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ABSTRACT This work proposes an algorithmic framework to learn time-varying graphs from online data.
The generality offered by the framework renders it model-independent, i.e., it can be theoretically analyzed
in its abstract formulation and then instantiated under a variety of model-dependent graph learning problems.
This is possible by phrasing (time-varying) graph learning as a composite optimization problem, where
different functions regulate different desiderata, e.g., data fidelity, sparsity or smoothness. Instrumental
for the findings is recognizing that the dependence of the majority (if not all) data-driven graph learn-
ing algorithms on the data is exerted through the empirical covariance matrix, representing a sufficient
statistic for the estimation problem. Its user-defined recursive update enables the framework to work in
non-stationary environments, while iterative algorithms building on novel time-varying optimization tools
explicitly take into account the temporal dynamics, speeding up convergence and implicitly including a
temporal-regularization of the solution. We specialize the framework to three well-known graph learning
models, namely, the Gaussian graphical model (GGM), the structural equation model (SEM), and the
smoothness-based model (SBM), where we also introduce ad-hoc vectorization schemes for structured
matrices (symmetric, hollows, etc.) which are crucial to perform correct gradient computations, other than
enabling to work in low-dimensional vector spaces and hence easing storage requirements. After discussing
the theoretical guarantees of the proposed framework, we corroborate it with extensive numerical tests in
synthetic and real data.

INDEX TERMS Graph topology identification, dynamic graph learning, network topology inference, graph
signal processing.

I. INTRODUCTION
Learning network topologies from data is very appealing. On
the interpretable side, the structure of a network reveals im-
portant descriptors of the network itself, providing to humans
a prompt and explainable decision support system; on the
operative side, it is a requirement for processing and learning
architectures operating on graph data, such as graph filters [2].
When this structure is not readily available from the applica-
tion, a fundamental question is how to learn it from data. The
class of problems and the associated techniques concerning
the identification of a network structure (from data) are known

as graph topology identification (GTI), graph learning, or net-
work topology inference [3], [4].

While up to recent years the GTI problem has been fo-
cused on learning static networks, i.e., networks which do
not change their structure over time, the pervasiveness of net-
works with a time-varying component has quickly demanded
new learning paradigms. This is the case for biological
networks [5], subject to changes due to genetic and environ-
mental factors, or financial markets [6], subject to changes due
to political factors, among others. In these scenarios, a static
approach would fail in accounting for the temporal variability
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of the underlying structure, which is strategic to, e.g., detect
anomalies or discover new emerging communities.

In addition, prior (full) data availability should not be con-
sidered as a given. In real time applications, data need to
be processed on-the-fly with low latency to, e.g., identify
and block cyber-attacks in a communication infrastructure, or
fraudulent transactions in a financial network. Thus, another
learning component to take into account, is the modality of
data acquisition. Here, we consider the extreme case in which
data are processed on-the-fly, i.e., a fully online scenario.

It is then clear how the necessity of having algorithms to
learn time-varying topologies from online data is motivated
by physical scenarios. For clarity, we elaborate on the three
keywords - identification, time-varying and online - which
constitute, other than the title of the present work, also its main
pillars.
� Identification/learning: it refers to the (optimization)

process of learning the graph topology.
� Time-Varying/dynamic: it refers to the temporal variabil-

ity of the graph in its edges, in opposition to the static
case.

� Online/streaming: it refers to the modality in which the
data arrive and/or are processed, in opposition to a batch
approach which makes use of the entire bulk of data.

This emphasis on the terminology is important to under-
stand the differences between the different existing works,
presented next.

A. RELATED WORKS
Static GTI has been originally addressed from a statistical
viewpoint and only in the past decade under a graph
signal processing (GSP) framework [7], in which different
assumptions are made on how the data are coupled with
the unknown topology; see [3], [4] for a tutorial. Only
recently, dynamic versions of the static counterparts have
been proposed. For instance, [8], [9] learn a sequence of
graphs by enforcing a prior (smoothness or sparsity) on the
edges of consecutive graphs; similarly, the work in [10]
extends the graphical Lasso [11] to account for the temporal
variability, i.e., by estimating a sparse time-varying precision
matrix. In addition to these works, the inference of causal
relationships in the network structure, i.e., directed edges,
has been considered in [12], [13]. See [14] for a review of
dynamic topology inference approaches.

The mentioned approaches tackle the dynamic graph learn-
ing problem by means of a two-step approach: i) first, all the
samples are collected and split into possibly overlapping win-
dows; ii) only then the topology associated to each window is
inferred from the data, possibly constrained to be similar to the
adjacent ones. This modus-operandi fails to address the on-
line (data-streaming) setting, where data have to be processed
on-the-fly either due to architectural (memory, processing)
limitations or (low latency) application requirements, such as
real-time decision making.

This line of work has been freshly investigated by [15],
which considers signals evolving according to a heat diffusion

process, and by [16], which assumes the data are graph
stationary [17]. In [18], the authors consider a vector
autoregressive model to learn causality graphs by exploiting
the temporal dependencies, while [19] proposes an online
task-dependent (classification) graph learning algorithm, in
which class-specific graphs are learned from labeled signals
(training phase) and then used to classify new unseen data.

Differently from these works, our goal here is to provide a
general (model-independent) algorithmic framework for time-
varying GTI from online data that can be specialized to a
variety of static graph learning problems. In particular, the
generalization given by the framework enables us to render
a static graph learning problem into its time-varying coun-
terpart and to solve it via novel time-varying optimization
techniques [20], providing a trade off between the solution
accuracy and the velocity of execution. We introduce ad-hoc
vectorization schemes for structured matrices to solve graph
learning problems in the context of the Gaussian graphical
model, the structural equation model, and the smoothness
based model. All in all, a mature time-varying GTI framework
for online data is yet to be conceived. This is our attempt to
pave the way for a unified and general view of the problem,
together with solutions to solve it.

B. CONTRIBUTIONS
This paper proposes a general-purpose algorithmic blueprint
which unifies the theory of learning time-varying graphs from
online data. The specific contributions of this general frame-
work are:

a) it is model-independent, i.e., it can be analyzed in its
abstract form and then specialized under different graph
learning models. We show how to instantiate three
such models, namely, the Gaussian graphical model
(GGM), the structural equation model (SEM) and the
smoothness-based model (SBM);

b) it operates in non-stationary environments, i.e., when
the data statistics change over time. This is possible
by expressing the considered models in terms of the
sample covariance matrix, which can be then updated
recursively for each new streaming sample with a user-
defined function, which discards past information.

c) it is accelerated through a prediction-correction strat-
egy, which takes into account the time-dimension. Its
iterative nature enables a trade-off between following
the optimal solution (accuracy) and an approximate
solution (velocity). It also exhibits an implicit regular-
ization of the cost function due to the limited iteration
budget at each time-instant, i.e., similar solutions at
closed time instants are obtained.

Notation: we use x(i) and X (i, j) to denote the i-th entry
of the column vector x and the i j-th entry of the matrix X,
respectively. Superscripts � and † denote the transpose and the
pseudoinverse of a matrix, respectively, while operators tr(·)
and vec(·) denote the matrix trace and matrix vectorization,
respectively. The vectors 0 and 1, and the matrix I, denote the
all-zeros vector, the all-ones vector, and the identity matrix,
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with dimension clarified in the context. The operators ⊗,
�, � and ◦ stand for Kronecker product, Hadamard (entry-
wise) product, Hadamard (entry-wise) division and Hadamard
(entry-wise) power, respectively. We have [ · ]+ = max(0, ·),
where the maximum operates in an entry-wise fashion. Also,
ιX (·) is the indicator function for the convex set X , for which
holds ιX (x) = 0 if x ∈ X and +∞ otherwise. Given two
functions f (·) and g(·), f ◦ g(·) denotes their composition. A
function f (·) with argument x ∈ R

N , which is parametrized
by the time t , is denoted by f (x; t ). The gradient of the func-
tion f (x; t ) with respect to x at the point (x; t ) is denoted with
∇x f (x; t ), while ∇xx f (x; t ) denotes the Hessian evaluated at
the same point. The time derivative of the gradient, denoted
with ∇tx f (x; t ), is the partial derivative of ∇x f (x; t ) with re-
spect to the time t , i.e., the mixed first-order partial derivative
vector of the objective. Finally, ‖ · ‖p denotes the �p norm of
a vector or, for a matrix, the �p norm of its vectorization. The
Frobenius norm of a matrix is denoted with ‖ · ‖F . Without
any subscript, the norm ‖ · ‖ indicates the spectral norm.

II. PROBLEM FORMULATION
In this section, we formalize the problem of learning graphs
from data. In Section II-A, we introduce the static graph topol-
ogy inference problem, where we also recall three well-known
models from the literature. Then, in Section II-B we formulate
the (online) dynamic graph topology inference problem.

A. GRAPH TOPOLOGY IDENTIFICATION
We consider data living in a non-Euclidean domain described
by a graph G = {V, E, S}, where V = {1, . . . , N} is the vertex
set, E ⊆ V × V is the edge set, and S is an N × N matrix
encoding the topology of the graph. The matrix S is referred
to as the graph shift operator (GSO) and typical instantiations
include the (weighted) adjacency matrix W [7] and the graph
Laplacian L [21]. By associating to each node i ∈ V a scalar
value x(i), we define x = [x(1), . . . , x(N )]� ∈ R

N as a graph
signal mapping the node set to the set of real numbers.

Consider now the matrix X = [x1, . . . , xT ] that stacks over
the columns T graph signals generated from an unknown
graph-dependent process F (·); i.e., X = F (S). Then, a GTI
algorithm aims to learn the graph topology, i.e., to solve the
“inverse” problem (not always well defined):

S = F−1(X). (1)

The function F (·) basically describes how the data are cou-
pled with the graph and its knowledge is crucial. The data
and the graph alone are insufficient to cast a meaningful graph
learning problem. On one side, we need to know how the data
depends on the graph from which they are generated. On the
other side, we have to enforce some prior knowledge on the
graph we want to learn.

Graph-data models. The choice of a data model is the
forerunner of any GTI technique and, together with the graph-
data coupling priors (e.g., smoothness, bandlimitedness) dif-
ferentiates the different approaches. Due to their relevance

for this work, we recall three widely used topology identifi-
cation methods, namely the Gaussian graphical model [22],
the structural equation model [23], and the smoothness-based
model [24].

1) GAUSSIAN GRAPHICAL MODEL (GGM)
assumes each graph signal xt is drawn from a multivariate

Gaussian distribution N (μ,�) with mean μ and positive-
definite covariance matrix �. By setting the graph shift
operator to be the precision matrix S = �−1, graph learning
in a GGM amounts to precision matrix estimation, which in a
maximum likelihood (MLE) sense can be formulated as:

minimize
S

− log det(S)+ tr
(
S�̂

)
s. t. S ∈ S

N++
(2)

where �̂ = 1
T XX� is the sample covariance matrix and S

N++
is the convex cone of positive-definite matrices. In this con-
text, matrix S can be interpreted as the adjacency matrix (with
self loops), although the problem can also be solved under
some additional constraints forcing S to be a Laplacian [25].

2) STRUCTURAL EQUATION MODEL (SEM)
neglecting possible external inputs, and assuming an undi-

rected graph, the SEM poses a linear dependence between the
signal value xt (i) at node i and the signal values at some other
nodes {xt ( j)} j �=i, representing the endogenous variables, i.e.,:

xt (i) =
∑
j �=i

S(i, j)xt ( j)+ et (i), t = 1, . . . , T (3)

where S(i, j) weights the influence that node j exerts on node
i, and et (i) represents unmodeled effects. In this view, with
S encoding the graph connectivity, model (3) considers each
node to be influenced only by its one-hop neighbors. In vector
form, we can write (3) as:

xt = Sxt + et , t = 1, . . . , T, (4)

with S(i, i) = 0, for i = 1, 2, . . . , N . Also, we consider et

white noise with standard deviation σe. Graph learning under
a SEM implies estimating matrix S by solving:

minimize
S

1
2 T ‖X− SX‖2F + g(S),

s. t. S ∈ S
(5)

where S = {S| diag(S) = 0, S(i, j) = S( j, i), i �= j}, and g(S)
is a regularizer enforcing S to have specific properties; e.g.,
sparsity. In this context, matrix S is usually interpreted as the
adjacency matrix of the network (without self loops). The first
term of (5) can be equivalently rewritten as:

f (S) = 1

2 T
‖X− SX‖2F =

1

2

[
tr

(
S2�̂

)− 2tr
(
S�̂

)+ tr
(
�̂

)]
.

(6)

which highlights its dependence on �̂.
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3) SMOOTHNESS-BASED MODEL (SBM)
assumes each graph signal xt to be smooth over the graph G,

where the notion of graph-smoothness is formally captured by
the Laplacian quadratic form:

LQG (xt ) := x�t Lxt =
∑
i �= j

W (i, j)(xt (i)− xt ( j))2. (7)

A low value of LQG (xt ) suggests that adjacent nodes i and
j have similar values xt (i) and xt ( j) when the edge weight
W (i, j) is high.

Thus, the quantity:

LQG (X) = 1

T

T∑
t=1

LQG (xt ) = 1

T
tr

(
X�LX

) = tr
(
L�̂

)
(8)

represents the average signal smoothness on top of G, which
can be rewritten as the graph-dependent function:

f (S) = tr
(
Diag(S1)�̂

)− tr
(
S�̂

)
(9)

with S =W. Building upon this quantity, graph learning un-
der a graph smoothness prior can be casted as:

minimize
S

f (S)+ g(S)

s. t. S ∈ S
(10)

where the term g(S) accommodates for additional topolog-
ical properties (e.g., sparsity) and also helps avoiding the
trivial solution S = 0. The set S = {S| diag(S) = 0, S(i, j) =
S( j, i) ≥ 0, i �= j} encodes the topological structure, which
coincides with the set of hollow symmetric matrices (i.e., with
zeros on the diagonal) with positive entries.

Remark 1: In [24], the authors express the smoothness
quantity (8) in terms of the weighted adjacency matrix W
and a matrix Z ∈ R

N×N
+ representing the row-wise (squared)

Euclidean distance matrix of X; i.e., tr(X�LX) = 1
2 tr(WZ) =

1
2‖W� Z‖1. This formulation mainly brings the intuition that
adding explicitly a sparsity term to the objective function
would simply add a constant term to Z. We favour (9) as a
measure of graph signal smoothness since it fits within our
framework, as will be clear soon. We emphasize however how
the two formulations are equivalent, since �̂ can be directly
expressed as a function of Z.

B. ONLINE TIME-VARYING TOPOLOGY IDENTIFICATION
When the graph topology changes over time, the chang-
ing interactions are represented by the sequence of graphs
{Gt = {V, Et , St }}∞t=1, where t ∈ N+ is a discrete time index.
This sequence of graphs, which is discrete in nature, can be
interpreted as the sampling of some “virtual” continuous time-
varying graph using the sampling period h = 1. To relate our
expressions to existing literature, we will make the parameter
h explicit in the formulas, yet it is important to remember that
h = 1. Together with the graph sequence {Gt }∞t=1, we consider
also streaming graph signals {xt }∞t=1, such that signal xt is
associated to graph Gt . At this point, we are ready to formal-
ize the time-varying graph topology identification (TV-GTI)
problem.

Problem statement. Given an online sequence of graph
signals {xt }∞t=1 arising from an unknown time-varying net-
work, the goal is to identify the time-varying graph topology
{Gt }∞t=1; i.e., to learn the graph shift operator sequence {St }∞t=1
from {xt }∞t=1. On top of this, to highlight the trade-off between
accuracy and low-latency of the algorithm’s solution.

Mathematically, our goal is to solve the sequence of time-
invariant problems:

S�
t := arg min

S
F (S; t ) t = 1, 2, . . . (11)

where function F (·; t ) is a time-varying cost function that
depends on the data model [cf. Section II-A], and the index
t makes the dependence on time explicit, which is due to the
arrival of new data. Although we can solve problem (11) for
each t separately with (static) convex optimization tools, the
need of a low-latency stream of solutions makes this strategy
unappealing. This approach also fails to capture the inherent
temporal structure of the problem, i.e, it does not exploit the
prior time-dependent structure of the graph, which is neces-
sary in time-critical applications.

To exploit also this temporal information, we build on
recent advances of time-varying optimization [20], [26] and
propose a general framework for TV-GTI suitable for non-
stationary environments. The proposed approach operates
on-the-fly and updates the solution as a new signal xt be-
comes available. The generality of this formulation enables
us to define a template for the TV-GTI problem, which can
be specialized to a variety of static GTI methods. The only
information required is the first-order (gradient) and pos-
sibly second-order (Hessian) terms of the function. In the
next section, we lay down the mathematics of the proposed
approach. The central idea is to follow the optimal time-
varying solution of problem (11) with lightweight proximal
operations [27], which can be additionally accelerated with a
prediction-correction strategy. This strategy, differently from
other adaptive optimization strategies such as least mean
squares and recursive least squares, uses an evolution model
to predict the solution, and observes new data to correct the
predictions. The considerations of Section III will be then
specialized to the different data models of Section II-A in
Section IV, further analyzed theoretically in Section V, and
finally validated experimentally in Section VI.

III. ONLINE DYNAMIC GRAPH LEARNING
To maintain our discussion general, we consider the composite
time-varying function:

F (S; t ) := f (S; t )+ λg(S; t ) (12)

where f : RN×N × N+ → R is a smooth1 strongly convex
function [28] encoding a fidelity measure and g : RN×N ×
N+ → R is a closed convex and proper function, potentially
non differentiable, representing possible regularization terms.

1We use the term smoothness for functions and the term graph-smoothness
for graph signals.
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For instance, function f (·) can be the GGM objective func-
tion of (2), the SEM least-squares term of (5), or the SBM
smoothness measure in (8).

Solving a time-varying optimization problem implies solv-
ing the template problem:

S�
t := arg min

S
f (S; t )+ λg(S; t ) for t = 1, 2, . . . (13)

In other words, the goal is to find the sequence of optimal
solutions {S�

t }∞t=1 of (13), which we will also call the op-
timal trajectory. However, solving exactly problem (13) in
real time is infeasible because of the computational and time
constraints. The exact solution may also be unnecessary since
by itself it still approximates the true underlying time-varying
graph. Under these considerations, an online algorithm that
updates the approximate solution Ŝt+1 of (13) at time t + 1,
based on the former (approximate) solution Ŝt is highly desir-
able for low complexity and fast execution.2

A. REDUCTION
Instrumental for the upcoming analysis is to observe that the
number of independent variables of the graph representation
matrix plays an important role in terms of storage require-
ments, processing complexity and, most importantly, in the
correct computations of function derivatives with respect to
those variables. Thus, when considering structured matrices,
such as symmetric, hollow or diagonal, we need to take into
account their structure. We achieve this by ad-hoc vectoriza-
tion schemes through duplication and elimination matrices,
inspired by [29].

Consider a matrix S ∈ R
N×N and its corresponding “stan-

dard” vectorization vec(S) ∈ R
N2

. Depending on the specific
structure of S, different reduction and vectorization schemes
can be adopted, leading to a lift from a matrix space to a vector
space. The following spaces are of interest.

h-space. If S is symmetric, the number of independent
variables is k = N (N + 1)/2, i.e., the variables in its diag-
onal and its lower (equivalently, upper) triangular part. We
can isolate these variables by representing matrix S with its
half-vectorization form, which we denote as s = vech(S) ∈
R

k . This isolation is possible by introducing the elimina-
tion matrix E ∈ R

k×N2
and the duplication matrix D ∈ R

N2×k

which respectively selects the independent entries of S, i.e.,
E vec(S) = s, and duplicates the entries of s, i.e, Ds = vec(S).
We call this vector space as the half-vectorization space (h-
space).

hh-space. If S is symmetric and hollow, the number of
independent variables is l = N (N − 1)/2, i.e., the variables
on its strictly lower (equivalently, upper) triangular part. In
this case, we can represent matrix S in its hollow half-
vectorization form, which we denote as s = vechh(S) ∈ R

l .
This reduction is achieved by applying the hollow elimination

2Problem (13) also endows the constrained case, in which the function g(·)
comprises indicator functions associated to each constraint.

and duplication matrices Eh ∈ R
l×N2

and Dh ∈ R
N2×l , re-

spectively, to the vectorization of S. In particular, Eh extracts
the variables of the strictly lower triangular part of the matrix,
i.e., s = Eh vec(S), while Dh duplicates the values and fills in
zeros in the correct positions, i.e., vec(S) = Dhs. We refer to
the associated vector space as the hollow half-vectorization
space (hh-space).

With the above discussion in place, we can now illustrate
the general framework in terms of vector-dependent functions
f (s) for a vector s, in contrast to matrix-dependent functions
f (S), simplifying exposition and notation. However, we un-
derline that the information embodied in S and s is the same.

B. FRAMEWORK
We develop a prediction-correction strategy for problem (13)
that starts from an estimate ŝt at time instant t , and predicts
how this solution will change in the next time step t + 1. This
predicted topology is then corrected after a new datum xt+1 is
available at time t + 1. More specifically, the scheme has the
following two steps:

1) Prediction: at time t , an approximate function F̂ (s; t +
1) of the true yet unobserved function F (s; t + 1) is
formed, using only information available at time t .
Then, using this approximated cost, we derive an esti-
mate s�

t+1|t , of how the topology will be at time t + 1,
using only the information up to time t . This estimate is
found by solving:

s�
t+1|t := arg min

s
F̂ (s; t + 1). (14)

To avoid solving (14) for each t , we find an estimate
ŝt+1|t by applying P iterations of a problem-specific
descent operator T̂ (e.g., gradient descent, proximal
gradient) for which s�

t+1|t = T̂ s�
t+1|t , i.e., s�

t+1|t is a fixed

point of T̂ . See Appendix A for possible instances of T̂ .
In other words, problem (14) is solved recursively as:

ŝp+1 = T̂ ŝp, p = 0, 1, . . . , P − 1 (15)

with ŝ0 = ŝt . Once P steps are performed, the predicted
topology is set to ŝt+1|t = ŝP, which approximates the
solution of (14) and, in turn, will be close to s�

t+1 at time
t + 1.
For our framework, we consider a Taylor-expansion
based prediction to approximate the first term of
F (·; t + 1), i.e., f (·; t + 1) [cf. (12)], leading to the
following quadratic function:

f̂ (s; t + 1) = 1

2
s�∇ss f (ŝt ; t ) s+ [∇s f (ŝt ; t )

+ h∇ts f (ŝt ; t )−∇ss f (ŝt ; t ) ŝt
]� s

(16)

where ∇ss f (·) ∈ R
N×N is the Hessian matrix of f (·)

with respect to s and ∇ts f (·) ∈ R
N is the partial deriva-

tive of the gradient of f (·) w.r.t. time t .

216 VOLUME 3, 2022



Algorithm 1: Online Time-Varying Graph Topology In-
ference.
Require:Feasible Ŝ0, f (S; t0), P, C, operators T̂ and T
1: ŝ0 ←− ad-hoc vectorization of Ŝ0

2: for t = 0, 1, . . . do
3: // Prediction
4: Initialize the predicted variable ŝ0 = ŝt

5: for p = 0, 1, . . . , P − 1 do
Predict ŝp+1 with (15)

6: end for
Set the predicted variable ŝt+1|t = ŝP.

7: // Correction - time t + 1: new data arrive
8: Initialize the corrected variable ŝ0 = ŝt+1|t
9: for c = 0, 1, . . . ,C − 1 do

Predict ŝc+1 with (18)
10: end for

Set the corrected variable ŝt+1 = ŝC

11: end for

To approximate the second term of F (·; t + 1), i.e.,
g(·; t + 1) [cf. (12)], we use a one step-back prediction,
i.e., ĝ(s; t + 1) = g(s; t ). This implies that ĝ(·) does
not depend on t , which in turn makes the constraint
set and the regularization term independent of time,
an assumption usually met in state-of-the-art topology
identification [3]. Henceforth, we will omit this time
dependency.

2) Correction: at time t + 1 the new data xt+1 and hence
the cost function F (s; t + 1) becomes available. Thus,
we correct the prediction ŝt+1|t by solving the correction
problem:

s�
t+1 := arg min

s
F (s; t + 1). (17)

Also in this case, we solve (17) with iterative methods
to obtain an approximate solution ŝt+1 by applying C it-
erations of an operator T . In other words, the correction
problem (17) is addressed through the recursion:

ŝc+1 = T ŝc, c = 0, 1, . . . ,C − 1 (18)

with ŝ0 = ŝt+1|t . Once the C steps are performed, the
correction graph ŝt+1 is set to ŝt+1 = ŝC , which will
approximate the solution s�

t+1 of (17).
Algorithm 1 shows the pseudocode for the general online

TV-GTI framework.
Remark 2: We point out that the framework can adopt

different approximation schemes, such as extrapolation-based
techniques, and can also include time-varying constraint sets.
The choice of approximation-scheme depends on the proper-
ties of the problem itself along with the required prediction
accuracy. For an in-depth theoretical discussion regarding dif-
ferent prediction approaches and relative convergence results,
refer to [30].

IV. NETWORK MODELS AND ALGORITHMS
In this section, we specialize the proposed framework to the
three static topology inference models discussed in Section II-
A. Notice that the data dependency of data-driven graph
learning algorithms is exerted via the empirical covariance
matrix �̂ of the graph signals; we have already shown this
for the three considered models of Section II-A. In other
words, graph-dependent objective functions of the form F (S)
could be explicitly expressed through their parametrized ver-
sion F (S; �̂). This rather intuitive, yet crucial observation, is
central to render the proposed framework model-independent
and adaptive, as explained next.

Non-stationarity. Relying on the explicit dependence of
function F (·) on �̂ and envisioning non-stationary environ-
ments, we let the algorithm be adaptive by discarding past
information. That is, function F (S; t ) in (12) can be written as
F (S; �̂t ), with �̂t the empirical covariance matrix, up to time
t , with past data gradually discarded. This makes the frame-
work adaptive and model-independent. The adaptive behavior
can be shaped by, e.g., the exponentially-weighted moving
average (EWMA) of the covariance matrix:

�̂t = γ �̂t−1 + (1− γ )xt x�t t = 1, 2 . . . (19)

where the forgetting factor γ ∈ (0, 1) downweighs (for γ →
0) or upweighs (for γ → 1) past data contributions. For sta-
tionary environments, an option is the infinite-memory matrix
covariance update �̂t = t−1

t �̂t−1 + 1
t xt x�t .

A. TIME-VARYING GAUSSIAN GRAPHICAL MODEL
The GGM problem (2), adapted to a time-varying setting
following template (13) leads to:

f (S; t ) = − log det(S)+ tr
(
S�̂t

)
(20a)

g(S; t ) = ιS (S) (20b)

where S = S
N++. In this case g(·) encodes the constraint set of

positive definite matrices and the regularization parameter is
λ = 1.

Since S is symmetric, we use the half-vectorization s =
vech(S) ∈ R

k to reduce the number of independent variables
from N2 to k = N (N + 1)/2. Then, the gradient and the Hes-
sian of the function f (·) in the h-space are respectively:

∇s f (s; t ) = D� vec
(
�̂t − S−1) (21a)

∇ss f (s; t ) = D�(S⊗ S)−1D. (21b)

Likewise, the discrete-time derivative of the gradient is given
by the partial mixed-order derivative [26]:

∇ts f (s; t ) = D� vec
(
�̂t − �̂t−1

)
. (22)

Note the Hessian term (21b) is time-independent, while the
time-derivative of the gradient (22) is graph-independent.

Now, by defining ŝt := vech(Ŝt ) ∈ R
k , we can particularize

Algorithm 1 to:
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� Prediction: with ŝ0 initialized as ŝ0 = ŝt , the prediction
update is :

ŝp+1 = PS
[
ŝp − 2αt

(∇s f (ŝt ; t )

+∇ss f (ŝt ; t )
(
ŝp − ŝt

)+ h∇ts f (ŝt ; t )
)]

(23)

for p = 0, 1, . . . , P − 1, where αt is a (time-varying)
step size. (23) entails a descent step along the ap-
proximate function f̂ (·; t + 1) in (16), followed by the
projection onto the convex set S; see Appendix A for the
definition of PS (·). Then, the prediction ŝt+1|t is set to
ŝt+1|t = ŝP.

� Correction: by setting ŝ0= ŝt+1|t , the correction update
is:

ŝc+1 = PS
[
ŝc − βt∇ f

(
ŝc; t + 1

)]
(24)

for c = 0, 1, . . . ,C − 1, where βt is a (time-varying)
step size. (24) entails a descent step along the true func-
tion f (·; t + 1), followed by the projection onto the set
S . The correction ŝt+1 is finally set to ŝt+1 = ŝC .

The prediction step (23) instantiates (15) to T̂ = PS ◦ (I −
αt∇s f̂ )(·), where I (·) is the identity function I (s) = s. Sim-
ilarly, the correction step (24) instantiates (18) to T = PS ◦
(I − βt∇s f )(·). The overall computational complexity of one
PC iteration is dominated by the matrix inversion and matrix
multiplication, incurring a cost of O(N3). A correction-only
algorithm would also incur a cost of O(N3) per iteration. See
Appendix C for details.

B. TIME-VARYING STRUCTURAL EQUATION MODEL
The SEM problem (5), adapted to a time-varying setting with
sparsity-promoting regularizer, leads to [cf. (13)]:

f (S; t ) = 1

2

[
tr

(
S2�̂t

)− 2tr
(
S�̂t

)+ tr
(
�̂t

)]
(25a)

g(S; t ) = ‖S‖1 + ιS (S) (25b)

where S = {S ∈ S
N | diag(S) = 0, S(i, j) = S( j, i), i �= j} is

the set of hollow symmetric matrices, and ‖S‖1 = ‖ vec(S)‖1.
Since S is symmetric and hollow, we operate on the hh-space
to make the problem unconstrained and reduce the number of
independent variables from N2 to l = N (N − 1)/2, through
its hollow half-vectorization form s = vechh(S) ∈ R

l . In the
hh-space, (25a) and (25b) become:

f (s; t ) = 1

2
s�Qt s− 2s�σ̂t + 1

2
σ̂t (26a)

g(s; t ) = 2‖s‖1 (26b)

where Qt := D�h (�̂t ⊗ I)Dh with ⊗ denoting the Kronecker
product, σ̂t = vechh(�̂t ), and σ̂t = tr(�̂t ). Since Qt � 0,
(26a) is convex. To solve the time-varying SEM (TV-SEM)
problem, we derive the gradient and the Hessian of function
f (·) in the hh-space as:

∇s f (s; t ) = Qt s− 2σ̂t (27a)

∇ss f (s; t ) = Qt (27b)

Notice here how the Hessian is time-varying and independent
on s, differently from the GGM case. The time derivative of
the gradient is given by the partial mixed-order derivative:

∇ts f (s; t ) = 1

h

[
(Qt −Qt−1) s− 2 (σ̂t − σ̂t−1)

]
(28)

Now, by defining ŝt := vechh(Ŝt ) ∈ R
l , we can particular-

ize Algorithm 1 to:
� Prediction: set ŝ0 = ŝt . Then, the prediction is the

proximal-gradient update:

up = ŝp − αt
[∇s f (ŝt ; t )

+ ∇ss f (ŝt ; t )
(
ŝp − ŝt

)+ h∇ts f (ŝt ; t )
]

(29a)

ŝp+1 = sign(up)� [|up| − 2αtλ1
]
+ (29b)

for p = 0, . . . , P. (29a) entails a descent step along the
approximate function f̂ (·; t + 1) in (16), followed by the
non-negative soft-thresholding operator in (29b), which
sets to zero all the (negative) edge weights of the graph
obtained after the gradient descent in (29a). See Ap-
pendix A for the formal definition of proximal operator,
leading to (29a) and (29b). The final prediction ŝt+1|t is
set to ŝt+1|t = ŝP.

� Correction: set ŝ0 = ŝt+1|t . Then, the correction is the
proximal-gradient update:

uc = ŝc − βt∇ f
(
ŝc; t + 1

)
(30a)

ŝc+1 = sign(uc)� [|uc| − 2βtλ1
]
+ (30b)

for c = 0, . . . ,C − 1. (30a) entails a descent step along
the true function f (·; t + 1), followed by the non-
negative soft-thresholding operator in (30b). Finally,
ŝt+1 = ŝC .

The prediction step (29) instantiates (15) to T̂ =
proxλg,αt

◦(I − αt∇s f̂ )(·). Similarly, the correction step (30)
instantiates (18) to T = proxλg,βt

◦ (I − βt∇s f )(·). The over-
all computational complexity of one PC iteration is dominated
by the computation of matrix Qt , incurring a cost of O(N3).
A correction-only algorithm would also incur a cost of O(N3)
per iteration. See Appendix C for details.

C. TIME-VARYING SMOOTHNESS-BASED MODEL
The SBM model (10) adapted to a time-varying setting is:

f (S; t ) = tr
(
Diag(S1)�̂t

)− tr
(
S�̂t

)
(31a)

g(S; t ) = λ1

4
‖S‖2F − λ21� log(S1)+ ιS (S) (31b)

where S = {S ∈ S
N |diag(S) = 0, S(i, j) = S( j, i) ≥ 0, i �=

j} is the set of hollow symmetric matrices. The log barrier
term log(S1) is applied entry-wise and forces the nodes
degree vector d = S1 to be positive while avoiding the trivial
solution. The Frobenius norm term ‖S‖2F controls the sparsity
of the graph.
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By operating in the hh-space, (31a) and (31b) become:3

f (s; t )= s�
(
K�σ̂d−2σ̂t

)−λ21� log(Ks)+ λ1

2
‖s‖2 (32a)

g(s; t ) = ιR+ (s) (32b)

where K ∈ {0, 1}N×l is the binary matrix such that d = S1 =
Ks, σ̂d = diag(�̂t ) and σ̂t = vechh(�̂t ).

To apply the proposed framework to solve the time-varying
SBM (TV-SBM) problem, we derive the gradient and the
Hessian of function f (·) in the hh-space as follows:

∇s f (s; t ) = λ1s− λ2K�(1�Ks)+ zt (33a)

∇ss f (s; t ) = λ1I+ λ2K�Diag(1� (Ks)◦2)K (33b)

where � and ◦ represent the Hadamard division and power,
respectively. The time derivative of the gradient is given by
the partial mixed-order derivative:

∇ts f (s; t ) = 1

h
(zt − zt−1) (34)

where zt = K�σ̂d−2σ̂t . Now, by defining ŝt := vechh(Ŝt ) ∈
R

l , we can particularize Algorithm 1 to:
� Prediction: with ŝ0 initialized as ŝ0 = ŝt , the prediction

update is:

ŝp+1 = Ps�0
[
ŝp − 2αt

(∇s f (ŝt ; t )

+ ∇ss f (ŝt ; t )
(
ŝp − ŝt

)+ h∇ts f (ŝt ; t )
)]

(35)

for p = 0, 1, . . . , P − 1. (35) entails a descent step along
the approximate function f̂ (·; t + 1) in (16), followed by
the projection onto the non-negative orthant. Then, the
prediction ŝt+1|t is set to ŝt+1|t = ŝP.

� Correction: by setting ŝ0 = ŝt+1|t , the correction update
is:

ŝc+1 = Ps�0
[
ŝc − βt∇ f

(
ŝc; t + 1

)]
, (36)

for c = 0, 1, . . . ,C − 1. (36) entails a descent step along
the true function f (·; t + 1), followed by the projection
onto the non-negative orthant. Finally, ŝt+1 = ŝC .

The prediction step (35) instantiates (15) to T̂ = Ps�0 ◦
(I − αt∇s f̂ )(·). Similarly, the correction step (36) instantiates
(18) to T = Ps�0 ◦ (I − βt∇s f )(·). The overall computational
complexity per iteration is dominated by the computation of
the gradient ∇s f (s; t ) (or the Hessian if P > 1), incurring
a cost of O(N2) (or O(N3) if P > 1). See Appendix C for
details.

V. CONVERGENCE ANALYSIS
In this section, we first discuss the convergence of Algo-
rithm 1 and the associated error bounds. As solver we consider
the proximal gradient T̂ = T = proxg,ρ ◦(I − ρ∇s f )(·) [31],
[32]. Then, we show how the parameters of the three intro-
duced models are involved in the bounds. To ease notation,

3We move the log-barrier and Frobenius norm terms of g(·) function (31b)
into the f (·) function to fit the structure of the general template.

we use s ∈ R
p to indicate the vectorization of matrix variable

S ∈ R
N×N [cf. Section III-A].

For this analysis, we need the following mild assumptions.
Assumption 1: The function f : Rp × N+ → R is

m-strongly convex and L-smooth uniformly in t , i.e.,
mI � ∇ss f (s; t ) � LI, ∀ s, t , while the function g : Rp ×
N+ → R ∪ {+∞} is closed convex and proper, or g(·; t ) = 0,
for all t ∈ N+.

This guarantees that problem (13) admits a unique solution
for each time instant, which in turn guarantees uniqueness of
the solution trajectory {s�

t }∞t=1.
Assumption 2: The gradient of function f (·) has bounded

time derivative, i.e. ∃ C0 > 0 such that ‖∇ts f (s; t )‖ ≤
C0 ∀ s ∈ R

p, t ∈ N+.
This guarantees that the solution trajectory is Lipschitz in

time.
Assumption 3: The predicted function f̂ (·; t + 1) is m-

strongly convex and L-smooth uniformly in t ; and ĝ(·; t + 1)
is closed, convex and proper.

This implies that the prediction problem (14) belongs to the
same class as the original problem, i.e., the functions of the
two problems share the same strong convexity and Lipschitz
constants m and L. Therefore, the same solver can be applied
for the prediction and correction steps, i.e., T̂ = T .

Assumption 4: The matrix S of (12) has finite entries, i.e.,
−∞< S(i, j)<+∞, for all i, j.

This guarantees ‖S‖ < +∞, i.e., S is a bounded operator,
and it holds in practical scenarios. In particular, it is known
that (finite) weighted graphs exhibit bounded eigenvalues,
see [33][34]. Notably, if S is a normalized Laplacian, then
‖S‖=2.

Similarly, assumptions 1-3 are mild and hold for the con-
sidered models, as we show next.

Proposition 1: The three considered models of Section IV
can be m-strongly convex and L-smooth uniformly in t , for
some scalar m and L, as supported by the following claims.

Claim 1: Denote with ξ > 0 and 0 < χ <∞ the minimum
and maximum admissible eigenvalues of the precision matrix
S, respectively; i.e., consider the set S = {S ∈ S

N++|ξI�S�
χI}. Then, for the TV-GGM function f (·; t ) in (20a), it holds:

m = 1/χ L = 2/ξ . (37)

Claim 2: Denote with λmin and λmax the smallest and high-
est eigenvalues for the set of empirical covariance matrices
obtained with graph signals obeying (4). Then, for the TV-
SEM function f (·; t ) in (26a), it holds:

m = λmin L = 2λmax. (38)

Claim 3: Consider the TV-SBM function f (·; t ) in (32a),
and recall that the log-barrier term avoids isolated vertices,
i.e., d � 0. Denote with dmin > 0 the minimum degree of the
GSO search space. Under these assumptions, it holds:

m = 2λ1 L = 2λ2(N − 1)d−2
min. (39)

See Appendix B for a proof of Claim 1-3.
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Thus, Assumption 1 holds since the Hessian of f (·; t ) is
bounded over time and g(·; t ) is closed, convex and proper
by problem construction; Assumption 2 holds since ∇ts f (s; t )
is the difference between bounded vectors which involve co-
variance matrices not too different from each other (one is the
rank-one update of the other), which is finite as long as the
graph signals are bounded, see (19) and, e.g., (34). Assump-
tion 3 holds since f̂ (·; t + 1) is a quadratic approximation of
f (·; t ) [cf. (16)] and ĝ(·; t + 1) = g(·; t ), thus inheriting the
properties of f (·; t ) and g(·; t ), which satisfy Assumption 1.

With this in place, we are now ready to show two different
error bounds incurred during the prediction and correction
steps performed by Algorithm 1, describing its sub-optimality
as function of the model and algorithm’s parameters. First, we
show the error bound between the optimal prediction solution
s�
t+1|t and the associated optimal correction s�

t+1, which solve
problems (14) and (17), respectively.

Proposition 2: Let Assumptions 1-3 hold. Consider also
the Taylor expansion based prediction (16) for f (·; t ) and
the one-step back prediction for g(·; t ). Then, the distance
between the optimal prediction solution s�

t+1|t , solving prob-
lem (14), and the associated optimal correction s�

t+1, solving
problem (17), is upper bounded by:

‖s�
t+1|t − s�

t+1‖ ≤
2 L

m
‖ŝt − s�

t ‖ +
2C0 h

m

(
1+ L

m

)
(40)

where ŝt is the approximate solution of the correction problem
(17) at time t .

Proof: Follows from [30, Lemma 4.2] in which constant
D0 = 0 by considering a static function g(·). �

This bound enables us to measure how far the prediction is
from the true corrected topology at time t + 1. It depends on
the estimation error ŝt − s�

t achieved at time t , the ratio L/m
and the variability of the function gradient ∇ts f (s; t ). The
bound suggests that a small gap can be achieved if i) the ratio
L/m is small, which for the three considered models translates
in having a small condition number for the involved covari-
ance matrices or GSOs; and ii) the time-gradient ∇ts f (s; t ) at
consecutive time steps does not change significantly, which
holds when the considered models have similar covariance
matrices at adjacent time instants, i.e., the data statistics do
not change too rapidly (see e.g. (22) and (28)).

Finally, we bound the error sequence {‖ŝt − s�
t ‖2, t =

1, 2, . . .} achieved by Algorithm 1 by means of the following
non-asymptotic performance guarantee, which is an adapta-
tion of [30, Proposition 5.1].

Theorem 4: Let Assumptions 1 and 3 hold, and consider
two scalars {dt , φt } ∈ R+ such that:

‖s�
t+1 − s�

t ‖ ≤ dt and ‖s�
t+1|t − s�

t+1‖ ≤ φt (41)

for any t ∈ N+. Let also the prediction and correction steps
use the same step-sizes ρt = αt = βt . Then, by employing P
prediction and C correction steps with the proximal gradient

operator T = proxg,ρt
◦(I − ρt∇s f )(·), the sequence of iter-

ates {ŝt } generated by Algorithm 1 satisfies:

‖ŝt+1−s�
t+1‖2≤qC

t

(
qP

t ‖ŝt − s�
t ‖+qP

t dt+
(
1+ qP

t

)
φt

)
(42)

where qt = max{|1− ρt mt |, |1− ρt Lt |} ∈ (0, 1) is the con-
traction coefficient [35].

Proof: Follows from [30, Proposition 5.1] and [30, Lemma
2.5], with variables λ = qt and χ = β = 1. �

Theorem (42) states that the sequence of estimated graphs
{st }t∈N+ hovers around the optimal trajectory {s�

t }t∈N+ with
a distance depending on: i) the numbers P and C of itera-
tions; ii) the estimation error achieved at the previous time
instant ‖ŝt − s�

t ‖; and iii) the quantities dt and φt . Moreover,
(42) is a contraction (i.e., qC+P

t < 1) when ρt < 2/Lt ; in this
case the initial starting point ŝ0 does not influence the error
ŝt+1−s�

t+1 asymptotically, since the first term in (42) vanishes.
However, the terms dt and φt keep impacting the error also
asymptotically, as long as the problem is time-varying; if the
problem becomes static, i.e., the solution stops varying, then
dt = φt = 0, and the overall error asymptotically goes to zero.

VI. NUMERICAL RESULTS
In this section, we show with numerical results how Algo-
rithm 1, specialized to the three models (TV-GGM, TV-SEM,
TV-SBM), can track the offline solution (13) obtained by the
respective instantiations. For all the experiments, we initial-
ize the empirical covariance matrix �̂0 with some samples
acquired prior to the analysis. We consider P = 1 prediction
steps and C = 1 correction steps, which is the challenging
setting of having the minimum iteration budget for streaming
scenarios. We measure the convergence of Algorithm 1 via
the normalized squared error (NSE) between the algorithm’s
estimate ŝt and the optimal (offline) solution s�

t :

NSE(ŝt , s�
t ) = ‖ŝt − s�

t ‖22
‖s�

t ‖22
. (43)

We use CVX [36] as solver for the offline computations, and
report the required computational time in seconds achieved by
Algorithm 1 and CVX.

A. SYNTHETIC DATA
We generate a synthetic (seed) random graph S0 of N nodes
using the GSP toolbox [37]. Then, edges abide two different
temporal evolution patterns: i) piecewise constant; and ii)
smooth temporal variation. Finally, we generate the stream of
data according to the three considered models [cf. Section IV]
for T time instants.

Piecewise. For the piecewise constant scenario, we ran-
domly select �N/2� nodes of the initial graph S0 and double
the weight of their edges, after T/2 samples. Then, for
t = {1, . . . , T } we generate each graph signal xt accord-
ing to the three models: 1) for the TV-GGM, we use xt ∼
N (0,�t ), where �t = S−1

t ; 2) for the TV-SEM we use xt =
(I− St )−1et [cf. (4)], with noise variance σ 2

e = 0.5; and 3) for
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the TV-SBM we use xt ∼ N (0, L†
t + σ 2

e IN ) as in [38] with
σ 2

e = 0.5.
Smooth. For the smooth scenario, starting from the initial

graph S0, the evolution pattern follows an edge-dependent
behavior, St (i, j) = S0(i, j)(1+ e−0.01i jt ) for t = {1, . . . , T }.
This means that each edge follows an exponential decaying
behavior, with the decaying factor depending on the edge
itself. The data are generated as in the piecewise constant
scenario.

For the results, we will compare the following methods:
� Prediction-correction (PC) red curve: this is the pro-

posed Algorithm 1 specialized to one of the three
models, with P = C = 1.

� Correction-only (CO) cyan curve: this is a prediction-
free algorithm which only considers the original prob-
lem (17) and applies C = 1 iteration of the recur-
sion (18). It is equivalent to Algorithm 1 with P =
0,C = 1. We consider this algorithm to study the ben-
efits of the prediction step performed by PC.

� Correction-correction (CC) blue curve: this is a
prediction-free algorithm which only considers the orig-
inal problem (17) and applies C = 2 iterations of the
recursion (18). It is equivalent to Algorithm 1 with P =
0,C = 2. This is a more fair comparison than CO, since
the number of iterations is the same as the one of PC.

� Stochastic gradient descent (SGD) ochre curve: this
is a prediction-free and memory-less version of the al-
gorithm which only considers the last acquired graph
signal. That is, the empirical covariance matrix �̂t =
xt x�t in (19) is just a rank-one update, achieved by set-
ting γ = 0. We consider this to show how much the
temporal variability of the function, captured by the
time-derivative of the gradient in PC, affects the algo-
rithm’s convergence.

� Prediction-correction rank-one (PC-1) purple curve:
this is a rank-one (stochastic) implementation of the PC
algorithm; i.e., �̂t = xt x�t for the update in (19), and
P = C = 1. Notice that, differently from SGD, it also
uses the time-derivative of the gradient, which in this
case is the difference between two rank-one covariance
matrices (thus the length of the memory is equal to
one). We consider this algorithm to check the impact
of the prediction step in a stochastic implementation
of PC;

� Correction-correction rank-one (CC-1) orange curve:
this is a rank-one (stochastic) implementation of the CC
algorithm; i.e., it considers �̂t = xt x�t for the update
in (19), and P = 0,C = 2. It can be seen as a two-step
SGD, and we consider it to study whether the prediction
step of PC-1 is beneficial for stochastic implementations.

In addition, for the piecewise constant scenario, we also
report (green curve) the NSE between the PC solution and the
batch solution obtained having all the relevant data in advance,
i.e., the solution that would be obtained with a static graph
learning algorithm on the intervals where the graph remains
constant. In general, a fair comparison can be made within the

rank-one implementations (SGD, PC-1 and CC-1) and within
the memory-aware ones (PC, CO, CC).

Results. The NSE achieved by Algorithm 1 for the three
models is shown in Fig. 1, for both the piecewise constant
(top row) and smooth (bottom row) scenarios. We use fixed
step sizes for all the experiments. Notice that the only effect of
the functions’ hyperparameters is to shape the batch solution
s�
t (and hence the time-varying trajectory ŝt at convergence).

Thus, we run Algorithm 1 with different hyperparameters4

and manually select them by ensuring that the trivial and
complete graphs are excluded; the selected ones are displayed,
together with the other algorithm’s parameters, in the captions
of Fig. 1.

GGM. Fig. 1(a) and Fig. 1(d) show the results for the
piecewise constant and smooth scenarios, respectively. In both
scenarios, the PC solution converges to the optimal offline
counterpart and, for the piecewise constant, also to the batch
solution(s). This demonstrates the adaptive nature of Algo-
rithm 1 to react to changes in the data statistics. While for
the piecewise constant scenario PC and CC offer the same
convergence speed (which is expected, as explained in “Does
prediction help?”), for the smooth scenario, the PC algorithm
exhibits a faster convergence with respect to the prediction-
free competitors CO and CC. This is because the temporal
variability of the function (and of its gradient) is captured by
the prediction step and exploited to fasten the convergence.

SEM. Similar considerations hold for the TV-SEM, whose
results are illustrated in Fig. 1(b) and Fig. 1(e). In both scenar-
ios, PC and CC offer the same convergence rate (which also
converge to the batch solution for the constant scenario), faster
than a CO and SGD implementation. Interestingly, after the
triggering event at T/2, SGD can track the optimal solution
faster than CO with performances similar to PC and CC.
A possible justification may be the memory-less nature of
SGD, i.e., it only considers the last sample for the gradient
evaluation, thus discarding past data. This renders the SGD
more reactive to adapt to sudden changes of the data statistics
compared to the memory-aware alternatives, which however
exhibit similar performances thanks to the extra iteration they
can benefit.

SBM. Finally, the TV-SBM results are shown in Fig. 1(c)
and Fig. 1(f). Also in this case, the PC solution converges to
the offline counterpart for the two scenarios and faster than
the prediction-free versions of the algorithm CC and CO.
In particular, while in the piecewise constant scenario PC
converges faster than CC and the rank-one implementations,
in the smooth scenario the rank-one implementations exhibit
faster convergent behavior with respect to the non-stochastic
implementations. Similar to what has been said for the TV-
SEM results, a possible reason can be the memory-aware
characteristics of the non-stochastic methods; that is, while
the information present in past data can be beneficial in the

4The search space intervals for the hyperparameters are the fol-
lowing: α, β ∈ (0.01, 1)× 10−2, λ ∈ (0.005, 5), λ1, λ2 ∈ (1, 10), γ ∈
{97, 99, 99.9} × 10−2.
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FIGURE 1. Normalized squared error (NSE) for the piecewise-constant (top row) and smooth (bottom row) synthetic scenarios between our online
solution ŝt (or the other variants reported in the legend) with respect to the offline solution s�

t obtained with CVX. For the piecewise-constant scenario, it
is also illustrated the NSE between the PC solution and the batch solution (green curve). Stochastic implementations are available for a subset of
methods due to numerical instabilities caused by the rank-one matrix operations involved.

FIGURE 2. (a) NSE of PC with P = 2 and C = 1, CO with C = 1 and CC with
C = 3 for the piecewise constant scenario; (b) Norm of the time-derivative
of the gradient as a function of the iteration index for the smooth scenario.

static scenario and thus help PC and CC to have a more
reliable estimate of the true underlying (static) covariance
matrix (and of the gradient), it may slow down the process
in non-stationary environments with time-varying covariance
matrices as in the smooth scenario.

Required time. An important metric to consider in time-
sensitive applications is the average time per iteration. We
report this information in Table 1, for the PC step and CVX,
relative to the three considered models and settings in the top
row of Fig. 1.

Combining the information of the table and that of the plots
in Fig. 1, it is clear how trading off the knowledge of the op-
timal solution for savings in terms of time seems an excellent

TABLE 1. Average Time (Expressed in Seconds) Required to Compute the
PC and the CVX Solution at Each Time Instant

compromise. Each prediction-correction step requires indeed
around three orders of magnitude less time than the CVX
counterpart, leading to a NSE at least smaller than 10e− 1.

Does prediction help? Notice how in the piecewise constant
scenario, the PC strategy does not seem to offer a major ad-
vantage with respect the CC strategy. Although this behavior
could be hypothesized (since the setting is static), it is here
empirically confirmed. To can gain more insights we look
at the structure of the prediction step (e.g., (23)), where the
components playing a role in the descent direction are: the
gradient ∇s f (·); the Hessian ∇ss f (·); and the time-derivative
of the gradient ∇ts f (·). Since we use P = 1, i.e., only one
prediction step, the term (ŝp − ŝt = 0) that multiplies the Hes-
sian does not contribute to the descent step. The added value
of the prediction step with respect to a general (correction)
descent method, in this case, would be only provided by the
time-gradient ∇ts f (·) (since the gradient ∇s f (·) is common to
either the prediction and the correction step). In the piecewise
constant scenario, however, the underlying (true) covariance
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FIGURE 3. (a) Standardized time series for the period August 12th 2019 - August 10th 2021; (b) graph temporal deviation for the stock market graph
inferred with TV-GGM. The sharp peaks around March 2020 and after January 2021 happen consistently with real events; (c) inferred topologies at four
different dates of interest. The absence of an edge between two nodes indicates their conditional independence.

matrix is time-invariant within the two stationary intervals,
leading to a zero time-derivative of the gradient (cf. (22)).
This means that in static scenarios, with P = 1, the prediction
step boils down to a correction step. Differently, for P = 2,
the contribution of the second-order information may speed
up the convergence, as illustrated in Fig. 2(a) for TV-GGM,
with respect to a correction-only algorithm using C = 3.

In the smooth scenario, the temporal variability of the gra-
dient captured by the time-derivative of the gradient ∇ts f (·),
plays a role in the prediction step, which can improve the
convergence speed of the algorithm. The (bounded) norm
of this vector over time is illustrated in Fig. 2(b) for the
TV-GGM smooth scenario of Fig. 1(d); this norm is linked
to the constant C0 introduced in Assumption 2 and the error
in (40).

All in all, the results indicate the convergence of Algo-
rithm 1 to the optimal offline counterpart and its capability
to track it in non-stationary environments. The algorithm
also converges to the batch solutions of the two stationary
intervals, obtained with all the relevant data. A defining char-
acteristic of Algorithm 1 is its ability to naturally enforce
similar solutions at each iteration, achieved with an early
stopping of the descent steps, governed by the parameters
P and C. That is, the algorithm adds an implicit temporal
regularization to the problem which needs to be explicitly
added when working with the entire batch of data.

Given these results and insights, we can outline a few prin-
ciples that can be adopted when considering Algorithm 1 for
learning problems:
� The prediction step with P = 1 can be beneficial when

the underlying data statistics change over time, so that
the time-variability of the gradient can be exploited. Oth-
erwise, in a complete static scenario, it coincides with a
correction step.

� Increasing P can improve the convergence speed when
the approximated cost function is a good surrogate of
the cost function in the next time instant.

� Memory-less (stochastic) variants of the algorithm can
be suitable in fast-changing environments, due to their

FIGURE 4. (a) Standardized time series for the 25 Irish weather stations
and (b) evolution of each edge weight over time.

ability to discard past information and react quickly to
changes in data statistics.

Being confident on the convergence of the algorithm, we
now corroborate its performance with real data.

B. REAL DATA
We now test the three considered algorithms on real data.
Among other indicators employed in the simulations to assess
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FIGURE 5. Ireland temperature dataset. (a) Number of edges of the inferred graph over time. The red vertical lines correspond to January 15 of each year
(winter), while the blue vertical line correspond to October 15 (autumn); snapshot of the inferred time-varying graph during (b) October 2016 (autumn
graph) and (c) January 2017 (winter graph). Notice how stations close in space tend to be connected.

the performance of the algorithm, we use the graph tem-
poral deviation TD(t ) := ‖ŝt − ŝt−1‖2, which measures the
global variability on the edges of the graph for different time
instants. To gain further insights on the network evolution
over time, we consider additional metrics (such as number of
edges and temporal gradient norm) and visual analysis tools
which will be introduced in the application-specific scenario
at hand. In this case, the hyperparameters of each function
are chosen in such a way that the inferred graphs are nei-
ther trivial nor complete, and interpretable patterns consistent
with real events are visible from the plots of the employed
metrics.

TV-GGM for Stock Price Data Analysis.
Data description: we collect historical stock (closing)

prices relative to the S&P500 Index for seven pharmaceutical
companies over the time period August 12th 2019 to August
10th 2021 using [39]. The collected data include the economic
crisis related to the COVID-19 pandemic, followed by the
vaccination campaign. The companies of interest are Pfizer
(PFE), Astrazeneca (AZN), Johnson & Johnson (JNJ), Glax-
oSmithKline (GSK), Moderna (MRNA), Novavax (NVAX)
and Sanofi (SNY). Our goal is to leverage the TV-GGM in
order to explore the relationships among these companies over
time and observe the possible structural changes due to market
instabilities.

Results: We consider T = 504 measurements (working
days in August 2019 - August 2021) as graph signals {xt } for
the N = 7 quantities of interest, which are further standard-
ized, i.e., each variable is centered and divided by its empirical
standard deviation; see Fig. 3(a) for a plot of the standardized
time series. We run the TV-GGM algorithm for different val-
ues of the forgetting factor γ , and monitor the evolution of the
metrics earlier introduced. The value γ = 0.75 yielded results
most consistent with the data behavior.

It is clear from Fig. 3(a) and the TD indicator in Fig. 3(b)
that around March 2020 and after January 2021 the market
has changed significantly, due to the instability generated by
the pandemic and by the follow-up starting vaccination cam-
paign. The sharp peaks in Fig. 3(b) around around the same
period are a consequence of the dynamic inter-relationships

FIGURE 6. Graph temporal deviation for the epilepsy study. The red line
indicates the seizure onset. During the ictal interval, a higher temporal
deviation can be observed, indicating that the inferred graph is changing
substantially.

among the companies; the inferred graph changes substan-
tially in the two periods of interest and TD captures the market
variability.

To really enjoy the visualization potential offered by graphs
as a tool, we show in Fig. 3(c) snapshots of the inferred
time-varying graph at four different dates of interest. Common
among the four graphs is the presence of the edge connecting
MRNA and NVAX, and the edge connecting AZN and SNY.
The pharmaceutical companies associated to the endpoints
of each of these two edges also show a similar trend in
Fig. 3(a). Notice moreover that since the sparsity pattern of
the precision matrix reveals conditional independence among
the variables indexed by its zero entries, these graphs enable
us to visually inspect such independence over time. Although
the information endowed in these graphs may carry a finan-
cial significance, we leave this possible knowledge-discovery
task out of this manuscript, to avoid misleading or erroneous
interpretations.

TV-SEM for Temperature Monitoring.
Data description: for this experiment we consider the

publicly available weather dataset5 provided by the Irish Me-
teorological Service, which contains hourly temperature (in

5[Online]. Available: https://www.met.ie/climate/available-data/historical-
data
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FIGURE 7. Epilepsy dataset. (a) Evolution of each edge weight over time; (b) snapshots of the inferred time-varying graph at time instant 1500 and 1800.
The color of an edge indicates its weight, with darker colors indicating higher weights, while the color of a node indicates the closeness centrality of such
node, with brighter colors indicating higher values of closeness centrality.

◦C) data from 25 stations across Ireland. We monitor the
temperature evolution over the sensor network for the period
January 2016 to May 2020, and leverage the TV-SEM to
infer the time-varying features of the graph learned by the
algorithm.

Results: for the analysis we consider T = 38713 measure-
ments as graph signals {xt } for the N = 25 stations under
consideration, standardizing the data as done in the previous
experiment; Fig. 4(a) depicts the standardized time series.
It is interesting to notice the sinusoidal-like behavior of the
aggregate time-series, due to higher (lower) temperature dur-
ing the summer (winter) period, resulting in a smooth signal
profile.

Fig. 4(b) illustrates the sparsity pattern of the time-varying
graph and the importance of the weights at every time instant.
This learn-and-show feature offered by Algorithm 1 gives us
the ability to visualize the learning behavior of the algorithm
on-the-fly, a strength of low-cost iterative algorithms w.r.t.
batch counterparts. From the figure (and the observed almost
zero graph temporal deviation, which is not illustrated here)
a consistent temporal homogeneity is visible, i.e., the graph
does not change significantly over adjacent time instants. In
other words, nodes influencing each other in a particular time
instant, are likely to influence each other in other time instants.
A reasonable explanation is given by the smooth and regular
pattern exhibited by the time-series of Fig. 4(a), which is a
consequence of the meteorological similarity over time, and
by their high correlation coefficient.

An interesting trend arises when observing the number of
edges of the graph inferred over time, shown in Fig. 5(a). Al-
though in adjacent time instants the number does not change
abruptly, a pattern can be identified over a longer time span.
In particular, during winter and summer there is a sharp in-
crement in the number of edges, with respect to autumn and
spring where there is a significant reduction. To ease the
visualization, the vertical red lines are placed in correspon-
dence of the winter period of every year, while blue lines in
correspondence of the autumn period. A possible reason for
this phenomenon is given by the reduced variability of the
temperature among the stations during summer and winter,

and a higher variability during spring and autumn, leading to
different graphs.

For the sake of visualization, we also report the inferred
graphs for October 2016 (autumn) and January 2017 (winter).
In line with our previous comments regarding Fig. 5(a), a
lower number of edges is visible in the autumn graph with
respect to the winter graph; in particular, edges present in
the autumn graph are also present in the winter one. Finally,
notice how stations close in space tend to be connected, thus
showing how stations close to each other have a greater influ-
ence with respect to stations farther away in space.

TV-SBM for Epileptic Seizure Analysis.
Data description: we use electrocorticography (ECoG)

time series collected during an epilepsy study at the University
of California, San Francisco (UCSF) Epilepsy Center, where
an 8 × 8 grid of electrodes was implanted on the cortical
brain’s surface of a 39-year-old woman with medically refrac-
tory complex partial seizure [40]. The grid was supplemented
by two strips of six electrodes: one deeper implanted over
the left suborbital frontal lobe and the other over the left
hippocampal region, thus forming a network of 76 electrodes,
all measuring the voltage level in proximity of the electrode,
which is an evidence of the local brain activity. The sampling
rate is 400 Hz and the measured time series contains the 10
seconds interval preceding the seizure (pre-ictal interval) and
the 10 seconds interval after the start of the seizure (ictal inter-
val). Our goal is to leverage the TV-SBM in order to explore
the dynamics among different brain areas at the seizure onset.

Results: for our analysis we consider T = 3200 time in-
stants as graphs signals {xt } for the N = 76 electrodes,
which are further filtered (over the temporal dimension)
at {60, 180}Hz to remove the spurious power line fre-
quencies, and standardized as explained in the previous
experiments.

Fig. 6 shows the graph temporal deviation, where we
observe an increasing and protracted variability of the TD
shortly after the seizure onset (red vertical line), proving TD
to serve as an indicator of network alteration suitable for
time-varying scenarios. To visualize the on-the-fly learning
behavior of the algorithm, in Fig. 7(a) we show the evolution
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of (a fraction6 of) the edge weights over time. In the first half
of the time-horizon, we notice the presence of stronger edges
with respect to the second half, where the graph is sparser. We
show two snapshots of the time-varying graph in Fig. 7(b),
for the time instants 1500 (pre-ictal) and 1800 (ictal), where
we also report the closeness centrality of each node, which
expresses how “close” a node is to all other nodes in the
network (calculated as the average of the shortest path length
from the node to every other node in the network). During the
ictal interval, the graph tends to be more disconnected and its
nodes to have a lower closeness centrality value, especially in
the lower part of the graph. In addition, we observe how the
number of (strong) edges and the closeness centrality value
drop in the ictal graph, especially in the lower part of the
graph. This is consistent with the findings in [40] and indicates
that, on average, signals in the pre-ictal interval behave more
similar to each other as opposed to the signals in the ictal
interval.

VII. CONCLUSION
In this manuscript, we proposed an algorithmic template to
learn time-varying graphs from streaming data. The abstract
time-varying graph learning problem, where the data influ-
ence is expressed through the empirical covariance matrix,
is casted as a composite optimization problem, with different
terms regulating different desiderata. The framework, which
works in non-stationary environments, lies upon novel itera-
tive time-varying optimization algorithms, which on one side
exhibit an implicit temporal regularization of the solution(s),
and on the other side accelerate the convergence speed by
taking into account the time variability. We specialize the
framework to the Gaussian graphical model, the structural
equation model, and the smoothness-based model, and we
propose ad-hoc vectorization schemes for structured matri-
ces central for the gradient computations which also ease
storage requirements. The proposed approach is accompanied
by theoretical performance guarantees to track the optimal
time-varying solution, and is further validated with synthetic
numerical results. Finally, we learn time-varying graphs in the
context of stock market, temperature monitoring, and epileptic
seizures analysis. The current line of work can be enriched
by specializing the framework to other static graph learning
methods present in literature, possibly considering directed
graphs, by implementing distributed versions of the optimiza-
tion algorithms, and by applying the developed models in
other real-world applications.

APPENDIX A
Consider the multi-valued function T : RN → R

N , which we
will refer to as operator. Here, we briefly review some opera-
tor theory concepts used in this manuscript; see [41].

6For visualization, we show 500 random edges, since we recall that the
number of total edges in an undirected graph of N nodes is N (N − 1)/2.

Projection operator. Given a point x ∈ R
N , we define pro-

jection of x onto the convex set C ⊆ R
N as:

PC (x) := arg min
z∈C

1

2
‖z− x‖2 (44)

Proximal operator. Consider the convex function g : RN →
R. We define the proximal operator of g(·), with penalty pa-
rameter ρ > 0, as:

proxg,ρ (x) := argmin
z

{
g(z)+ 1

2ρ
‖z− x‖22

}
(45)

For some functions, the proximal operator admits a closed
form solution [35, Ch. 6]. In particular:
� if g(x) = ιC (x) then proxg(x) = PC (x), i.e., it is the pro-

jection of x onto the convex set C.
� if g(x) = λ‖x‖1 then proxg(x) = sign(x)� [x − λ1]+,

i.e., it is the soft-thresholding operator.
Consider the convex minimization problem:

min
x

f (x)+ g(x) (46)

with f , g : RN → R convex. It can be shown that problem
(46) admits at least one solution [42], which can be found by
the fixed point equation:

x = proxg,ρ (x − ρ∇ f (x)) (47)

APPENDIX B
Proof of Claim 1: TV-GGM: Recall the expression of the
Hessian in (21b), i.e., H(S) = D�(S⊗ S)−1D and that matrix
S ∈ S is the precision matrix, with S = {S ∈ S

N++|ξI � S �
χI}. For the strong convexity, notice that since S � 0, then
also H(S) � 0. Indeed, by exploiting the semi-orthogonality
of matrix D/

√
2, we have:

λmin(H(S)) = min
‖x‖=1

x�D�(S⊗ S)−1Dx

≥ min
‖x‖=1

x�
D�√

2
(S⊗ S)−1 D√

2
x = min

‖y‖=1
y�(S⊗ S)−1y

= min
‖z‖=1

N∑
i=1

N∑
j=1

ziz j

λi(S)λ j (S)
≥ 1

λ2
max(S)

= 1/χ2 (48)

For the Lipschitz continuity of the gradient, we have

‖D�(S⊗ S)−1D‖ ≤ ‖D‖2‖(S⊗ S)−1‖
= 2‖(S⊗ S)−1‖ = 2‖S−1 ⊗ S−1‖
= 2

√
λmin(S)−2 = 2/ξ (49)

�
Proof of Claim 2: TV-SEM
Denote with λmin and λmax the smallest and highest eigen-

values for the set of empirical covariance matrices obeying the
SEM model. Recall the expression of the Hessian in (27b), i.e.
H(S; t ) = Qt , where Qt := D�h (�̂t ⊗ I)Dh. Since Dh/

√
2 is a
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semi-orthogonal matrix, we have:

λmin(H(S)) = min
‖x‖=1

x�D�h
(
�̂t ⊗ I

)
Dhx

≥ min
‖y‖=1

y�
(
�̂t ⊗ I

)
y = min

‖z‖=1

N∑
i=1

λi
(
�̂t

)
z2

i ≥ λmin (50)

where λmin is the smallest eigenvalue of �̂t .
For the Lipschitz continuity of the gradient, we have:

‖D�h
(
�̂t ⊗ I

)
Dh‖ ≤ 2‖�̂t ⊗ I‖ = 2λmax (51)

�
Proof of Claim 3: TV-SBM: For the strong convexity it

suffices to notice that for m > 0, f (s; t )− m
2 ‖s‖2 = s�zt −

λ21� log(Ks)+ (λ1 − m
2 )‖s‖2 is convex. In turn, this implies

that strong convexity of f (·; t ) is guaranteed for 0 < m ≤ 2λ1.
For the Lipschitz continuity of the gradient, recall that

nodal degree vector d � 0. Denote with dmin the min-
imum degree of the GSO search space. Also, recall
the expression of the Hessian H = K�Diag(1� (Ks)◦2)K.
Then:

‖K�Diag
(
1� (Ks)◦2

)
K‖≤‖K‖2 max

(
1� (Ks)◦2

) )
= ‖K‖2d−2

min = 2(N − 1)d−2
min, (52)

where we made use of [19, Lemma 1] for the bound of K. �

APPENDIX C
The computational (arithmetic) complexity per iteration of
Algorithm 1 is dominated by the rank-one covariance matrix
update in O(N2) and by the method-specific gradient com-
putations involved in the prediction and correction steps (and
eventually Hessian, if P > 1 [cf. Section VI “Does prediction
help?” ]). Such method-specific computational complexities
are shown next, together with a discussion on the costs for the
offline counterparts.

TV-GGM. The worst case scenario computational com-
plexity of the gradient ∇s f (s; t ) in (21a) is O(N3), which is
due to the matrix inversion. This cost might be lowered ex-
ploiting the sparsity pattern of the sparse triangular factor of S
or, in our case, exploiting the fact that it is a small perturbation
with respect to the previous iterate. The multiplication with
matrix D� has a cost of O(N2), since D ∈ R

N2×N (N+1)/2 has
at most two 1’s in each column and exactly one 1 in each
row.

The worst case scenario computational complexity of the
Hessian ∇ss f (s; t ) in (21b) would be O(N3). However, be-
cause the Hessian is used in a matrix-vector multiplication
[cf. (23)], its factorization leads to a cost for the prediction
step of O(N3). Indeed, exploiting the Kronecker product, the
Hessian can be written as D�(S−1 ⊗ IN )(IN ⊗ S−1)D; then,
the multiplication of the Hessian for a vector simply entails
the succession of four sparse matrix-vector multiplications all
with a cost of O(N3).

The term ∇ts f (s; t ) in (22) has a computational complexity
of O(N2). Thus the overall computational complexity per
iteration is O(N3).

TV-SEM. The overall cost is dominated by the computa-
tion of Qt = D�h (�̂t ⊗ I)Dh, which is present in the gradients
and the Hessian. The matrix-matrix multiplication(s) have a
cost of O(N3), since Dh ∈ R

N2×N (N−1)/2 has at most two 1’s
in each column and exactly one 1 in each row. Thus the overall
computational complexity per iteration is O(N3).

TV-SBM. Each column of K has exactly two non-zero
entries (and each row has N − 1 non-zero entries), thus Ks
has a computational cost of 2|E |, with |E | the number of edges
of the graph represented by S (in other words, ‖s‖0). The op-
eration K�(1�Ks) has a cost of O(N2). The computational
complexity of the Hessian is O(N3), since it is the weighted
sum of N outer products of vectors which are (N − 1)-sparse
in the same positions.

Thus the overall computational complexity per iteration is
O(N2) if P = 0, 1 and O(N3) if P > 1.

Offline. The computational complexity for each time in-
stant t incurred by an offline solver to solve instances of
problem (13) depends by its algorithm-specific implemen-
tation closely related to the problem structure. The three
problems we consider are (converted into) semidefinite pro-
grams (SDPs) and solved, in our case, by SDPT3, a Matlab
implementation of infeasible primal-dual path-following al-
gorithms, which involves the computation of second-order
information. Since these computations are continuously re-
peated, for a fixed time instant t , till the algorithm conver-
gence (say I iterations), a trivial lower bound for computing
the offline solution for the three considered problems is
�(IN3). To this cost must be also added the cost of other
solver-specific steps which we do not explicitly consider
here.
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