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ABSTRACT: 

Updated and detailed indoor models are being increasingly demanded for various applications such as emergency management or 
navigational assistance. The consolidation of new portable and mobile acquisition systems has led to a higher availability of 3D point 
cloud data from indoors. In this work, we explore the combined use of point clouds and trajectories from SLAM-based laser scanner 
to automate the reconstruction of building indoors. The methodology starts by door detection, since doors represent transitions from 
one indoor space to other, which constitutes an initial approach about the global configuration of the point cloud into building rooms.  
For this purpose, the trajectory is used to create a vertical point cloud profile in which doors are detected as local minimum of 
vertical distances. As point cloud and trajectory are related by time stamp, this feature is used to subdivide the point cloud into 
subspaces according to the location of the doors. The correspondence between subspaces and building rooms is not unambiguous. 
One subspace always corresponds to one room, but one room is not necessarily depicted by just one subspace, for example, in case 
of a room containing several doors and in which the acquisition is performed in a discontinue way. The labelling problem is 
formulated as combinatorial approach solved as a minimum energy optimization. Once the point cloud is subdivided into building 
rooms, envelop (conformed by walls, ceilings and floors) is reconstructed for each space. The connectivity between spaces is 
included by adding the previously detected doors to the reconstructed model. The methodology is tested in a real case study.   

1. INTRODUCTION

The increasing availability of point clouds and their respective 
acquisition systems has driven the automated analysis of point 
clouds to a research topic of great importance in remote sensing, 
computer vision and robotic communities. Despite the 
increasingly demand of updated and detailed indoor models, 
indoor reconstruction is still in an early stage in comparison 
with the reconstruction of outdoor scenes (Zlatanova et al 2013, 
Volk et al 2014). Not only reconstruction of indoor 
environments but also data acquisition present specific 
challenges due to complex building layouts and high presence 
of elements such as pieces of furniture causing clutter and 
occlusions.  

The consolidation of new portable and mobile acquisition 
systems has led to a higher availability and quality of 3D point 
cloud data from indoors, especially in terms of data 
completeness. Advances in the reduction of size and weight of 
laser scanning sensors, together with improvements in indoor 
positioning techniques, have led to the development of Indoor 
Mobile Mapping Systems (IMMS). Most of these systems 
implement the technique of Simultaneous Localization and 
Mapping (SLAM), which consists in the construction of an 
incremental map of the unknown environment and the 
simultaneous localization within it (Bailey and Durrant-Whyte, 
2006). Knowing the trajectory followed by the system and the 
points acquired from each trajectory location, the point cloud 
can be directly reconstructed.  

IMMS can be classified in three groups according to the 
platform in which sensors are placed: cart, backpack and 
handheld. Cart-based systems, such as the iMS 3D developed 

by Viametris Company and the system developed by Nutcher et 
al (2013), are usually conformed by several LiDAR and RGB 
sensors and they can continuously scan complex building 
layouts moving around furniture to avoid occlusions. However, 
stairs and multi-level floors represent a considerable difficulty 
to the survey. Backpack-based systems (Filgueira et al, 2016) 
and handheld systems such as Zeb-Revo from GeoSLAM 
Company are designed to solve these difficulties at the expense 
of reducing weight and autonomy. In any case, SLAM-based 
LiDAR systems offer not only the reconstructed point cloud but 
also the trajectory followed by the system during the acquisition 
process. Trajectory and point cloud are usually related by 
timestamp, meaning that from each position in the trajectory we 
know which points in the point cloud were acquired by the 
system. This concept is used by Verbree and van Oosterom 
(2003) to reconstruct surfaces by a Delaunay Tetrahedronized 
Irregular Network approach. Additionally, trajectory represents 
a navigable path within the building. Doors connecting adjacent 
spaces are implicitly represented in the trajectory. However, 
most of literature on building indoor reconstruction is not using 
trajectory as input in the reconstruction process.  

Several methods focused specifically on indoor reconstruction 
have been recently developed, applying either approximations 
of point clouds such as voxel-based approaches (Broersen et al 
2016, Rodenberg et al 2016) or attempting to estimate features 
directly within the point cloud. While the first approach focus 
on the delineation of the free or obstacle space, the second 
approach deals with reconstruction of indoor features (walls, 
floors, ceiling, doors, and furniture). Their performance can 
hardly be compared since it mostly depends on the level of 
clutter and occlusions of the input point cloud and on the 
geometric, topological and semantic detail of the output model. 
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Most of the existing approaches dealing directly with the point 
cloud can be classified into three categories: linear primitive 
detection, planar primitive detection and volumetric primitive 
fitting.  
 
2D primitive extraction followed by extrusion is a widely used 
technique in indoor modelling for reconstructing assumed 
planar and vertical surfaces. Methods addressing indoor 
modelling from a 2D perspective generally perform on isolated 
floor levels and in the absence of clutter. Recent approaches 
belonging to this category show good results in large-scale 
indoor reconstruction. For example, Okorn et al (2010) present 
an approach based on the use of the Hough transform for 
detecting lines but the method is restricted to Manhattan-World 
(MW) scenes and the output constitutes a set of unconnected 
wall segments. Oesau et al (2014) develop a methodology for 
modelling both MW and non-MW structures by applying cell 
decomposition after line fitting followed by a graph cut 
optimization. Ochmann et al (2016) reconstruct building indoors 
from point clouds already distributed into separate rooms. 
Vertical planes are projected to the horizontal plane as wall 
surface lines and the labelling step is solved as an energy 
minimization problem. Their methodology also applies to MW 
and non-MW structures.  
 
Planar primitive detection is also widely used in indoor 
reconstruction. Sanchez and Zakhor (2012) classify point clouds 
in four classes (floor, ceiling, wall and remaining points) from 
their point normal orientations. Then, planar fitting using 
RANSAC is applied to the first three classes, and their extents 
are estimated using alpha shapes. However, the output is a set of 
unconnected surfaces. Díaz-Vilariño et al (2016) also start by 
point cloud classification but they determine the geometry of 
floors, walls and ceilings by intersecting planes according to 
their adjacency. The remaining points are used to obstacle 
detection for indoor path planning. Another planar primitive 
detection approach is the one proposed by Budroni and Boehm 
(2010). They implement a sweeping technique to identify walls 
in MW structures based on point density.  
 
Volumetric primitive detection generally imposes a stronger 
regularity. This aspect might be positive in highly cluttered 
environments but it implies less flexibility; these approaches are 
usually restricted to MW structures. Xiao and Furukawa (2012) 
introduce an inverse constructive solid geometry algorithm. 
After detecting linear wall segments in 2D sections, they are 
combined according to their parallelism and orthogonally for 
generating candidate primitives (cuboids). Khoshelham and 
Díaz-Vilariño (2014) develop a grammar-based methodology to 
reconstruct MW indoor spaces by iteratively placing, 
connecting and merging cuboids. Structural elements are 
subsequently derived from final indoor spaces. Both approaches 
are tested under the absence of clutter.  
 
Apart from ceilings, floors and walls, windows and doors are 
also permanent structures of building indoors. While windows 
can be modelled from outdoors, most of doors can just be 
addressed from an indoor perspective. The subject of door 
detection in indoors has been considered in previous research. 
Xiong et al (2013) detect doors from a voxel-based labelling 
approach. Doors are considered as openings in the wall 
structures, and therefore, the methodology is restricted to open 
doors and door passes. Díaz-Vilariño et al (2015) carry out the 
extraction of closed doors by applying the Generalized Hough 
Transform on wall orthoimages generated from coloured point 
clouds acquired with a Terrestrial Laser Scanner. Díaz-Vilariño 
et al (2014) extend the previous methodology to classify door 

candidates into open and closed doors by studying the point-to-
plane distribution of points close to the door candidate. 
Quintana et al (2016) implement an image-based method to 
detect open and closed doors by finding horizontal and vertical 
lines in orthoimages. Barbacan et al (2016) use a Compass Line 
Filter to extract open-door candidates. Their spatial 
configuration is solved as an energy minimization problem. The 
approach is restricted to open doors.  
 
This paper is focused on the development of a methodology to 
automate the reconstruction of large-scale buildings from the 
combined use of point cloud and trajectory provided by SLAM-
based laser scanner. More specifically, the methodology 
addresses the subdivision of the point cloud into semantically 
meaningful subspaces. Trajectory is used as a valuable data 
source since it depicts the route followed by the acquisition 
system and therefore, it partially indicates the navigable space. 
In this work, trajectory is going to be used for detecting doors 
and subdividing the space into small subspaces. The general 
configuration of small subspaces into building rooms is 
formulated as a minimum energy optimization method. Finally, 
main building structural elements, walls, ceilings and floors, are 
reconstructed for each space as well as doors.  
 
The rest of this paper is organized as follows. Section 2 
describes the proposed methodology. Section 3 explains the 
conducted experiments and the respective results and Section 4 
is aimed to conclude this work.  
 

2. METHODOLOGY 

The input of our approach consists of a point cloud of one 
building story with several rooms and the trajectory followed by 
the mobile laser scanner system during the acquisition. Both 
datasets are related by timestamp, which is a sequence of 
characters encoding information identifying when point clouds 
were acquired. Therefore, the target points observed from each 
observation point (trajectory position) are known since 
timestamp is expected to be the same. 
 
This relation is the basis for distributing a point cloud into 
semantically meaningful subspaces corresponding to building 
rooms. Therefore, a preliminary step of this methodology 
consists on decoding timestamps to make sure that there is time 
correspondence between both input data sets: point cloud and 
trajectory. 
 
2.1 Door Detection 

In contrast to most of the building reconstruction methodologies 
in which openings are detected after or from wall 
reconstruction, this approach starts by the detection of doors. 
For this purpose, a vertical profile of the point cloud along the 
trajectory is extracted. The point cloud is assumed to be 
vertically oriented and the profile is created from searching in 
2D all neighbours in the point cloud within a specified 
Euclidean distance to trajectory points. The point cloud is 
structured in a kd-tree and a fixed-radius search is used.  
 
Figure 1 shows in red the path trajectory and in blue and green 
the vertical profiles extracted from the point cloud, 
corresponding to ceiling and floor respectively. As it can be 
observed, in contrast to floor profile, ceiling profile has a high 
variability in the z-component. This can be explained either by 
the existence of objects on the ceiling such as lamps and pipe 
facilities, or by the presence of doors. From an indoor modelling 
perspective, a door can be considered as an opening in a wall, 
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whose lower part is adjacent to floor. Doors are typically lower 
in height than the walls where they are contained. Therefore, 
when crossing doors, part of the walls will be depicted in the 
ceiling profile and this feature can be exploited for detecting 
doors in a ceiling profile. It should be noted that this step just 
applies to doors traversed during acquisition. 
 

 
 
Figure 1. Trajectory is shown in red, while vertical profile 
corresponding to floor is visualized in green, and vertical profile 
corresponding to ceiling in blue. 
 
Once ceiling profile is extracted, it is discretized into a 
rectangular grid-based structure. Cells are assigned the value of 
the elevation average of points falling inside. In this case, 
elevation is calculated with regard to the minimum height of 
ceiling profile points, so that small values would correspond to 
cells representing doors. Values are normalized between 0 and 
1, being the higher and the smaller elevation, respectively.  
 
Door candidates are found by selecting the populated cells with 
a normalized value greater than a certain percentile. Although 
the door detection is accomplished from the ceiling profile, door 
candidates are selected from trajectory points since they are 
going to be further used for point cloud subdivision (Section 
2.2.). The trajectory points belonging to door candidates are 
next clustered by proximity. The nearest neighbours within a 
minimum distance between points are calculated, and points are 
grouped by adjacency. 
 
2.2. Space Partitioning 

Trajectory points belonging to doors are used to subdivide the 
point cloud into subspaces. The subdivision is carried out for a 
double purpose. Firstly, the indoor reconstruction from smaller 
datasets is more effective in terms of time and computer 
resources. Secondly, the organization of indoor point clouds in a 
way that points belonging to the same room are grouped and 
labelled together constitutes valuable semantic information for 
determining the optimal room and wall layout (Oesau et al, 
2014, Ochmann, et al, 2016).  
 
According to the Oxford dictionary, a room can be considered 
as a part of division of a building enclosed by walls, floors and 
ceiling. Doors act as entrances and exits to rooms. Therefore, 
the trajectory path followed between two doors would 
correspond to one room only and doors would divide 
consecutive rooms. As a point cloud and the corresponding 
trajectory are related by timestamps, this feature is used to 
organize the points into subspaces. Figure 2 shows two different 
subspaces. In both cases, the point cloud corresponds to the 
trajectory path between two doors. As it can be observed, the 
distribution of the subspaces is not regular and there is not 

univocal correspondence between subspaces and building 
rooms. 
 

 
 
Figure 2. Two different subspaces are highlighted: a building 
room (above) and a piece of a corridor (below).  
 
2.3. Semantic point cloud Labelling 

Although one subspace corresponds to just one room, one room 
is not necessarily depicted by one subspace. This occurs when a 
room contains several doors connecting it to some other rooms 
such as in case of corridors, and consequently it is not 
continuously acquired. Therefore, the univocal correspondence 
between subspaces and building rooms of which they form part 
should be determined in order to distribute the point cloud into 
semantically meaningful subspaces.  
 
Overall, our premise is that a subspace or a set of subspaces are 
likely to represent one building room if the building room is 
completely depicted by the subspace or by the set of subspaces. 
In this work, the global configuration of the building is 
formulated as a combinatorial problem solved by an energy 
minimization problem where the scoring function consists of a 
Unary and a Contextual Term.  
 
The completeness of a subspace or a set of subspaces is 
evaluated by a ray-casting algorithm. The entire point cloud is 
analysed altogether. The labelling problem is reduced to the 
two-dimensional space whereby the point cloud, conformed at 
this point by several subspaces (Section 2.2.), is discretized in a 
grid parallel to the horizontal plane as in Section 2.1. Since the 
completeness of a subset as a building space should be defined 
by permanent structures, vertical elements, mostly walls, are 
extracted by selecting those cells with a number of points higher 
than a certain percentile. The discard of grid cells representing 
other elements such as pieces of furniture is desirable for 
avoiding false positives.  
 
The scanning is carried out from an indoor point of view. Points 
from the trajectory associated at the subspace of set of 
subspaces being evaluated are used as scanning origins. Then, a 
ray cast is performed for all edge cells of the grid. Intersections 
between rays and the populated grid cells are detected by 
creating a buffer along the ray with equal width threshold as 
grid resolution and determining which centres of populated cells 
are inside the polygon. The closest populated cells intersecting 
with the rays are considered for completeness assessment.  
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In Figure 3, the ray-casting concept is visualized. The image on 
the left represents the situation before completeness evaluation, 
in which two different subspaces are represented by blue and 
green cells, respectively. The colour of the cells represent their 
label according to the initial space partitioning. Hence, a cell 
represented in blue means that most of the points included in 
that cell are from blue subspace (section 2.2.). In this example, 
completeness evaluation is performed for the subspace blue. 
The scanning origin is visualized in grey and rays are traced to 
all edge cells. The situation after evaluation is represented in the 
image on the right. Edge cells were labelled as blue, green and 
grey cells if occlusion was caused by blue subspace, grey 
subspace or not occlusion, respectively. Populated cells (cells 
from subspaces) causing occlusion are highlighted with thick 
borders. In this case, from a total of 46 edge cells, 38 are 
occluded by subspace blue, 3 by subspace green and 5 are 
visible.  
 

 
 
Figure 3: The ray-casting concept to evaluate subspace 
completeness. Left and right images represent the situation 
before and after evaluation, respectively.  
 
Formulation of hypotheses 
 
Once doors are used to subdivide the entire point cloud in 
subspaces (section 2.2.), a set of hypotheses H = {H1, H2, … 
Hn} representing all possible combinations between subspaces 
is generated. The number of building rooms and the number of 
subspaces conforming rooms is not known. Therefore, the 
combinatorial problem is solved as a partition of a set of 
subspaces S into non-empty subsets of subspaces 𝑠𝑠 with 
cardinality n, in such a way that every subspace 𝑠𝑠𝑠𝑠 in S is in 
exactly one of these subsets s.  
 
The number of possible combinations between subspaces 𝑠𝑠𝑠𝑠, 
given by the Bell number, is refined by applying the restriction 
imposed by the existence of doors. For example, if a door is 
connecting ‘subspace 1’ 𝑠𝑠𝑠𝑠1 and ‘subspace 2’ 𝑠𝑠𝑠𝑠2, 
combinations including both subspaces into one subset 𝑠𝑠 are 
excluded from analysis 𝑠𝑠 = {𝑠𝑠𝑠𝑠1, 𝑠𝑠𝑠𝑠2}  ∉ 𝑆𝑆. 
 
Unary Term 
 
The unary term is defined as the likeliness of a subset 𝑆𝑆 to 
define an enclosed space, which represents the completeness of 
the subset. To provide an unary cost for each subset 𝐶𝐶𝑈𝑈 (𝑠𝑠𝑖𝑖), the 
ray-casting algorithm evaluates whether or not rays intersect 
with the own subset. As the scanning is carried out from an 
indoor point of view, trajectory points, associated to the subset 
is being evaluated 𝑠𝑠𝑖𝑖, are used as scanning origin. Rays are 

traced from inside to outside covering the entire field of view, 
so that, occlusions to all edge cells ε are evaluated.  
 
Intuitively, the cost shall be low if most of cells causing 
occlusion c belong to the subset that is being evaluated 𝑠𝑠𝑖𝑖. In the 
example of Figure 3, from a total of 46 edge cells (ε), 38 are 
occluded for the subspace blue (c), so 𝐶𝐶𝑈𝑈  would be 0.17 (1).   
 

 𝐶𝐶𝑈𝑈 (𝑠𝑠𝑖𝑖)  = 1 −  𝑐𝑐 𝜀𝜀⁄                                (1) 
 
Contextual Term 
 
The contextual term measures the influence of other subspaces 
in the completeness of each other. For this purpose, all points 
belonging to populated cells causing occlusions (represented 
with thick borders in Figure 3. right) are considered. The 
contextual cost for each subset 𝐶𝐶𝐶𝐶 (𝑠𝑠𝑖𝑖) is the normalized 
frequency of point labels belonging to other subspaces. The 
higher is the ratio between points belonging to the subspace 
with regard to the total number of points; the lower is the 
contextual cost (2).  
 

𝐶𝐶𝐶𝐶 (𝑠𝑠𝑖𝑖)  = 1 − 𝑓𝑓(𝑠𝑠𝑖𝑖)    (2) 
 
Energy minimization 
 
The optimal configuration of subspaces is formulated as an 
energy minimization problem where the scoring function 
consists of the unary term and the contextual term weighted to 
balance the result. Among the generated hipotheses, the optimal 
configuration H* is the hipothesis with minimal score (3).  
 
                 𝐸𝐸(𝑠𝑠) = 𝛼𝛼 ∑ 𝐶𝐶𝑈𝑈 (𝑠𝑠𝑖𝑖)𝑛𝑛

𝑖𝑖=0 + 𝛽𝛽∑ 𝐶𝐶𝐶𝐶 (𝑠𝑠𝑖𝑖)𝑛𝑛
𝑖𝑖=0               (3) 

 
 
2.4. Scene Reconstruction 
 
At this point of the methodology, subspaces are grouped in sets 
conforming rooms. Therefore, whatever it is the methodology 
selected to reconstruct the structural elements, we already know 
which elements would belong to which room and the adjacency 
relationship between spaces. That means that our labelled point 
cloud has already semantic and topology information.  
 
Just with the purpose of creating a parametric model from the 
semantically-rich point cloud, a well-known methodology is 
implemented in this step. Similarly to Díaz-Vilariño, et al, 
(2016), a region-growing algorithm followed by an adjacency 
evaluation are applied to each room in order to obtain the 
boundary points defining wall, ceiling and floor surfaces.  
 
Assuming floor and ceiling as horizontal structures, they can be 
easily isolated by studying the distribution of the z-coordinate 
of the points. The higher peak in the histogram of z-coordinates 
corresponds to the room ceiling while the lower peak represents 
the room floor (Khoshelham & Díaz-Vilariño, 2014).  
 
Together with points belonging to ceiling and floor, those points 
belonging to vertical elements (mostly walls), previously 
isolated in Section 2.3. are submitted to a planar 3D region 
growing. The algorithm includes in the region all points 
satisfying two geometric conditions: planar fitting and surface 
smoothness. Thresholds are coarse enough to include window 
and door parts in the wall region where they are contained.  
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Afterwards, adjacency is evaluated for all planar regions. For 
each point of the cloud, all neighbours within specified distance 
are searched. For each region, if neighbouring points belong to 
different planar regions, they are considered as adjacent regions.  
 
Finally, vertical planar regions adjacent to ceiling or ceiling and 
floor are considered walls. Adjacency is also used to intersect 
wall planes with ceiling and floor in order to obtain the 
boundary points that define each surface.  
 

3. RESULTS AND DISCUSSION 

3.1. Instruments and data 
 
The methodology is tested in a real case study, an academic 
building indoor surveyed with the handheld iMMS Zeb-Revo. 
The technical characteristics of the laser device are summarized 
in Table 1. 
 
 

Technical Characteristics 

Maximum measurement range  30 m 

Data acquisition rate 43,200 points/sec 

Resolution 0.625º horizontal, 1.8º 
Vertical 

Angular FoV 270º x 360º 
Relative accuracy 2-3 cm 

Absolute position accuracy 2-30cn (10 mins scanning, 1 
loop) 

Laser Wavelength 905 nm (Class 1 Eye safe) 
Scanner Line Speed 100 Hz 
Rotation Speed 0.5 Hz 
Weight (scanner) 1.0 Kg 

 
Table 1. Technical characteristics of the Zeb-Revo laser 
scanning device according to the manufacturer datasheet. 
 
Two enclosed rooms, one open room and a L-shape corridor 
compose the building indoor. Each enclosed room includes two 
doors and another door is placed at the entrance of the corridor. 
The point cloud depicting the introduced case study is 
composed of 1019102 points while 10915 points define the 
trajectory.  
 
In this case, point cloud timestamps are encoded using the Unix 
time system, which is defined as the number of seconds that 
have elapsed since 00.00.00 Coordinated Universal Time of 1 
January 1970 minus the number of leap seconds taken place 
since then. Trajectory timestamps are encoded as the number of 
seconds elapsed since the acquisition start. Therefore, before 
processing, timestamps are decoded for referencing both 
datasets in the same time reference system.  

3.2. Door Detection and Space Partitioning  
 
As described in Section 2.1, doors are detected from extracting 
a vertical profile from the point cloud along the trajectory. 
Assuming vertically oriented datasets, neighbours within 0.1m 
have been searched in 2D in the point cloud for each point 
trajectory.  
 
Then, the ceiling profile is discretized in a grid with 0.1m x 
0.1m cell size. Cells are assigned with the elevation average of 

points falling inside. Values are normalized between 0 and 1, 
and doors are selected as the populated cells with a normalized 
value greater than 98 percentiles. As a result, five doors have 
been detected. This result means precision and recall values of 
1 for this case study.   
 
Finally, doors are used to subdivide the space as explained in 
Section 2.2. As it can be observed in Figure 4, the open room 
(in blue at the right of the image) is detected as part of the 
corridor since there are no doors either walls enclosing the 
space. In addition, corridor is composed by three subspaces 
because it was intermittently acquired, as can be observed from 
the trajectory (in black). 
 

 
 

Figure 4. After door detection and space partitioning, point 
cloud is subdivided into 5 subspaces (sp1, sp2, sp3, sp4, sp5), 
highlighted in this figure in different colours. Ceiling has been 
removed for enabling the visualization of trajectory points, in 
red. 
 
3.3. Space Labelling 
 
From the space partitioning, an initial label is assigned to each 
point. As the point cloud was subdivided in a total of 5 
subspaces, we have the equivalent number of initial labels. As 
mentioned in Section 2.3. the entire point cloud is analysed and 
discretized together in a grid-based structure of 0.15m 
resolution. Figure 5.a shows the populated cells in grey-scale 
taking into account the number of points per cell. The 1019102 
points fit in a total of 20047 populated cells. Figure 5.b shows 
the grid after selection of those cells with a number of points 
higher than the 90 percentile.  
 

 
Figure 5. Point cloud discretized in a grid with resolution 
0.15m, after (a) and before (b) cells selection by the number of 
points 
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After this process, 498231 points are distributed into 2444 
populated cells. Most of the remaining cells corresponds to 
vertical elements such as walls, while those representing 
furniture are mostly discarded. Wall areas coinciding with 
windows are also discarded due to the lower amount of points. 
Consequently, those cells will not be intersecting with rays 
during completeness evaluation.  
 
The number of all possible combinations between 5 subspaces 
into sets of unknown size is given by the number of Bell, in this 
case 52. However, the existence of 5 doors between sp1-sp2, sp2-
sp3, sp3-sp4 and sp4-sp5 reduces the number of valid hypotheses 
to 15 (Table 2).  
 
Completeness is initially evaluated for each individual 
subspace. The analysis of the Unary term and the Contextual 
Term for sets of several subspaces only implies the 
reclassification of, in case of the Unary Term, visible edge cells, 
occluded edge cells by the subset and occluded edge cells by 
other subspaces, and in case of the Contextual Term, occluding 
points from the subset and occluding points from other 
subspaces. For example, for the subset {sp1, sp3}, visible edge 
cells are edge cells visible from any scanning origin (in this 
case, scanning origin for sp1 and sp3); edge cells occluded by 
sp1 or sp3 are occluded edge cells by the subset, while edge cells 
occluded by sp2, sp4, and sp5 are occluded edge cells by other 
subspaces. When analysing points belonging to the intersecting 
cells for Contextual Term analysis, those points labelled as sp1 
and sp3 are accounted as occluding points from the subset while 
the rest are accounted as occluding points from other subspaces. 
 
For determining which populated cells intersect with each ray, a 
buffer of width equal to the grid resolution, in this case 0.15m, 
is created. A cell is intersecting with the ray if its centre is 
inside the buffer. A ray is considered occluded if it intersects 
with more than one populated cell. When intersection, the 
closest cell is considered for further analysis. Instead of 
considering one scanning origin, completeness is evaluated for 
each subspace from ten trajectory points equal-spatially 
distributed. In this way, the results are more representative and 
less sensible to false positives. If an edge cell is visible from 
one of those scanning origins, it is considered visible in the final 
result because it is unequivocally incomplete. Occluded edge 
images are labelled with the mode of the identity obtained from 
all scanning origins.  
 
Finally, the scoring function parameters 𝛼𝛼 and 𝛽𝛽 are set equally 
as 0.5. For all valid hypotheses, energy is calculated and the 
minimum value is obtained for the combination S=[{sp1, sp3, 
sp5}, {sp2}, {sp4}] (Table 2). The point cloud is finally 
distributed into three building rooms (Figure 6).  
 

Combinations Energy 
{sp1, sp3, sp5}, {sp2, sp4} 0.1532 

{sp1, sp3}, {sp2, sp4}, {sp5 } 0.2487 
{sp1, sp3, sp5}, {sp2}, {sp4} 0.1185 
{sp1, sp3}, {sp2, sp5}, {sp4} 0.2247 
{sp1, sp3}, {sp2}, {sp4}, {sp5} 0.1988 
{sp1, sp4}, {sp2, sp5}, {sp3} 0.3649 
{sp1, sp4}, {sp2}, {sp3, sp5} 0.2121 
{sp1, sp4}, {sp2}, {sp3}, {sp5} 0.3039 
{sp1, sp5}, {sp2, sp4}, {sp3} 0.3023 

{sp1}, {sp2, sp4}, {sp3, sp5} 0.1978 
{sp1}, {sp2, sp4}, {sp3}, {sp5} 0.2932 
{sp1, sp5}, {sp2}, {sp3}, {sp4} 0.2390 
{sp1}, {sp2, sp5}, {sp3}, {sp4} 0.2752 
{sp1}, {sp2}, {sp3, sp5}, {sp4} 0.1607 
{sp1}, {sp2}, {sp3}, {sp4}, {sp5} 0.2444 

 
Table 2. All valid hypotheses and energy obtained for each 

hypothesis. 
 

 

 
Figure 6. Point cloud after space labelling. Each building room 
is visualized in one colour.  
 
3.4. Scene Reconstruction 
 
Once point cloud is distributed in building rooms, each room is 
further processed individually. For each of them, floors and 
ceilings are found as peaks at height of 6.0 m and 11.7 m, 
respectively. Populated cells selected for space labelling 
(Section 3.3) are also considered for scene reconstruction since 
most of them correspond to vertical structural elements such as 
walls. Therefore, ceiling and floor points together with points 
belonging to the selected cells are submitted to region growing 
to isolate planar regions.  
 
A neighbourhood of 50 points is considered for normal point 
analysis. Angular and point-to-plane distance thresholds (30º 
and 0.4 m respectively) are coarse enough to include in wall 
regions most of points belonging to door and window elements. 
Walls are considered as vertical regions adjacent to floor and 
ceiling. Adjacency is determined from the relation between all 
points with their neighbours within a radio of 0.1m. Just 
adjacency relations higher than a 10 percentile are selected as 
significant.  
 
Once walls, ceiling and floor are isolated, adjacency between 
walls is determined and these relations are taken into account 
for intersecting region planes in order to obtain the boundary 
points that define each surface. This process is not fully 
automatic since the correct segmentation and adjacency 
characterization of structural elements depend on data quality. 
For example, in this case study the wall places in one of the 
ends of the corridor is missing (Figure 5, down), and it was 
manually introduced for the final scene reconstruction (Figure 
7).  
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Figure 7. Parametric model from the case study. Walls are 
visualized in blue, while floors in red and ceilings in grey. 
Doors are also visualized in red but without transparency.  

Final step is door reconstruction. Since the location of doors is 
already known, walls where they are contained are identified for 
each space. Dimensions of doors are simulated and boundary 
points are projected on the respective walls. As it is can be 
observed in Figure 7 and Figure 8. Left, the result is a surface 
model in which topological relations such as containment and 
connectivity between spaces are known. Figure 8. right zooms 
in the model from a top point of view. Because the 
reconstruction methodology implemented is highly dependent 
on data quality and completeness, the resulting model is not 
very accurate. Several regularization rules could be applied for 
improving final model but regularization is out of the scope of 
this paper.  

Figure 8: Zoom in the model from a perspective point of view 
(left) and from a top point of view (right).  

3. CONCLUSIONS

This paper presents a methodology for extracting semantic 
information from the combined use of point clouds and 
trajectory from SLAM-based laser scanners, with the ultimate 
purpose of automating building indoor modelling. Point cloud 
distribution into semantically meaningful partitions is 
formulated as a combinatorial problem solved as an energy 
minimization optimization.  

From the results, the main conclusions can be drawn: 

• Doors can be detected from creating a vertical profile
along the trajectory and analysing the number of
points or their average elevation on the horizontal
plane.

• Door detection is not affected by the presence of
numerous elements in ceilings such as lamps or pipe

facilities. However, the method applies just to doors 
traversed during the acquisition.  

• Space labelling is not restricted to Manhattan-World
structures and it is robust to the presence of some
clutter although most of it is easily removed by
selecting the most populated cells, which correspond
to vertical elements (mostly walls).

• Space labelling is robust under the presence of
windows since they are typically located in exterior
walls. Therefore, rays could not intersect with other
indoor spaces when studying visibility through
windows.

• From door detection and space labelling, semantic and
topologic information is already derived.

• Scene reconstruction, based on region growing and
adjacency analysis, is applied to individual building
rooms. Since it depends on data quality, it is not fully
automatic.

• In contrast to scene reconstruction, door detection and
space labelling are fully automatic.

Future work will test the methodology in different building 
configurations. Corrective actions will be explored in case of 
not all traversed doors are detected. Future work will extend the 
space labelling to 3D. Energy minimization will be explored for 
determining the configuration of building structures (walls, 
ceilings and floors) to conform individual building room. Indoor 
navigation models will be derived from the models.  
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