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Abstract
Ammonia (NH3) is an important chemical compound in the nitrogen cycle. Ammonia is an essential
nutrient and an important part of fertilizer, which in soil leads to increased growth of crops. However,
the current excess of NH3 emissions is a hazard to environmental and human health. While ammonia
emissions need to be reduced, the emission estimates are still highly uncertain.

In this study, a method is developed to combine the chemical transport model LOTOS­EUROS with
measured ammonia concentrations to improve the ammonia emission estimates in the Netherlands
and the surrounding regions. The measurements used are generated by the miniDOAS instruments
on LML stations and the IRS instrument on board the future MTG­S satellite.

The proposed method is an adjoint­free 4D­Var method. The 4D­Var method aims to retrieve the emis­
sion parameters for which the LOTOS­EUROS model determines NH3 concentrations that resemble
the measurements while keeping the emissions fairly similar to the original inventories. A linear ap­
proximate model has been developed, which uses the near­linearity of the NH3 concentrations in terms
of the NH3 emissions. When using the approximate model, the 4D­Var method can be solved without
using an adjoint model, making the method adjoint­free. Subsequently, the 4D­Var cost function is
rewritten to allow the emission parameters to have a log­normal prior distribution. A maximum likeli­
hood approach is developed to estimate the parameters of both the prior distribution of the emissions
and the likelihood of the measured observations. Last, a preconditioner in reduced space has been
considered, to estimate emissions on a fine spatial resolution, while keeping the computational cost
feasible. This preconditioner uses the property that the emission parameters are correlated in space.

First, the methodology has been tested in an identical twin experiment where the emissions vary only
in time and strength, using the LML observations. It was concluded that the methodology worked well
for short periods (less than 30 days), but the results were dominated by observational noise. When
using the real observations in the 4D­Var method, the results seem unrealistic

Second, the method has been tested in an identical twin experiment where emissions vary in space,
as well as in time and strength. Here, synthetic IRS observations of the future MTG­S satellite are
used. The optimized emissions did resemble the true emissions of the twin experiment. Observational
noise appeared to no longer be an issue. However, the results were not perfect. The regions with the
highest emission increase appeared to be underestimated, low emission areas appeared to have large
relative estimation errors, and estimates for coastal regions seemed to be incorrect. Hence, on a local
scale, the emission estimates can be imperfect, but overall the adjoint­free 4D­Var method does greatly
improve the emission inventories.
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1
Introduction

Ammonia (NH3) is a chemical compound present in the atmosphere and is an important tracer in the
nitrogen cycle. Ammonia is an essential nutrient and an important part of fertilizer, which in soil leads to
increased growth of crops. The most important origin of ammonia emissions is agriculture in the form
of animal manure and fertilizer (TNO 2019). An excess of ammonia can have negative impacts, both
on biodiversity and human health. The most evident downside is that when there is too much ammonia
in soil, certain species, such as grasses and nettles, grow so well, that they suppress other plants that
would flourish when there are fewer nutrients in the soil (Compendium voor de Leefomgeving 2018).
When the suppressed plants disappear in a certain region, animals that depend on the plant also die.
In this way, a surplus of ammonia in soil leads to a reduction in biodiversity. Another risk of ammonia
is that it can form particulate matter (PM) by chemical reactions in the atmosphere (Baek, Aneja, and
Tong 2004). Inhalation of PM can be harmful to human health, especially for people with respiratory
and cardiovascular diseases (Gezondheidsraad 2018). Furthermore, ammonia can cause eutrophica­
tion of water bodies, acidification, and it can form N2O in soil, which is an important greenhouse gas
and therefore contributes to global warming.

Although ammonia emissions in the Netherlands have been decreasing since 1990 due to national
and European policies (CBS 2020), still too much is emitted into the atmosphere. This causes a sur­
plus of nitrogen deposition in for example ”Natura 2000” areas, a European network of protected nature
areas. In the Netherlands, there are 160 Natura 2000 areas, of which 130 are sensitive to nitrogen (Fig­
ure 1.1a). A critical deposition value has been determined for each nature reserve. If this threshold is
exceeded, there is a risk that the habitat will be affected significantly. The advisory board on nitrogen
problems (Dutch: Adviescollege stikstofproblematiek), led by J. W. Remkes, concluded that as of 2020,
the critical deposition value was exceeded in 118 out of the 130 nitrogen sensitive Natura 2000 areas
(Remkes, Dijk, et al. 2020).

In 2015, the policy framework ”Programma Aanpak Stikstof” (PAS) (Programma Aanpak Stikstof n.d.)
was introduced by the Ministry of Economic Affairs and the Ministry of Infrastructure and the Environ­
ment. The aim of the program was to reduce nitrogen emissions, including ammonia emissions, and
to reduce the already present excess of nitrogen in nature reserves. The PAS was also used to grant
permits for new activities that would cause additional nitrogen deposition in certain nature reserves.
However, in 2019 it was ruled that the PAS could not be used to grant those permits. This led to the
so­called nitrogen crisis in the Netherlands (Dutch: stikstofcrisis). The issuing of permits had to stop,
which caused many construction and infrastructure projects to be halted, to stop nitrogen emissions.
Drastic measures were taken to cut nitrogen emissions as proposed by the advisory board (Remkes,
Dijkgraaf, et al. 2019). These measures led to large protests of farmers, dominating the Dutch news.

To move out of the nitrogen crisis, a new approach to reduce nitrogen emissions is needed. At the
moment, the advisory committee states that a reduction of 50% of ammonia emissions is needed by
2030, to bring the ammonia deposition in the Natura 2000­areas below the critical value (Remkes, Dijk,
et al. 2020). A key element to reduce the ammonia emissions efficiently is getting a better understanding

3



4 1. Introduction

(a) Natura 2000 areas
(b) Protest of farmers in autumn 2019 (source:
ANP)

Figure 1.1: Nitrogen crisis in The Netherlands.

of what is causing the emissions and which emissions sources lead to nitrogen deposition in Natura
2000 areas.

1.1. Estimating ammonia concentration
To estimate atmospheric ammonia concentrations, simulations by chemical transport models and ob­
servations by measuring instruments are used. Both chemical transport models and measuring instru­
ments have their disadvantages. Measuring equipment is expensive, the number of measurements
is usually limited, and measurements can be biased and be influenced by local sources. Similarly,
chemical transport models are expensive to develop and run, and contain many errors as well.

1.1.1. Chemical transport model
In this study, the chemical transport model LOTOS­EUROS is used. The LOTOS­EUROS model is de­
veloped by a consortium of institutes, including TNO (Netherlands Organization for Applied Scientific
Research), RIVM (National Institute for Public Health and the Environment), and KNMI (Royal Nether­
lands Meteorological Institute). The model calculates the concentrations and depositions of several
chemical tracers, given data on emissions and meteorological conditions. The LOTOS­EUROS model
can be used for several applications, such as air quality forecasting, emission modeling, and deposition
modeling (LOTOS­EUROS applications website 2020).

1.1.2. Measuring instruments
There are two types of measuring instruments considered in this report. The first type is the miniDoas,
located at stations of the LML (Landelijk Meetnet Luchtkwaliteit) network of the RIVM. The miniDoas
measures hourly surface concentrations of NH3 at 5 locations in the Netherlands (in 2017). The second
type of measuring instrument is the future InfraRed Sounder (IRS) on the MTG­S satellite. The MTG­S
satellite is planned to be launched in 2023. Hence, the IRS is not operational yet. Once launched, the
IRS instrument will measure vertical column densities of NH3 on a 4km×4km resolution.

1.1.3. Data Assimilation
In this study, a data assimilation method is developed that combines the LOTOS­EUROS model sim­
ulations with observations from the LML system and the future IRS instrument. Data assimilation is
a mathematical field where data of theoretical (numerical) mathematical models are combined with
observational data. Objectives of data assimilation methods can be to determine the optimal state of
a system, estimate initial conditions, or determine model parameters. When input parameters of the
numerical model are estimated, such as initial conditions or model parameters, the problem is called
an inverse problem.
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There are two types of data assimilationmethods: variational methods, such as the 4D­Var method, and
stochastic methods, such as the Kalman filter. In this study, the choice has been made to use a 4D­Var
method to estimate emission parameters. The advantage of the 4D­Var method for this application is
that it uses observations over a longer time range, obeys the conservation of mass, and has can deal
with a large number of observations, while barely increasing computational cost. These differences
between variational and stochastic models will be described more elaborately in section 4.2.

1.2. Uncertainty in the application of manure and fertilizer
The ammonia concentrations, determined by the LOTOS­EUROS model, differ from the measure­
ments. One of the causes of the difference is that the LOTOS­EUROS model requires estimates of
ammonia emissions, which are highly uncertain. The emission data used in the LOTOS­EUROSmodel
approximate the true emissions, but the data set is not perfect. One of the major uncertainties in the
used emission inventories is the application of animal manure and fertilizer to soil in the spring period.
The true timing of the application is not exactly known but only estimated using the approach of (Skjøth
et al. 2011), adapted by (Hendriks et al. 2016). The estimated emissions due to the application of fertil­
izer depend on local production methods, crop types, and meteorological conditions. However, these
modeled emissions are based on many assumptions and are expected to differ from the actual ammo­
nia emission. This study focuses on two of the uncertainties in the emission inventory: the moment in
time when manure or fertilizer is applied, and the amount of ammonia emitted during application.

1.3. Aim of the study
The aim of this study is to develop a method to combine the chemical transport model LOTOS­EUROS
with measured ammonia concentrations to improve the ammonia emission estimates in the Nether­
lands and the surrounding regions. A method is developed to improve the time profiles and strength of
the emission estimates for different parts within the considered region. As the to be estimated param­
eters are input variables of the LOTOS­EUROS model, the problem to solve is an inverse modeling
problem.

The concentrations determined by the LOTOS­EUROS model and the measured ammonia concen­
trations are combined using the data assimilation method 4D­Var, resulting in the optimal emission pa­
rameters. The 4D­Var method aims to retrieve the emission parameters for which the LOTOS­EUROS
model determines NH3 concentrations that resemble the measurements, while keeping the emissions
fairly similar to the original inventories. To do so, uncertainties of both the measurements and the emis­
sion inventories are taken into account. An important part of this study is to quantify the uncertainty of
the emission inventory and the measured concentrations, using a maximum likelihood approach.

The common procedure to solve the 4D­Var problem is to minimize a cost function by using an iterative
gradient­based optimization method, where an adjoint model is used to determine the gradient. How­
ever, for the extensive LOTOS­EUROS model, no adjoint model is available. Developing one would
be cumbersome as it would take a lot of programming effort to make it and to maintain it. Instead, an
efficient adjoint­free gradient­based 4D­Var method is developed for which the results resemble the
results of the original 4D­Var method.

This adjoint­free 4D­Var method uses an ensemble of runs of the LOTOS­EUROS model. One of
the limiting factors in this study is that running the LOTOS­EUROS model is very time­consuming.
Running the model for a month takes approximately 12­18 hours. The number of times for which the
LOTOS­EUROS model is executed should be limited in order to obtain results within a reasonable time
frame. Many design choices are made such that the number of model runs remains small.

1.4. Research questions
This study focuses on estimating NH3 emissions using the data assimilation method 4D­Var. The aim
is to design and test the methodology. The estimated NH3 emission estimates are not quantitatively
interpreted. This study aims to answer the following research questions.



6 1. Introduction

Research question 1: Could an efficient adjoint­free 4D­Var method be designed to estimate time­
varying ammonia emissions in the Netherlands using the observations of the LML stations?

The first objective of this research is to design a mathematical method that estimates daily NH3 emis­
sions, using the observations of the 5 LML stations in the Netherlands. As running the LOTOS­EUROS
model is time­consuming, certain simplifications have been made, to keep the computational cost of the
methodology feasible. Also, adjustments have been made to the commonly used 4D­Var cost function,
to allow parameters to have a log­normal distribution, instead of a Gaussian distribution. The developed
method is tested in twin­experiments, to assess the performance of the methodology. Additionally, the
method is used to generate estimates for the NH3 emissions, using the real observations of the LML
systems.

Research question 2: Could an efficient adjoint­free 4D­Var method be designed to estimate time­
varying ammonia emissions in the Netherlands on a fine spatial resolution, using synthetic observa­
tions of the future IRS instrument on the MTG­S satellite.

The second objective of this research is to improve the design by incorporating spatial variability for
the daily NH3 emission estimates. This procedure should be able to estimate the NH3 emissions on a
relatively fine grid. For this procedure, an increased number of observations from the IRS instrument
is used. As the number of emission parameters increases due to the spatial variability, as well as the
number of observations, this design focuses on limiting the computational complexity and the amount
of computer memory needed. As the IRS instrument is not operational yet, the designed method is
tested in a twin­experiment only.

1.5. Overview of the report
This thesis starts with introducing the chemical transport model LOTOS­EUROS in chapter 2. Second,
the two measuring instruments, the miniDOAS on the LML stations, and the IRS instrument onboard
the MTG­S satellite will be discussed in chapter 3. The main part of this thesis will consist of chapter 4,
the development of the adjoint­free 4D­Var data assimilation method. The methodology will be tested
in three experiments that are discussed in chapter 5. This thesis will end with discussing the main
conclusions in chapter 6, followed by recommendations for further research in chapter 7.



2
LOTOS­EUROS Model

In this chapter, the LOTOS­EUROSmodel will be introduced. Initially, the general model characteristics
will be stated and mathematically formulated in a partial differential equation. Second, the discretization
of the equation will be discussed. Also, the concept of an observation operator will be introduced. After
that, a more detailed description of several processes will be given. A more elaborate explanation
of certain aspects of the LOTOS­EUROS model can be found in (Manders et al. 2017), and in the
Reference Guide of the LOTOS­EUROSmodel (Manders­Groot, A.J. Segers, and Jonkers 2019). Last,
a chemically reduced version of the LOTOS­EUROS model will be discussed. This chemically reduced
model has lower computational complexity than the full LOTOS­EUROS model.

2.1. General characteristics of the LOTOS­EUROS model
The LOTOS­EUROS model is a chemical transport model, used to calculate concentrations and de­
positions of trace gasses and aerosols in the lower layers of the atmosphere (Manders et al. 2017;
Manders­Groot, A.J. Segers, and Jonkers 2019). The main input to the model are estimates of emis­
sions and meteorological data. The processes included in the model are, among others, transport,
emissions, chemistry, dry deposition (uptake by vegetation), wet deposition (wash­out by precipita­
tion), and sedimentation. There are two types of transport considered in the model: advection (due
to wind) and vertical diffusion. Concentrations in the model are expressed as volume mixing ratios in
ppb for trace gasses, and mass concentrations in 𝜇g/m3 for aerosols. The concentrations of tracers,
denoted as 𝐶, depend on these processes according to the continuity equation:

𝜕𝐶
𝜕𝑡 + 𝑈

𝜕𝐶
𝜕𝑥 + 𝑉

𝜕𝐶
𝜕𝑦 +𝑊

𝜕𝐶
𝜕𝑧 =

𝜕
𝜕𝑧 (𝐾𝑧

𝜕𝐶
𝜕𝑧 ) + 𝑅 + 𝑄 − 𝐷 −𝑊. (2.1)

Here,𝑈, 𝑉, and𝑊 represent the large­scale wind components in the west­east, south­north, and vertical
direction respectively; 𝐾𝑧 is the vertical turbulent diffusion coefficient, 𝑅 denotes the source or sink due
to chemistry, 𝑄 the source due to emissions, and𝐷 and𝑊 denote the sink due to dry and wet deposition.
The transport due to wind is represented by the term:

𝑈𝜕𝐶𝜕𝑥 + 𝑉
𝜕𝐶
𝜕𝑦 +𝑊

𝜕𝐶
𝜕𝑧 ,

and the transport due to vertical diffusion is represented by the term:

𝜕
𝜕𝑧 (𝐾𝑧

𝜕𝐶
𝜕𝑧 ) .

2.2. Discretization of the continuity equation
To solve equation (2.1) numerically, the equation is discretized in time and space. For every grid cell
and every tracer in the model, the concentration is determined for every time step. Let x(𝑡𝑘) denote the

7
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vector that contains the concentration of every tracer for every grid cell at time 𝑡𝑘. Then the discretized
model can be denoted as:

x(𝑡𝑘+1) = M𝑘+1(x(𝑡𝑘), 𝜃), 𝑘 = 0, 1, 2, … . (2.2)

Here, M is a non­linear operator that performs a discrete time step by solving equation (2.1), and 𝜃 is
a parameter vector. In this study, the parameter vector 𝜃 will be related to the emission parameters.
The general parameter vector is denoted by 𝜃, but if the context of a specific problem is defined, the
parameter vector might also be denoted as 𝛽, 𝛾, or w.

The simulation time step (the time between 𝑡𝑘 and 𝑡𝑘+1) is determined by the model itself and varies
during the model run. The time steps are limited by the CFL­criterion which states that a parcel of
air should not cross a complete grid cell within one time step. The output is saved at a frequency
configured by the user. In this study, the output frequency is hourly.

2.3. Observation operator
The LOTOS­EUROS model estimates the concentrations for each chemical tracer for all time steps
and all grid cells. Measurements, on the other hand, could be concentrations at a specific location
(for example the LML­stations), or vertical column densities (for the IRS instrument). To compare the
model and the measurements, a function should be made that maps the concentrations per grid cell in
the LOTOS­EUROS model to something resembling the true measurements. This mapping operator
ℋ𝑘 takes as input the concentrations of the model at a certain time 𝑡𝑘 and generates a simulated
observation y𝑠𝑖𝑚𝑘 :

y𝑠𝑖𝑚𝑘 = ℋ𝑘(x(𝑡𝑘), 𝜃), 𝑘 = 0, 1, 2, … (2.3)

In chapter 3, the operator ℋ𝑘 will be described for both the LML­stations and the IRS instrument. The
simulated observations y𝑠𝑖𝑚𝑘 are expected to differ from the actual observations (denoted as y𝑂) due to
errors in the model, measurement noise of the instrument, and errors in the mapping ℋ𝑘. If this error
is denoted as 𝜖𝑘, the simulated observations can be linked to the actual observations as:

y𝑂𝑘 = y𝑠𝑖𝑚𝑘 + 𝜖k = ℋ(x(𝑡𝑘), 𝜃) + 𝜖k. (2.4)

2.4. Simulated processes
In this section, a more detailed description of several processes of the LOTOS­EUROS model will be
given.

2.4.1. Emissions
There are several sources of ammonia emission. In the Netherlands, approximately 88% of the am­
monia emissions are released by agriculture (TNO 2019). The most important agricultural emissions
are animal manure and fertilizer. The other ammonia emissions are mainly released by households,
industry, and road traffic. In other parts of the world, the main emission sources can be different. Some
additional important ammonia emission sources are biomass burning (wildfires, fires as part of defor­
estation, biomass burning) (Andreae and Merlet 2001), and local animal colonies (for example seals
(Riddick et al. 2012)).

In the LOTOS­EUROS model, there are several sources of emissions considered. By default, the
following categories are used in the LOTOS­EUROS model: Anthropogenic sources (related to human
activity), biogenic sources (mainly trees and bacteria in soil), sea­spray sources (source of sea salt),
dust sources, and forest fires (Manders­Groot, A.J. Segers, and Jonkers 2019). For simulation of am­
monia concentrations in the Netherlands, only the anthropogenic sources are relevant. Therefore, the
LOTOS­EUROS model with only anthropogenic emission sources is considered in this report.

The anthropogenic emission inventories have been compiled by TNO as part of the Copernicus At­
mosphere Monitoring Service (CAMS). In this study, version 2.2 is used (Kuenen et al. 2014) to model
most emissions. This database, also called an emission inventory, contains emission data of several
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sectors such as industry, transport, and solvents. For the sector agriculture, a different emission in­
ventory version, version 4.1, is used. This inventory also contains the modeled NH3 emissions with
an improved timing for fertilizer application based on the approach of (Skjøth et al. 2011), adapted by
(Hendriks et al. 2016).

2.4.2. Chemistry
Chemical conversion implies that a tracer in the air reacts with another tracer. This can be both a
source and a sink for tracers. In the LOTOS­EUROS model, there are three types of chemistry: Gas­
phase chemistry, cloud chemistry, and aerosol chemistry. As cloud chemistry barely influences NH3
concentrations, only the gas­phase chemistry and aerosol chemistry will be discussed in this report.

The gas­phase chemistry is modeled in the LOTOS­EUROS model using a modified version of the
Carbon Bond­IV Mechanism (CBM­IV) (Manders­Groot, A.J. Segers, and Jonkers 2019). The scheme
includes 33 species and 104 reactions, including 14 photolytic reactions (Whitten, Hogo, and Killus
1980). These reactions can be found in Appendix B of the LOTOS­EUROS reference guide (Manders­
Groot, A.J. Segers, and Jonkers 2019). NH3 itself is not one of the species in CBM­IV. However, some
of the species in CBM­IV have an impact on NH3 through the aerosol chemistry described below. An
important process with regard to NH3 in the gas­phase chemistry is the production of HNO3 out of NO2
or N2O5. HNO3 plays an important role in the aerosol chemistry. Important chemical reactions with
respect to the production of HNO3 of the gas­phase chemistry are:

NO2 +OH −−−→ HNO3,
N2O5 +H2O −−−→ 2HNO3.

Another type of chemistry is aerosol chemistry, or actually the secondary inorganic gas­aerosol­phase
equilibrium. In the LOTOS­EUROSmodel, this is implemented using the ISORROPIA­II module (Manders­
Groot, A.J. Segers, and Jonkers 2019). This module describes the equilibrium between the concentra­
tions of the gasses HNO3, H2SO4, and NH3, and the aerosols NH4NO3 and (NH4)2SO4 in presence of
aerosol water (Fountoukis and Nenes 2007). Ammonia (NH3) reacts with sulfuric acid (H2SO4), forming
particulate ammonium sulfate ((NH4)2SO4) (Baek, Aneja, and Tong 2004). This reaction is dominant
and irreversible. Furthermore, there is an important equilibrium reaction, where ammonia (NH3) reacts
with nitric acid (HNO3), forming particulate ammonium nitrate (NH4NO3). This equilibrium depends
on the temperature and the relative humidity, and the initial concentrations of the three tracers. The
chemical reactions of the aerosol chemistry can be written as:

H2SO4 + 2NH3 −−−→ (NH4)2SO4,
NHO3 + NH3 −−−⇀↽−−− NH4NO3.

2.4.3. Dry deposition
Tracers can be removed from the air by dry deposition. Dry deposition represents the uptake of tracers
from the atmosphere by the surface of the earth: vegetation, soil, and water surfaces can all absorb
trace gases and aerosols. The largest part of the nitrogen deposition in populated areas with intensive
animal housing, such as the Netherlands, is caused by the dry deposition of ammonia (TNO 2019;
Pitcairn et al. 1998; Walker et al. 2008).

For most tracers, the exchange is modeled to be one­directional, e.g. from atmosphere to vegeta­
tion (Wichink Kruit et al. 2012). The extent to which a tracer is removed from the atmosphere due to
dry deposition depends on vegetation and surface properties, as well as the meteorological conditions.

However, for NH3 bi­directional exchange is possible. Hence, NH3 can be both emitted and absorbed
by plants, soil, and water surfaces (Johnson et al. 2008; Sutton, Schjorring, and Wyers 1995). Whether
ammonia is emitted or deposited depends on the compensation point. This value is defined as the NH3
concentration in the atmosphere at which no net NH3 exchange takes place between the surface and
the air close to the surface. If the ammonia concentration close to the surface is higher than the com­
pensation point, deposition will occur, and if the ammonia concentration is low, the surface will emit
NH3. This compensation point depends on many factors. One of those factors is the average SO2
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concentration close to the surface that was present during the previous days. Additionally, the dry de­
position depends on the ratio of the currently present SO2 and NH3. Due to these two influences, the
ammonia dry deposition depends on the SO2 concentration.

2.4.4. Wet deposition
Tracers could also be removed from the atmosphere by wet deposition. Wet deposition consists of two
processes. First, species can be absorbed by water in the clouds, which is called in­cloud scavenging.
Alternatively, rain droplets can absorb and collide with species, whilst falling. This process is called
below­cloud scavenging. An important property of ammonia is that it is highly soluble. Therefore,
ammonia is removed effectively by wet deposition.

2.5. Chemically reduced model
In this study, the LOTOS­EUROS model is run several times with different ammonia emissions. Such
an ensemble of model runs with varied emission inventories is used to determine how the observed
concentrations of ammonia would change if the emissions would be different. Unfortunately, running
such an ensemble is very time­consuming. It would be desirable if the LOTOS­EUROS model would
need less computational time.

Of all the tracers and aerosols in the LOTOS­EUROS model, only the concentrations of ammonia are
relevant for this study. To save computational time, a reduced version of the LOTOS­EUROS model
could be used, that focuses on modeling NH3 concentrations only. Such a reduced version of the
LOTOS­EUROS model has been made in a previous study (Leegwater 2020). It has been determined
which processes in the LOTOS­EUROS model are relevant for determining the ammonia concentra­
tions, and which processes are negligible. A chemically reduced model is made, which is about three
times faster than the full LOTOS­EUROS model, while still obtaining accurate results for the ammonia
concentrations.

The reduced model is made to run an ensemble with slightly different ammonia emissions. Before
running this ensemble of the reduced model, the full LOTOS­EUROS model is executed once, to save
certain features and results. These features and results are subsequently used as input values for the
reduced model.

In the reduced model, the concentrations of only four tracers are determined, whereas the full LOTOS­
EUROS model considers over 50 tracers (gas phase plus aerosols). The considered species are NH3,
HNO3, NH

+
4 , and NO –

3 . The tracers HNO3, NH
+

4 , and NO –
3 are included since changes in NH3 cause

changes in the concentrations of HNO3, NH
+

4 , and NO –
3 and vice versa. The reduced model deter­

mines the processes of transport, emissions, and deposition for only these four tracers. The processes
have been adapted for the reduced model:

• Chemistry needs to be modeled in the reduced model. When modeling the chemistry, many
additional tracers become involved. In the aerosol chemistry, the species SO4

2+ is relevant.
However, the SO4

2+ concentration is independent of the NH3 concentrations. Therefore, the
SO4

2+ concentrations do not need to be determined by the reduced model but can be imported
from the background run of the full LOTOS­EUROS model.

• Also, gas­phase chemistry is considered. NH3 is not a tracer in the gas­phase chemistry, but
one of the other modeled species, HNO3, is highly influenced by the gas­phase chemistry. The
gas­phase chemistry considers many tracers, and the process is computationally expensive. To
save time, the production of HNO3 in the gas­phase chemistry is saved in the full model run and
imported in the reduced model version, where it is added to the HNO3 concentration.

• Last, the concentrations of SO2 and the average concentration of SO2 at the surface of the previ­
ous month (denoted as SO2ave) are saved in the full model and imported in the reduced model.
These values are used to model the influence of SO2 on the dry deposition of NH3, described in
section 2.4.3.

This reduced version with four tracers, all containing nitrogen, is also called the ”N4­model”. A visual­
ization of the ”N4­model” is shown in Figure 2.1. It is also visualized that the reduced model can be run
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Figure 2.1: Visualization of the chemically reduced version (also called ”N4­model”) of the
LOTOS­EUROS model

several times with different emissions, each time importing the same data from the full LOTOS­EUROS
model.





3
Measurement instruments

In this chapter, the two measurement instruments considered in this study will be described. First, the
MiniDOAS instrument of the LML network will be described in section 3.1. After that, in section 3.2, the
IRS instrument hosted on board the future MTG­S satellite will be discussed. The sections will focus
on the properties of the systems, the uncertainties in the observations, and the observation operator
used to simulate observations with the LOTOS­EUROS model.

3.1. MiniDOAS instrument of LML network
3.1.1. Description
The first measurement instrument considered, is the mini Differential Optical Absorption Spectroscopy
(miniDOAS) instrument. The miniDOAS instrument is built by the National Institute for Public Health
and the Environment (RIVM). As of 2016, there are six miniDoas instruments in the Netherlands that
measure hourly NH3 concentrations. Five out of six instruments were operational in the spring period
of 2017, the year used for experiments in this study. The instruments are part of the Dutch National
Air Quality Network (LML, Dutch: Landelijk Meetnet Luchtkwaliteit). Within the LML network, concen­
trations of NH3 are measured, as well as the concentrations and wet deposition of other pollutants. A
picture of a miniDOAS on an LML station is shown in Figure 3.1a.

(a) MiniDOAS (source: RIVM ) (b) Artist’s impression of MTG­S satellite of
SENTINEL­4 mission (source: ESA)

Figure 3.1: Measurement instruments for NH3.

The miniDOAS instrument aims a light source at a retroreflector. The retroreflector directs the light
back to a receiver. Subsequently, the intensity of this reflected light is measured. As ammonia absorbs
light of a certain wavelength, the reflected light can be compared to a reference light spectrum, to
see how much light is absorbed by the atmosphere in the lightpath as a function of the wavelength.
The absorbed amount of light is then used to determine the ammonia concentration between the light
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source, the retroreflector, and the receiver. A more extensive description of the miniDoas instrument
can be found in (Volten et al. 2012; Berkhout et al. 2017).

3.1.2. Data selection
In this study, one of the objectives is to use the measurements of miniDOAS instruments to estimate
the ammonia emissions in the surrounding regions. However, when the ammonia concentrations are
strongly influenced by local ammonia sources, the measurements might not be representative for larger
regions. Especially under conditions with lower mixing layer heights, for example, during the night,
there is only a limited amount of mixing of NH3. In this case, emitted ammonia remains close to the
emission source leading to high local concentrations. These can differ substantially from the estimated
NH3 concentrations of the LOTOS­EUROS model, which are average values in grid cells of several
kilometers. Vice versa, the model can also overestimate the NH3 observation in smaller low emission
zones/natural areas. To avoid the possibility that the measurements are highly influenced by local
sources, the LML observations are only used when the height of the atmospheric mixed layer is higher
than 350m.

3.1.3. Uncertainty of LML observations
The miniDOAS instrument measures the NH3 concentrations, but the measurements contain uncer­
tainties. Possible causes for the incorrect measurements are errors in the retrieval algorithm or lamp
artifacts. (Berkhout et al. 2017) estimated the uncertainties in the measurements to be around 0.25
𝜇g/m3. In (Dammers, Schaap, et al. 2017), additional uncertainties related to dark current are consid­
ered, resulting in random errors with a standard deviation of 0.4 𝜇g/m3.

3.1.4. LML observation simulated by LOTOS­EUROS model
To compare the LOTOS­EUROS model and the measurements of the LML stations, an operator ℋ𝑘,
needs to be defined that maps the concentrations of the LOTOS­EUROSmodel to a resemblance of the
LML­station observations, as described in section 2.3. In the case of LML stations, the measurements
at time 𝑡𝑘 are approximated by the NH3 concentration of the LOTOS­EUROS model at time 𝑡𝑘 for the
grid cell containing the LML station. Then, the operatorℋ𝑘 is a matrix with as many rows as there are
LML­stations, and as many columns as there are grid cells. This linear operator H𝑘 has for each row
all zeros, except for the index corresponding to the grid cell that contains the LML station, where the
value is one. Hence, for each LML station 𝑠 for which an observation is available at time 𝑘, and when
the atmospheric mixed layer is at least 350m, the matrix H𝑘 contains a row:

[H𝑘]𝑠 = [0 ⋯ 0 1 0 ⋯ 0] . (3.1)

3.2. IRS instrument on board the MTG­S satellite
3.2.1. Description
The second measurement instrument that is considered is the InfraRed Sounder (IRS). The IRS instru­
ment is one of the two instruments on board the future Meteosat Third Generation Sounding satellites
(MTG­S) as part of the SENTINEL­4 mission. MTG­S is currently planned to be launched at the end
of 2023. Hence, the instrument is not operational yet. An artist’s impression of the MTG­S satellite
can be found in Figure 3.1b. The objective of the SENTINEL­4 mission is to provide data to monitor
the amount of trace gasses and aerosols in the atmosphere over Europe. The SENTINEL­4 mission is
part of the European earth observation program Copernicus and is developed in collaboration with the
European Space Agency (ESA), the European Environment Agency (EEA), and the European Union,
in support of the Copernicus Atmosphere Monitoring Service (CAMS).

The IRS instrument is capable of observing multiple chemical tracers, including NH3, as well as on
meteorological properties such as cloud coverage. The NH3 column densities are expected to be re­
trieved at a high spatial resolution of 4km×4km at nadir. MTG­S is a geostationary satellite, implying
that the satellite always views the earth from the same perspective. This means that the IRS instrument
will provide hourly observations for all of Europe and the northern part of Africa.
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3.2.2. Uncertainty of IRS observations
Satellite observations have several sources of uncertainty. As the IRS instrument is not operational
yet, no validation of the observations and their uncertainty can be made yet. In this study, the accuracy
of NH3 retrieval algorithm is considered to be the same as for the Cross­track Infrared Sounder (CrIS)
following (Dammers, Shephard, et al. 2017).

The measurement errors for NH3 satellite observations can have various causes such as instrument
noise, presence of interfering species such as H2O, CO2, and O3, smoothing errors in the retrieval
approach. Some errors are systematic and others are random. In this study, only random errors are
considered. Systematic errors are neglected. In this study, the same standard deviation for the random
observation error is used as derived by (Dammers, Shephard, et al. 2017) for CrIS, which has compa­
rable performance as the IRS although at a coarser spatial resolution. This results in an uncertainty
of:

• 5.3⋅1015 molec/cm2 when the measured NH3 column densities are higher than 1016 molec/cm2;

• 4.1⋅1015 molec/cm2 when the measured NH3 column densities are lower than 1016 molec/cm2.

Biases of up to 30% of the measured concentration were found for the CrIS retrieval. However, in this
study, biases are not considered. It would however be an interesting experiment for the future to test
how the 4D­Var method developed in this study would perform when bias is added to the observations,
as biases are expected to happen in reality as well.

3.2.3. IRS observations simulated by LOTOS­EUROS model
Also for the IRS measurements an observation operator ℋ(x, 𝜃) should be defined, using the state
x of the LOTOS­EUROS model. The operator is first used to generate synthetic IRS measurements
using a (perturbed) LOTOS­EUROS run, and later also as part of the 4D­var inversion to simulate the
measurements from model states.

In this study, the CAMS Satellite Operator (CSO) toolbox is used as implementation for the obser­
vation operator. The CSO toolbox is developed as part of the Copernicus Atmospheric Monitoring
Service (CAMS). CSO is currently used as an observation operator for the TROPOMI instrument on
the Sentinel­5p satellite, but can also be adjusted for hourly NH3 concentration of the IRS instrument.

For real retrievals, the simulation should be formed by convolution of the concentration profile with a
so­called averaging kernel that accounts for height­depended measurement sensitivities. In this study
with synthetic data, however, the averaging kernels are ignored, and the basic simulated column den­
sities are used to mimic retrievals. These column densities are retrieved for the expected footprints of
the IRS instrument. Only the retrievals that are generated between 04:00 and 20:00 are considered to
be of sufficient quality to use; although also nighttime observations will be available, these are likely to
be of much lower accuracy.

One of the limiting factors of the quality of satellite observations is cloud coverage. The instrument
cannot measure NH3 under the cloud and for conditions with a high fraction of cloud cover In that case,
most of the observations of the IRS instrument are expected to be of insufficient quality. However, for
sake of simplicity, the optimistic and arguably unrealistic case is considered in this study where there
are clear­sky conditions for the entire time period.





4
Data Assimilation: adjoint­free 4D­Var

method
In this chapter, the adjoint­free 4D­Var data assimilation will be described. First, the choice for pa­
rameters to estimate will be described in section 4.1. Second, the motivation for choosing the 4D­Var
method will be given in section 4.2. In section 4.3, an introduction of the 4D­Var method for a general
case will be given. After that, different versions of adjoint­free 4D­Var methods will be derived. In sec­
tion 4.4, the 4D­Var method will be described under the assumption that both the parameters and the
observations are samples from a Gaussian distribution. In section 4.5, an extension will be discussed
where the parameters are assumed to be samples from a log­normal distribution. In section 4.6, an
extension of the 4D­Var method will be discussed for cases where the number of parameters is very
large and the first two methods become infeasible in terms of computational cost. In section 4.7, a
maximum likelihood method will be described that estimates parameters of the 4D­Var cost functions.
Section 4.8 discusses two ways to reduce the computational cost of the 4D­Var methods. Last, section
4.9 gives a summary of all the steps of the adjoint­free 4D­Var procedure.

4.1. Problem description
The LOTOS­EUROS model approximates NH3 concentrations, but the estimated values differ from the
measurements. In Figure 4.1, time series can be found with the measured NH3 concentrations at the
LML station Zegveld in blue and the estimated concentrations of the LOTOS­EUROS model in orange,
for the month of March 2017. It can be seen that the measurements are initially relatively similar to the
model estimates, but as of March 13th, large differences start to occur. Also, it seems that both the
modeled and observed NH3 concentrations increase and decrease for approximately the same days,
but the rate of increase and decrease could differ strongly.

The difference between the LOTOS­EUROS model and observations is for a large part due to un­
certainties in the LOTOS­EUROS model. Uncertainties are for example present in model parameters
such as meteorological input data, chemical reaction parameters, and emission inventories, but also
in the implementation of the model processes. In this study, we focus on uncertainties in the ammonia
emission estimates. Errors in the emission inventories can be caused by several uncertainties, such
as the emission strength, the temporal profile, the location, or the height of the emission. The uncer­
tainties in the model and more specific in the emissions are visualized in Figure 4.2.

As described in section 1.2, uncertainty in the used emission inventory is mainly related to the appli­
cation of manure and fertilizer. Errors in the modeled emission timing and emission strength could
explain why the difference in NH3 concentrations of the model and the LML station in Figure 4.1 is very
different for each day. In this study, a data assimilation method will be used to improve these emission
parameters such that the LOTOS­EUROS model will better resemble the observational data.

In this study, the objective is to estimate daily Multiplication Factors (MF) as parameters. The origi­
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Figure 4.1: Daily average NH3 concentrations. The observations of LML station are blue and
the estimated concentration of LOTOS­EUROS model are orange

Figure 4.2: Uncertain parameters in the LOTOS­EUROS model.

nal emission inventory, described in section 2.4.1, will be multiplied by these multiplication factors. The
approach with multiplication factors is based on the study of (Zijlker 2020). This approach with multipli­
cation factors conserves important properties of the original emission inventory, such as the location of
the major emission sources. The parameter vector 𝜃 will contain different multiplication factors for each
day, possibly varying for different parts of the domain. In this way, the emission strengths of the original
emission inventory can be improved in time, improving the temporal profiles, and optionally in space
as well. When all multiplication factors are exactly one, the original emission inventory is retrieved.

The multiplication factors are the only estimated parameters in this study. The other sources of uncer­
tainty shown in Figure 4.2, are not taken into account. When using the data assimilation approaches
described in the remainder of this chapter, the method might incorrectly adjust the MF’s to compen­
sate for other model errors. This might lead to incorrect estimations of the multiplication factors. It is
important to keep that in mind when analyzing results for real­life measurements.

4.2. Data assimilation methods
The book of (Lewis, Lakshmivarahan, and Dhall 2006) contains an extensive explanation of data as­
similation methods and their properties. Data assimilation methods are divided into two categories:
variational methods for deterministic models, and statistical methods for stochastic models. In this
section, the variational method 4D­Var and the statistical method Ensemble Kalman filter, will be com­
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pared. It will be decided that the 4D­Var method suits the objective of this study better.

The variational data assimilation method 4D­Var assumes that the considered model is determinis­
tic. In this way, certain physical properties such as the conservation of mass are satisfied. The 4D­Var
method minimizes a cost function over a certain time range, which is useful as it allows observations
made before and after a certain time 𝑡 to influence parameters at time 𝑡. This property of the 4D­Var
method is useful when NH3 is emitted at time 𝑡, transported to a measuring system during a period Δ𝑡,
and is then measured in the ”future” 𝑡+Δ𝑡. Also, the 4D­Var method can optimize many parameters for
different time instances simultaneously, taking into account the dependencies between the parameters.
In this study, the parameters (emission MF’s) will not be able to change in time. To still incorporate time
variations, a separate MF is considered for each day. A benefit of the 4D­Var method is that it works
well when the number of observations is large, as the computational time barely increases for large
data sets. The major downside of the 4D­Var method is that it is generally solved using an iterative
gradient­based optimization method, where an adjoint model is used to determine the gradient. How­
ever, such an adjoint model is not available for the extensive LOTOS­EUROS model, and developing
one would be cumbersome as it would take a lot of programming effort to make it and to maintain it.

The second category, statistical data assimilation methods, assumes that the considered model is
stochastic. Random noise is added to the model state x of equation (2.2), to model the uncertainties in
Figure 4.2. When this noise is Gaussian, a statistical method that could be used is the Kalman filter. In
the case of the ensemble Kalman filter, an ensemble of model runs is used to quantify how uncertain­
ties influence the NH3 concentrations in time. As random noise is added to the state, the system no
longer obeys laws of physics, such as conservation of mass. Additionally, the state no longer needs to
correspond to a run of the LOTOS­EUROS model for some emission inventory. The Kalman filter uses
its observations sequentially, meaning that parameters are adjusted immediately when new observa­
tions are available. This leads to different parameters for each time instance for which measurements
are available. For constant or slowly­varying parameters, the Kalman filter is not a good method. In
this case, the Kalman filter state could become biased or even diverge from the true state (Vermeulen
and Heemink 2006). Also, the computational complexity of the Kalman filter can increases too much
when the number of observations becomes large.

Because of the fact that the 4D­Var method uses observations over a longer time range, obeys the
conservation of mass, and is suitable for a large number of observations, the choice has been made
to use the 4D­Var method to estimate NH3 emission parameters. The major downside of the 4D­Var
method, the need for an adjoint model, is overcome by developing an adjoint­free version of the 4D­Var
method.

4.3. Bayesian approach to 4D­Var method
In this section, a statistical analysis of the 4D­Var cost function will be described. The cost function will
be derived for some general parameter vector 𝜃. In the remainder of this report, several other param­
eter vectors 𝛽, 𝛾, and w will be considered, all related to the multiplication factors, but with different
statistical prior distributions. This section describes the 4D­Var cost function for a general probability
density function.

The 4D­Var method considers all observations in a certain time window. Given these observations
y𝑂 and a background parameter estimate 𝜃𝑏, and their probability density function, the 4D­Var method
aims to find the parameter vector 𝜃̂ which is the most probable. Hence, the objective of the 4D­Var
method is to let the optimal parameter vector 𝜃̂ be

𝜃̂ = argmax
𝜃

𝑝(𝜃|y𝑂 , 𝜃𝑏). (4.1)

Bayes’ theorem states that the following relationship holds:

𝑝(𝜃|y𝑂 , 𝜃𝑏) ∝ 𝑝(y𝑂|𝜃, 𝜃𝑏) 𝑝(𝜃|𝜃𝑏). (4.2)

Hence, once the prior distribution 𝑝(𝜃|𝜃𝑏) and the likelihood of the observations 𝑝(y𝑂|𝜃, 𝜃𝑏), are deter­
mined, the 4D­Var objective is defined.
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Instead of maximizing the posterior distribution, one can also minimize the opposite of the logarithm
of the posterior distribution. This is done to simplify the calculations with the function. Combining the
objective (4.1), the equivalence in equation (4.2), taking the opposite of the logarithm of the distribution,
and neglecting constant terms leads to a new objective:

Find the parameter vector 𝜃̂ for which

𝜃̂ = argmin
𝜃

(− log𝑝(𝜃|𝜃𝑏) − log𝑝(y𝑂|𝜃, 𝜃𝑏)) . (4.3)

The function between the parentheses is generally referred to as the cost function. In the subsequent
sections, several choices for the parameters 𝜃 and their prior distributions will be discussed. Addition­
ally, it will be discussed how the cost functions are minimized and how the uncertainty in the optimal
solution can be determined.

4.4. Adjoint­free 4D­Var method for Gaussian distributions
In this section, a 4D­Var approach will be described to optimize a parameter vector consisting of mul­
tiplication factors, denoted by 𝛽. As the first step, the easiest and most common assumption for the
prior distribution and observation likelihood is used: both are samples from Gaussian distributions. The
background parameters 𝛽𝑏 are defined to be 𝛽𝑏 = 1, which results into emissions that are equal to the
inventory.

First, the 4D­Var cost function for the Gaussian parameter 𝛽 will be derived. Second, a linearization of
the model state will be discussed. This approximate linear state is needed to estimate several terms
in the 4D­Var cost function within a feasible amount of time. Because of this linearization, an adjoint
model as usually required to solve the 4D­var problem is not needed. Once the value and gradient of
the 4D­Var cost function can be determined, the optimal parameter vector 𝛽 that minimizes the 4D­Var
cost function can be determined. Last, some remarks are made regarding the accuracy and uncertainty
of the optimally estimated parameter vector 𝛽̂.

4.4.1. Definition of the cost function and gradient
First, the cost function of the 4D­Var method will be derived. To determine the cost function in equation
(4.3), the distributions 𝑝(𝛽|𝛽𝑏) and 𝑝(y𝑂|𝛽, 𝛽𝑏) have to be defined.

Under the assumption that both the prior distribution and the observation likelihood are Gaussian, we
obtain for the prior distribution of the multiplication factors that:

𝛽 ∼ 𝒩 (𝛽𝑏 + 𝜇𝛽 ,B𝛽) . (4.4)

When 𝜇𝛽 = 0, the multiplication factors have as expected value the background parameters 𝛽𝑏. When
𝜇𝛽 ≠ 0, the multiplication factors are biased. B𝛽 represents the error covariance of 𝛽. The values
and parameterization of the bias 𝜇𝛽 and the covariance B𝛽 will be defined in chapter 5 for different
experiments.

The observations y𝑂 are simulated by the LOTOS­EUROS model as y𝑠𝑖𝑚 of equation (2.3). As dis­
cussed earlier in section 2.3, the measured observations are generally different:

y𝑂 = ℋ(x, 𝛽) + 𝜖. (4.5)

This error 𝜖 is assumed to be unbiased and Gaussian, such that:

y𝑂 −ℋ(x, 𝛽) = 𝜖 ∼ 𝒩(0,R). (4.6)

Here, R is the error covariance of the observation representation.

Now, as the probability density functions 𝑝(𝛽|𝛽𝑏) and 𝑝(y𝑂|𝛽, 𝛽𝑏) are known for the Gaussian dis­
tributions, the posterior distribution of 𝛽 can be calculated. In this context, the objective (4.3) becomes:
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Find the parameter vector 𝛽̂, that minimizes the cost function

𝐽(𝛽) = 1
2(𝛽 − 𝛽

𝑏 − 𝜇𝛽)𝑇B−1𝛽 (𝛽 − 𝛽𝑏 − 𝜇𝛽)

+ 12

𝑁𝑂
∑
𝑚=1

(y𝑂𝑚 −ℋ𝑚(x𝑚 , 𝛽))
𝑇
R−1𝑚 (y𝑂𝑚 −ℋ𝑚(x𝑚 , 𝛽)) . (4.7)

Here, 𝑁𝑂 denotes the number of time instances for which observations are available. If a parameter
vector 𝛽̂ minimizes the cost function (4.7), then the following holds:

∇𝛽𝐽(𝛽̂) = 0. (4.8)

The minimum of 𝐽(𝛽) can sometimes be found analytically by solving ∇𝛽𝐽(𝛽) = 0 for 𝛽. Alternatively, if
the solution cannot be determined analytically, numerical solvers can be used to find 𝛽. Most numerical
solvers use an iterative procedure in which the gradient ∇𝛽𝐽(𝛽) is used. Hence, in both cases it is
convenient to have an expression of the gradient. The gradient of the cost function 𝐽(𝛽), as defined in
equation (4.7), is:

∇𝛽𝐽(𝛽) = B−1𝛽 (𝛽 − 𝛽𝑏 − 𝜇𝛽)

+
𝑁0
∑
𝑚=1

(𝜕ℋ𝑚𝜕𝛽 )
𝑇
R−1𝑚 (ℋ𝑚(x𝑚 , 𝛽) − y𝑂𝑚). (4.9)

4.4.2. Approximate linear state to make the 4D­Var method adjoint free
To determine the cost 𝐽(𝛽) and its gradient, the simulated observations ℋ𝑘(x𝑘 , 𝛽) and their gradient
towards parameter changes 𝜕ℋ𝑘

𝜕𝛽 need to be determined. The simulated observationsℋ𝑘(x𝑘 , 𝛽) can be
determined by the LOTOS­EUROS model. However, it takes a lot of computational effort to determine
ℋ𝑘(x𝑘 , 𝛽) for several 𝛽 in an iterative procedure. Calculation of the adjoint operator

𝜕ℋ𝑘
𝜕𝛽 would be even

more difficult, as the NH3 concentrations, and hence the operator ℋ𝑘(x𝑘 , 𝛽) are nonlinear in terms of
the emission parameters 𝛽.

The most common approach to estimate the gradient of the model is by using an adjoint model. This
method is described by (Courant and Hilbert 1953). However, an adjoint model is currently not available
for the LOTOS­EUROS model. Instead, this study develops an adjoint­free 4D­Var method, similar to
the method described in (Zijlker 2020). An explicit expression of ℋ𝑘(x𝑘 , 𝛽), in terms of the parameter
vector 𝛽 will be made, such that bothℋ𝑘(x𝑘 , 𝛽) and

𝜕ℋ𝑘
𝜕𝛽 are easily determined given a certain 𝛽.

Both observation operators in this study (for the LML stations and for the IRS instrument of the MTG­S
satellite) are linear in the state x𝑘:

ℋ𝑘(x𝑘 , 𝛽) = H𝑘x𝑘 . (4.10)

Because of this linearity, finding an expression ofℋ𝑘(x𝑘 , 𝛽) in terms of 𝛽 reduces to finding an expres­
sion of the NH3 concentrations x𝑘 in terms of 𝛽.

To estimate the state, an approach based on the method of (Zijlker 2020) is used. There, the state
is first approximated by the Trajectory Piecewise Linearization (TPWL). The LOTOS­EUROS model,
x𝑘 = 𝑀𝑘(x𝑘−1, 𝛽), is linearized around the background state x𝑏 and background parameter 𝛽𝑏. The
background state x𝑏 is the determined state of the LOTOS­EUROS model when using the background
parameter vector 𝛽𝑏. This linearization leads to:

x𝑘+1 − x𝑏𝑘+1 ≈ [
𝜕𝑀𝑘+1
𝜕𝛽 (x𝑏𝑘 , 𝛽𝑏)] (𝛽 − 𝛽𝑏) + [

𝜕𝑀𝑘+1
𝜕x (x𝑏𝑘 , 𝛽𝑏)] (x𝑘 − x𝑏𝑘). (4.11)

The computational effort of this linearization are dominated by determining the Jacobian matrices. As
both the parameter vector 𝛽 and especially the state x can be high­dimensional, the Jacobians can be
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very large in size. Approximating of the derivative with respect to the state x can be inaccurate or com­
putationally infeasible. Fortunately, the study of (Zijlker 2020) showed that the derivative of the model
with respect to the state x could be neglected for the relatively short­lived trace gas NO2. As NH3 is also
a short­lived trace gas, it is assumed that in this linear approximate state, the derivative of the model
with respect to x can be neglected as well. Now, it follows that the state x can be expressed in terms
of 𝛽, once the background state x𝑏, background parameter 𝛽𝑏 and the Jacobian matrix 𝜕𝑀𝑘

𝜕𝛽 (x
𝑏
𝑘−1, 𝛽𝑏)

are known, as:

x𝑘 = x𝑏𝑘 + [
𝜕𝑀𝑘
𝜕𝛽 (x

𝑏
𝑘−1, 𝛽𝑏)] (𝛽 − 𝛽𝑏) = x𝑏𝑘 + [E𝛽]𝑘(𝛽 − 𝛽𝑏). (4.12)

Here:

[E𝛽]𝑘 =
𝜕𝑀𝑘
𝜕𝛽 (x

𝑏
𝑘−1, 𝛽𝑏). (4.13)

This Jacobian is independent of 𝛽. Therefore, it only has to be determined once in the process of
finding the optimal parameters 𝛽̂. If the minimum of the cost function 𝐽(𝛽) were to be found analytically,
the matrix [E𝛽]𝑘 would become a constant matrix, and if the cost function were to be found using a
numerical procedure, this matrix would be the same for each iteration.

The Jacobian [E𝛽]𝑘 can not be determined explicitly, as the LOTOS­EUROS model depends on the
multiplication factors in a complicated manner. Therefore, the Jacobian is approximated using a finite
difference approach. The 𝑖’th column of the matrix is approximated as:

[E𝛽]𝑘,𝑖 = [𝜕𝑀𝑘𝜕𝛽 (x
𝑏
𝑘−1, 𝛽𝑏)]

𝑖
≈ 𝑀𝑘(x𝑘−1, 𝛽𝑏 + Δ𝛽𝑖E𝑖) − 𝑀𝑘(x𝑘−1, 𝛽𝑏)

Δ𝛽𝑖
. (4.14)

Experiments have shown that this linear approximation of the state in terms of the multiplication factors
𝛽, defined in equation (4.12) is accurate, also for large deviations. This is because the LOTOS­EUROS
model is approximately linear with respect to emissions. An increase in emissions at one location is
expected to result in a proportional increase in the concentration of the ammonia plume carried down­
wind from the emission source.

Most nonlinear terms of the LOTOS­EUROS model are related to chemistry and the balance between
dry emission and dry deposition. As a result of this linear approximate state, these nonlinear terms are
simplified. However, this does in general not seem to cause major errors. Alternatively, if larger errors
in the estimate of 𝛽̂ would occur due to the nonlinear terms, one could also perform multiple optimiza­
tion loops: first find the optimal parameter vector 𝛽̂ using the linear approximate state, based on the
emission inventory of the LOTOS­EUROS model with background parameter 𝛽𝑏 = 1. Then, perform a
second optimization iteration with as background parameter 𝛽𝑏 = 𝛽̂ to find a second estimate for the
parameter vector 𝛽̂. This can be repeated several times. However, in this study, the linear approximate
state is considered to be accurate enough after one optimization loop.

Now that the state x can be expressed in terms of the parameter vector 𝛽, the observation operator
can be expressed in terms of 𝛽 as well:

ℋ𝑘(x𝑘 , 𝛽) = H𝑘x𝑘 = H𝑘x𝑏𝑘 + H𝑘[E𝛽]𝑘(𝛽 − 𝛽𝑏). (4.15)

The adjoint operator becomes:

(𝜕ℋ𝑘𝜕𝛽 )
𝑇
= (H𝑘[E𝛽]𝑘)

𝑇 . (4.16)

The computational effort of the 4D­Var method now gets dominated by determining the Jacobian matrix
[E𝛽]𝑘, as for each element of 𝛽 a model run needs to be performed. Let 𝑁𝑀𝐹 number of multiplication
factors, i.e. the length of the parameter vector 𝛽. In total, there will be 𝑁𝑀𝐹 + 1 model runs: one run to
determine the background state x𝑏 and one run for each of the 𝑁𝑀𝐹 columns of [E𝛽]𝑘.
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4.4.3. Finding the optimal parameter vector
Now that all terms in the cost function in equation (4.7) and the gradient in equation (4.9) are defined,
the function can be minimized. A convenient result from the assumption of Gaussian distributions is
that all terms in the gradient in equation (4.9) are linear. Substitution of the approximate observations
from equation (4.15) and the adjoint operator in equation (4.16) in the gradient of the cost function in
equation (4.9) leads to:

∇𝛽𝐽(𝛽) = B−1(𝛽 − 𝛽𝑏 − 𝜇𝛽)

+
𝑁0
∑
𝑚=1

(H𝑚[E𝛽]𝑚)
𝑇
R−1𝑚 (H𝑚x𝑏𝑚 + H𝑚[E𝛽]𝑚(𝛽 − 𝛽𝑏) − y𝑂𝑚). (4.17)

If the gradient is set to be equal to zero, this becomes a linear system in terms of 𝛽 and can therefore
be solved analytically. Define:

A𝛽 = B−1 +
𝑁0
∑
𝑚=1

(H𝑚[E𝛽]𝑚)
𝑇
R−1𝑚 (H𝑚[E𝛽]𝑚)

c𝛽 = B−1𝛽𝑏 + B−1𝜇𝛽 +
𝑁0
∑
𝑚=1

(H𝑚[E𝛽]𝑚)
𝑇
R−1𝑚 ( − H𝑚x𝑏𝑚 + H𝑚[E𝛽]𝑚𝛽𝑏 + y𝑂𝑚). (4.18)

Then:
∇𝛽𝐽(𝛽̂) = 0 ⟺ A𝛽𝛽̂ = c𝛽 ⟺ 𝛽̂ = A−1𝛽 c𝛽 . (4.19)

By solving the system, the optimal parameter vector 𝛽̂ is found.

4.4.4. Covariance of the optimal solution
It could be useful have the uncertainty of the optimal parameter 𝛽̂ quantified. The covariance of the
posterior distribution of 𝛽̂ is equal to the inverse of the Hessian of the cost function 𝐽(𝛽). Using the
notation of matrixA𝛽 and vector c𝛽 from the equations in system (4.18), the gradient of the cost function
can be written as:

∇𝛽𝐽(𝛽) = A𝛽𝛽 − c𝛽 . (4.20)

With this, the Hessian becomes:

∇𝛽 (∇𝛽𝐽(𝛽)) = ∇𝛽 (A𝛽𝛽 − c𝛽) = A𝛽 . (4.21)

Hence, the covariance of the posterior distribution of 𝛽̂ is A−1𝛽 . As for any covariance matrix, the di­
agonal of A−1𝛽 will contain the variances for each of the multiplication factors. These variances can be
used to determine a confidence interval for the estimated multiplication factors.

From the definition of A𝛽 in equation (4.18), it can be seen that norm of the diagonal elements of
matrix A𝛽 becomes larger when the number of measurements increases, when H𝑘[E𝛽]𝑘 is contains
large values (meaning that perturbing emissions results in large changes in measured concentrations),
or when the entries of R−1𝑘 are large (the errors in observations are small). If the diagonal elements of
A𝛽 are high valued, A−1𝛽 has low values diagonal elements, which means that the uncertainty in the
optimally estimated parameters is small. In this case, the optimal multiplication factors 𝛽̂ are expected
to be relatively close to the true multiplication factors 𝛽𝑡𝑟𝑢𝑒.

4.5. Adjoint­free 4D­Var method for log­normal prior distributions
In the previous section, the 4D­Var method for multiplication factors with a Gaussian distribution was
discussed. However, if one considers multiplication factors for ammonia emissions, this distribution
might not be appropriate. As this project aims to find large positive deviations in the emission factors,
caused by the irregular spreading of manure or fertilizer, a log­normal distribution for the multiplication
factors seems more realistic. A log­normal distribution assumes an equal probability of increasing or
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decreasing emissions, similar to a Gaussian distribution, but for the log­normal distribution, the MF’s
are only allowed to take positive values and are more likely to have some high peak values. An example
of the log­normal distribution 𝐿𝑜𝑔𝒩(0, 1) is shown in Figure 4.3.

Figure 4.3: Log­normal distribution

4.5.1. Log­normal multiplication factors
Let the multiplication factors with a log­normal distribution be denoted by 𝛾. An issue with the 4D­Var
method is now that the usual cost function (4.7) is based on Gaussian distributions. Also, the log­
normally distributed 𝛾 are defined to be positive, adding a constraint to the problem. To incorporate the
log­normality of 𝛾, the following property of the log­normal distribution is used. If:

𝛾 − 𝛾𝑏 ∼ Log𝒩(𝜇𝛾 ,B𝛾), (4.22)

then the parameter:
𝛽 = log(𝛾) (4.23)

has a Gaussian distribution with mean 𝛽𝑏 + 𝜇𝛾 and covariance B𝛾. Hence, 𝛽 − 𝛽𝑏 ∼ 𝒩(𝜇𝛾 ,B𝛾). Here,
the background parameter vector 𝛾𝑏 = 1, and 𝛽𝑏 = 0, such that 𝑒𝛽𝑏 = 𝛾𝑏 = 1. Instead of expressing
the cost function in terms of the multiplication factors 𝛾, we now let the cost function be a function of
𝛽 = log(𝛾). If the dependence ofℋ𝑚(x𝑚 , 𝛾) and its gradient with respect to 𝛽 can be expressed in terms
of 𝛽, instead of the multiplication factors 𝛾, the 4D­Var method can be used to determine the optimal 𝛽̂.
Then, the optimal multiplication factors can be calculated as 𝛾̂ = exp 𝛽̂. Since the exponential function
will always evaluate to positive numbers, the constraint of positive 𝛾̂ is automatically satisfied.

4.5.2. Approximate linear state, cost function, and gradient
In section 4.4.2, it was described that the state 𝑥 could be approximated by a linear approximation of
the model in terms of the multiplication factors. This approximation appeared to be accurate, as the
LOTOS­EUROS model is nearly linear with respect to ammonia emissions. However, in this section,
the transformation has been made from the multiplication factor parameter vector 𝛾 to the parameter
vector 𝛽 = log(𝛾). To still use the state approximation from equation (4.12), a small adjustment has to
be made. One would like the state to be linear in the multiplication factors 𝛾:

x𝑘 = x𝑏𝑘 + [E𝛾]𝑘(𝛾 − 𝛾𝑏). (4.24)

Here, the matrix:
[E𝛾]𝑘 =

𝜕𝑀𝑘+1
𝜕𝛾 (x𝑏𝑘 , 𝛾𝑏),

is the same matrix as [E𝛽]𝑘 in equation (4.13), with the only difference being that the multiplication
factors were denoted as 𝛽 in section 4.4.2 and are now called 𝛾. Apart from notation, the matrices are
identical. However, 𝛾 should not be called explicitly in the cost function, as the cost function should
depend on 𝛽 only. Therefore, the reverse transformation 𝛾 = exp𝛽 should substituted. This results in
a new approximate state:

x𝑘 = x𝑏𝑘 + [E𝛾]𝑘(𝑒𝛽 − 𝑒𝛽
𝑏). (4.25)
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Since the parameter vector 𝛽 has a Gaussian distribution, the cost function in equation (4.7) and the
gradient in equation (4.9) are valid for this problem. The difference with the previous section is that the

estimated observations ℋ(x, 𝛽) and the adjoint operator (𝜕ℋ𝑚𝜕𝛽 )
𝑇
in the cost function and gradient are

different. For the approximate state (4.25), it is obtained that:

ℋ(x, 𝛽) = Hx𝑏𝑘 + H[E𝛾]𝑘(𝑒𝛽 − 𝑒𝛽
𝑏) (4.26)

(𝜕ℋ𝜕𝛽 )
𝑇
= (H[E𝛾]𝑘diag (𝑒𝛽) )

𝑇
(4.27)

It follows that the gradient of the 4D­Var problem becomes:

∇𝛽𝐽(𝛽) = B−1𝛾 (𝛽 − 𝛽𝑏 − 𝜇𝛾)

+
𝑁0
∑
𝑚=1

(H𝑚[E𝛾]𝑚 diag(𝑒𝛽))
𝑇
R−1𝑚 (H𝑚x𝑏𝑚 + H𝑚[E𝛾]𝑚(𝑒𝛽 − 𝑒𝛽

𝑏) − y𝑂𝑚). (4.28)

4.5.3. Finding the optimal parameter vector
The gradient of the cost function (4.28) is now non­linear in terms of 𝛽. Because of the non­linearity, it
is no longer possible to solve the system ∇𝛽𝐽(𝛽) = 0 analytically. To still find the parameter vector 𝛽
that minimizes the cost function, a numerical optimizer is used.

There are many numerical optimizers available, all having their advantages and disadvantages. In
this study, the minimizer of the SciPy module in Python using the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) algorithm is used. A detailed description of the BFGS algorithm and its properties can be found
in the book of (Nocedal and Wright 2006a). This iterative method is made for solving unconstrained
nonlinear optimization problems. As this algorithm is a Quasi­Newton method, fast or even super­linear
convergence could occur. Because the method uses the gradient of the cost function as an input value,
the method needs fewer iterations. An additional benefit of the method is that it returns an approxi­
mation of the inverse of the Hessian of the cost function. As mentioned in section 4.4.4, this inverse
Hessian of the optimal Gaussian parameter 𝛽̂ can be used to quantify the uncertainty of the optimal
estimate. The fact that the inverse Hessian is returned is considered an advantage when the size of
the parameter vector 𝛽 is small (less than 1000). However, when the parameter vector becomes large,
the size of the inverse Hessian matrix will become huge as it increases with order 𝑛2. This may result
in computer memory issues. However, if memory would be an issue, the limited­memory version of the
algorithm, the L­BFGS­B method (L: limited memory, B: bounded), can be used, which does not return
an approximate of the inverse Hessian matrix. However, in this study the BFGS algorithm is used, as
saving the Hessian matrix does not result in memory issues.

The used BFGS algorithm returns an approximation of the inverse Hessian of the system, which can,
analogously to section 4.4.4 be used to determine the standard deviations of the elements in the Gaus­
sian parameter vector 𝛽̂. Those standard deviations can be used to determine the two­sigma bounds
for the parameters of 𝛽̂. However, we are not interested in the values for 𝛽̂, but in the values of the
multiplication factors 𝛾̂ = exp(𝛽̂). If a confidence interval for 𝛽̂ is known to be (𝛽̂ − 2𝜎; 𝛽̂ + 2𝜎), then
a confidence interval for the MF’s 𝛾 = exp(𝛽) is:

( exp(𝛽̂ − 2𝜎); exp(𝛽̂ + 2𝜎)).

4.6. Adjoint­free 4D­Var method when using a preconditioned state
If the size of the to be optimized parameter vector becomes very large, it often becomes too compu­
tationally expensive to analyze the effect of a perturbation of every single element of some parameter
vector 𝜃 by running the LOTOS­EUROS model. In the previous two cases, such an ensemble run was
needed to calculate the matrices E𝛽 and E𝛾. Furthermore, computations with (possibly non­diagonal)
matrix B−1𝜃 can be computationally expensive if the size of the parameter vector, and consequently B−1𝜃
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is very large.

To reduce the number of computations, a preconditioner is used. The idea is to consider only the main
patterns of the parameter vector 𝜃. Instead of determining the effect of a perturbation of each instance,
only the effect of perturbations of the main patterns needs to be determined. A state transformation is
used, such that the optimal parameter vector is found in the reduced space. Once this optimal reduced
state vector is found, the optimal parameter 𝜃̂ can be estimated using a reverse transformation. In this
way, a good approximation of the entire state can be made while reducing the computational complex­
ity tremendously.

Before going into the details of how to determine the main patterns of some parameter vector 𝜃, the
4D­Var method will be discussed for this new transformed parameter vector. Section 4.6.1 considers
the case where the multiplication factors have a Gaussian prior distribution, section 4.6.2 considers the
case with the log­normal prior distribution, and section 4.6.3 described the concept of the main patterns
of 𝜃.

4.6.1. Preconditioned state: Gaussian prior distribution
First, the case is discussed where the multiplication factors have a Gaussian distribution, as in section
4.4. The multiplication factors are denoted by 𝛽. Then, as before:

𝛽 − 𝛽𝑏 ∼ 𝒩(𝜇𝛽 ,B𝛽). (4.29)

The preconditioner here is chosen to be the same as in (Arjo Segers, Tokaya, and Houweling 2020;
Meirink, Eskes, and Goede 2006). The preconditioned state w is defined as:

w = B−1/2𝛽 (𝛽 − 𝛽𝑏). (4.30)

Given a certain w, the multiplication factors 𝛽 can be determined using the reverse transformation:

𝛽 = 𝛽𝑏 + B1/2𝛽 w. (4.31)

Here, the multiplication factors 𝛽 are equal to the sum of the background parameters 𝛽𝑏 and a linear
combination of the columns of B1/2𝛽 , where w contains the coefficients of the linear combination. The
parameter vector w is in reduced space ℝ𝑚, and B1/2𝛽 ∈ ℝ𝑁𝑀𝐹×𝑚, with 𝑚 << 𝑁𝑀𝐹. The matrix B1/2𝛽 is
a reduced size approximation of the root of the matrix B𝛽, such that:

B1/2𝛽 B𝑇/2𝛽 ≈ B𝛽 . (4.32)

Instead of finding estimates for the potentially very large parameter vector 𝛽, a method will be described
to determine the values of the reduced state parameter vector w.

One of the important properties of the transformation in equation (4.30) is that it is linear in (𝛽 − 𝛽𝑏).
Because of this linearity, all terms containing the matrix E𝛽 cancel out when expressing the observation
operatorℋ𝑚(x𝑚 ,w) from equation (4.15) in terms of w:

ℋ𝑚(x𝑚 ,w) = H(x𝑏 + E𝛽(𝛽 − 𝛽𝑏))
= Hx𝑏 + HE𝛽B

1/2
𝛽 w

= Hx𝑏 + H
𝜕𝑀
𝜕ww (4.33)

= Hx𝑏 + HEww (4.34)

Here, it was used that:
Ew =

𝜕𝑀
𝜕w = 𝜕𝑀

𝜕𝛽
𝜕𝛽
𝜕w = E𝛽B

1/2
𝛽 . (4.35)

To determine ℋ𝑚(x𝑚 ,w), it is now no longer needed to determine E𝛽 for which an ensemble of size
𝑁𝑀𝐹 was needed. Only Ew has to be determined, where w is of reduced size 𝑚. The Jacobian E𝑤 is
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determined using a finite difference approach, similar to the Jacobian E𝛽 in equation (4.14). For the
i’th column, the matrix is approximated as:

[Ew]𝑖 = [
𝜕𝑀
𝜕w (x

𝑏 ,w𝑏)]
𝑖
= 𝑀(x,w𝑏 + Δ𝑤𝑖e𝑖) − 𝑀(x,w𝑏)

Δ𝑤𝑖
. (4.36)

This is where the computational effort is reduced, as only 𝑚 + 1 << 𝑁𝑀𝐹 + 1 model runs are needed.

Once Ew is known, calculatingℋ𝑚(x𝑚 ,w) and its adjoint (
𝜕ℋ𝑚
𝜕w )

𝑇
= (HEw)

𝑇
is computationally cheap.

By substituting the reverse transformation from equation (4.31) and the observation operator from equa­
tion (4.33) in equation (4.7), the cost function in terms of the preconditioned state w becomes:

𝐽(w) = 1
2(w− B−1/2𝛽 𝜇𝛽)𝑇(w− B−1/2𝛽 𝜇𝛽)

+ 12

𝑁𝑂
∑
𝑚=1

(y𝑂𝑚 −ℋ𝑚(x𝑚 ,w))
𝑇
R−1𝑚 (y𝑂𝑚 −ℋ𝑚(x𝑚 ,w)) . (4.37)

Here, it was used that for a covariance matrix B𝛽 it holds that

B𝛽 = B1/2𝛽 B𝑇/2𝛽 , and hence B−1𝛽 = B−𝑇/2𝛽 B−1/2𝛽 .

It follows that the gradient of 𝐽(w) with respect to w becomes

∇w𝐽(w) = w− B−1/2𝛽 𝜇𝛽 +
𝑁0
∑
𝑚=1

(H𝑚[Ew]𝑚)
𝑇
R−1𝑚 (ℋ𝑚(x𝑚 ,w) − y𝑂𝑚) (4.38)

In the case where 𝜇𝛽 = 0, all terms containing B𝛽 cancel out, eliminating the computations with a
possibly very large matrix B𝛽. For very large B𝛽, it might also take too much computer memory to
save the entire matrix B𝛽, making computations difficult. If 𝜇𝛽 ≠ 0, the computations regarding B𝛽 are
only relevant for projecting the vector 𝜇𝛽 on the new reduced space according to the transformation
𝜇w = B−1/2𝛽 𝜇𝛽. The gradient in equation (4.38) is a linear function in w. Hence, the optimal parameter
vector ŵ that minimizes the 4D­Var cost function can be found analytically by solving the system:

∇w𝐽(w) = 0. (4.39)

Let Matrix A𝑤 ∈ ℝ𝑚×𝑚, and vector c𝑤 ∈ ℝ𝑚 be defined as:

A𝑤 = 𝐼 +
𝑁𝑂
∑
𝑚=1

(H𝑚[Ew]𝑚)
𝑇
R−1𝑚 (H𝑚[Ew]𝑚),

c𝑤 = B−1/2𝛽 𝜇𝛽 +
𝑁𝑂
∑
𝑚=1

(H𝑚[Ew]𝑚)
𝑇
R−1𝑚 ( − H𝑏𝑚 + y𝑂𝑚). (4.40)

Then:
∇w𝐽(ŵ) = 0 ⟺ Awŵ = cw ⟺ ŵ = A−1w cw. (4.41)

By solving the system, the optimal parameter vector ŵ is found. Similar as before in section 4.4.4, the
covariance of the posterior distribution of ŵ is the inverse of the Hessian matrix: A−1𝑤 . The distribution
of w can be used to derive the distribution of the multiplication factors 𝛽. When:

w ∼ 𝒩(ŵ,A−1𝑤 ), (4.42)

then for the reverse transformation:

𝛽 = 𝛽𝑏 + B1/2𝛽 w ∼ 𝒩(𝛽𝑏 + B1/2𝛽 ŵ, B1/2𝛽 A−1𝑤 B𝑇/2𝛽 ). (4.43)

This distribution for 𝛽 can be used to quantify the uncertainty in the optimally estimated multiplication
factors 𝛽̂.
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4.6.2. Preconditioned state: log­normal prior distribution
In this section, the preconditioner methodology for large parameter vectors is extended to the case
where the multiplication factors have a log­normal distribution. These log­normal multiplication factors,
similar to section 4.5, are denoted by 𝛾. As before, in section 4.5, the parameter vector to optimize
does not contain themultiplication factors 𝛾, but contains the auxiliary Gaussian parameters 𝛽 = log(𝛾).
Then:

𝛽 − 𝛽𝑏 ∼ 𝒩(𝜇𝛾 ,B𝛾). (4.44)

The first decision to be made is to chose a preconditioner. Here, the chosen preconditioned state w is
the same as before in equation (4.30), only now expressed in the auxiliary parameter 𝛽 instead of the
multiplication factors 𝛾:

w = B−1/2𝛾 (𝛾 − 𝛾𝑏) = B−1/2𝛾 (𝑒𝛽 − 𝑒𝛽𝑏). (4.45)

The corresponding reverse transformation is:

𝛽 = log(𝑒𝛽𝑏 + B1/2𝛾 w). (4.46)

Note that this reverse transformation is defined only when 𝑒𝛽𝑏 + B1/2𝛾 w > 0, i.e. the multiplication
factors 𝛾, are positive. Again, the parameter vector w is in reduced space ℝ𝑚 and B1/2𝛾 ∈ ℝ𝑁𝑀𝐹×𝑚,
with 𝑚 << 𝑁𝑀𝐹. Substituting the preconditioner in observation operator equation (4.26) for log­normal
multiplication factors results in the same linear observation operator ℋ𝑚(x𝑚 ,w) as for the Gaussian
case in equation (4.33), where all terms with E𝛾 cancel out:

ℋ𝑚(x𝑚 ,w) = H(x𝑏 + E𝛾(𝑒𝛽 − 𝑒𝛽
𝑏))

= Hx𝑏 + HE𝛾B
1/2
𝛾 w

= Hx𝑏 + H
𝜕𝑀
𝜕ww = Hx𝑏 + HEww (4.47)

Here, it was used that:
Ew =

𝜕𝑀
𝜕w = 𝜕𝑀

𝜕𝛾
𝜕𝛾
𝜕w = E𝛾B

1/2
𝛾 . (4.48)

Again, it is no longer needed to approximate the Jacobian matrix E𝛾 using the finite difference approx­
imation with an ensemble of size 𝑁𝑀𝐹. To estimate E𝑤 as in equation (4.36), only 𝑚 + 1 runs of the
LOTOS­EUROS model are needed.

By substituting the reverse transformation from equation (4.46) and the observation operator from equa­
tion (4.47) in equation (4.7) and (4.9), the cost function and gradient in terms of the preconditioned state
w become:

𝐽(w) = 1
2 (B

−1/2 (log(𝑒𝛽𝑏 + B1/2w) − 𝛽𝑏 − 𝜇))
𝑇
(B−1/2 (log(𝑒𝛽𝑏 + B1/2w) − 𝛽𝑏 − 𝜇))

+ 12

𝑁𝑂
∑
𝑚=1

(y𝑂𝑚 −ℋ𝑚(x𝑚 ,w))
𝑇
R−1𝑚 (y𝑂𝑚 −ℋ𝑚(x𝑚 ,w)) , (4.49)

∇w𝐽 = (B1/2)
𝑇
𝑑𝑖𝑎𝑔 ( 1

(𝑒𝛽𝑏)𝑖 + (𝐵1/2𝑤)𝑖
)B−𝑇/2B−1/2 (log(𝑒𝛽𝑏 + B1/2w) − 𝛽𝑏 − 𝜇)

+
𝑁0
∑
𝑚=1

(𝐻𝐸𝑤)
𝑇 R−1𝑚 (ℋ𝑚(x𝑚 ,w) − y𝑂𝑚) (4.50)

Here it was again used that:
B−1𝛾 = B−𝑇/2𝛾 B−1/2𝛾 .

This is done, because determining the inverse of the𝑁𝑀𝐹×𝑁𝑀𝐹 sizedmatrixB−1𝛾 can be time consuming
for non­diagonal matrices. However, determining B−1/2𝛾 in reduced form is relatively simple as will be
described in section 4.6.3. A relevant remark is that the cost function (4.49) and gradient (4.50) are not
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defined for all values ofw. The logarithms in both the functions are only defined for positive values. This
is related to the property of the log­normal distribution, stating that the multiplication factors 𝛾 = exp(𝛽)
are defined to be positive. However, there are parameter vectors w for which this constraint is not
satisfied. Hence, an additional constraint is added to the problem, requiring the multiplication factors
𝛾 = exp(𝛽) to be positive as:

𝑒𝛽𝑏 + B1/2w > 0. (4.51)

The nonlinear cost function of equation (4.49), in combination with the constraint of equation (4.51) can­
not be minimized analytically. Instead, a numerical minimizer from the SciPy module in Python is used.
The algorithm for this problem uses Sequential Least SQuares Programming (SLSQP). This method
has been chosen as linear constraints can be added, and because it uses the gradient of the cost func­
tion. The previously mentioned algorithm L­BFGS­B can also set bounds on individual parameters,
but the SLSQP has the advantage that constraints can be considered for linear combinations of the
parameters, as is needed according to equation (4.51). The SLSQP algorithm is also a quasi­newton
method using BFGS updates. More about the SLSQP algorithm can be found in the book of (Nocedal
and Wright 2006b).

A disadvantage of the SLSQP algorithm is that it does not return an approximation of the Hessian
inverse, needed to estimate the uncertainty of the optimal parameters ŵ. Also, for constrained cost
functions in terms of the non­Gaussian parameter w, it does not hold that the covariance of ŵ is the
inverse of the Hessian matrix. Hence, even if the Hessian would be returned, it could not be used to
quantify the uncertainty as easily as before.

4.6.3. Reduce size: Eigenvalue decomposition
In this section, it will be described how for some parameter vector 𝜃, its covariance matrix B1/2𝜃 , of size
𝑁𝑀𝐹 × 𝑁𝑀𝐹 will be reduced to an approximation of size 𝑁𝑀𝐹 ×𝑚, with 𝑚 << 𝑁𝑀𝐹 such that:

B1/2𝜃 B𝑇/2𝜃 ≈ B𝜃 . (4.52)

This section is based on the formulation by (Arjo Segers, Tokaya, and Houweling 2020). First, define
the covariance matrix B𝜃 as:

B𝜃 = S𝜃 C𝜃 S𝜃 . (4.53)

Here S𝜃 is a diagonal matrix formed from a standard deviation field, and C𝜃 holds the correlations
between elements of B𝜃. Now, use an eigenvalue decomposition of C𝜃:

C𝜃 = Q𝜃 𝛬𝜃 Q𝑇𝜃 . (4.54)

Here Q𝜃 holds the orthonormal eigenvectors of C𝜃 as columns, and 𝛬𝜃 is a diagonal matrix with the
corresponding eigenvalues. Since B𝜃 is a covariance matrix and therefore positive­definite, its eigen­
value decomposition exists and its eigenvalues are strictly positive. Now, B𝜃 and subsequently B1/2𝜃
can be rewritten as:

B𝜃 = S𝜃Q𝜃𝛬𝜃Q𝑇𝜃S𝜃
B1/2𝜃 = S𝜃Q𝜃𝛬1/2𝜃 . (4.55)

This matrix B1/2𝜃 becomes of reduced size, when only the main patterns of the correlation are consid­
ered. This can be done by only considering the 𝑚 columns for B1/2𝜃 that correspond to the largest 𝑚
eigenvalues of B𝜃, and omit the other columns. A common criterion to choose the number of columns
𝑚 is to chose the largest 𝑚 eigenvalues 𝜆1, …,𝜆𝑚 such that:

∑𝑚𝑖=1 𝜆𝑖
∑𝑁𝑀𝐹𝑖=1 𝜆𝑖

≈ 0.95. (4.56)

This represents that approximately 95% of the energy of B𝜃 is contained when retrieving B𝜃 from the
reduced matrix B1/2𝜃 as in equation (4.52). It appears that for highly correlated parameter vectors, the
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values of the eigenvalues decrease very rapidly, and hence, 𝑚 is relatively small. For almost indepen­
dent parameter vectors, most eigenvalues are close to the average value, resulting in a large value for
𝑚.

In the 4D­Var cost function (4.49) and its gradient (4.49) for the log­normal multiplication factors 𝛾,
not only the reduced matrix B1/2, but also a reduced version of its inverse B−1/2 is used. Using the
properties of the eigenvalue decomposition leads to a simple formulation for the inverse of B1/2:

B−1/2𝜃 = (S𝜃Q𝜃𝛬1/2𝜃 )−1 = 𝛬−1/2𝜃 Q𝑇𝜃S
−1
𝜃 . (4.57)

This holds, since Q𝜃 is an orthogonal matrix and hence Q−1𝜃 = Q𝑇𝜃. Computing the inverse of S−1𝜃 and
𝛬−1/2𝜃 can be done analytically as the matrices are diagonal.

To get a better understanding of what the eigenvalue decomposition and the preconditioner repre­
sent, some visualizations are made, using the problem definition of the third experiment described in
section 5.4. In the experiment, multiplication factors are defined for each grid cell in the domain. They
are correlated in space, according to equation (5.9). An example of such an MF field is shown in Figure
4.4b. The columns of 𝐵1/2 corresponding to the largest eigenvalues can be determined. The eigen­
vectors are visualized in Figure 4.4a. Each eigenvector represents a characteristic pattern of MF’s, for
example, lower in just the center (top left), or higher in the north and lower in the south (top middle), etc.
The reverse transformation of the 4D­Var method in equation (4.31) for the Gaussian method and the
exponent of the reverse transformation in equation (4.46) for the log­normal case show that the multi­
plication factors in Figure 4.4b are approximated by adding a linear combination of these characteristic
patterns to the background parameter vector 1. The preconditioned statew holds the coefficients of this
linear combination and contains positive and negative weights that should be applied to the individual
patterns. When more patterns are considered, the MF field in Figure 4.4b can be approximated more
closely. However, it also takes time to run the LOTOS­EUROS model to determine how a change in
emissions would influence the measurement. In Figure 4.4c, a plot is made with the largest 100 eigen­
values in consecutive order from large to small. It can be seen that there is a small number of large
eigenvalues, and they converge rapidly to zero. In this case, the first 40 eigenvalues contain 93% of
the energy of the system. In the experiment 𝑚 = 40 is used, reducing the size of the parameter vector
and hence the number of LOTOS­EUROS model runs from 8640 to 40 per day.

(a) Columns of B1/2 corresponding to the largest 9 eigenvalues

(b) Example of MF field

(c) Largest 100 eigenvalues in
order from large to small

Figure 4.4: Illustration of preconditioning using dominant patterns.
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4.7. Maximum likelihood method
To use one of the 4D­Var methods, the probability distributions of the parameter vector and of the
observation likelihood have to be determined. For the prior distribution of the parameter vector, the
following two cases were considered:

𝛽 − 𝛽𝑏 ∼ 𝒩(𝜇𝛽 ,B𝛽), or (4.58)
𝛾 − 𝛾𝑏 ∼ Log𝒩(𝜇𝛾 ,B𝛾). (4.59)

For the likelihood of the observation, a Gaussian distribution was assumed:

y𝑂 −ℋ(x𝑡𝑟𝑢𝑒 , 𝜃) ∼ 𝒩(0,R). (4.60)

The means 𝜇 and the covariances B and R of these distribution need to be defined. In practice these
vectors and matrices are formulated using a limited number of parameters, for example a certain con­
stant value or a characteristic length scale. In this section, a maximum likelihood method will be de­
scribed to estimate these parameters.

In this chapter, first the general objective of the maximum likelihood method will be described. Sec­
ondly, the objective of the maximum likelihood will be made suitable for the probability density functions
considered in this study. Lastly, the process of finding the parameter that maximizes the maximum
likelihood function will be described in section 4.7.3. This chapter is based on the work of (Haussaire
2020).

4.7.1. Objective of maximum likelihood method
The concept of the maximum likelihood method is to find a set of parameters describing a stochastic
distribution such that a set of observations y is most probable. In this study, this set of parameters to be
estimated define the mean 𝜇𝜃 and covariance matrices B𝜃 and R. The optimal mean and covariance
matrices are denoted by 𝜇̂𝜃, ̂B𝜃 and R̂. The objective of the maximum likelihood method is to estimate
these parameters, and to subsequently use them in the 4D­Var method. The maximum likelihood prob­
lem can mathematically be formulated as:

Find 𝜇̂𝜃, ̂B𝜃, and R̂, such that
𝜇̂𝜃 , B̂𝜃 , R̂ = argmax

(𝜇𝜃 ,B𝜃 ,R)
𝑝(𝜇𝜃 ,B𝜃 ,R|y). (4.61)

Now, using Bayes theorem for continuous random variables, the problem (4.61) becomes equivalent
to:

𝜇̂𝜃 , B̂𝜃 , R̂ = argmax
(𝜇𝜃 ,B𝜃 ,R)

𝑝(y|𝜇𝜃 ,B𝜃 ,R)𝑝(𝜇,B,R)
𝑝(y) = argmax

(𝜇𝜃 ,B𝜃 ,R)
𝑝(y|𝜇𝜃 ,B𝜃 ,R)𝑝(𝜇𝜃)𝑝(B𝜃)𝑝(R). (4.62)

For 𝜇𝜃 a Gaussian distribution is assumed in order to bound their values:

𝜇𝜃 ∼ 𝒩(0,M)
Without this assumption, the estimate for 𝜇𝜃 can become unrealistically large in regions where the ef­
fect on the measurements y is very small. In this study, the the value M = I has been chosen. The
probability density function 𝑝(𝜇𝜃) is then known. For the covariances B𝜃 and R, all values are equally
likely, such that 𝑝(B𝜃) and 𝑝(R) are constants. Then, the terms 𝑝(B𝜃) and 𝑝(R) can be omitted from
equation (4.62). Now, if the distribution 𝑝(y|𝜇𝜃 ,B𝜃 ,R) is known, the optimal values for 𝜇𝜃, B𝜃, and R
can be determined.

It is cumbersome to let the maximum likelihood method determine 𝜇𝜃, B𝜃, and R entirely. The vector
𝜇𝜃, and matrices B𝜃 and R become large if the number of parameters of 𝜃 is large. Additionally, the
matrices B𝜃 and R are covariance matrices and therefore have to satisfy many constraints. Instead,
the mean 𝜇𝜃 and covariances B𝜃 and R are parameterized using a relatively small number of param­
eters. In chapter 5, the vector 𝜇𝜃 and matrices B𝜃 and R are defined for several problem statements.
In those definitions, the vector 𝜇𝜃 and matrices B𝜃 and R will depend only on a small number of scalar
parameters. The maximum likelihood method is used to find these scalar parameters.
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4.7.2. Determine the distribution of observations, given the parameters
In this section, the distribution of the observations y, given the parameters 𝜇𝜃, B𝜃, and R is determined.
Once this distribution is known, the probability density function 𝑝(y|𝜇𝜃 ,B𝜃 ,R) can be substituted in prob­
lem (4.62).

First of all, the case is considered where the multiplication factors are from a Gaussian distribution
as in equation (4.58), with the residual distributed as in equation (4.60). When using that the true state
x𝑡𝑟𝑢𝑒 is approximated by equation (4.12) for the Gaussian multiplication factors resulting in the obser­
vation operator as in equation (4.15), an expression for y − Hx𝑏 can be retrieved. For the Gaussian
multiplication factors this becomes:

y− Hx𝑏 = y− H (x𝑡𝑟𝑢𝑒 − [E𝛽](𝛽𝑡𝑟𝑢𝑒 − 𝛽𝑏))
= (y− Hx𝑡𝑟𝑢𝑒) + H[E𝛽](𝛽𝑡𝑟𝑢𝑒 − 𝛽𝑏). (4.63)

This is an affine transformation of two normally distributed vectors (y − Hx𝑡𝑟𝑢𝑒) and (𝛽𝑡𝑟𝑢𝑒 − 𝛽𝑏) of
which the distributions are known. Hence:

y− Hx𝑏 ∼ 𝒩(H[E𝛽]𝜇𝛽 ,R+ (H[E𝛽])B𝛽(H[E𝛽])𝑇)

y ∼ 𝒩(Hx𝑏 + H[E𝛽]𝜇𝛽 ,R+ (H[E𝛽])B𝛽(H[E𝛽])𝑇) (4.64)

Now, given 𝜇𝛽, B𝛽, and R, the probability density function of y can be determined.

Alternatively, for the log­normally multiplication factors 𝛾 as in equation (4.59), with auxiliary param­
eter 𝛽 = log(𝛾), for which

𝛽 − 𝛽𝑏 ∼ 𝒩(𝜇𝛾 ,B𝛾), (4.65)

the linear approximate state of equation (4.25) and the observation operator of equation (4.26) are
used. For the log­normally distributed MF’s, the residual vector can be expressed as:

y− Hx𝑏 = y− H (x𝑡𝑟𝑢𝑒 − [E𝛾](𝑒𝛽
𝑡𝑟𝑢𝑒 − 𝑒𝛽𝑏))

= (y− Hx𝑡𝑟𝑢𝑒) + H[E𝛾](𝑒𝛽
𝑡𝑟𝑢𝑒 − 𝑒𝛽𝑏). (4.66)

This is no longer a linear expression in Gaussian distributions, as 𝑒𝛽𝑡𝑟𝑢𝑒 has a log­normal distribu­
tion. Therefore, the distributions cannot be added easily. The choice has been made to linearize the
exponents in the expressions:

𝑒𝛽𝑡𝑟𝑢𝑒 ≈ 1+ 𝛽𝑡𝑟𝑢𝑒 , (4.67)

𝑒𝛽𝑏 ≈ 1+ 𝛽𝑏 . (4.68)

Then, equation (4.66) becomes:

y− Hx𝑏 ≈ (y− Hx𝑡𝑟𝑢𝑒) + H[E𝛾](𝛽𝑡𝑟𝑢𝑒 − 𝛽𝑏). (4.69)

This expression consist of Gaussian parameters and constants only. As [E𝛾] = [E𝛽], this expression is
the exact same as for the Gaussian case in equation (4.63). In this case, the distribution of y is identical
to the distribution in equation (4.64). Subsequently, the probability density function 𝑝(y|𝜇𝜃 ,B𝜃 ,R)𝑝(𝜇) is
the same for both the Gaussian case and the log­normal case. This results in a similar objective (4.62)
for both the Gaussian and the log­normal problem. As the functions are identical, the parameters that
minimizes the objective function are identical as well. Hence, for the optimal parameters it holds that
B̂𝛽 = B̂𝛾, 𝜇̂𝛽 = 𝜇̂𝛾, while R̂ remains the same since it is independent of the choice for a Gaussian or
the log­normal distribution for the multiplication factors. In the remainder of this section, the subscripts
for B and 𝜇 will therefore be omitted.

4.7.3. Minimization of the Log­Likelihood function
Now that the probability density functions of 𝑝(y|𝜇,B,R) and 𝑝(𝜇) are known, as both distributions are
Gaussian, the optimization problem (4.62) is defined. The next step is to find the parameters 𝜇, B, and
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R that maximize the objective.

Instead of maximizing the likelihood function (4.62), one can also minimize the opposite of its log­
arithm. We use that for a variable 𝜃𝑡𝑒𝑠𝑡 with a multivariate normal distribution with mean 𝜇𝑡𝑒𝑠𝑡 and
covariance 𝛴𝑡𝑒𝑠𝑡, the opposite of the log­likelihood function, multiplied with two, is:

𝑙(𝜃𝑡𝑒𝑠𝑡|𝜇𝑡𝑒𝑠𝑡 , 𝛴𝑡𝑒𝑠𝑡) = (𝜃𝑡𝑒𝑠𝑡 − 𝜇𝑡𝑒𝑠𝑡)𝑇 [𝛴𝑡𝑒𝑠𝑡]−1 (𝜃𝑡𝑒𝑠𝑡 − 𝜇𝑡𝑒𝑠𝑡) + log |𝛴𝑡𝑒𝑠𝑡| + 𝐶𝑡𝑒𝑠𝑡 . (4.70)

Similarly, for y ∼ 𝒩(Hx𝑏 + HE𝜇,R+(HE)B(HE)𝑇) and 𝜇 ∼ 𝒩(0,M), the opposite of the logarithm of
likelihood function (4.62), multiplied with two, is

𝑙(𝜇,B,R|y𝑂) = (y𝑂 − Hx𝑏 − HE𝜇)𝑇 [R+(HE)B(HE)𝑇]
−1
(y− Hx𝑏 − HE𝜇)

+ log |R+(HE)B(HE)𝑇| + 𝜇𝑇M−1𝜇 + 𝐶. (4.71)

This is the function that will be minimized. Due to several complicated expressions, such as the loga­
rithm of a determinant, this function cannot be minimized analytically. Therefore, a numerical minimizer
is used to find the values for 𝜇̂, B̂, and R̂ that minimize the expression.

To minimize the log­likelihood function (4.71), the optimization algorithm L­BFGS­B of the SciPy mod­
ule in Python is used. The L­BFGS­B method is a numerical minimizer, similar to the BFGS method
as described in section 4.5.3. Differences are that the L­BFGS­B uses a limited amount of computer
memory (L) and that the method can deal with bounded variables (B). The latter difference, the option
to deal with bounded variables, is the reason why the L­BFGS­B is preferred over the ordinary BFGS
method to minimize the log­likelihood function. In chapter 5, where the vector and matrices 𝜇, B, and
R are parameterized, it is decided that some of the to be estimated parameters are standard devia­
tions. Standard deviations are constrained to be positive and the L­BFGS­B minimizer can handle such
constraints.
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4.8. Reducing computational cost of the ensembles
In the adjoint­free 4D­Var method, an ensemble of runs of the LOTOS­EUROS model is executed.
Running this ensemble is the most time­consuming part of the optimization procedure. An important
part of this study is to keep the computational cost of running the ensemble low.

A first way to reduce the computational cost is to use the chemically reduced model, described in
section 2.5. Before the reduced model can be used, the background run, which determines x𝑏, is ex­
ecuted using the full LOTOS­EUROS model. Then, the ensemble members needed to determine the
matrix E𝜃 are run using the reduced N4­model, for which output values of the full LOTOS­EUROS run
are imported. When using the reduced model, the computational time is reduced by a factor of three.

A second reduction of the cost is related to the fact that NH3 is a relatively short­lived trace gas. After
NH3 is emitted, most of the NH3 is chemically converted or deposited within a few hours. After two days,
the fraction of the emitted NH3 left in the atmosphere is considered to be negligible. To determine the
approximate linear state, the effect of perturbing each daily multiplication factor needs to be determined
for the entire time period, but due to the short lifetime, each perturbation only affects the state for three
days. To reduce computations, the influence of perturbing one daily MF has not been determined for
the entire time period, but only for the day of the increased emission and the subsequent two days. For
other days, the contribution to the linear approximate state is assumed to be zero. Now, for each MF in
space, only three ensemble members are needed to determine the effect of perturbations for all daily
MF’s in the time period. The first ensemble member perturbs the MF’s on days 1, 4, 7, etc., the second
ensemble member perturbs the MF’s on days 2, 5, 8, etc., and the third ensemble member perturbs the
MF’s on days 3, 6, 9, etc. This results in a major reduction in ensemble members needed, especially
when longer time periods are considered.

4.9. Summary
This section does summarize the adjoint­free 4D­Var method procedure, used to estimate multiplication
factors for NH3 emissions. In the next chapter, several different experiments following the procedure
will be described. The algorithm consist of the following steps:

1. Problem definition: The first step is to define the parameter estimation problem by choosing the
simulation domain, the grid resolution, and the time range.

2. Observations: A choice has to be made which observations y𝑂 to use. It has to be decided
which measurement instruments to use and which observations are of sufficient quality.

3. Multiplication factors: The spatial variation of the multiplication factors has to be defined. Also,
it should be decided whether to assume a Gaussian or a log­normal prior distribution for the
multiplication factors. The corresponding mean 𝜇 and the covariance B of the prior distribution
should also be parameterized.

4. Choose which method to use: Depending on the size and the prior distribution of the multipli­
cation, one of the four developed adjoint­free 4D­Var methods has to be chosen. An overview of
the methods and their properties can be found in Table 4.1.

5. (For a preconditioned method) Determine the matrix B1/2 of reduced size: First, the eigen­
value decomposition of B should be determined. Then, 𝑚 << 𝑁𝑀𝐹, the number of columns of
the reduced matrix B1/2 and the size of the preconditioned state w, should be chosen.

6. Calculation of the linear approximate model: The linear approximate model is determined by
performing an ensemble of LOTOS­EUROSmodel runs. First, a background run with parameters
𝜃𝑏 of the full LOTOS­EUROS model is performed. Subsequently, an ensemble of chemically
reduced model runs is used to determine the matrix E𝜃 using the finite difference approach. For
the standard 4D­Var methods, equation (4.14) is used to determine E𝜃, for which an ensemble
of size 𝑁𝑀𝐹 is needed. For the preconditioned 4D­Var methods, equation (4.36), for which an
ensemble of size 𝑚 << 𝑁𝑀𝐹 is needed. The computational cost of running the ensemble can be
reduced, as described in section 4.8.
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7. (For a twin experiment) Generate observations: In the case of a twin experiment, true multipli­
cation factors 𝜃𝑡𝑟𝑢𝑒 should be chosen. These multiplication factors are used to generate synthetic
observations, as will be described in section 5.1.1.

8. Use the maximum likelihood method: The parameterization of vector 𝜇 and matrices B and
R should depend on a small number of scalar parameters. The maximum likelihood method,
described in section 4.7, should be used to estimate these scalar parameters.

9. Minimize the cost function: Now that all terms in the 4D­Var cost function are defined, the cost
function can be minimizes using a gradient­based approach. Depending on the chosen method,
the function can be minimized analytically by solving the system in equation (4.19) or equation
(4.41), or iteratively with gradient­based a numerical minimizer. When possible, the posterior
covariance should be determined to quantify the uncertainty of the optimal parameters.

How to Additional Negative Posterior Suitable for large Optimizer
solve constraints MF’s covariance parameter vectors used

Gaussian standard Analytical no yes yes no ­
Log­normal standard Numerical no no yes no BFGS

Gaussian prec. Analytical no yes yes yes ­
Log­normal prec. Numerical yes no no yes SLSQP

Table 4.1: Overview of the differences of the 4D­Var methods

In this study, the computational cost of the method is dominated by step 6, the calculation of the
linear approximate model, as an ensemble of LOTOS­EUROS runs is needed. For the third experiment
of this study, in section 5.4, it takes about 6 hours to run the full LOTOS­EUROS model from February
25th until April 1st using 8 CPUs of a High Performance Computing (HPC) cluster. Subsequently, for
an ensemble member, it takes 12­18 hours to run the chemically reduced LOTOS­EUROSmodel using
1 CPU of the HPC cluster. Luckily, multiple ensemble members can run simultaneously.

For the standard 4D­Var methods, the additional steps of the method are of negligible cost. How­
ever, for the preconditioned 4D­Var methods, there are more time­consuming steps. First, in step 5,
the eigenvalue decomposition of matrix 𝐵 of size 𝑁𝑀𝐹 ×𝑁𝑀𝐹 has to be determined. The computational
cost of determining the eigenvalue decomposition increases with order 𝑛3. Furthermore, in step 9,
when solving the 4D­Var method for the log­normal preconditioned method, the preconditioned state
needs to satisfy all 𝑁𝑀𝐹 constraints in equation (4.51). The numerical minimizer needs additional time
to find a parameter vector that obeys all the constraints. This makes minimizing the 4D­Var cost func­
tion more time­consuming.

In this study, the computational cost for determining the eigenvalue decomposition and minimizing
the log­normal preconditioned cost function is still negligible in comparison to running a large LOTOS­
EUROS ensemble, but those steps become problematic when the number of multiplication factors
increases.
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Results

In this chapter, three experiments that aim to estimate NH3 emission multiplication factors will be de­
scribed and the results will be discussed. The experiments use the data assimilation methodology
described in chapter 4. As this study aims to develop a methodology, the focus is on validating the
data assimilation methodology and testing the made assumptions. At this stage, the retrieved param­
eters and corresponding NH3 emission estimates are of less importance.

First, the general concept of an identical twin experiment will be described in section 5.1. As the
real NH3 emissions and the emission parameters are unknown, it is difficult to validate the obtained
optimal result. To still validate the data assimilation methodology, the method will be tested in a twin
experiment, before testing the method using the real measurements.

Subsequently, the three experiments and their results will be discussed. Initially, in section 5.2, a
simple configuration using only one measurement site will be used. The performance and limitations
of the data assimilation method will be analyzed. Based on the limitations of the method, a more elab­
orate second configuration will be used in section 5.3. In this experiment, multiple measuring sites will
be considered. Also, spatially varying multiplication factors will be introduced. Finally, in section 5.4,
the most extensive but also most realistic experiment will be performed. Here, the IRS observations
will be used to estimate multiplication factors on a much finer spatial resolution.

5.1. Concept of twin experiment
The aim of this study is to develop a data assimilation method to estimate the NH3 emissions in the
Netherlands using observations. In this real­life problem, a lot of uncertainty is present. First, it is
unknown what the true NH3 emissions have been for some selected period. Therefore, it is difficult to
validate whether the estimated emissions resemble the true emissions or not. Second, if it would be
known that there are differences between the true and estimated NH3 emissions, it is not known if this
is caused by errors or limitations of the data assimilation method or something else. Alternative, these
errors could be caused because the LOTOS­EUROS model is not a perfect representation of reality
(even with perfect emission inventories), or that the described experiment is a simplification of reality.

However, this study aims to find the accuracy and limitations of the data assimilation method. To
do so, it would be desired to know the true NH3 emissions and to know that all errors in the estimates
are caused by the limitations of the 4D­Var method. This is not possible in reality, but a hypothetical
case can be considered. This hypothetical test scenario is considered in a twin experiment. A twin
experiment can be seen as a best­case scenario. If the 4D­Var method already makes errors in the
twin experiment, it will definitely make errors for the real­life case when many more uncertainties are
present.

37
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5.1.1. Twin experiment procedure
The concept of the twin experiment is to generate self made synthetic observations, instead of using
the real observations. In this study, the self made observations are based on concentrations deter­
mined by the LOTOS­EUROSmodel x𝑡𝑟𝑢𝑒 for known emission parameters 𝜃𝑡𝑟𝑢𝑒. The run to determine
x𝑡𝑟𝑢𝑒 is called the nature­run. The synthetic observations are determined by the observation operator
y𝑠𝑦𝑚𝑘 = ℋ(x𝑡𝑟𝑢𝑒 , 𝜃𝑡𝑟𝑢𝑒). Measurement errors can be added to the synthetic observations. Generally,
this noise is a sample of the assumed error distribution 𝜖𝑘 ∼ 𝒩(0,R𝑘). The 4D­Var method is used to
retrieve estimates for the emission parameters 𝜃̂, using the self made observations y𝑠𝑦𝑚𝑘 , instead of the
true observations. It can be analyzed whether the 4D­Var method estimates emission parameters 𝜃̂
that are close to the known, ’true’ emission parameters 𝜃𝑡𝑟𝑢𝑒. To quantify the uncertainty of the optimal
solution 𝜃̂, the posterior covariance of the optimized parameters 𝜃̂ is sometimes available as part of the
optimizer output (see Table 4.1). If the adjoint­free 4D­Var method works well, most of the parameters
𝜃𝑡𝑟𝑢𝑒 should be contained in the 95% confidence interval of 𝜃̂.

This identical twin experiment is not a proper test for determining how well the method would work
when real­life observations are used, as the measurements are too perfect. Most uncertainties visual­
ized in Figure 4.2 are neglected. A more realistic way to test how well the 4D­Var method works is to
generate the simulated synthetic observations y𝑠𝑦𝑚𝑘 with a different chemical transport model. In this
case, the optimized parameter vector 𝜃̂ and the true parameter vector 𝜃𝑡𝑟𝑢𝑒 are both known and can
be compared when more uncertainties are considered. However, this study does not perform such
experiments, and they are left for future study.

5.2. Experiment 1: LML observations Zegveld
5.2.1. Problem description
For the first and simplest experiment, one single LML station in Zegveld is used to optimize emissions.
The station is located at 4.84∘E, 52.14∘N. The station is represented by a black dot in Figure 5.1. The
station Zegveld has been chosen for this experiment, as a sufficient amount of measuring data was
available, and because of its location. The station Zegveld is located in a region where there is both
agriculture nearby, and influence from the industrial areas of the Netherlands.

The grid used for this problem is a relatively small grid, centered around the LML station Zegveld.
The grid extends from 4.35∘E to 5.35∘E and from 51.65∘N to 52.65∘N, where the resolution is 0.05∘
longitude and 0.025∘ latitude. This is equivalent to cells of approximately 3.4 km × 2.8 km. A visual­
ization of the horizontal domain with grid cells can be found in Figure 5.1. The black dot represents the
location of the LML station. Vertically, the domain is divided into 12 vertical layers. The first experiment
is performed for the months March to May of 2017. The LOTOS­EUROS model has been run, starting
on February 25th to minimize the effects of the initial state. All ammonia concentrations in this section
are given in the unit parts per billion (ppb).

The objectives of this first experiment are:

1. to test if the linear approximation of state is accurate enough to approximate the true perturbed
concentrations of the nature­run;

2. to test if the assumption that the influence of a perturbation can be neglected after two days;

3. to quantify the uncertainty in the optimal result: is one measuring station enough to estimate the
surrounding emissions?

4. to analyze what the differences in the result are between the Gaussian 4D­Var method and the
log­normal 4D­Var method;

5. to analyze if the retrieved MFs seem realistic when the 4D­Var method uses the true LML obser­
vations;

6. to analyze what type of distribution the multiplication factors obtain when the 4D­Var method uses
the true LML observations.
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Figure 5.1: LOTOS­EUROS domain around Zegveld. The black dot represents the location of
the LML­station of Zegveld. The colors represent the ammonia surface concentrations (ppb).

5.2.2. Parameterization
In this first experiment, there is one multiplication factor for each day. This multiplication factor is con­
stant over the entire domain. This results in a total of 92 multiplication factors, as there are 92 days in
March, April, and May. There are two cases considered: the case where the multiplication factors have
aGaussian distribution, 𝛽 ∼ 𝒩(𝜇𝛽 ,B𝛽), and the case where themultiplication factors have a log­normal
distribution, 𝛾 ∼ Log𝒩(𝜇𝛾 ,B𝛾), with corresponding auxiliary parameter log(𝛾) = 𝛽 ∼ 𝒩(𝜇𝛾 ,B𝛾). As
was derived in the section 4.7, the maximum likelihood method estimates the same values for the pa­
rameter 𝜇𝛽 as for 𝜇𝛾 and the same values for B𝛽 as for B𝛾, independent of whether a Gaussian or a
log­normal distribution is assumed. Therefore, the parameters are defined identically. The parameters
will be denoted as 𝜇, and B.

For this experiment, the following assumptions are made. First, it is assumed that the multiplication
factors are independent in time which implies that the covariance matrix B is diagonal. Second, the
distribution of 𝛽𝑘 − 𝛽𝑏𝑘 is assumed to be the same for all days 𝑘. This means that for all multiplication
factors, 𝛽𝑘 − 𝛽𝑏𝑘 have the same expected value 𝜇 and that matrix B has the same variance 𝜎2𝐵 on its
diagonal entries B𝑘,𝑘 for each day 𝑘. Mathematically, this is formulated as:

𝜇 = [
𝜇
⋮
𝜇
] , B = 𝜎2𝐵I𝑑×𝑑 . (5.1)

Here 𝜎𝐵 represents the standard deviation of 𝛽 − 𝛽𝑏. The parameter 𝑑 denotes the number of days
for which a multiplication factor is determined. In this case 𝑑 = 92, the number of days in March, April,
and May.

The residuals at time 𝑘 are assumed to be normally distributed:

y𝑂𝑘 − H𝑘x̂𝑘 ∼ 𝒩(0,R𝑘)
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The error covariance R𝑘 is assumed to consist of two terms that cause uncertainty: the observation
error of the LML system, R𝑜𝑏𝑠,𝑘 and a representation error, R𝑟𝑒𝑝𝑟,𝑘. The representation error denotes
the uncertainty in the simulation of the measurement from a model state, due to the fact that the mea­
surements have been carried out at one location, whereas the LOTOS­EUROS model gives averages
concentrations for the grid cell. Local sources can influence the measurements leading to a larger
representation error. In this experiment, there is only one measuring station considered, and therefore
R𝑜𝑏𝑠,𝑘 and R𝑟𝑒𝑝𝑟,𝑘 (and therefore R𝑘) are all scalar positive numbers. It is assumed that the error co­
variances are independent of each other in time.

The standard deviation of the observation errors of the LML system (√R𝑜𝑏𝑠,𝑘) are assumed to con­
sist of a constant term for the measuring system and a term that is a fraction of the measurements:

R𝑜𝑏𝑠,𝑘 = (0.57 + 𝑟𝑜𝑏𝑠𝑦𝑂𝑘 )2.

The constant term of the standard deviation is approximately 0.4𝜇𝑔/𝑚3 = 0.57ppb (Dammers, Schaap,
et al. 2017). The second term, the fraction of the measurements, implies that if the ammonia concen­
trations are higher, the uncertainty in the measurements gets larger as well. This fraction is denoted by
𝑟𝑜𝑏𝑠 and is chosen to be 0.025, meaning that the standard deviation at time 𝑘 is increased by 2.5% of
the measured concentration y𝑂𝑘 at time 𝑘. The variance, R𝑜𝑏𝑠,𝑘, is the square of the standard deviation.
The representation error covariance R𝑟𝑒𝑝𝑟,𝑘 is chosen to be constant in time, with standard deviation
𝑟𝑟𝑒𝑝𝑟:

R𝑟𝑒𝑝𝑟 = 𝑟2𝑟𝑒𝑝𝑟 . (5.2)

Alternative choices for the representation could be made, such as letting the representation error de­
pend on:

• observed concentrations (large influence of local sources results generally in large observed con­
centrations);

• wind direction and wind speed (larger representation error for low wind speeds with hardly mixing,
or larger representation error when ammonia from a particular local source is blown towards the
measuring system);

• the spatial gradient of the ammonia concentrations in the LOTOS­EUROS model (larger repre­
sentation error if the concentrations vary much in the area);

• the variability of the observations in time (on certain days the measurements fluctuating between
50 and 200 ppb in a few hours; this is likely to happen due to local sources).

However, it is very complicated to quantify to which extend these factors do influence the representa­
tion error as there is a lot of uncertainty involved. Especially if one would consider many observation
sites, it would be cumbersome to determine such a factorization for each site separately. Therefore,
the choice has been made to keep the problem simple, and assume 𝑟𝑟𝑒𝑝𝑟 to be a constant.

Adding the observation error covariance and the representation error covariance results in the total
error covariance:

R𝑘 = R𝑜𝑏𝑠,𝑘 + R𝑟𝑒𝑝𝑟 = (0.57 + 𝑟𝑜𝑏𝑠𝑦𝑂𝑘 )2 + 𝑟2𝑟𝑒𝑝𝑟 . (5.3)

In the parametrizations in equation (5.1) and equation (5.3), there are three parameters that have
not yet been defined: 𝜇, 𝜎𝐵, and 𝑟𝑟𝑒𝑝𝑟. These three numbers are determined using the maximum
likelihood method as described in section 4.7. The retrieved values are 𝜎𝐵 = 4.16, 𝜇 = 0.14, and
𝑟𝑟𝑒𝑝𝑟 = 10.42ppb. As 𝜇 = 0.14, it is implied that on average all emissions should be increased by
14% to make the LOTOS­EUROS model better match the observations. This is considered to be an
important change, motivating the decision to assume the nonzero 𝜇.

5.2.3. Results
Now that the first experiment is defined, the optimal multiplication factors can be retrieved using the 4D­
Var method. The 4D­Var method is described in section 4.4 for themultiplication factors with a Gaussian
distribution, and in section 4.5 for the multiplication factors with a log­normal distribution. First, the 4D­
Var method is tested in a twin experiment, to test the first four objectives of this experiment. For these
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first three objectives, it is convenient to know the true values of the concentrations and the multiplication
factors. Second, the 4D­Var method is used to estimate the MFs based on the true LMLmeasurements.
These results are used to again comment on the third and fourth objective, and additionally discuss the
fifth objective. Last, the posterior distribution of the optimal MFs is analyzed, as needed for the sixth
objective.

5.2.3.1. Results twin experiment
First of all, we focus on objectives 1 and 2. If the 4D­Var method uses very noisy observations, it be­
comes difficult to determine which extend errors for the estimated MFs are caused by the assumed
simplifications of objectives 1 and 2 or whether errors are caused by noise in the observations. Keep­
ing this in mind, the 4D­Var method is first tested using the synthetic observations from the nature­run
with no noise added. For this test, only the case where the multiplication factors have a Gaussian prior
distribution is considered.

Results of the twin experiment, without added noise, can be found in Figure 5.2. The parameter values
in the nature­run are arbitrarily chosen. Figure 5.2a contains time series of the true multiplication factors
(dashed line) and the estimated multiplication factors (solid line). Figure 5.2b contains the correspond­
ing NH3 concentrations of the background run (orange), the optimal estimation of the concentrations
(green), and the synthetic observations of the nature­run (blue).

In Figure 5.2a, it becomes clear that the 4D­Var method is able to reproduce the true MFs very well
for March and the beginning of April. The adjoint­free 4D­Var method, using the linear approximate
state, does result in an accurate estimation of the peak where the true MFs have values around 3 at
the end of March and when the true MF decreases to 2.2. The true and optimized MFs, as well as the
observations and the optimized NH3 concentrations, are initially very similar. This indicates that the
linear approximation of the NH3 concentrations is accurate enough to approximate the true perturbed
concentrations of the nature­run, and that initially the assumption holds that the influence of a pertur­
bation can be neglected after two days.

However, at the end of April and in May, differences start to occur. Especially the part in May where the
true MFs are one is interesting, as the emissions in the nature­run are identical to those of background
run. It was assumed that influences of perturbations on NH3 concentrations can be neglected after
two days, which would result in similar NH3 concentrations in the observations and the background run
in May. However, if one looks at the NH3 concentrations of the observations in May in Figure 5.2b,
it appears that the observations are higher than the background run. The cause for those increased
concentrations is an increase in dry emission. Due to higher NH3 concentrations in March and April,
vegetation and water surfaces have absorbed more ammonia, leading to higher dry emissions in May.
Hence, looking at a period of several months the assumption that the influence of a perturbation can
be neglected after two days does not hold. Instead of estimating the MFs to be 1 in May, the 4D­
Var method incorrectly overestimates the anthropogenic emissions to compensate for the unmodeled
increased dry emissions.

Now that the error due to the linear approximation of the state and due to neglecting the influence of
perturbations on NH3 concentrations after two days are analyzed, the additional error due to the uncer­
tainty in the observations can be analyzed. Also, the Gaussian 4D­var method and log­normal 4D­Var
method will be compared. In Figure 5.3a and 5.3b, time series of the estimated multiplication factors
are shown. Figure 5.3a contains the result for the Gaussian multiplication factors and Figure 5.3b the
results for the log­normal multiplication factors. Figure 5.3c and 5.3d contain the corresponding NH3
concentrations of the background run (orange), the optimal estimation of the concentrations (green),
and the synthetic observations of the nature run (blue).

It can be seen in Figure 5.3a and 5.3b that for both methods the estimated MFs (solid line), on av­
erage, follow the true MFs (dashed line), but the estimates are very noisy, especially in comparison
with the results without noise in Figure 5.2. For the first 16 days, the emissions in both the nature­run
and the background run are identical, so the true ammonia concentrations should be similar. However,
as noise is added to the simulated observations, differences in concentration, and subsequently differ­
ences between the true and the estimated MFs occur, leading to inaccurate results. Hence, the noise
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(a) Multiplication factors (b) Concentrations

Figure 5.2: Multiplication factors and concentrations in time for the nature run when no noise
is added to the observations. The case where the multiplication factors have a Gaussian distri­
bution is considered.

in the observations results in significant errors in the estimated MFs.

When comparing the Gaussian and the log­normal method, it can be seen that both methods retrieve
similar optimized multiplication factors. A noteworthy difference between the two methods is that for
May 8th, the estimated MF is approximately ­1 for the Gaussian case, whereas it is close to zero in
the log­normal case. A multiplication factor of ­1 would imply that all anthropogenic emission sources
would become sinks for one day, which is unlikely as this can could only be caused by deposition.
The negative MFs cause ammonia concentrations to decrease or even become negative. In real life,
it can happen that some NH3 observations are negative due to measurement errors, but this should
not be modeled, as concentrations can only be positive. In Figure 5.3c, the observed and estimated
concentrations are indeed negative for May 8th. In the log­normal case, the estimated concentrations
on May 8th in Figure 5.3d, remain positive, even when the observed concentrations are negative.

The major difference between the two methods is the 95% uncertainty interval. The Gaussian method
has a relatively smaller confidence region, which sometimes contains negative MFs. The log­normal
method does not allow MFs to be negative but does contain much higher values in its confidence in­
terval, up to almost 25, whereas the range of the Gaussian method does not go higher than 7. For
both cases, the true MFs, represented by the dashed line, are always contained in the 95% confidence
interval of the estimated multiplication factors.

5.2.3.2. Results real LML data
In this section, the results for the first problem statement using the actual measurements of the LML
station in Zegveld will be discussed. The aim of this test is to look into the uncertainty of the optimal
results, analyze the differences between the Gaussian and the log­normal method, and analyze if the
results seem realistic. In this realistic experiment, it is unknown what the true emissions are, which
makes it difficult to verify the obtained results.

In Figure 5.4, the time series of the estimated MFs are plotted. It can be seen that the Gaussian
method and the log­normal method give quite similar results for the optimal MFs. Both methods allow
large peaks to occur, but the MFs for the log­normal method can be slightly higher than for the Gaus­
sian method (16 instead of 15). As before, the two methods give a different 95% uncertainty interval.
This 95% uncertainty interval can be very different per day. For some days, for example at the end of
March, the results are relatively accurate, but for others, such as in mid­April, the results are very un­
certain. This uncertainty in April is due to the fact that there are no observations available for these days.

Overall, the results do not seem to be very realistic. It is for example remarkable that the multipli­
cation factors can obtain values up to 15. It might be unrealistic that the emissions inventories contain
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(a) Multiplication factors 𝛽 with a Gaussian prior
distribution.

(b) Multiplication factors 𝛾 with a log­normal
prior distribution.

(c) Concentrations when the multiplication fac­
tors 𝛽 have a Gaussian prior distribution.

(d) Concentrations when the multiplication fac­
tors 𝛾 have a log­normal prior distribution.

Figure 5.3: Figure (a) and (b) contain the multiplication factors in time for the nature run. Figure
(c) and (d) contain the daily average ammonia concentrations at the location of the LML station
in Zegveld for the nature run.

such large errors for multiple days. Also, the MFs differ very much from day to day, which might not
be realistic. In fact, if manure and fertilizer are applied, it should increase the emissions in a region
for several consecutive days. Especially the peak at the end of May, where the MF goes from 13 to
1 in one day seems unrealistic. As the results seem unrealistic, a more elaborate problem statement
needs to be defined. Recommendations for a next experiment will be stated in section 5.2.4, which will
be incorporated in the second experiment in section 5.3.

5.2.3.3. Distribution of multiplication factors
The last objective was to determine which distribution does characterize the uncertainties in the mul­
tiplication factors the best: the Gaussian or the log­normal distribution. To analyze the distributions,
histograms have been made of the optimally estimated multiplication factors 𝛽̂ and 𝛾̂ in Figure 5.5.
Additionally, the prior assumed distribution, resulting from the maximum likelihood method, is plotted
in blue. In both cases, the histogram does not properly resemble the prior distribution. This implies
that the prior distribution determined by the maximum likelihood method might not be a realistic prior
distribution of the true multiplication factors. An important thing to note is that in the Gaussian case
the mean 𝜇𝛽, and in the log­normal case the median 𝑒𝜇𝛾 of the multiplication factors are much lower
for the prior distribution than for the estimated parameters. In this setting, both prior distributions do
generally underestimate the MFs. This indicates that a prior distribution with a larger value 𝜇 would
better approximate the distribution of the MFs. In both plots 5.5a and 5.5b, the histograms do indeed
seem to follow some sort of log­normal distribution shape, but with a very different parameterization
than retrieved from the maximum likelihood method. The multiplication factors seem to follow a log­
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(a) Multiplication factors 𝛽 with a Gaussian prior
distribution.

(b) Multiplication factors 𝛾 with a log­normal
prior distribution.

Figure 5.4: Multiplication factors in time using the actual LMLmeasurements. The solid line rep­
resents the optimal estimate of the multiplication factors 𝛽̂ or 𝛾̂, and the faded region represents
the 95% confidence interval of the estimated multiplication factors.

normal distribution with a larger parameter 𝜇 and a smaller covariance B. This would result in higher
emission estimates, with less uncertainty for the estimated MFs.

(a) Distribution of optimal multiplication factors
𝛽̂ with a Gaussian prior distribution

(b) Distribution of optimal multiplication factors
𝛾̂ with a log­normal prior distribution

Figure 5.5: Histograms representing the probability density function of the optimal multiplica­
tion factors 𝛽̂ and 𝛾̂ with the prior assumed distribution plotted in blue.

5.2.4. Conclusion
Summarizing, from the twin experiments, it is learned that the linear approximation of the state is suffi­
ciently accurate. Further, the influence of a perturbation can be neglected after two days, if one looks
at a short time period, but not if one looks at a time period of several months because of effects on de­
position. Furthermore, it was concluded that the results contain a lot of noise. The estimated MFs can
differ much from the true multiplication factors in the twin experiment. The Gaussian and log­normal
method generate similar MFs, but different uncertainty intervals. Occasionally, the Gaussian formula­
tion can generate negative MFs, which is unrealistic.

The experiment with the real LML data again shows noisy and uncertain estimated MFs, which seem
unrealistic. In addition, the experiment showed that the optimized parameters show a distribution that
has characteristics similar to the log­normal distribution, although the resemblance to the log­normal
distribution parameterized by the maximum likelihood method is not good.
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Recommendations, resulting from the current limitations of the model, are to optimize over a shorter
time period. If one is interested in longer time periods, it is recommended to first optimize for the first
few weeks and run the model for a longer period with the improved emissions for the first few weeks, to
get a better estimate for the dry emission in the subsequent time period. Second, it is recommended to
add more measurement stations to decrease the uncertainty in the estimates. Third, it is recommended
to use the formulation with log­normal prior distribution, based on the log­normal distribution shaped
histograms of the optimized MFs, in combination with the property that the log­normal distribution does
not allow negative MFs. Last, it would be recommended to use a larger domain. There are multiple
days for which the LOTOS­EUROS model does underestimate the measured observations eminently
(resulting in MFs of 15). As a relatively small domain is considered in this experiment, it could be the
case that relevant emission sources outside of this domain are neglected.

5.3. Experiment 2: LML observations Netherlands
5.3.1. Problem description
As a second experiment, there are four adjustments made based on the recommendations of the pre­
vious experiments. First, more LML observation stations are considered. In the spring period of 2017,
five LML stations were operating in the Netherlands: Vredepeel, Wekerom, Zegveld, Wieringerwerf,
and Valthermond. The stations are represented by black dots in Figure 5.6a.

Second, as recommended, but also because these five stations are spread across the country, a larger
domain is considered. The grid used for this problem contains all of the Netherlands. The grid is from
3.15∘E to 7.55∘E by 50.65∘N to 53.70∘N, where the grid resolution is again 0.05∘ longitude and 0.025∘
latitude. This is equivalent to cells of approximately 3.4 km × 2.8 km. As before, the domain is divided
vertically into 12 vertical layers. Figure 5.6a shows a visualization of the horizontal domain with grid
cells. The five black dots denote the locations of the LML stations.

(a) LOTOS­EUROS domain of The Netherlands.
The black dots represent the locations of the
five LML stations. The colors represent the am­
monia surface concentrations (ppb).

(b) Block A: south part (green). Block B: middle
part (brown). Block C: North part (yellow).

Figure 5.6

Third, this second experiment is performed for the month of March in 2017 only, such that the dif­
ference in dry emission due to varied NH3 emissions remains limited. The LOTOS­EUROS model has
been run, starting on February 25th to minimize the effects of the initial state.

The fourth and last modification in this experiment is that the multiplication factors can be different
for various parts of the domain. Due to this spatial variation, the emission estimates can be adjusted
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for the separate regions.

The objectives of this second experiment are:

1. to test whether it is possible to retrieve spatial variability in the multiplication factors in a twin
experiment;

2. to test if the accuracy in the optimal estimates of the multiplication factors are increased once
observations of multiple stations are added in a twin experiment;

3. to determine whether spatial variability does occur according to the real LML observations;

4. to test whether realistic and accurate emissions are estimated when using the real LML observa­
tions.

5.3.2. Parameterization
In this experiment, the domain is divided into three blocks: block A consisting of the south of the domain,
block B consisting of the middle of the domain, and block C consisting of the north of the domain. The
blocks are shown in Figure 5.6b. For each block, there is one multiplication factor for each day of
March. This results in a total of 93 multiplication factors. In this experiment, only the case where the
multiplication factors have a log­normal distribution is considered:

𝛾 ∼ Log𝒩(𝜇𝛾 ,B𝛾),

with corresponding auxiliary parameter:

𝛽 = log(𝛾) ∼ 𝒩(𝜇𝛾 ,B𝛾)

As in the previous experiment, the multiplication factors are assumed to be independent of each other,
and the distribution out of which the multiplication factors are a sample is the same for all days 𝑘.
However, the parameters of the log­normal distribution vary per block. Each block has its own expected
value 𝜇𝐴, 𝜇𝐵, or 𝜇𝐶, and variance 𝜎𝐵,𝐴, 𝜎𝐵,𝐵, or 𝜎𝐵,𝐶. Then, the parameter vector 𝜇 and covariance matrix
B become:

𝜇 =

⎡
⎢
⎢
⎢
⎢
⎣

𝜇𝐴
⋮
𝜇𝐴
𝜇𝐵
⋮
𝜇𝐶

⎤
⎥
⎥
⎥
⎥
⎦

, B = [
𝜎𝐵,𝐴I𝑑×𝑑 0 0

0 𝜎𝐵,𝐵I𝑑×𝑑 0
0 0 𝜎𝐵,𝐶I𝑑×𝑑

] . (5.4)

Here, the number of days 𝑑 = 31.

The distribution of the residual is similar to the distribution described in the previous experiment. The
only difference is that there are now five stations instead of one. The error covariances R𝑘, R𝑜𝑏𝑠,𝑘, and
R𝑟𝑒𝑝𝑟,𝑘 are now matrices in ℝ5×5. It is assumed that both the observation errors and the representation
errors are independent in time and space, i.e. R𝑜𝑏𝑠,𝑘 and R𝑟𝑒𝑝𝑟,𝑘 are diagonal matrices. Let y𝑂𝑘,𝑠 denote
the observation at time instance 𝑘 at LML station 𝑠, then, analogous to the previous experiment:

R𝑜𝑏𝑠,𝑘 = [
(0.57 + 𝑟𝑜𝑏𝑠y𝑂𝑘,1)2 0 0

0 ⋱ 0
0 0 (0.57 + 𝑟𝑜𝑏𝑠y𝑂𝑘,5)2

] . (5.5)

The representation error covariances are again constant in time. For each station 𝑠 a standard deviation
𝑟𝑟𝑒𝑝𝑟,𝑠 can be chosen. The covariance matrix then becomes:

R𝑟𝑒𝑝𝑟 = [
(𝑟𝑟𝑒𝑝𝑟,1)2 0 0

0 ⋱ 0
0 0 (𝑟𝑟𝑒𝑝𝑟,5)2

] . (5.6)

The total observation representation error covariance matrix is then:

R𝑘 = R𝑜𝑏𝑠,𝑘 + R𝑟𝑒𝑝𝑟 (5.7)
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If the number of stations is large, it can be a lot of work to estimate the parameters 𝑟𝑟𝑒𝑝𝑟,𝑠 for all
stations using the maximum likelihood approach of section 4.7. To limit the number of parameters
𝑟𝑟𝑒𝑝𝑟,𝑠, it can be assumed that measuring stations in comparable environments (such as urban, agri­
culture, road, rural) have the same 𝑟𝑟𝑒𝑝𝑟. In this experiment, it is assumed that the stations in the north
(Wieringerwerf and Valthermond) have the same 𝑟𝑟𝑒𝑝𝑟 and that the stations in the middle (Zegveld and
Wekerom) have the same 𝑟𝑟𝑒𝑝𝑟. Hence, there is a total of 3 representation variables 𝑟𝑟𝑒𝑝𝑟; one for the
stations within each block.

The maximum likelihood method gives for block A 𝜇𝐴 = 0.184, 𝜎𝐵,𝐴 = 1.686, and for the measuring
station Vredepeel in block A, 𝑟𝑟𝑒𝑝𝑟 = 20.46. For block B, 𝜇𝐵 = 0.191, 𝜎𝐵,𝐵 = 1.764, and for the measur­
ing stations in block B, Zegveld and Wekerom, 𝑟𝑟𝑒𝑝𝑟 = 12.40. For block C, 𝜇𝐶 = −0.415, 𝜎𝐵,𝐶 = 0.419,
and for the measuring stations in block C, Wieringerwerf and Valthermond, 𝑟𝑟𝑒𝑝𝑟 = 6.268. It becomes
clear that the distribution of both the emission inventories and the representation error of the LML
stations vary a lot per block.

5.3.3. Results
The optimal multiplication factors 𝛾̂ are determined using the 4D­Var method described in section 4.5.
In Figure 5.7, the results are plotted. The results for the observations of the twin experiment can be
found in Figure 5.7a and the results when using the real LML observations can be found in Figure 5.7b.
Time series of the optimal estimated 𝛾̂ for the different blocks are represented by the solid lines and the
time series for the true multiplication factors 𝛾𝑡𝑟𝑢𝑒 in the twin experiment is represented by the dotted
line in Figure 5.7a. The faded regions represent the corresponding 95% confidence intervals of the
estimated multiplication factors.

(a) Multiplication factors 𝛾 using synthetic ob­
servations from the nature run

(b) Multiplication factors 𝛾 using the real obser­
vations of all 5 LML stations

Figure 5.7: Multiplication factors for the three blocks in time using observations for all five
observation stations. The solid line represents the optimal estimate of the multiplication factors
𝛾̂, and the faded region represents the 95% confidence interval of the estimated multiplication
factors. In case of the nature run, the dashed line represents the true multiplication factors
𝛾𝑡𝑟𝑢𝑒.

5.3.3.1. Results twin experiment
For this twin experiment, the multiplication factors are arbitrarily chosen. In comparison to the nature
run in the previous experiment, higher peaks are included. Also, multiplication factors smaller than 1
are included. It can be seen in Figure 5.7a that the estimated MFs do resemble the true MFs quite
accurately, especially compared to the results in the previous experiment in Figure 5.3b. The true MFs
are generally contained in or close to the boundaries of the 95% percent confidence interval. It can be
concluded that the 4D­Var method can retrieve the multiplication factors for the emissions in different
blocks, even when the emissions increase for one block and decrease for another block. Hence the
4D­Var method is able to retrieve spatial variability in the multiplication factors. To test this was the first
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objective of the experiment.

The second objective of this experiment is related to the accuracy of the optimal estimates. In Figure
5.7a it can be seen that the uncertainty in the optimal estimates is much smaller in this experiment than
for the previous twin experiment for Zegveld in Figure 5.3b. This is caused by the increased number
of observations from 5 measuring stations, as well as due to the smaller uncertainty in the covariance
matrix B. In the previous experiment with Zegveld only, the maximum likelihood method estimated the
standard deviation 𝜎𝐵 = 4.16, whereas for this experiment the maximum likelihood method estimates
much smaller standard deviations: 𝜎𝐵,𝐴 = 1.686, 𝜎𝐵,𝐵 = 1.764, and 𝜎𝐵,𝐶 = 0.419. Especially in block
C, where both the uncertainty in the multiplication factor and the uncertainty due to the representation
error is small, the method considers the optimized results to be very accurate. It can be concluded that
for this experiment with a larger domain, with the multiplication factors determined for three blocks, and
with 5 measuring stations, the accuracy of the estimates of the multiplication factors is increased.

5.3.3.2. Results real LML data
In Figure 5.7b, the results are plotted for an experiment using the real LML observations. It appears
that the retrieved MFs can be very different for the three blocks on certain days. Generally, the MFs
for block A and block B are distributed around one, with a few peaks that occur on different days per
block, whereas block C estimates much lower MFs for almost all days. This indicates that the MFs
might indeed be different for different parts of the Netherlands. Hence, according to the observations,
spatial variability does occur. Allowing the MFs to vary for different regions is therefore considered to
be a realistic and important addition to the problem statement.

However, this division of the MFs into three blocks is arbitrary and not very realistic. It is for exam­
ple unlikely that on March 25’th exactly all emissions in Block B were underestimated by a factor of 10,
whereas all emissions in block C were overestimated by a factor of 2. Especially, if the multiplication
factors represent changes in emission due to the application of fertilizer, it is unlikely that the changes
in MFs close to the boundary between the blocks B and C are so different. The division of the domain
into three blocks is very coarse. A smoother, possibly correlated, parameterization of MFs would be
more realistic.

Furthermore, if these results are compared to the results of the previous experiment around Zegveld
in Figure 5.4b, it appears that the previously estimated, unrealistically large multiplication factors of 15
at the end of March are no longer estimated. Large peaks in the estimated MFs still occur in Figure
5.7b, but they are less high (now up to 9 instead of 15 before), and they occur on different days. This
improvement is made due to the increased number of observation sites since not all stations do mea­
sure increased concentrations for the same days. Additionally, using a larger domain that also contains
emission sources further away from Zegveld does reduce the peaks in the MFs. When using this larger
domain, the modeled NH3 concentrations at the location of Zegveld in the background run are higher
and do already look more like the observations of the LML station. It might be even better to consider
a larger domain, containing more emission sources surrounding the Netherlands. Especially the LML­
station Valthermond in the northeast is located relatively close to the boundary of the domain, but there
are many ammonia emission sources in the surrounding area (in Germany) that are not contained in
our domain.

Last, it can be seen that the uncertainty of the estimated MFs in Figure 5.7b is smaller than it was
for the previous experiment in Figure 5.4b. However, the uncertainty in the optimal solution can still be
very large. Considering 5 LML measurement systems does increase the accuracy of the method, but
it would be beneficial if more measurements were available. To get accurate results, the number of ob­
servations should be larger than the number of parameters. Especially when the observations contain
a lot of noise, more observations are needed. In this experiment, three MF are determined per day,
while the five LML stations have several observations for most of the days. When using only the LML
stations, the number of parameters to estimate should not be much larger, as otherwise, observational
noise will dominate the results.
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5.3.3.3. Distribution of multiplication factors
In Figure 5.8, histograms have been made of the optimally estimated multiplication factors for the
three blocks, based on the true LML observations. Additionally, the three different prior distributions
are plotted in blue as well. For all three blocks A, B, and C, the histograms seem to follow the prior
distribution much better than before in Figure 5.5b. For all blocks, the prior median is relatively close
to the median of the optimized MFs. Furthermore, the distributions in all three figures seem quite log­
normal. For block A and B, there is a small number of high MFs but the majority is close to the median
value. For block C, there are no high MFs estimated as expected based on the prior distribution. For
block A, the MFs are never close to zero, leading to some discrepancy between the optimized and the
prior assumed MFs. However, overall these histograms confirm the assumption that a log­normal prior
distribution is a better fit than a normal distribution would be.

(a) Distribution multiplication
factors block A

(b) Distribution multiplication
factors block B

(c) Distribution multiplication
factors block C

Figure 5.8: Distribution MFs for different blocks

5.3.4. Conclusion
From the nature­run of this problem, it can be concluded that the 4D­Var method can estimate the mul­
tiplication factors for three blocks, based on observations of 5 LML stations. Even when the emissions
are increased for some blocks, and are decreased for others, the method reconstructs the MFs quite
well. Also, in comparison with the previous experiment in Zegveld, the uncertainty in the estimated
multiplication factors has decreased a lot.

In the experiment with the real data for the five LML stations, it was found that the MFs can indeed
differ quite a lot for the three blocks. Unfortunately, the results are still not considered to be very re­
alistic. Also, the accuracy of the method has improved, but the optimized MFs still contain a lot of
uncertainty.

Recommendations resulting from this experiment are the following three:

• First, a more realistic spatial variability of the MFs should be made. Now that it is found that
the MFs are likely to vary depending on the location, it would be recommended to make this
parameterization more realistic. This would include increasing the number of regions/blocks for
which the MFs can be varied and possibly also define a spatial correlation between those regions
to avoid an MF of 10 in one region and an MF of 0.5 in a neighboring region.

• Second, it would be recommended to increase the number of observation sites, possibly using
a different type of measuring instrument such as the IRS instrument. If the number of spatial
regions for which the MFs can vary is increased, it will be difficult to measure the effects of all
these different MFs in space, using only 5 LML­stations. It would for example be difficult to obtain
results about the MFs for Zeeland, using only LML­stations that are more than 50km away. Also,
the additional number of measuring sites would help to reduce the still quite large uncertainty in
the MF estimates.

• Last of all, an even larger domain, containingmore emission sources surrounding the Netherlands
should also be considered.
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5.4. Experiment 3: IRS observations
5.4.1. Problem description
In this last experiment, the main goal is to improve the spatial variability of the multiplication factors in a
realistic manner, as recommended in the previous experiment. The aim is to estimate a multiplication
factor for each grid cell in the domain.

The previous experiment recommended increasing the number of observation sites. Instead of us­
ing the limited number of measurements of the LML station at only a small number of locations, this
experiment uses the observations of the IRS instrument on the MTG­S satellite. In this experiment, it
will be tested how well the 4D­Var method works in retrieving multiplication factors for each grid cell,
using the observations of the IRS instrument. As the MTG­S satellite is not operational yet, this exper­
iment will only use synthetic observations from a nature­run.

For this problem, a larger domain is considered such that all major sources that influence the Nether­
lands are included. Therefore, Belgium and a larger part of the west of Germany are included as well.
The new grid is from 2.55∘E to 8.55∘E by 49.65∘N to 53.70∘N, where the grid resolution is 0.075∘ longi­
tude and 0.0375∘ latitude. This is equivalent to cells of approximately 5.1 km × 4.2 km. In total, the grid
consists of 80 × 108 = 8640 grid cells. A visualization of the horizontal domain with grid cells can be
found in Figure 5.9. Vertically, the domain is divided into 12 vertical layers. Observations now consist
of NH3 column densities in units of 1e15 molecules per cm2 (1e15 molec/cm2). Synthetic IRS obser­
vations are produced using a LOTOS­EUROS nature run. In this experiment, the MFs are determined
from March 1st till March 10th. The LOTOS­EUROS model has been run, starting on February 25th to
minimize the effects of the initial state.

Figure 5.9: LOTOS­EUROS domain Netherlands, Belgium, and west part of Germany.

The objectives of this third experiment are

1. to test to which accuracy can the MFs be estimated.

2. to find out for which locations the 4D­Var method approximates the true emissions well, and for
which locations are estimations are inaccurate.

5.4.2. Parameterization
This experiment aims to estimate one multiplication factor per grid cell per day. In this case, the number
of parameters to estimate would be 8640 MFs per day ×10 days = 86.400. It is not feasible to run the
LOTOS­EUROS model for each parameter separately. Therefore, in this experiment, a preconditioner
of reduced size is used, as described in section 4.6. The multiplication factors are assumed to have
a log­normal distribution, 𝛾 ∼ Log𝒩(𝜇𝛾 ,B𝛾), so the 4D­Var method described in section 4.6.2 is used.
The auxiliary parameter to optimize is 𝛽 = log(𝛾) ∼ 𝒩(𝜇𝛾 ,B𝛾). In this experiment, the first 8640
elements of the parameter vector 𝛽 represent all MFs in the domain for day 1, the second 8640 elements
represent all MFs for day 2, etc. Each grid cell 𝑖 can have its own mean 𝜇𝑖, but the mean is constant
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for the entire period. Hence:

𝜇 =

⎡
⎢
⎢
⎢
⎢
⎣

𝜇1
⋮

𝜇8640
𝜇1
⋮

𝜇8640

⎤
⎥
⎥
⎥
⎥
⎦

. (5.8)

To efficiently reduce the size of the preconditionerw, a correlation between theMFs needs to be defined.
In this experiment, it is assumed that the MFs are correlated in space, but are independent in time. For
each day, the 80 × 108 = 8640 MFs are strongly correlated to the MFs of nearby grid cells, and hardly
correlated to the MFs of grid cells far away. For the application of fertilizer, this is a realistic correlation
as generally most farmers in a certain region apply their fertilizer at the same time because of similar
growing seasons and weather conditions. The correlation between two grid cells 𝑖 and 𝑗 for some day
𝑘 is defined by the relation:

C𝑖,𝑗 = exp(−12 (
𝑑(𝑖, 𝑗)
𝐿 )

2
). (5.9)

Here 𝑑(𝑖, 𝑗) denotes the distance between the center of cell 𝑖 and 𝑗 and 𝐿 is the correlation length scale.
This correlation is the same as the spatial correlation in (Arjo Segers, Tokaya, and Houweling 2020)
for methane emissions. For a larger 𝐿, the MFs are stronger correlated. If all these values C𝑖,𝑗 are put
into a correlation matrix C𝑘 for day 𝑘, and if a matrix S𝑘 with a standard deviations on its diagonal for
parameter 𝛽𝑖,𝑘 for each grid cell 𝑖 is defined on day 𝑘, then the covariance matrix B for the parameter
vector 𝛽 of day 𝑘 is defined as:

B𝑘 = S𝑘C𝑘S𝑘 . (5.10)

If one looks at the entire parameter vector 𝛽 with MFs for all days, the covariance matrix is:

B = (
B1 0 0
0 ⋱ 0
0 0 B𝑑

) . (5.11)

It is assumed that B𝑘 is the same for all days 𝑘.

In this section, the observations of the IRS instrument of the MTG­S satellite are used. The error in
those measurements are chosen as described in section 3.2.2, where the standard deviation is 5.3e15
molec/cm2 when the measured NH3 column densities are higher than 1e16 molec/cm2 and the stan­
dard deviation is 4.1e15 molec/cm2 when the measured NH3 column densities are lower than 1e16
molec/cm2. This error is chosen to be is independent of the meteorological properties, such as cloud
coverage and the height of the mixing layer.

As values for the parameters, the choice has been made for S = I, 𝐿 = 50km, and 𝜇 = 0. The
maximum likelihood method would not be suitable to use for this problem, especially not to estimate
𝐿, because the ensemble members that describe how the concentrations of NH3 depend on changes
in w, Ew, depend on the length scale 𝐿. For each time that the log­likelihood function is evaluated
for a different 𝐿, a new HEw, based on a new ensemble would need to be determined. Furthermore,
the eigenvalue decomposition of B would need to be determined after each update of 𝐿, which is also
computationally costly.

In this experiment, the value of 𝐿 = 50km is chosen, because for this value, the MFs can vary a
lot in space, but the number of main patterns of the matrix 𝐵 and the size of the preconditioned state,𝑚
remains relatively small. For 𝐿 = 50, the first 40 eigenvectors of the correlations matrix 𝐵𝑘 for each day
𝑘, contain 93% of the energy of the system, which approximates the balance in equation (4.56). For the
ensemble of model runs, 3 ensemble members are needed per main pattern, as described in section
4.8. This leads to an ensemble of size 120, which is needed to determine the linear approximate state.



52 5. Results

5.4.3. Results
In this experiment, the optimal multiplication factors have been estimated for the period of March 1st
to March 10th. For the nature­run, the true MFs are chosen to be a sample of the prior distribution:

𝛾𝑡𝑟𝑢𝑒 ∼ Log𝒩(𝜇,B). (5.12)

The results for March 3th will be discussed in this section. These are representative for the other days.
In Figure 5.10, the multiplication factors are shown. Figure 5.10a shows the background parameters
𝛾𝑏, Figure 5.10b shows the optimally estimated MFs 𝛾̂, Figure 5.10c shows the true MFs that are used
in the nature­run, 𝛾𝑡𝑟𝑢𝑒, and Figure 5.10d shows the difference between the estimated and the trueMFs.

It can be seen that above the land surface the estimated and true MFs do show a lot of similarities,
especially, compared to the initial MFs. Both figures 5.10b and 5.10c have a peak in the MFs above
Friesland and Flevoland and have increased emissions in the south and east of Belgium. However, the
extreme values of the peaks are not accurately retrieved by the 4D­Var method but underestimated. In
Flevoland, a peak of 6 is estimated, whereas the true peak had values close to 8, and in the southeast
of Belgium, a peak of 3 to 4 is found instead of a peak of 6. In Figure 5.10d it can be seen that these un­
derestimated peak regions are surrounded by regions where the MFs are overestimated. On the other
hand, the regions where the MFs decrease or remain fairly similar are estimated correctly, provided
that these regions are not very close to the high MF areas. The 4D­Var method retrieves decreased
MFs for Germany and the west of the Netherlands.

Above the water surfaces, the 4D­Var method does not retrieve the MFs accurately. Above the North
Sea, there is a huge peak in the estimated MFs, which does not occur at all in the true MF plot. Also,
above the IJsselmeer, there is a relatively large error in MFs.

This error above the water surfaces has to do with the amount of anthropogenic NH3 emissions. Figure
5.11 shows a map of the daily average NH3 emissions for March 3th. Figure 5.11a shows the original
emission inventory, described in section 2.4.1, Figure 5.11b shows the estimated emissions (emission
inventory times the optimally estimated MFs), Figure 5.11c shows the emissions used in the nature run
(emission inventory times the true MFs), and Figure 5.11d shows the differences between the estimated
and the true emission inventories. It can be seen that the optimized emission does resemble the true
emission inventory much better than the original inventory did. Also, it can be seen that for both the
estimated and true emission inventories, the emissions above the North Sea and the IJsselmeer are
zero. At those locations, no ammonia is emitted by anthropogenic sources. When the original emis­
sions are zero, the emission inventories cannot be changed there, even for a very large multiplication
factor, as multiplication with zero remains zero for all MFs. Hence, the incorrectly estimated MFs above
the North Sea and the IJsselmeer do not influence the emission inventories above water surfaces.

However, in Figure 5.11d, it can be seen that the emissions are generally overestimated near coastal
areas and for the area surrounding the IJsselmeer. Due to the spatial correlation in MFs, increased
MFs above water cause slightly increased MFs close to water. Also, the emission sources close to
water surfaces are used to compensate for the differences between the modeled concentrations and
the measurements above the sea, caused by measurement noise and limitations of the 4D­Var method.

Additionally, it can be seen that for low emission regions, theMFs aremore often incorrect, but that does
not influence the emission inventories as much. This is caused as for low emission regions, changes
in emissions are difficult to measure, and improving the MFs does barely decrease the 4D­Var cost.

In Figure 5.12, the NH3 column densities are plotted for one hour on March 16. The figures have been
made for multiple hours, but only the figures at 16:00 are included in this report, as they all show similar
results. In Figure 5.12a, the densities of the background state are plotted, in Figure 5.12b the estimated
densities, in Figure 5.12c, the noisy NH3 observations resulting from the nature run, and in Figure 5.12d
the difference in concentration between the noisy observations and the estimated densities. The NH3
column densities resulting from the estimated MFs look quite similar to the true observations, apart
from all the noise, especially, compared to the initial column densities. The difference plot of Figure
5.12d shows that a noisy map that somewhat resembles a Gaussian noise sample. This indicates that
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the differences in estimated and measured concentrations seem to be mainly caused by noise in the
observations. However, there seems to be some correlation in the NH3 estimation error. It can for ex­
ample be seen that in Flevoland, where the emission estimates are underestimated, the NH3 column
densities are also underestimated for a large group of neighboring pixels, and that the NH3 column
densities are overestimated in North­Holland, which could be caused by the increased emissions close
to the IJsselmeer.

It has also been tested what would happen if the experiment was performed without adding noise
to the observations. In that test, it was confirmed that there are indeed regions where both emissions
and NH3 column densities are overestimated and regions where both emissions and NH3 column den­
sities are underestimated. The locations of the errors in NH3 column densities are close to, but not
identical to the regions with incorrectly estimated emissions, as the atmospheric NH3 is transported
by advection and diffusion. If the effect of incorrect NH3 emissions is indeed measurable, there might
be adjustments possible for the adjoint­free 4D­Var method to increase the emission estimates even
more.

(a) Background multiplication factors 𝛾𝑏 = 1
used in the background run.

(b) Optimally estimated multiplication factors 𝛾̂
based on synthetic observations.

(c) True multiplication factors 𝛾𝑡𝑟𝑢𝑒 used in the
nature run.

(d) Difference Estimated multiplication factors
and true multiplication factors 𝛾̂ − 𝛾𝑡𝑟𝑢𝑒.

Figure 5.10: Multiplication factors on March 3th.

5.4.4. Conclusion
It can be concluded that the 4D­Var method improves the emission inventory almost everywhere. The
regions are retrieved where the emissions increase due to large MFs. However, the optimized values
of the multiplication factors are not always perfect. The highest values can be underestimated and
regions surrounding the highest peaks can incorrectly compensate for this by overestimating the MFs.
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(a) Original emission inventory related used in
the background run.

(b) Optimally estimated emissions based on the
retrieved multiplication factors of the 4D­Var
method.

(c) True emission inventory used in the nature
run.

(d) Difference estimated and true emission data
sets.

Figure 5.11: Emission inventories daily average of March 3th.

In regions where there are no anthropogenic emissions, such as above water surfaces, the estimated
MFs can be very different, but that is not an issue as multiplication factors only cause increased emis­
sions if there actually are emissions. However, MFs in the regions surrounding the zero­emission
regions can incorrectly increase as well. In low emission regions, it can be difficult to estimate the
MFs correctly, as these regions barely influence the NH3 column densities and subsequently barely
influence the cost of the 4D­Var function.

The errors in the estimated multiplication factors are mainly expected to be caused by the accuracy
that is lost when using a preconditioner, and by the unobservability of the emission variations of low
emission areas. It appears that reducing the measurement noise does barely influence the optimally
estimated MFs. This happens because the measurement noise is unbiased and the number of mea­
surements is large, both in time and in space.
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(a) Initial NH3 column densities made in the
background run

(b) Optimally estimated NH3 column densities
based on the retrieved multiplication factors of
the 4D­Var method.

(c) True noisy observations of NH3 column den­
sities made in the nature run. (d) Difference estimated and ”true” NH3 column

densities.

Figure 5.12: Hourly NH3 column densities on March 3th at 16:00.





6
Conclusion

In this study, adjoint­free 4D­Var methods to improve the ammonia emission estimates for the Nether­
lands have been developed, implemented, and tested. The adjoint­free 4D­Var methods aim to find an
ammonia emission inventory for which simulation with the LOTOS­EUROS model would better resem­
ble observational data. Measurements of two instrument types have been considered: the miniDOAS
instrument of LML systems and the IRS instrument on the MTG­S satellite. Four different versions of
the 4D­Var method have been developed, all having their advantages related to the accuracy of the re­
sult and the computational cost. Conclusions of the study will be presented by answering the research
questions of section 1.4

Research question 1: Could an efficient adjoint­free 4D­Var method be designed to estimate time­
varying ammonia emissions in the Netherlands using the observations of the LML stations?

This study started with developing an adjoint­free version of the 4D­Var method to estimate time­varying
multiplication factors for ammonia emissions. Minimizing the 4D­Var cost function without using an ad­
joint model was done by approximating the NH3 concentrations by a linear approximate model in terms
of the multiplication factors. As the NH3 emissions, and hence the multiplication factors, have a nearly
linear effect on the NH3 concentrations and observations, this approximate model was found to be very
accurate. Some computational cost is related to determining the linear approximate model as an en­
semble of LOTOS­EUROSmodel runs is needed. However, the size of the ensemble could be reduced
a lot, when using the fact that NH3 is a relatively short­lived trace gas. Also, the ensemble could be run
using a chemically reduced version of the LOTOS­EUROS model, which decreases the computational
time by a factor of three. In the case of MFs varying in time only, the ensemble size could be limited to
3, and if the domain is divided into three regions with their own MFs, the ensemble size could be limited
to 9, both proceeded by one full­chemistry run. This part of the method proved to be very time­efficient.

With this linear approximate model, two adjoint­free 4D­Var methods were developed to estimate emis­
sion multiplication factors; one where it was assumed that the multiplication factors were a sample of
a Gaussian distribution and one where the multiplication factors were a sample of a log­normal distri­
bution. Both 4D­Var cost functions were minimized using a gradient­based approach. For the model
version with the Gaussian prior distribution, the gradient of the cost function became a linear expres­
sion in terms of the parameters. Because of that, the multiplication factors that minimized the 4D­Var
cost function were found analytically. For the model version with the log­normal prior distribution, the
gradient became a nonlinear expression. Now, a numerical optimizer was needed to minimize the cost
function. This takes some additional computational effort, but overall the computational cost was neg­
ligible in comparison to running the LOTOS­EUROS ensemble.

The 4D­Var cost functions contain parameters related to the distribution of the MFs and the observa­
tion likelihood. The maximum likelihood approach was used to quantify a bias parameter for the MFs
and the standard deviations of the MFs and the representation error of the observations. According to
the maximum likelihoodmethod, both the original MFs and the observations contain large uncertainties.
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Once the two efficient adjoint­free 4D­Var methods were developed, they were tested initially in iden­
tical twin experiments using synthetic observations. It was found that the methodology worked well
for short periods (less than 30 days). However, when observational noise was added to the synthetic
measurements, the estimated MFs became noisy as well. It was found that the uncertainty decreased
when using 5 measuring stations instead of one. However, the results were still dominated by obser­
vational noise.

Last, the methodology was tested using real LML observations. Both 4D­Var methods retrieved the
optimal MFs, but the obtained result appeared to be unrealistic. It was found that the MFs obtain a log­
normal distribution, which indicates that the log­normal method should give the most realistic result.
Hence, if computational time allows it, the log­normal method would be preferred over the Gaussian
method. Also, experiments with different MFs for different regions were performed. They showed that
the emission estimates should not only be improved in time, but also in space. However, as there are
only 5 LML stations, the LML observations could not be used to retrieve a realistic parameterization for
spatially varying MFs.

Research question 2: Could an efficient adjoint­free 4D­Var method be designed to estimate time­
varying ammonia emissions in the Netherlands on a fine spatial resolution, using synthetic observa­
tions of the IRS instrument on the MTG­S satellite.

The objective of the second part of the study was to include a realistic parameterization for the spatial
variance of the MFs. To better observe the spatial distribution of atmospheric NH3, synthetic observa­
tions of the not yet operational IRS instrument on the MTG­S satellite were considered.

In this experiment, daily multiplications are determined for each grid cell. This leads to an enormous
amount of parameters to estimate. To keep the computational cost feasible, a preconditioner in re­
duced space has been considered. This preconditioner uses the property that the MFs are correlated
in space. The concept is to consider only the main patterns of the MFs’ spatial variability. The linear
approximate state, the cost function, and its gradient can now be expressed in terms of a linear com­
bination of the small number of main patterns, instead of the very large parameter vector containing all
MFs. In this way, the adjoint­free 4D­Var method is made computationally efficient, while obtaining ac­
curate results. For determining the main patterns, an eigenvalue decomposition of a very large matrix
has to be determined, which can take some time. However, in this study, most of the computational
effort is still related to running a LOTOS­EUROS ensemble to make the linear approximate state. For
this problem, an ensemble of size 120 was needed, proceeded by one full­chemistry run.

Again, two versions of the preconditioned adjoint­free 4D­Var methods were developed; one where
the MFs have a Gaussian prior distribution and one where the MFs have a log­normal distribution. The
Gaussian case can again be solved analytically with negligible computational cost. The log­normal case
is more computational costly, especially since an additional positivity constraint for the large number of
MFs is added to the 4D­Var objective. However, the optimization cost was negligible in comparison to
running the LOTOS­EUROS model 121 times.

The preconditioned adjoint­free 4D­Var methods were tested in an identical twin experiment. The op­
timized inventory did resemble the inventory used to generate the synthetic observations much better
than the original inventory. The 4D­Var method did retrieve the regions where the MFs were high­
est. Also, unbiased observational noise appeared to barely influence the results. However, the results
were not perfect. The regions with the highest MF peaks were generally smooth out over a larger re­
gion. Also, for low emission areas, the errors in the estimated MFs were relatively large, as the IRS
instrument has difficulties observing the relatively small variations in NH3 concentrations. However,
this does barely affect the total NH3 emissions. Furthermore, the method has difficulties estimating
the emissions close to zero­emission areas such as coastal areas. Hence, when zooming in to a local
scale, the emission estimates can be imperfect, but overall the adjoint­free 4D­Var methods do greatly
improve the emission inventories.
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Recommendations for further research

The developed adjoint­free 4D­Var methodologies show great potential, as multiplication factors are
retrieved accurately in a reasonable amount of time. However, before the methods can be used for
improving ammonia emission inventories, some further research should be done.

• First, it should be analyzed how well the method works when more errors of the model are in­
volved. Model errors, resulting from for example imperfect meteorological input data or incorrect
chemistry, are expected to cause the errors in the estimated MFs. In the study of (Zijlker 2020),
it was for a similar 4D­Var method shown that results become unrealistic when plumes in the
model are misaligned with the plumes of the observations. Research should be done where a
twin experiment is performed where the observations are not generated by the LOTOS­EUROS
model, but by a different chemical transport model. In this way, it can be tested how the method
behaves when more model errors are made, while still being able to compare the estimated MFs
to known true MFs.

• A second improvement would be to consider a more realistic satellite operator for ℋ(x, 𝜃). The
operator used for this study is easy to implement and great for showing the potential of the 4D­
Var methodology, but is is missing some properties of real satellite retrievals. Once the map
ℋ(x, 𝜃) is improved, more research could be performed regarding the required quality of the IRS
observations to estimate emissions at different spatial or temporal scales. In reality, observations
are often not generated when the cloud density is high. Furthermore, satellite observations tend
to be biased, as for example shown for NH3 observations from the CrIS instrument (Dammers,
Shephard, et al. 2017). It is important to test how missing data and biased data would influence
the performance of the inversion algorithm.

• Third, this study determines a multiplication factor for all NH3 emissions, whereas the MFs are ex­
pected to depend on the type of emission source. For example, if some MFs represent emissions
due to fertilizer application, then the MFs should not be used for the neighboring NH3 emissions
from animal housing.

• Fourth, additional types of measurements could be included. Additional NH3 measurements are
for example from the MAN network, generating monthly average NH3 surface concentrations,
and the CrIS and IASI instruments on board satellites, measuring NH3 column densities once
per day. It would even be possible to include measurements of other chemical tracers as well.
Measurements of concentrations and deposition rates of NO3 and NH +

4 are available and are
dependent on NH3 emission.

• Last, when all aspects of themethod are considered to be realistic, the method can be used for the
real IRS observational data. The method is expected to perform worse than for the identical twin
experiment. Unfortunately, testing this will not be possible until the MTG­S satellite is launched.
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