properties but,
more importantly, to discover the very rare designs that give rise
to the desired properties. For example, double-auxeticity (i.e.,
auxetic properties in two orthogonal directions) is very rare (i.e.,
as little as <1.6% of the possible designs) in two-dimensional
lattices18. Combining the double-auxeticity with the additional
requirement of possessing high stiffness values in (both) direc-
tions results in the excessive rarity of micro-architectures that
satisfy the design requirements.

Computational models, therefore, need to scan a vast design
space to find rare events. Due to the “curse of dimensionality”19,
the number of designs that need to be evaluated is so large
(≈7.7 × 1043, see Supplementary Table 1) that extremely fast
models and highly parallelizable algorithms are required. Com-
putational models, such as finite element (FE) models, are not fast
enough for that purpose. Here, we used deep learning to establish
a mapping from the space of design parameters to that of the
anisotropic elastic properties, thereby decreasing the solution
time to ≈2.4 × 10−6 s while also making the evaluation process
extremely parallelizable. Recent progress in machine learning has
led to significant achievements in different scientific fields20,
including the design of composites and metamaterials21–28 pre-
diction of material properties29–31, the prediction of elasticity
distributions to circumvent the inverse problem of elasticity
imaging32,33, and optimization of manufacturing processes34,35.
However, the advantages of such artificial intelligence approaches
have not yet been demonstrated in the case of designing multi-
material mechanical metamaterials to achieve very rare target
properties.

The main objective of the present research was to use com-
putational models and deep learning models to predict the
mechanical properties of multi-material mechanical

metamaterials, allowing us to discover very rare designs that
exhibit highly desirable combinations of elastic properties (e.g.,
high stiffness and highly negative Poisson’s ratio). We used pla-
nar lattices based on the re-entrant, cubic, and honeycomb unit
cells (corresponding to the cell angles of 60�, 90�, and 120�,
respectively) with random distributions of hard and soft phases.
The ratio of the hard phase volume to the soft phase volume was
varied as well (i.e., ρh %ð Þ ¼ 5; 10; 20; 30; 40; 50; 60; 70; 80; 90, and
95). FE models were then created to generate the training dataset
required for the training of a deep learning model (i.e., the single
unit cell model). Moreover, we selected three designs (one from
each unit cell angles of 60�, 90�, and 120�) to be fabricated using
an advanced multi-material 3D printing technique and applied
digital image correlation (DIC) to measure the full-field strain
patterns during the mechanical testing of the fabricated speci-
mens. After training, the deep learning model was used to predict
the elastic properties of a wide range of lattices (1.5 × 109 different
designs), given their design parameters. We also studied various
combination of tiled designs (e.g., four-tile and nine-tile struc-
tures) to show how combining multiple instances of these ran-
dom lattices into a hybrid, tiled lattice can boost the possible
range of mechanical properties. We also trained another deep
learning model (i.e., the four-tile model) which predicts the
mechanical properties resulting from the various combinations of
four tiles with different mechanical properties. A fabrication and
mechanical testing procedure similar to the one mentioned above
(but without DIC) was applied to experimentally characterize
seven additional tiled designs (i.e., four four-tile structures and
three nine-tile structures).

Results
Training and performance of the deep learning models. Using a
Workstation (CPU= Intel® Core™ i9-8950HK, RAM= 32.0 GB)
and one running script, each FE simulation could be performed
between 6.2 × 10−2 ± 2.7 × 10−3 and 6.5 × 10−3 ± 8.2 × 10−4 s
while each deep learning prediction took between 8.3 × 10−2 ±
2.9 × 10−3 and 1.2 × 10−5 ± 1.2 × 10−6 s depending on the num-
ber of simultaneously run simulations/predictions (a comparison
between the FE simulation time and the deep learning prediction
time for the single unit cell model is presented in Supplementary
Fig. 1). The solution time per design also depends on the number
of scripts run in parallel. For instance, for 105 simultaneously run
simulations and 106 simultaneously run deep learning predic-
tions, each FE simulation could be performed between
5.0 × 10−3 ± 4.9 × 10−4 and 2.5 × 10−3 ± 1.3 × 10−4 s while each
deep learning prediction took between 1.3 × 10−5 ± 1.8 × 10−7

and 2.4 × 10−6 ± 1.2 × 10−7 s depending on the number of
simultaneously run scripts.

Within 200 epochs of training, the prediction errors (the mean
absolute error (MAE) as well as the mean squared error (MSE))
of the single unit cell models reduced from 6.6 × 10−4 and
1.38 × 10−2 to 1.05 × 10−4 and 6 × 10−3, respectively. Meanwhile,
the prediction errors (MSE and MAE) of the validation dataset
decreased from 4.25 × 10−4 and 1.19 × 10−2 to 1.14 × 10−4 and
6.38 × 10−3, respectively. In the case of the four-tile model, the
prediction errors (MSE and MAE) corresponding to the training
and validation datasets reduced within 200 epochs from (MSE=
3.1 × 10−4, MAE= 1.24 × 10−2) and (MSE= 1.88 × 10−4,
MAE= 1.02 × 10−2) to (MSE= 3.27 × 10−5, MAE= 4.3 × 10−3)
and (MSE= 3.68 × 10−5, MAE= 4.6 × 10−3). The coefficient of
determination of both single unit cell and four-tile deep learning
models was 9.98 × 10−1 (Supplementary Table 2), indicating that
these models were highly accurate in predicting the mechanical
properties of both types of soft–hard lattices. Given this high
degree of accuracy, the deep learning models were used in the rest
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of the study for evaluating the mechanical properties of the
designed structures.

Single unit cell deep learning model. We used the trained ‘single
unit cell’ deep learning model to predict the mechanical prop-
erties of 1.5 × 109 random structures. The predicted ranges of the
elastic moduli (i.e., E11 2 0 to 10:94 and E22 2 0 to 0:55MPa) and
Poisson’s ratios (i.e., ν12 2 �1:24 to 1:16 and ν21 2 �0:53 to 0:51)
were quite broad (more information is provided in Supplemen-
tary Table 3 for the specific subset of data presented in Fig. 1).
Along direction 1, a wide range of elastic properties (i.e., E11, ν12
duos) were obtained within a conifer cone-like region. In com-
parison, the range of the elastic properties found for direction 2
(i.e., E22, ν21 duos) was narrower and included several bean-like
regions (Fig. 1a). High elastic modulus (E11) values were achieved
when orthogonal unit cells were used, which is expected, given
that the deformation of orthogonal unit cells under orthogonal
loading is primarily stretch dominated. Highly negative and
highly positive Poison’s ratios were predicted for the lattices
based on the re-entrant and honeycomb unit cells, respectively.
E11 and the absolute value of ν12 were inversely correlated for ρh
values up to 80%, after which they were directly correlated
(Fig. 1a). According to the predictions of the Hashin–Shtrikman
theory and the theoretical limits established for composite
materials36,37, an inverse relationship between the elastic modulus
and Poisson’s ratio is expected. However, the direct correlation
observed for the ρh values exceeding 80% is caused by the non-
affinity imposed by the random distribution of the hard phase
within the lattice structures. In another study38, we showed that
the Poisson’s ratio and the degree of non-affinity (Γ) are related to
each other through a power law for both re-entrant and honey-
comb unit cells. Furthermore, it was concluded that regardless of
the type of the unit cell and the level of the applied strain, the
degree of non-affinity increases with ρh until a maximum value is
reached at ρh = 75–90% after which it decreases to reach Γ ¼ 0
for the structures only made from the hard phase (i.e.,
ρh ¼ 100%). These statements clearly explain the asymmetry in
the plot of E11 vs. ν12 for both re-entrant and honeycomb types of
the unit cells.

Four-tile deep learning model. Using the four-tile deep learning
model, we studied the elastic properties resulting from the various
combinations of four tiles with different mechanical properties
(Fig. 1b). Along direction 1, the region representing the attainable
properties is less symmetric (Fig. 1b) but is nevertheless more so
than the one achieved with a single unit cell model (Fig. 1a).
Along direction 2, the range of properties corresponding to the
four-tile model covered a near-square region, which is a
remarkable achievement and means that high values of elastic
modulus can be combined with highly negative or highly positive
values of the Poisson’s ratio (Fig. 1b). These observations confirm
that a simple four-tile arrangement of the random multi-material
designs can greatly expand the achievable range of anisotropic
elastic properties.

Role of multi-material design. In the single unit cell model, the
ranges of both elastic moduli (E11, E22) monotonically increased
with ρh regardless of the type of unit cell (Fig. 2a). This is
expected, given that increasing the volume ratio of the hard phase
to the soft phase simply increases the elastic modulus of the
composite lattice structure. The plots of the Poisson’s ratios vs. ρh
were not monotonic with the absolute values of ν initially
increasing until a global extremum was reached for ρh > 50% (i.e.,
60–80%), followed by a decreasing trend. For all the three types of
unit cells, the ranges of the attainable Poisson’s ratios were the

widest for ρh ¼ 60�80%. This is the range where the multi-
material nature of the designs plays the most important role in
determining the Poisson’s ratio of the lattice structure, given that
both phases have comparable effects. For smaller or larger values
of ρh, either the soft or the hard phase dominates the mechanical
response of the lattice structure, respectively. For a fixed value of
the Poisson’s ratio (i.e., ν12 ¼ �1 ± 0:01; ν12 ¼ 0 ± 0:01, and
ν12 ¼ 1 ± 0:01), a wide range of elastic moduli were achieved,
depending on the type of unit cell and ρh (Fig. 2b). For fixed
values of ν and ρh, the largest range of the elastic moduli was
achieved for the larger ρh. For example, for the designs with
orthogonal unit cells and with a ρh value of 80%, the elastic
modulus can change by up to 10.7 folds, depending on how the
hard and soft phases are assigned to the lattice structure and
without any noticeable change in the Poisson’s ratio (i.e.,
ν12 ¼ 0 ± 0:01). This highlights the importance of multi-material
design aspect in the tunability of the elastic properties of
mechanical metamaterials.

Stiff double-auxetic structures. We also studied how the
assignment of hard and soft phases in multi-material lattices as
well as combining different types of unit cells in a four-tile
structure could be used to achieve double-auxetic, yet stiff
structures. When combining different types of unit cells, one of
the chosen unit cell types should always be the re-entrant unit
cell, leading to four possible combinations. To study the prob-
ability of finding double-auxetic structures with high stiffness
values, we defined a characteristic number (i.e.,
α ¼ �E1 ´ �E2 ´ �ν12 ´ �ν21) that sums up the effects of both the
Poisson’s ratios and stiffness in a single number. The overline
refers to the fact that all the properties (i.e., E1, E2, ν12, and ν21)
were normalized between 0 and 1. We calculated α for all the
double-auxetic single unit cell and four-tile model structures
(Supplementary Table 4 and Supplementary Fig. 3). Among all
the single unit cell and four-tile lattice structures plotted in Fig. 1,
0.08% and 0.58% (respectively), had α values that were 5 standard
deviations higher than their corresponding mean values. Fur-
thermore, the results indicated that a four-tile combination of
unit cells enables us to achieve double-auxetic, yet stiff lattice
structures (Fig. 2c). Double-auxeticity is a rare event on its own18,
let alone combined with high stiffness, further underscoring the
importance of the implemented design strategies. Furthermore,
the presented combinations of different unit cell types enable a
better coverage of the ðE11; E22Þ and ðν12; ν21Þ planes.

Tiled and transformed structures. We selected the following
single unit cells designs for a more in-depth study: a design with
the highest values of E11 and E22 from the orthogonal unit cell
group (E11 ¼ 9:67, E22 ¼ 0:31MPa, ν12 ¼ �0:04, and
ν21 ¼ 0:00), a design with the most negative value of the Pois-
son’s ratio and almost the highest elastic modulus from the re-
entrant unit cell group (E11 ¼ 0:93, E22 ¼ 0:26MPa,
ν12 ¼ �1:17, and ν21 ¼ �0:45), and a design with the most
positive value of Poisson’s ratio and an almost highest elastic
modulus from the honeycomb unit cell group (E11 ¼ 1:31,
E22 ¼ 0:52MPa, ν12 ¼ 1:05, and ν21 ¼ 0:47). We then arranged
these designs into four-tile (Fig. 3a) and nine-tile (Fig. 3b)
structures and obtained their mechanical properties and defor-
mation patterns both computationally and experimentally.
Moreover, we studied how a 90° rotation of a design would affect
the mechanical properties of the combined structures (Fig. 3a).
We found that combining the abovementioned designs further
expanded the space of achievable elastic properties, filling the
gaps in mechanical properties of individual unit cells. For
instance, in structure 1 (Fig. 3a) and structure 5 (Fig. 3b), the
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Fig. 1 The structures of the optimized deep learning models as well as relevant training procedures and the range of attainable mechanical properties.
We trained two optimized deep learning models, namely single unit cell model (a) and four-tile model (b) for designing multi-material lattice structures.
The strain distribution and deformation patterns obtained from FEM and DIC for selected representative designs are presented in (a). The prediction vs.
simulation results and the coefficients of determination for the test datasets are, respectively, presented in Supplementary Fig. 2a and b for the single unit
cell and four-tile models. Given the very large number of data points which makes the generation of the plots challenging, only the data points for which the
FE models were directly solved (i.e., 1% of the data points) are plotted in Fig. 1.
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Fig. 2 The elastic properties of studied lattice structures with a focus on double-auxetic lattices. a The elastic properties (E11; ν12; E22; and ν21) of the
different types of unit cells for the different values of ρh. b The achievable range of the elastic moduli for some specific values of the Poisson’s ratio (i.e.,
ν12 ¼ �1±0:01; ν12 ¼ 0±0:01, and ν12 ¼ 1±0:01) considering the different values of ρh. c The elastic properties corresponding to the single unit cell and
four-tile designs with a focus on double-auxetic lattices. The magnified view shows the distribution of double-auxetic structures by types of unit cells of
constituent designs. Given the very large number of data points which makes the generation of the plots challenging, only the data points for which the FE
models were directly solved (i.e., 1% of the data points) are plotted in Fig. 2.
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Fig. 3 Different combinations of designs with extreme mechanical properties. These designs are selected from each group of the unit cells (i.e., a re-
entrant structure with a highly negative Poisson’s ratio, a honeycomb structure with a highly positive Poisson’s ratio, and an orthogonal structure with a
high value of the elastic modulus). a The mechanical properties of two four-tile structures with non-rotated and rotated tiles and the distribution of the von
Mises stresses in these lattice structures. These multi-material 3D printed specimens were mechanically tested in both the 1- and 2-directions under 3%
tensile strain and the experimental results were compared with the FE simulation results (Table 1). b The mechanical properties of nine-tile combinations
and the von Mises stress distribution in these combinations. These multi-material 3D printed specimens were mechanically tested in both the 1- and
2-directions under 3% tensile strain, and the experimental results were compared with the FE simulation results (Table 1).
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combination of re-entrant and orthogonal unit cells boosted the
elastic modulus (E11) of the constituent re-entrant unit cell by
75.6% and 91.4%, respectively, while the Poisson’s ratio main-
tained its extreme negative values (jν12j reduced by 6.6% and
9.4%, respectively). In structure 2 (Fig. 3a) and structure 6
(Fig. 3b), the combination of honeycomb and orthogonal unit
cells boosted the elastic modulus (E11) of the constituent hon-
eycomb unit cell by 40% and 40.4%, respectively, while the
extreme positive Poisson’s ratios did not change much (jν12j
reduced only by 1.4% and 2.8%, respectively).

We also showed that with a 90° rotation of a design, we could
increase the elastic modulus in the weak direction (E22) and
create structures with a higher level of isotropy. In this way, we
could achieve structures with a higher elastic modulus (E22) than
both types of their constituent designs. For example, the elastic
modulus (E22) of structure 3 was 56.2% and 31% higher than the
elastic modulus (E22) of the constituent re-entrant and orthogo-
nal unit cells, respectively (Fig. 3a). In structure 4 (Fig. 3a), the
elastic modulus (E22) was 4.5% and 75.3% higher than the elastic
modulus (E22) of the constituent honeycomb and orthogonal unit
cells, respectively.

We also showed how the change of boundary conditions would
affect the deformation patterns and also contributed to a more
uniform stress distribution within the lattice structure. In all
designs, the experimental observations regarding the deformation
patterns as well as the experimental values of the mechanical
properties clearly agreed with our computational results (Table 1),
confirming the validity of the computational approach used here.

Furthermore, the combination of structures with different
types of unit cells allows for different functionalities. For instance,
the hybrid combination of negative Poisson’s ratios with positive
values could be used to design orthopedic implants with
improved longevity39. Combining different types of unit cells
could create action-at-a-distance behavior that enables different
patterns of local actuation using a single far-field deformation and
has various potential applications in soft robotics40. Here, we also
showed that combining different unit cells allows for shape-
morphing boundaries as well as for specific values of the Poisson’s
ratio. For instance, different shape-morphing boundaries were
observed in structure 7 (Fig. 3b) when re-entrant and honeycomb
unit cells were combined with each other, while the designed
structure had a zero value of the Poisson’s ratio in both
directions. Such properties are of high interest in high added
value industries, such as the biomedical and aeronautical
industries, as they exhibit improved damping performance41.

Uniformity of stress distribution. To date, most studies on
mechanical metamaterials have focused on the elastic properties
of architected lattices without paying much attention to the
structural integrity aspects including the risk of failure due to
such phenomena as stress concentrations. Generally speaking, the

presence of stress concentration leads to premature failure caused
by premature initiation and growth of cracks. It is, therefore,
desirable to distribute the stresses as uniformly as possible within
the lattice structure. An important advantage of having giga-sized
databases of possible designs with the corresponding elastic
properties is the possibility to apply additional design criteria,
such as the one related to the uniformity of the stress distribution.

For example, among all the single unit cell designs with the same
range of elastic properties (i.e., 0:15<E11 ½MPa�< 0:25;�1:1<
ν12 <�1; 0:01<E22 ½MPa�< 0:08; and �0:45< ν21 <�0:3), we
studied the uniformity of the stress distributions within the lattice
structure. In total, 207 tiles with various ρh values (i.e.,
50%; 60%; 70%; and 80%) were included (Fig. 4a). The maximum
values of the von Mises stress in the structural elements of these
designs were calculated while these designs were subjected to two
different boundary conditions (i.e., ε11 ¼ 3% or ε22 ¼ 3%)
(Fig. 4b). Although the elastic properties of these designs were
generally very similar, the maximum von Mises stresses in their
struts varied up to 2.5 and 6.5 times along the loading conditions 1
and 2, respectively. This finding indicates the importance of
applying an additional design rule regarding the stress uniformity
within the structure. For that reason, two designs with ρh ¼ 70%
(one with the minimum and one with the maximum Euclidean
distance from the origin) were selected for a more in-depth analysis
(Fig. 4b and c). A closer study of the stress distributions in these
two structures showed a clear incident of stress concentration in
design 2 while design 1 exhibited more uniform stress distributions
(Fig. 4d). Such types of stress risers are the primary zones for crack
initiation and will ultimately result in premature fracture. It is,
therefore, important to consider stress uniformity as an additional
design requirement in the design of mechanical metamaterials. It
should also be mentioned that the maximum von Mises stresses in
soft and hard struts of these selected designs are lower than the
tensile strengths of the individual materials in the bulk form.

We also studied the distribution of the compressive or tensile
axial stresses (S11) in individual struts of the selected designs under
the aforementioned boundary conditions. That included S11@ε22¼3%

vs. S11@ε11¼3% values as well as 95% confidence ellipses fitted to the
stress values of individual struts for the multi-material designs
(Fig. 4e). We then compared these results with the axial stresses
obtained from a lattice structure with ρh ¼ 70% and equivalent
homogenous material properties (Fig. 4e). This comparison
highlighted that the lattice design with a lower stress riser point
(i.e., design 1) was located inside the confidence ellipse of the design
with the equivalent homogenous material (Fig. 4e). Such an
approach can, therefore, be considered as additional design rule for
selecting the optimummulti-material design with target properties.

Conclusions
In conclusion, deep learning models can accurately predict the
mechanical properties of multi-materials mechanical metamaterials,

Table 1 Comparisons between the computationally determined and experimentally measured elastic properties of the multi-tile
designs.

Type Structure number FE simulation Experimental test

E11 ðMPaÞ E22 ðMPaÞ ν12 ν21 E11 ðMPaÞ E22 ðMPaÞ ν12 ν21

Four-tile 1 1.63 0.22 −1.10 −0.21 1.64 0.38 −0.96 −0.32
2 1.83 0.28 1.03 0.22 1.77 0.19 0.95 0.27
3 1.02 0.41 −0.74 −0.31 0.99 0.57 −0.64 −0.25
4 1.17 0.54 0.76 0.38 1.08 0.35 0.68 0.26

Nine-tile 5 1.78 0.21 −1.06 −0.17 1.13 0.26 −0.91 −0.21
6 1.84 0.26 1.08 0.21 1.78 0.24 0.96 0.15
7 0.83 0.24 0.29 0.08 0.77 0.27 0.26 0.11
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reduce the speed of evaluating each design, and make parallel
computing efficient and straightforward to the point where evalu-
ating 1010−1020 designs is within reach. Our results show that such
unprecedented sizes of the design database enable the rational
design of multi-material mechanical metamaterials that not only
achieve a very wide range of elastic properties but also meet addi-
tional design requirements. For example, we demonstrated that
double-auxetic yet stiff designs can be realized using this approach.
In this study, we examined two essential parameters in the design of
multi-material mechanical metamaterials, namely the ratio of the
volume of the hard phase to that of the soft phase (ρh) and the angle

of the unit cells. In all simulations, the ratio of the elastic modulus
of the hard phase to that of the soft phase was assumed to be
constant and equal to 100. As increasing this ratio can increase the
degree of non-affinity of the lattice structure38, it can have an
influence on their overal mechanical properties. Therefore, this
parameter can be further studied and considered as an input
parameter for the training of the model to explore a broader range
of mechanical properties. Another application demonstrated here is
the addition of a criterion regarding stress uniformity that can
reduce stress concentration in such types of mechanical metama-
terials, thereby increasing their fracture and fatigue resistance.

Fig. 4 Stress distribution within the lattice structure. a The selection of a certain range of the elastic properties achieved for the unit cells with a cell angle
of 60�. In total, the elastic properties of 207 designs with various ρh values (i.e., 50%, 60%, 70% and 80%) fall within these selected ranges. b The
maximum values of the von Mises stress in the structural elements of the corresponding lattice structures when these structures were subjected to two
boundary conditions (i.e., ε11 ¼ 3% or ε22 ¼ 3%). Two designs were selected, including one with the minimum (node 1) and one (node 2) with the
maximum Euclidean distance from the origin (b, c). The distribution of the von Mises stresses in the selected designs and their deformations under two
boundary conditions (i.e., ε11 ¼ 3% or ε22 ¼ 3%) are presented in (d). The axial stresses (S11) in the struts of each design under two boundary conditions
(i.e., ε11 ¼ 3% or ε22 ¼ 3%) are calculated and are compared with the axial stresses of the corresponding struts when the lattice structure is composed of
an equivalent homogenous material (e).
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Methods
We considered planar lattices with three groups of unit cell angles representing the
negative (re-entrant, θ ¼ 60�), zero (orthogonal, θ ¼ 90�), and positive (honey-
comb, θ ¼ 120�) values of the Poisson’s ratio (Fig. 1a). We kept the overall
dimensions of each design (W;C) as well as the dimensions of the constituent unit
cells (w;c) unchanged. All three groups of designs were composed of 5 × 5 unit cells
with similar in-plane (t) and out-of-plane (T) thicknesses (Fig. 1a). The geome-
trical parameters of the designed lattice structures are presented in Supplementary
Table 5. The hard and soft phases were randomly assigned to the struts of the
structure so as to achieve various ratios of the volume of the hard phase to that of
the soft phase (ρh %ð Þ ¼ 5; 10; 20; 30; 40; 50; 60; 70; 80; 90; and 95). To further
expand the space of possible mechanical properties, we studied the various com-
bination of the unit cells. Moreover, we studied the stress distribution within the
soft and hard elements of the unit cells and used a more uniform distribution of
stresses as the criterion for selecting the best designs among all the designs with
similar elastic properties.

Computational models. All FE models were created using MATLAB (MATLAB
R2018b, Mathworks, USA) codes. The codes were used to design the three groups
of lattice structures (composed of unit cells with the three different cell angles of
60� , 90� , and 120�), to randomly assign the hard and soft phases to the struts of
each design, and to perform the FE simulations that estimate their mechanical
properties (i.e., elastic modulus and Poisson’s ratio in two orthogonal directions).
Our codes were further extended to combine single unit cell designs into four-tile
and nine-tile lattice structures. In each structure, the adjacent designs were con-
nected using a row of struts made of the hard material.

We used three-node quadratic beam elements (Timoshenko beam elements)
with rectangular cross-sections and with two translational (i.e., ux , uy) and one
rotational (i.e., uz) degrees of freedom (DOF) at each node. We assigned elastic
materials to both soft and hard phases with a similar Poisson’s ratio of 0.48 but
vastly different Young’s moduli of 0.6 and 60MPa (i.e., Eh

Es
¼ 100), respectively. To

estimate the mechanical properties of each structure in both the x- and y-
directions, a strain of 3% in each direction was separately applied to the structure.
Towards this aim, in one model, the top nodes were subjected to a strain of 3% in
the y-direction (ux ¼ uz ¼ 0 and uy ¼ 3% strain), while all the degrees of freedom
of the bottom nodes were constrained (ux ¼ uy ¼ uz ¼ 0). In the other model, the
right nodes were subjected to 3% strain in the x-direction (uy ¼ uz ¼ 0; and
ux= 3% strain), while all the degrees of freedom of the left nodes were constrained
(ux ¼ uy ¼ uz ¼ 0). The element stiffness matrix transferred to the global
coordinate (Ke) was calculated as42,43

Ke ¼ QT �KeQ; ð1Þ

�Ke ¼ E
ð1þ μÞ
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0
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where �Ke is the local element stiffness matrix, and E;A; I; and L are the elastic
modulus, the cross-section area, the moment of inertia (I ¼ Tt3=12), and the
length of the element, respectively. μ is a dimensionless coefficient that
characterizes the importance of shear-related parameters including G (shear
modulus) and Ks (shear correction factor = 0.85). Q is the transformation matrix
and contains the direction cosines:

nx�x ¼ ny�y ¼
x2 � x1

L
; ny�x ¼ �nx�y ¼

y2 � y1
L

ð5Þ

where x1; y1; x2; and y2 are the element nodal coordinates.

The element load vector f e is obtained as follows43:

f e ¼ QT�f
e
l ; ð6Þ

�f
e
l ¼

q�xL=2

q�yL=2

q�yL
2=12

q�xL=2

q�yL=2

�q�yL
2=12

2
6666666664

3
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ð7Þ

The stiffness matrix and load vectors of all the elements were calculated and were
assembled into a global stiffness matrix (K) and a global load vector (F). Finally, all
the forces and displacements were calculated using Hook’s law (F ¼ Kd).

To calculate the Young’s moduli of the structure (E11 ¼ σ11
ε11

and E22 ¼ σ22
ε22
), the

normal stresses in the directions 1 and 2 (σ11 ¼
�F1
A2
; σ22 ¼

�F2
A1
, where A1 and A2 are

the cross-section areas of the structure on the 1–3 and 2–3 planes (Fig. 1a)) were
divided by the strain applied along the same direction (ε11 ¼ ε22 ¼ 3%). In these
equations, �F1 and �F2 are, respectively, the mean reaction forces along the directions

1 and 2 at the right and top nodes ( �F1 ¼ ∑nR
i¼1 F1 i

nR
; �F2 ¼ ∑nT

i¼1 F2 i

nT
, where nR and nT are

the total numbers of the right and top nodes while F1 i and F2 i are the reaction
forces along the directions 1 and 2 at each of the right and top nodes, respectively).
To calculate the Poisson’s ratio (ν12 ¼ ν21 ¼ � εtrans

εaxial
), the transverse strain was first

calculated as the ratio of the mean displacement of the lateral nodes to the initial
transversal length of the structure. The transverse strain was then divided by the

applied axial strain (in the case of εaxial ¼ ε11 ¼ 3% : εtrans ¼ ε22 ¼ ∑nT
i¼1 δyi
L2nT

; and in

the case of εaxial ¼ ε22 ¼ 3% : εtrans ¼ ε11 ¼ ∑nR
i¼1 δxi
L1nR

where L1 and L2 are the initial

lengths of the structure along the directions 1 and 2).

Deep learning. We implemented two artificial neural networks (ANN) using Ten-
sorflow.keras neural network library44,45, namely the ‘single unit cell model’ and the
‘four-tile model’. The single unit cell model predicts the mechanical properties of the
lattice structures with three unit cell angles of 60� , 90� , and 120� and a wide range of
ρh values (i.e., ρh %ð Þ ¼ 5; 10; 20; 30; 40; 50; 60; 70; 80; 90, and 95). To train the
single unit cell model, the FE models were first solved for 18,150,000 lattice structures
(16,500,000 structures as the training dataset and 1,650,000 structures as the testing
dataset) with random assignments of the hard phase within the structure. The inputs
to the single unit cell model included 150 material parameters indicating whether each
strut was hard or soft (1= hard, 0= soft) and one unit cell angle (θ= 60°, 90°, and
120°) (151 inputs in total). The outputs of the model included the elastic moduli (E11,
E22) and Poisson’s ratios (ν1, ν2) in both directions (4 outputs in total) (Fig. 1a). The
dataset generated for the training of the single unit cell model was also used for the
training of the four-tile deep learning model. Towards this aim, we selected 90 single
unit cell tiles with mechanical properties uniformly distributed within the achievable
range of elastic properties for these single unit cell designs. The mechanical properties
of these 90 designs were first calculated by performing the FE simulations. All possible
four-combinations of these single tiles (i.e., C 90; 4ð Þ ¼ 2; 555; 190) considering the
permutation of these four single tiles (=4!, which is reduced to 6 due to the symmetry
of the structure) were generated and were used for setting up the deep learning
models (n2 ¼ 6 ´ 2; 555; 190 ¼ 15; 331; 140). Our FE code was then used to calculate
the overall elastic properties of these structures (Fig. 1b). We randomly selected 90%
of the dataset as training dataset and the remaining 10% as testing dataset. The four-
tile model was then created to map the space of the 16 input parameters (i.e., the
elastic properties of the individual tiles) to the space of 4 output parameters (i.e., the
elastic properties of the four-tile structures).

We scaled all the outputs of the single unit cell models and all the inputs and
outputs of the four-tile model to the range [0–1] (see Table 1 for the scaling
method). In post-processing, we scaled the relevant outputs back to the original
range to facilitate the interpretation of the results.

For the training of both the single unit cell model and four-tile model, we used a
sequential model composed of a linear stack of fully connected layers based on the
Tensorflow.keras library. Before training the models, we configured the learning
process by defining several parameters, including an optimizer (RMSprop), a list of
metrics (MSE and MAE), and a loss function (MSE) that was the objective that the
model would try to minimize. To evaluate the performance of the model with
different hyperparameter values and also to detect overfitting during the training
process, we assumed 20% of the training dataset as the validation dataset. This
means that during each epoch, the model was trained based on the training data,
and was tuned with the metrics (MSE, MAE) calculated for the validation dataset.
In this way, we tuned the hyperparameters of the model based on the results of the
metrics for the validation dataset.

In the single unit cell model, we systematically studied the effects of different
hyperparameters (i.e., the number of hidden layers, the number of neurons in each
hidden layer, learning rate, and activation function). To design the architecture of
the four-tile model, we started with the optimized hyperparameters determined for
the single unit cell model. Hyperparameter tuning is discussed in detail in
the Supplementary Methods (Supplementary Figs. 4–7 and Supplementary
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Tables 6–10). The optimized architecture and hyperparameters of both models
together with their optimized accuracy, the type of feature scaling, and the
optimization algorithm are presented in Table 2.

In order to calculate the training error, the prediction results of the deep
learning models were compared with the target values (FE simulation results) and
MAE as well as MSE were calculated for each training epoch. MSE and MAE
graphs for single unit cell model and four-tile model are presented in
Supplementary Figs. 6 and 7, respectively. MAE quantifies the magnitude of the
prediction error without considering the error direction:

MAE ¼ 1
n
∑
n

i¼1
jyi � ŷij ð8Þ

where n is the number of the training samples, yi are the predicted values, and ŷi
are the true values. MSE is the squared mean of the differences between the
predicated values, yi , and the true values, ŷi, and is calculated as

MSE ¼ 1
n
∑
n

i¼1
yi � ŷi
� �2 ð9Þ

Experiments. To validate the results of our computational models used for training
the single unit cell models, we selected three single unit cell lattice structures (one
from each of the cell angles of 60� , 90� , and 120�) (Fig. 1a). In addition, we
designed three nine-tile structures and four four-tile structures. These structures
represented different arrangements of the single unit cell designs (see Fig. 3). The
selected designs were 3D printed and mechanically tested.

We used a multi-material 3D printer (Object500 Connex3, Stratasys, US) which
uses the jetting of multiple UV-curable polymers (Polyjet technology) for printing
multi-material structures. The commercially available polymers VeroCyanTM (hard
phase, RGD841) and Agilus30TM white (soft phase, FLX985) were employed (both
from Stratasys, USA). The hard and soft phases were selected such that the ratio of
the elastic modulus of the hard phase (Eh ffi 60 MPa) to that of the soft phase
(Es ffi 0.60MPa) was around 100. We designed a pin and gripper system to attach
the printed specimens to the mechanical testing machine. These parts were 3D
printed using a fused deposition modeling (FDM) 3D printer (Ultimaker 2þ,
Geldermalsen, the Netherlands) from polylactic acid (PLA) filaments (MakerPoint
PLA, 750 gr, Natural). A mechanical testing machine (LLOYD instrument LR5K,
load cell= 100 N) was used to load the specimens under tension (stroke
rate= 1 mm/min). The applied displacement and the reaction force were recorded
to obtain the stress–strain curve by dividing the force by the initial cross-section
area and dividing the displacement by the initial length of the specimen. The slope
of the stress–strain curve represents the overall stiffness of the sample. This
procedure was repeated for a total of 10 specimens. In addition, we used a digital
camera to capture the lateral deformations of the specimens at the different steps of
the applied longitudinal displacement. We used image analysis (a custom-made
MATLAB code) to measure the transverse strain for all the lattice structures. The
axial strain was directly measured from the crosshead displacement of the
mechanical testing machine. We, then, defined the Poisson’s ratio as ν ¼ � εtrans

εaxial
(the calculation of εtrans and εaxial was the same as computational models).

We also used the DIC technique to measure the full-field strain distribution
during the uniaxial tensile tests for the selected single unit cell lattice structures.
The surface of the specimens was first painted white. A spackle pattern was then
applied to the surface using an airbrush. We used a DIC system (Q400-3D-12MP,
LIMESS Messtechnik u. Software GmbH, Germany) equipped with two cameras
(DCM 12.0 Mpixel, digital monochrome high performance GigE camera) to record
a series of image pairs from two different angles that were later analyzed with the
help of the associated commercial software (Istra4D, Germany) to establish the
correlations in the images and calculate the full-field strain maps (Fig. 1a).

Data availability
Data supporting the findings of this study are available from the corresponding author
upon reasonable request.

Code availability
Computer code written and used in the analysis is available from the corresponding
author upon reasonable request.
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