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a b s t r a c t

Aiming at the problem of mismatch between real-time data distribution and modeling data distribution
caused by the change of working conditions in industrial process, which leads to the performance
deterioration of the soft sensor model, a multi-source unsupervised soft sensor method based on joint
distribution alignment and mapping structure preservation is proposed. Firstly, the method uses the
hypergraph to establish the complex structure of feature and label, and clusters the hypergraph matrix
in multiple views to completely construct the class pseudo label; then dynamic distribution alignment
is used to adapt marginal distribution and conditional distribution between the data of historical
working conditions and the current working conditions, and the hypergraph Laplacian operator is
introduced for manifold regularization to prevent the mapping relationship between feature and
label from being destroyed; finally, similar working conditions are introduced to further enhance
the robustness of the model. The experimental results show that compared with the traditional
unsupervised soft sensor methods, the method used in this paper can effectively improve the
prediction accuracy of the model.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

With the increasing requirements for control, monitoring and
perational reliability in industrial processes, real-time moni-
oring of the key variables has become particularly important.
owever, factors such as process mechanism, physical environ-
ent and characteristics of instrument hardware often make it
ifficult to directly measure process parameters with sensors,
hich will affect process monitoring and automatic control. Soft
ensor [1–3] has become an effective solution to the above-
entioned problems. It adopts the idea of indirect measurement
nd establishes a model to estimate the main variables through
uxiliary process information. At present, soft sensor methods
an be divided into two classes: modeling methods based on
rocess mechanism analysis and data-driven. The process mech-
nism model is easily affected by many factors such as changes
n application environment. At the same time, there are many
isturbance factors in the actual industrial process, such as non-
inearity, time-varying and large hysteresis. There are a large
umber of differential processes in the mechanism model con-
tructed, which lead to problems such as complex solutions and

∗ Corresponding author.
E-mail address: yangaowei@tyut.edu.cn (G. Yan).
ttps://doi.org/10.1016/j.jprocont.2021.11.009
959-1524/© 2021 Elsevier Ltd. All rights reserved.
difficulty in obtaining measured values in real time. The data-
driven modeling methods rely on the internal connection of data
in the process, so there is no need to deeply understand the
research object. This method solves the measurement of key
parameters in practical engineering problems, and is suitable for
modeling applications in the process industry.

At present, data-driven soft sensor methods mainly include
multivariate statistical methods represented by partial least
squares and principal component analysis, and machine learning
methods represented by support vector machines and neural
networks. However, the premise of these methods is that the
modeling data and real-time data must satisfy the same proba-
bility distribution. In the actual production process, due to some
situations in the production process such as equipment reorga-
nization, material or environmental changes, production condi-
tions will change significantly. The production system presents
the characteristics of multiple working conditions and multiple
modes [4,5], resulting in a distribution mismatch between real-
time data and modeling data, causing the original soft sensor
model to be inaccurate. And because of the lack of actual sensor
data, it is impossible to form an effective mark value of modeling,
so it is difficult to establish an accurate soft sensor model after
the working conditions change.

Transfer learning solves the problem that it is difficult to
establish a machine learning model in the target domain due to

https://doi.org/10.1016/j.jprocont.2021.11.009
http://www.elsevier.com/locate/jprocont
http://www.elsevier.com/locate/jprocont
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jprocont.2021.11.009&domain=pdf
mailto:yangaowei@tyut.edu.cn
https://doi.org/10.1016/j.jprocont.2021.11.009
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hanges in data distribution and lack of labeled data by trans-
erring the model or parameters of the source domain. It pro-
ides new ideas and methods for soft sensor modeling under
ultiple working conditions. It uses known modal data as the
ource domain and unknown modal data as the target domain for
ransfer prediction. Gretton et al. [6] used the maximum mean
iscrepancy (MMD) to measure the data distribution difference
etween source domain and target domain, and then reduce the
istribution distance between them to achieve the purpose of
omain adaptation. However, MMD is mainly used for marginal
istribution adaptation, and cannot perform joint adaptation of
onditional distribution, thus losing the relationship between
eature and label. Therefore, Long et al. [7] used the joint distri-
ution adaptation (JDA) algorithm to match marginal distribution
nd conditional distribution of the source and target domain
ata during the transfer process, thereby reducing the overall
istribution difference. However, JDA assumes that marginal dis-
ribution and conditional distribution are equally important, and
his assumption may not be applicable in actual situations. Wang
t al. [8] proposed a manifold embedded distribution alignment
MEDA), by introducing a balance factor to weigh the importance
f marginal distribution and conditional distribution in domain
daptation. According to the actual situation, the marginal distri-
ution and conditional distribution are assigned different weights
o improve the performance of joint distribution adaptation. But
his method is mainly used to solve the classification problem.
n the regression problem studied in this paper, the continuous
haracteristic of data will not cause the MMD matrix to change
uring the process of adjusting data distribution, and thus it is
mpossible to directly use MEDA to perform joint distribution
daptation.
Therefore, a classification framework is needed to solve the

roblem of joint distribution adaptation in soft sensor model-
ng. However, the compactness criterion of the data contained
n the classification problem can make the original class more
istinguishable in new space through multiple iterations. But the
egression data does not have this characteristic, and only dis-
retizing the data to obtain label may not suitable for regression
roblems. At the same time, it should be noted that, unlike the
lassification problem, the regression problem focuses on the
nternal connection between the feature and label. Therefore, this
aper intends to adopt the method of multi-view joint clustering,
hich uses the feature and label as the two views of the working
ondition data. In the process of mapping to the low dimensional
pace, the information between the two views is combined to
reserve mapping relationship with feature and label.
At the same time, the hypergraph can more completely ex-

ress the complex relationships between research objects and
apture the deep connections between features and labels than
imple graphs. It can better describe its internal overall struc-
ure and enhance the effect of multi-view clustering. Hypergraph
ombined with manifold regularization can reduce the damage to
he data structure due to the compactness criterion to a certain
xtent.
In conclusion, a multi-source unsupervised soft sensor method

ased on joint distribution alignment and mapping structure
reservation (DASP) is proposed, to solve the problem that the
istribution of modeling data and real-time data is not consistent
ue to the multi-mode of the system. This work makes the fol-
owing contributions: (1) DASP constructs pseudo label to dynam-
cally distribute adapt the continuous regression data and keeps
he internal structure of the data in the new projection space.
2) A multi-view classification pseudo label construction method
ased on hypergraph is proposed, the new label can retain the
apping relationship between the original data feature and label.
3) The experimental results of the ball mill load parameters and
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Tennessee Eastman (TE) process verify the effectiveness of the
method.

The rest of this article is organized as follows. Section 2 intro-
duces related work. Section 3 introduces the soft sensor model
based on our method. Section 4 takes TE and wet ball mill
experiments as example to verify the effectiveness of our method.
Section 5 draws a conclusion.

2. Related work

There are two main difficulties in the soft sensor of multi-
conditions processes. The first difficulty is how to deal with
the differences between different condition. Because traditional
multivariate statistical methods are difficult to deal with the dif-
ferences between different modes in a model, some researchers
use mixed models for modeling, integrating pattern recognition
and regression into one model, so as to avoid switching predictive
models when data patterns change. Ge et al. [9] extended the
principal component regression model to form a mixed prob-
abilistic regression model for soft sensor modeling, used the
expectation maximization algorithm to solve the parameters of
the mixed probability model, and calculated each type of new
data sample for the posterior probability in the operating mode,
the combined model gave the estimated result. However, the
principal component regression modeling process assumed that
the modeling variables were subject to Gaussian distribution,
while this was not the case in actual industrial processes. Mei
et al. [10] used Gaussian mixture model for regression, set up
several Gaussian models to fit the distribution, and directly fused
the predicted output of the Gaussian model as the final output.
However, the problem of determining the number of Gaussian
models that fit the distribution needed to be optimized. Tan
et al. [11] used local nearest neighbor standardization to Gaussian
processing of the original data and established a partial least
square (PLS) model for fault detection in a multi-condition pro-
cess. However, the above method also requires the labeled data
in each condition when modeling, which is unrealistic in the
actual process. And when the working conditions are frequently
changed, the global model cannot effectively track the changes
in the dynamic characteristics of the industrial process, resulting
in a decrease in predictive ability. The method based on multi-
model matching once the model is mismatched, it will have a
greater impact on system monitoring [12].

Another difficulty in soft sensor modeling for multi-modal
processes is the update of the system model to cope with the
conceptual drift in the process, so that the model has the ability
to adapt to unknown operating conditions. Recursive Model-
ing/Moving Window (MW) and Just-in-time Learning (JITL) are
commonly used adaptive (online) learning tools to deal with
concept drift in the industrial process [13]. The recursive iteration
method/moving window uses the sample closest to the query
point time in the historical data segment for modeling. How-
ever, in the case of large process drift, the established model
is difficult to track the process dynamics that occur in the new
data. Just-in-time learning selects the sample set most relevant
to the current sample from the marked historical data accord-
ing to the similarity metric to establish a real-time regression
model. However, the established model is susceptible to the
influence of different similarity measurement criteria, and when
a new working condition appears, historical data that matches
it cannot be found. A process may experience various types and
frequencies of operating condition changes during its operation.
Therefore, it is unreasonable to expect a single MW or JITL model
to be effective for a long time. The most popular method to
solve this problem is ensemble learning (EL), in which models
built for different working conditions are adaptively combined
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o predict query points [14]. Ensemble learning builds multiple
ub-models of historical data, evaluates the prediction results of
ach sub-model, and weights and fuses the multiple sub-models
ccording to the confidence level of the model output, and finally
btains the ensemble regression model. The ensemble learning
trategy balances the diversity of process data by establishing
ultiple local models, which is essential to offset the changes

n operating conditions of different types and rates in industrial
rocesses. However, due to the need to build multiple local mod-
ls, the amount of calculation in the training process will increase
xponentially in the case of large data sets.
None of the above methods substantially eliminates the im-

act of data distribution differences on modeling under multi-
le working conditions. At the same time, the above-mentioned
daptive real-time modeling methods all assume that the real
abel can be obtained under a certain delay, which is unrealis-
ic in some actual processes. Transfer learning aims to reduce
he distribution difference between the source domain and the
arget domain, so that the knowledge obtained from the source
omain can be used to help improve the learning of the pre-
iction function in the target domain. Regarding the historical
orking condition in the multi-condition problem as the source
omain and the current working condition as the target domain,
onstructing a transfer learning model that migrates from the
istorical working condition to the current working condition
rovides a solution to the soft sensing problem under multiple
orking conditions [15]. It is important to note that unsupervised
ransfer learning provides a distribution alignment framework
hat does not require target working condition label values, Zheng
t al. [16] designed a multisource-Refined transfer network based
n unsupervised transfer learning for unsupervised cross-domain
ault diagnosis. So the use of transfer learning based multi-modal
oft sensor methods to solve this problem has become a hot spot
n current researches. It is assumed that there is a shared latent
eature space between the source domain and target domain to
educe the existing distribution differences between domains.
he strategy to find such a shared latent feature space is to
dopt a dimensionality reduction method and minimize some
redefined distance measurements to reduce the marginal distri-
ution or conditional distribution mismatch between the source
omain and target domain. In order to match the marginal dis-
ribution, Chen et al. [17] introduced two subspace distribution
daptation frameworks. Both frameworks use the subspace dis-
ribution adaptation function to make source distribution similar
o target distribution, and at the same time learn the adaptive
lassifier through the principle of structural risk minimization.
umagai et al. [18] transformed the source feature representation
hrough a linear matrix function, so that the source distribution
nd target distribution are similar under the MMD distance. Pan
t al. [19] proposed the transfer component analysis (TCA) algo-
ithm, which projected the source and target domain data into a
igh dimensional Hilbert space, minimized the distance between
ource domain and target domain instead of only modifying the
ource distribution, while reducing the difference between source
omain and target domain distribution, retained their respec-
ive internal attributes to the greatest extent. Kan et al. [20]
roposed the target source domain (TSD) algorithm. While pre-
erved the data structure, constructed the projection matrix of
he conversion to reduce the distribution difference between
ource domain and target domain in the subspace. However,
he marginal distribution adaptation would lose the role of the
abel in the distribution adaptation. Therefore in [21–23], the
uthor explored matching the marginal distribution and the class
onditional distribution at the same time to enhance the effect
f the label. Roughly speaking, most of these works are based

n the joint distributed adaptation method. The above methods
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are very likely to cause damage to the data structure in the
process of adjusting distribution and adaptation. Du et al. [24]
introduced the idea of manifold regularization to reduce the dis-
tribution difference between source domain and target domain,
while preserved the local feature information, thereby reducing
the structural drift of the two in the process of projecting into
the subspace. However, the above methods are all used for the
classification problem. Applied in the field of soft sensor, the
continuous distribution of the regression data itself is different
from the compactness structure of the classification, which will
cause greater damage to the data structure. Therefore, this paper
uses the method of multi-view clustering to combine the feature
and label data to construct the process pseudo label so that it
retains the mapping relationship between feature and label.

Since different features can be extracted to describe a sample,
multi-view learning can capture the internal associations be-
tween multiple views, thereby improving learning performance
[25]. The success of multi-view learning lies in its principles of
consistency and complementarity, which can well characterize
the relationship between multiple views. In recent years, multi-
view clustering mostly combines data from different views into a
single view representation before data clustering. Guo et al. [26]
described multi-view subspace learning as a joint optimization
problem, which has a common subspace representation matrix
and group sparsity inducing norm. White et al. [27] learned a
common expression based on multiple views in a targeted man-
ner, and solved a joint optimization problem through a common
subspace representation matrix. Lu et al. [28] tried to find low
dimensional embedding of the data by calculating the eigenvec-
tors of the standardized Laplacian matrix, so as to use lower
dimensional representation methods to solve the problem that
is difficult to calculate in the high dimensional space. Brbicet
al. [29] proposed a multi-view low-rank sparse subspace cluster-
ing method. This method learns joint subspace representations
by constructing an association matrix shared between views, and
then used spectral clustering to process multi-view data. This
method combines the feature information of multiple different
views and divides similar samples into the same group in an
attempt to obtain a more accurate cluster assignment.

At the same time, when the research object has a paired
relationship, it can be represented by a graph. However, in many
practical problems, the relationship between objects is much
more complicated than the pair-wise relationship. Simply com-
pressing complex relationships into pairwise relationships will
inevitably lead to the loss of information. Therefore, consider
using hypergraph [30] to completely represent the complex re-
lationship between the research objects. Agarwal et al. [31] pro-
posed the use of hypergraph to construct Laplacian matrix, and
developed a general framework for classification and clustering
of complex relational data. Wang et al. [32] proposed hypergraph
canonical correlation analysis. This method is based on canoni-
cal correlation analysis and considers high-level label structure
information through hypergraph regularization.

It is also noted that the utilization of multiple source domains
is an opportunity to further improve the model performance by
extracting more useful information. Liu et al. [33] used a novel
framework of an adversarial transfer learning (ATL)-based soft
sensing method which was designed for the quality inferring of
multigrade processes. Treating each grade as a domain, the con-
cept of ATL was adopted to learn a suitable feature transformation
between different domains, which reduces the data distribution
discrepancy. As a supervised soft sensing method, the labeled tar-
get domain data is often difficult to obtain. Therefore, this method
uses the MMD similarity measure to select the two domains
closest to the target domain from multiple source domains to
build models and carry out weighted integration, so as to improve

the prediction accuracy and enhance the robustness of the model.
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To sum up, in order to solve the problem that the regres-
ion data cannot be adapted to the joint distribution of the
ulti-condition soft sensor modeling, this paper uses multi-view
lustering to establish class pseudo label with the known working
onditions, and hypergraph can be used to describe feature of
eep structure of data to construct the view matrix, which made
he multi-view clustering result more reliable. In addition, the
aplacian similarity matrix is constructed through the hyper-
raph, and the manifold regularization constraint is performed
o keep the data structure during the projection process. The
lgorithm diagram is shown in Fig. 1.

. Related theories and algorithms

Throughout this paper, matrices are represented with bold
apital symbols and vectors with bold lower-case symbols. For
atrix X =

(
xij
)
, the row i is denoted as xi, and the column j

s denoted as xj. Given the feature Xs = [x1, x2, . . . , xn]T ∈ Rn×r

nd label Ys ∈ Rn×1 of the historical working condition (source
omain) Ds and the feature Xt = [x1, x2, . . . , xm]T ∈ Rm×r of the
urrent working condition (target domain) Dt , where n,m is the
umber of data samples and r is the dimension of the sample
eature vector. Xc

s =
[
xc1, x

c
2, . . . , x

c
n

]T, Xc
t =

[
xc1, x

c
2, . . . , x

c
m

]T and
c
s represent the feature and label after clustering, respectively.

.1. Dynamic distribution alignment

In the soft sensor model, due to process differences, the dis-
ribution of real-time data and modeling data among multiple
orking conditions will be inconsistent, which does not satisfy
he assumption of the same data distribution. And there are
ifferences in the distribution of feature and label at the same
ime, resulting in a mismatch between the marginal distribution
nd conditional distribution. In addition, the degree of difference
etween two distributions may be different, so an adaptive factor
eeds to be introduced to weigh the importance of marginal
nd conditional distribution and adjust them dynamically. The
ynamic distribution alignment is defined as [8]:

¯ f (Ds,Dt ) = (1 − µ)Df (Ps, Pt ) + µ

k∑
c=1

D(c)
f (Qs,Qt ) (1)

here µ ∈ [0, 1] is the balance factor, c ∈ [1, . . . , k] is the class
ndicator. Df (Ps, Pt ) denotes the marginal distribution alignment,
nd D(c)

f (Qs,Qt ) denotes the conditional distribution alignment for
lass c.
The balance factor µ is calculated according to the global

nd local structure of the domain, that is, a linear classifier is
stablished using a metric to distinguish the error of two domains
i.e. a binary classification), such as A-distance [34]. Therefore,
he marginal distribution distance ϕm and conditional distribution
istance ϕc can be measured by this method. The estimated value
f µ is [8]:

ˆ ≈ 1−
ϕm

ϕm +
∑k

c=1 ϕc
(2)

This paper uses the MMD to calculate the difference between
the two probability distributions, and continuously adjusts the
MMD matrix by minimizing the overall difference between the
two, so that the constructed projection matrix adaptively dis-
tributes the source and target domains data conduct guidance.
The dynamic distribution alignment item can be expressed in the
form of a matrix as:

D̄f (Ds,Dt ) = (1 − µ)

⏐⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐⏐1n

n∑
i=1

φ(xi) −
1
m

m∑
j=1

φ(xj)

⏐⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐⏐
2

HK
f
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+ µ

k∑
c=1

⏐⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐⏐1n

n∑
i=1

φ(xci ) −
1
m

m∑
j=1

φ(xcj )

⏐⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐⏐
2

HK

(3)

where φ(·) represents the transformation of the sample in the
reproducing kernel Hilbert space HK .

The marginal distribution alignment item is:

Df (Ps, Pt ) =

⏐⏐⏐⏐⏐⏐⏐⏐1n (WTK1 + · · · + WTKn
)

−
1
m

(
WTKn+1 + · · · + WTKn+m

)⏐⏐⏐⏐⏐⏐⏐⏐2
HK

= tr

(
WT

(
1
n
Ks1n×1 −

1
m

Kt1m×1

)

×

(
WT

(
1
n
Ks1n×1 −

1
m

Kt1m×1

))T
)

= tr(WTKM0KW) (4)

where Ks= (K1, . . . ,Kn) and Kt= (Kn+1, . . . ,Kn+m) are the kernel
atrices of source and target domains, respectively, K= [Ks,Kt ] ∈
(n+m)×(n+m). The projection matrix is W ∈ R(n+m)×k, tr(·) repre-

sents the trace of the matrix. In the same way, the conditional
distribution alignment item is:

D(c)
f (Qs,Qt ) =

k∑
c=1

tr
((

WT
(

1
n(c)

K(c)s 1n(c)×1 −
1

m(c)K
(c)
t 1m(c)×1

))

×

(
WT

(
1

n(c)
K(c)s 1n(c)×1 −

1
m(c)K

(c)
t 1m(c)×1

))T
)

=

k∑
c=1

(
tr(WTKMcKW)

)
(5)

Therefore, the dynamic distribution alignment item can be
expressed as:

tr(WTKMKW) (6)

where M is the MMD matrix, expressed as:

M = (1 − µ)M0 + µ

k∑
c=1

Mc (7)

where M0 represents the marginal distribution matrix, Mc rep-
resents the conditional distribution matrix, M0 and Mc are con-
structed as follows:

(M0)ij =

⎧⎪⎨⎪⎩
1
n2
, xi, xj ∈ Ds

1
m2 , xi, xj ∈ Dt

−
1
mn , otherwise

(8)

(Mc)ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
n2c
, xi, xj ∈ D(c)

s

1
m2

c
, xi, xj ∈ D(c)

t

−
1

mcnc
,

{
xi ∈ D(c)

s , xj ∈ D(c)
t

xi ∈ D(c)
t , xj ∈ D(c)

s

0, otherwise

(9)

where D(c)
s and D(c)

t denote samples from class c in Ds and Dt ,
espectively, and nc =

⏐⏐⏐D(c)
s

⏐⏐⏐, mc =

⏐⏐⏐D(c)
t

⏐⏐⏐.
.2. Acquisition of category pseudo labels in regression problems

Dynamic distribution alignment is mainly proposed for classi-
ication problems. When facing soft sensor regression problems,
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Fig. 1. Schematic diagram of the algorithm. (a) Perform multi-view clustering through labeled source domain data to obtain class pseudo label and establish a
clustering model, such as KNN, to predict feature of unlabeled target domain; (b) Condition and edge of two domain data distribute adaptation and dynamically
assign weights; (c) In the process of domain adaptation, the internal complex structure of the data is constrained by hypergraph Laplacian regularization. In the
figure, blue represents the source domain data, and red represents the target domain data. Use triangles, squares, and five-pointed stars to represent different class
of data, that is, the process of class pseudo labeling, and circles represent regression data. In the process of (b–c), iteratively update and optimize the MMD matrix,
balance factor, hypergraph Laplacian matrix L, projection matrix W and label matrix Y; (d) The source domain and target domain data distribution after feature
ransformation is pulled in, finally, PLSR is used to obtain the final predicted label. (For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)
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onditional distribution adaptation cannot be performed directly,
nd class pseudo label need to be obtained firstly. However,
he traditional clustering method cannot fully express the infor-
ation association between the original data: it only considers

he feature or label of data, and ignores the internal connection
etween feature and label. In other words, if only using feature, it
ill lose the guiding role of the label; if only use the label, it will

ose the relationship between feature and label. In response to
uch problem, this paper uses the hypergraph based multi-view
ethod to construct source domain pseudo label: firstly cluster

he data to obtain the internal structure relationship of data, and
onstruct its hypergraph matrix; then, use the hypergraph matrix
s its view matrix. Using the method of multi-view clustering,
abel and feature are used as views representing two opposite
irections of the data structure, which act on the whole clustering
rocess. Applying the hypergraph matrix to multi-view cluster-
ng can more effectively express the internal structure of each
iew and promote data association between multiple views. The
chematic diagram of pseudo label structure is shown in Fig. 2.

.2.1. Hypergraph construction
Generally, in a simple graph, the connecting edges between

odes can only reflect a certain relationship that exists between
hese two nodes. However, the hyperedge in a hypergraph can
nclude any number of nodes, which can reflect the relationship
etween multiple nodes, so the hypergraph can represent the
omplex relationship between objects. For soft sensor, the data
ollected in the industrial process is used to represent the infor-
ation transmitted by multiple sensors over time, such as liquid

evel, pressure, temperature, etc. which are the physical meaning
f the feature. With the development of industrial process, the
hange of feature information often does not proceed simultane-
usly. Therefore, at a certain process point, the ways that different
eatures affect are different. In the process of feature change, due
o the setting of the threshold, the value will fluctuate within this
ange. When the threshold is exceeded, the feature is considered
o have entered a new working state. Therefore, at the same time,
ifferent features may be in different working states, which lead
o the clustering of continuous data, and the same sample will
e divided into different class. Therefore, in the hypergraph con-
tructed by clustering the regression data, each sample represents
vertex, and a working state is a hyperedge. The hypergraph

an be used to obtain a variety of state information contained
n the different feature of the working condition, so the knowl-
dge structure between data collected under different conditions
an be better expressed and the robustness of model can be

nhanced.
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If the finite set of vertices V and the set of edges E satisfy
e∈E = V, then a hypergraph G = (V, E) can be constructed. If

each hyperedge e is associated with a positive weight ψ (e), it
s called a weighted hypergraph G. For a hyperedge e ∈ E, the
umber of vertices is its degree, namely δ (e) = |e|. For a vertex
= V, its degree is defined as [32]:

(v) =

∑
v∈e,e∈E

ψ (e) (10)

The hypergraph G can be represented by the incidence matrix
f vertices and edges as:

(v, e) =

{
h (v, e) = 1; v ∈ e
h (v, e) = 0; otherwise (11)

The essence of graph-based or hypergraph-based methods is
to discover the underlying structure of the data set. Therefore, it
is necessary to reduce the number of hyperedge while preserving
the original structure. For this reason, this paper uses the cluster-
ing method to generate the centroid as the most representative
data point in the data set, and iteratively makes this point have
a strong representation ability and can fully cover the data set.
If the same number of hyperedges is used to represent the hy-
pergraph, using a centroid to generate the hyperedges is better
than other methods. This method can keep the integrity of the
data set structure to the maximum. In order to achieve this goal,
this paper uses a general clustering method, such as the k-means
method.

Considering the interrelationship between the high dimen-
sional feature samples of the data set, all samples of each di-
mension feature are clustered to construct a feature hypergraph
matrix. Each hyperedge is composed of a sample and all other
samples that belong to the same centroid. Since each sample will
belong to multiple class at the same time (it is assumed that
the importance of each class is the same, which is, the weight
of the hyperedge is 1), the structural relationship between the
data can be established through the hypergraph. Then the feature
hypergraph matrix can be expressed as:

Hf
i =

{
1; xcij ∈ c
0; otherwise j = 1, . . . , n

Hf
=

[
Hf

1,H
f
2, . . .H

f
m

] (12)

where m is the feature dimension, n is the number of samples,
Hf

i is the hypergraph matrix of the ith dimensional feature, and
xcij is the class of the jth sample after the ith dimensional feature

clustering.
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Fig. 2. Schematic diagram of pseudo label structure.
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At the same time, from the point of view of data structure,
he main difference between feature and label is that feature is
set of data composed of multi-dimensional while label can be
egarded as single dimensional feature and have a guiding role for
eature. With the continuous nature of the label itself, discretizing
t into segments can perform clustering more efficiently and
btain the label hypergraph matrix Hl.

.2.2. Multi-view subspace clustering
Given the feature hypergraph matrix Hf

s and label hypergraph
atrix Hl constructed by the source domain feature Xc

s and label
Yc
s after clustering, they are regarded as the respective view

matrix H =
{
Hf ,Hl

}
. Therefore, for a hypergraph matrix with

wo views, this paper uses a low-rank sparse subspace multi-
iew clustering (MC) method to map the data from the high
imensional space to the low dimensional subspace, using the
inear combination of few bases represents the essential feature
f the data, and a joint representation matrix C is found to
eigh the consistency between different views. Need to solve the

ollowing problems [29]:

in
C

1
2 ∥H − HC∥

2
F + θ1∥C∥∗ + θ2∥C∥1

s.t. diag(C) = 0.
(13)

where the kernel norm ∥·∥∗ is used to approximate the rank of
C. Matrix sparsity requires that each simple is represented by a
small number of data points in its own subspace. The ℓ1 norm
is used as the tightest convex relaxation of the ℓ0 quasi-norm
that counts the number of nonzero elements of the solution. Con-
straint diag(C) = 0 is used to avoid trivial solution of representing
a data point as a linear combination of itself.

In order to solve the problem in Eq. (13), introducing auxiliary
variables C(v)1 , C

(v)

2 and F(v). Without considering the influence of
noise, the objective function can be expressed as:

min
C(v)1 ,C(v)2 ,F(v)

θ1

C(v)1


∗

+ θ2

C(v)2


1

s.t. H(v) = H(v)F(v), F(v) = C(v)2 − diag(C(v)2 ),
F(v) = C(v)1 , v = 1, 2.

(14)

where C(v) is the representation matrix of the view v. Parame-
ters θ1, θ2 are the trade-off coefficients of low-rank and sparsity
constraints.
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Augmented Lagrangian is:

L(
{
C(v)i

}2
i=1
, F(v),

{
Λ(v)

i

}3
i=1

) = θ1

C(v)1


∗

+ θ2

C(v)2


1

+
ψ1
2

H(v) − H(v)F(v)
2
F

+
ψ2
2

F(v) − C(v)2 + diag(C(v)2 )
2
F
+

ψ3
2

F(v) − C(v)1

2
F

tr
[
Λ(v)

1
T (

H(v) − H(v)F(v)
)]

tr
[
Λ(v)

2
T (

F(v) − C(v)2 + diag(C(v)2 )
)]

tr
[
Λ(v)

3
T (

F(v) − C(v)1

)]
(15)

here {ψi > 0}3i=1 is the penalty coefficient and
{
Λ(v)

i

}3
i=1

is the
agrangian dual variable. In order to solve the convex optimiza-
ion problem in the above formula, the Alternating Direction
ethod of Multipliers (ADMM) [35] can be used to obtain the
pdate formula of each iteration process:

(v)=

[
ψ1H(v)

TH(v) + (ψ2 + ψ3) I
]−1

(
ψ1H(v)

TH(v) + ψ2C(
v)
2 + ψ3C(

v)
1 + H(v)TΛ(v)

1 − Λ(v)

2 − Λ(v)

3

)
(v)
1 = Π θ1

ψ3

(
F(v) + Λ(v)3

ψ3

)
(v)
2 = π θ2

ψ2

(
F(v) + Λ(v)2

ψ2

)
(v)

1 = Λ(v)

1 + ψ1
(
H(v) − H(v)F(v)

)
(v)

2 = Λ(v)

2 + ψ2

(
F(v) − C(v)2

)
(v)

3 = Λ(v)

3 + ψ3

(
F(v) − C(v)1

)
(16)

here Πθ (∆) = Uπθ (Σ )VT represents the soft threshold op-
ration on the singular values of ∆ and πθ (Σ ) represents the
efined soft threshold operator.
By averaging the elements

{
C(1), C(2)

}
and obtaining the ma-

rix C, the adjacency matrix B can be obtained as:

= |C| + |C|
T (17)

Because spectral clustering [36] only needs the similarity ma-
rix between data, it is very effective for processing sparse data
lustering. Therefore, the main steps of using spectral clustering
o obtain pseudo label Yc

s of source domain class are as follows:
(1) Obtain the Laplacian matrix Ly through the adjacency

atrix B;
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(2) Perform eigenvalue decomposition on Ly and take the
igenvector corresponding to the k smallest eigenvalue;
(3) Take the solved eigenvectors (and normalize them respec-

ively) to form a new spectral clustering characteristic matrix
sc

=
[
xsc1 , x

sc
2 , . . . , x

sc
n

]T
∈ Rn×k, and k-means clustering of

matrix Xsc to obtain pseudo label Yc
s ∈

n×1.

3.3. Hypergraph manifold regularization

The pseudo label constructed by the multi-view method can
preserve the mapping relationship between the original feature
and label, but this relationship between the data may be de-
stroyed in the process of dynamic distribution adaptation. In
order to solve this problem, this paper introduces hypergraph
manifold regularization (HMR) to constrain the projection matrix,
and uses the hypergraph Laplacian to construct data associations
between feature and label, so that the data can preserve the deep
geometric structure of the original data in the new projected
space.

The hypergraph regular item is defined as [30]:

Rh (ℓ) =
1
2

∑
e∈E

∑
u,v∈V

ψ (e) h (v, e)
δ (e)

(
ℓ (u)
d (u)

−
ℓ (v)
d (v)

)2

(18)

Taking the diagonal matrix Dv , De as the degree matrix of the
vertices and the hyperedge in the hypergraph, respectively, Ze as
the weight matrix of the hyperedge, since the weight is 1, this
matrix is equivalent to the identity matrix. The Laplacian of the
hypergraph is L = I − S, where I is the identity matrix, and the
similarity matrix S can be expressed as [32]:

S = D−1/2
v HjZeD−1

e HT
j D−1/2

v (19)

where Hj is the joint hypergraph matrix, which can be expressed
as:

Hj =

[
Hs
Ht

]
,Hs =

[
Hf

s Hl
s

]
,Ht =

[
Hf

t Hl
t

]
(20)

where Hs and Ht are the hypergraph matrices of source domain
and target domain respectively, and they are obtained by the
hypergraph matrices of their respective feature and label. So the
regularization expression of manifold based on the hypergraph
Laplacian is:

tr
(
WTKLKW

)
(21)

4. Algorithm model and optimization solution

DASP is mainly divided into two parts: (1) Obtain class pseudo
label through the hypergraph based multi-view clustering
method; (2) Use the pseudo label obtained in the first part to per-
form dynamic distribution alignment and manifold regularization
constraints. At the same time, both parts use iterative methods to
optimize and update the requested parameters.

The first part to obtain class pseudo label Yc
s . The second part

of the model needs to integrate the above parts. Due to the large
number of parameters, it is easy to cause large model complexity.
And the empirical risk optimization strategy believes that the
model with the least empirical risk is the optimal model, but
using this model may cause over-fitting problems. Therefore, this
paper uses the structural risk function to prevent overfitting. Its
structural risk is defined as [8]:

Rsrm =
1
n

n∑
i=1

L(yi, ŷi) + ηJ(fm) (22)

where J(fm) is the model complexity. η is a coefficient, used to
weigh empirical risk and model complexity. L(y , ŷ ) is the loss
i i
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function, yi is the true value, and ŷi is the predicted value. This
paper adopts the square loss function, which is expressed as:

argmin
fm∈HK

n∑
i=1

(yi − fm(xi))2 + η ∥fm∥
2
K (23)

here HK represents the reproducing kernel Hilbert space. Using
he representation theorem [37], it can be extended to:

m(·) =

n+m∑
i=1

wik(xi, ·)

= (w1, . . . , wn+m)

( k (x1, ·)
. . .

k (xn+m, ·)

)
= WTK (24)

Therefore, the structural risk function can be written as:
n+m∑
i=1

(yi − fm(xi))2 + η ∥fm∥
2
K =

n+m∑
i=1

Aii(yi − wTki)2 + ηtr
(
fmfmT)

=
(Y − WTK)A

2
F + ηtr(WTKW)

(25)

here ∥·∥F represents the F norm. Kij = K(xi, xj) is the kernel
atrix, A ∈ R(n+m)×(n+m) represents the diagonal matrix used

o identify the domain. If i ∈ Ds, Aii = 1, otherwise Aii = 0.
= [y1, y2, . . . , yn+m]

T indicates the label of source and target
omains.
In summary, each part of the algorithm is optimized under the

ramework of structural risk minimization, and combined with
he above parts, DASP can be expressed as:

min{Empirical risk} + η{Modelcomplexity} + λ{Distributionshift}

+ ρ{Manifoldregularization} (26)

here η, λ and ρ are the regular coefficients of each item.
According to Eqs. (6), (21) and (25), the objective function can

e written as:

o = argmin
fo∈HK

(Y − WTK)A
2
F+ηtr(W

TKW)+tr(WTK(λM+ρL)KW)

(27)

Let ∂ fo/∂W = 0, it can get:
∗

= ((A + λM + ρL)K + ηI)−1AYT (28)

Using similar working condition selecting (SDS) to understand
he data distribution of the current working condition, by se-
ecting working conditions with similar data distribution, the
ata distribution between different working conditions can be
rocessed to a certain extent the problem of poor transfer effect
aused by differences enhances the robustness of the model.
he similar working conditions are measured by MMD, and the
maller the calculated value was, the more similar the two work-
ng conditions were. So we can proceed as follows: first use
MD to measure the data distribution distance between each
orking condition, select p working conditions (q > p) that
re similar to the current working conditions among q historical
orking conditions, then reconstruct the data through dynamic
istribution alignment for this p historical working condition, and
econstruct each group establish a regression model f ri (·), i ∈

1, p] based on the historical working condition data XSi , and use
MD to measure the similar weight of each historical working
ondition. The formula is as follows:

i =
1

(29)

MMD(XSi ,XT )
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Algorithm 1 Pseudo-code of DASP algorithm
Input: Data: q historical working condition data X1 · · ·Xq and its label Y1 · · ·Yq ;

current working condition data Xt . The regular coefficients η , λ , ρ and the
number of iterations t of each item.

utput: current working condition label Yt .
1: Select p working conditions similar to the current working conditions among q

historical working conditions.
2: Use multi-view clustering to construct initial pseudo label for historical condi-

tions, establish a clustering model, and use current working conditions to predict
its pseudo label ŷt ;

3: Construct the kernel matrix K and the hypergraph Laplacian matrix L;
4: for each i ∈ [1, t] do
5: Calculate the balance factor µ, and calculate the marginal distribution matrix

M0 and conditional distribution matrix Mc by formulas (8) and (9);
6: Calculate the projection matrix W∗ in the objective function by formula (28),

and obtain the reconstructed historical working condition and current working
condition data.

7: Update the pseudo label ŷt and the hypergraph Laplacian matrix L of the
target domain;

8: end for
9: Use the reconstructed historical working condition data to train the regression

model, and test the reconstructed current working condition data to obtain the
required prediction label;

0: Calculate the final current working condition label from the predicted label
obtained from each similar working condition, and obtain the root mean square
error with the real label.

βi =
αi∑p
i=1 αi

(30)

here αi is the reciprocal of the MMD between the ith re-
onstructed historical working condition data and the current
orking condition data. βi is the weight of the ith regressor. The

ntegrated regression model f r (·) can be expressed as:

r
= β f r + β f r + · · · + β f r (31)
1 1 2 2 p p

51
he regression model is established through the above formula
or prediction, and each regression machine is used to predict the
abel of the current working condition. The pseudo code of DASP
lgorithm is shown in Algorithm 1. The DASP flow chart is shown
n Fig. 3.

. Experiment

In this section, several experiments are conducted to evaluate
he performance of the proposed DASP method in multiple data
ets.

.1. Data set

TE data set: The Tennessee Eastman process [38] was created
y Eastman chemical company and can simulate the chemical
roduction process. It is a typical multi-modal process, and its
perating point can be adjusted according to production require-
ents, so that the data can produce multi-modal and multi-
ondition characteristics. The whole process consists of five main
perating units: reactor, stripper, condenser, gas–liquid separator
nd circulating compressor. There are 8 kinds of material com-
onents in the whole process, including the reacting gases A, C,
, E and the inert and insoluble B, the liquid products G and H,
nd the by-product F. The working process is shown in Fig. 4. In
ddition, the entire TE process involves 41 measured variables
nd 12 control variables, of which 41 monitored variables are
ivided into 22 process variables and 19 component variables.
In view of the fact that the reactor pressure and the reactor

iquid level have the most important influence on the product,
xperiments in this paper changes the reactor pressure setting
alue and the reactor liquid level to make the system produce
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able 1
orking condition setting of TE process.
System settings Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9

Reactor pressure 2800 2750 2700 2650 2600 2550 2500 2450 2400
Reactor liquid level 65 65 65 65 65 65 65 65 65

System settings Mode 10 Mode 11 Mode 12 Mode 13 Mode 14 Mode 15 Mode 16 Mode 17 Mode 18

Reactor pressure 2350 2300 2300 2350 2400 2450 2500 2550 2600
Reactor liquid level 65 65 75 75 75 75 75 75 75
Fig. 4. Schematic diagram of TE process.
multi-model characteristics. In order to simulate the continuous
production scenario in the industrial process, the entire TE pro-
cess is based on the setting value of working condition 1 as the
initial state. After the simulation runs for 50 h, it is switched to
working condition 2, and the setting value of working condition is
switched according to the same running time, until the operation
reaches the end of the set value under working condition 18.
Working condition setting of TE process is shown in Table 1. The
data sampling interval of all working conditions is 3 min, that is,
1000 samples are collected under each working condition. Since
the stirring rate among the 12 control variables belongs to the
mechanical field and will not have a great impact on the final
product, 22 process variables and 11 control variables are selected
as input for each sample under all working conditions in this
article.

Ball mill data set: Ball mill is a typical energy consuming
equipment, widely used in electric power, chemical industry and
other process industries. The accurate detection of the load pa-
rameters of the ball mill is of great significance to the opti-
mization control of the grinding process, energy saving and con-
sumption reduction, and safe operation. The comprehensive and
complex characteristics of the grinding process and the char-
acteristics of the operation of the ball mill make it difficult to
directly detect the key internal parameters. Therefore, the use of
an effective soft sensor strategy to predict the load parameters
of the ball mill is a problem worthy of study in the multi-modal
soft sensor. This experiment uses a small-scale wet ball mill in
the laboratory as shown in Fig. 5 to perform soft sensor modeling
52
Fig. 5. Ball mill equipment used in the experiments.

and prediction of load parameters. By changing the ball volume
ratio to simulate the sudden change of working conditions, using
a multi-channel data acquisition device, five groups of vibration
signals were collected on the ball mill. In order to ensure the high
resolution of the load parameters, each group has carried out suf-
ficient experiments and synchronously collected vibration signals
on site. For each group of experiments, the charge volume ratio
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Fig. 7. TE component A prediction results.
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able 2
orking condition setting of ball mill.
Working Steel Water Starting Ending Material
condition ball/kg /kg material/kg material/kg change times

1 292 35 25.5 174 139
2 340.69 40 29.7 170.1 103
3 389.36 40 34.2 157.5 88
4 483.02 35 23.4 151.2 95
5 486.7 40 15.3 144.9 102

(CVR), the pulp density (PD) and the material to ball volume ratio
(MBVR) were changed by changing the amount of material. The
experimental setup is shown in Table 2. Each group of working
condition data and vibration signal is divided into 20 samples on
average. The coverage length of each sample is longer than the
rotation time of the wet ball mill. Then the fast Fourier transform
is used to transform the time-domain signal, which is difficult to
model, into the frequency-domain signal.

Fig. 6 shows that the two data sets are processed respectively,
nd the data of five working conditions are randomly selected
 c

53
to be reduced to 2 dimensions for plane visualization.As can be
seen from the figure, the data distribution modes under different
working conditions have certain similarity, but there are obvious
distribution differences. Different working conditions all belong
to the same process, so there is a strong similarity between differ-
ent working conditions. However, when the composition content
changes, the mechanism equation of key variable parameters will
also change. At the same time, the sensor type and position are
not changed when the data under different working conditions
are sampled, so the multi-working condition ball mill and TE
experiment is a typical multi-working condition data.

5.2. Experimental setup

TE data set: In the TE process experiments, it is assumed that
he historical working condition is the source domain and the
urrent working condition is the target domain. Experiments take
he task of predicting component A (label 29), component F (label
4), and component G (label 35) in the component variables. Use
orking conditions 1 to 11 are historical working conditions, and
urrent working conditions are working conditions 12 to 18;
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able 3
omparison of RMSE of different methods for TE predicting results.
Ingredient Method Current working condition

→12 →13 →14 →15 →16 →17 →18

29

Bagging 1.9258 2.1338 1.8273 1.1630 1.6436 1.4071 2.1024
JITL-PLS 1.8302 2.7666 2.0433 2.0706 1.7029 2.1134 1.9512
JITL-SVR 0.8850 2.9821 2.2101 2.4396 2.0349 2.6441 2.6421
RPLS 1.0923 2.8461 3.7280 3.8763 4.2674 2.8916 2.9901
MW-PLS 0.8127 1.2759 1.1841 2.0422 2.5417 3.5234 4.5488
MW-SVR 1.3369 3.1269 2.8717 3.6683 2.5617 3.5756 4.1237
EL 1.0358 2.5994 1.7896 1.3410 1.8202 1.8477 1.7436
DASP 0.7455 1.4930 1.1445 0.8500 0.7231 0.8147 1.1094

34

Bagging 0.3589 0.8426 0.6436 0.5318 0.2916 0.4572 0.4702
JITL-PLS 0.4328 0.5106 1.0972 0.8099 0.2420 0.2960 0.5865
JITL-SVR 0.1656 0.5089 0.4895 0.5269 0.2212 0.2843 0.3316
RPLS 0.1357 0.2296 0.2247 0.4020 0.2536 0.4422 0.4086
MW-PLS 0.1540 0.4021 0.6298 0.9046 1.8994 2.0049 2.3122
MW-SVR 0.3029 0.7067 0.2814 0.3270 0.9869 0.8670 1.1034
EL 0.3914 0.6764 0.5028 0.5533 0.2665 0.3194 0.4410
DASP 0.1198 0.2041 0.1668 0.1739 0.2061 0.1932 0.2812

35

Bagging 0.2677 0.5965 0.3965 0.4870 0.3656 0.6177 0.5231
JITL-PLS 0.3356 0.5755 0.4300 0.5512 0.3629 0.7479 0.5233
JITL-SVR 0.1324 0.2050 0.1994 0.1740 0.1908 0.1979 0.3373
RPLS 0.1042 0.1339 0.2071 0.1540 0.1222 0.2457 0.2195
MW-PLS 0.0870 0.1050 0.1101 0.1771 0.2790 0.3513 0.4383
MW-SVR 0.1121 0.2557 0.4493 0.6085 0.7645 0.8437 1.0187
EL 0.2540 0.3934 0.4768 0.4996 0.4034 0.4436 0.4773
DASP 0.0876 0.1070 0.0967 0.0967 0.0926 0.0970 0.1237
Fig. 8. TE component F prediction results.
Ball mill data set: In the load parameter prediction of the ball
ill, due to the limited number of working conditions collected
uring experiments, when one of the working conditions is the
urrent working condition, the remaining four working condi-
ions are historical working conditions. Experiments predict and
ompare the three load parameters of MBVR, PD and CVR.
To demonstrate the prediction performance of the proposed

ethod, the soft sensing model composed of the bagging, the
ITL-PLS, the JTIL-SVR, the RPLS, the MW-PLS, the MW-SVR and
he EL are used to compare the DASP method. After optimization,
e set the following parameters for the comparison methods.
or the JITL-PLS and JTIL-SVR, we select 30 samples that are
losest to the current test sample to train the model. For the MW-
LS and the MW-SVR, we set the moving window size to 100
54
samples. During the experiment, PLS and SVR model parameters
are automatically updated through the toolbox by Matlab2018b.
For the RPLS, we set the forgetting factor to 0.98. The basic model
we chose is the decision tree for the bagging and the EL. We
set the number of learning cycles to 20 for bagging and we set
the number of trees to 100 for random forest-based ensemble
learning.

5.3. Evaluation index

In order to quantify the prediction performance of various
methods, root mean square error (RMSE) is used as the evaluation
standard of measurement accuracy, and the calculation formula
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Fig. 9. TE component G prediction results.
Fig. 10. MBVR prediction results of ball mill.
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s as follows:

MSE =

√ 1
N

N∑
i=1

(ŷi − yi)
2 (32)

here yi and ŷi represent the true value and predicted value of
the ith sample, respectively. N is the number of samples.

5.4. Experimental results

TE data set: Table 3 shows the experimental results of TE pro-
cess data using 1–11 working conditions to predict A, F and G of
working conditions 12–18. The result record contains the average
value of the ten tests, and the symbol ‘‘→’’ means to transfer
55
the historical working condition to the current working condition.
Figs. 7–9(a)–(h) show the single results of 10, 11 working condi-
tions predicting 15 working condition. From these experiments, it
can be seen that the fitting degree of regression prediction based
on DASP method is higher, whose RMSE between the real value
and the predicted value is smaller.

Ball mill data set: In order to verify the effectiveness in the
ctual work environment, DASP is selected to transfer three com-
onent variables MBVR, PD and CVR in ball mill, which predict
esult is 10 times average. The experimental results are shown
n Table 4. Figs. 10–12(a)–(h) are the single results of 3, 5 working
onditions predicting 4 working condition.
The method proposed in this paper uses pseudo-labels for

oint distribution alignment, in order to design a more fair com-
arison experiment, for RPLS, MW-SVR, MW-PLS, we use the
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Fig. 11. PD prediction results of ball mill.
Fig. 12. CVR prediction results of ball mill.
predicted value of the first local model as a pseudo-label to
update the model in real time. For EL, bagging, JITL-PLS, JITL-SVR,
we use all historical working condition samples as the training
set, and the current working condition as the test set for ex-
periment. From these results, it can be seen that the prediction
effect of JITL is not ideal. Compared with JITL, EL and bagging has
improved some prediction effects, but it does not substantially
reduce the data difference between different working conditions,
so the model performance has not improved much. For RPLS,
MW-SVR and MW-PLS, When using pseudo-labels to replace real
labels to update the model, these methods gradually increase the
prediction error as samples are added. The comparison methods
have very unsatisfactory prediction effects for each component.
56
As the working conditions change, when there is a big differ-
ence between the historical working conditions and the current
working conditions, problems such as under-fitting will occur.
Therefore, it can only roughly keep up with the true value in the
trend, but there are large fluctuations and large errors.

Compared with other forecasting models, the DASP method
proposed in this paper shows outstanding advantages in regres-
sion problems. The optimal results in each case shown in bold. It
has good forecasting effects in different data sets or in forecasting
components, and its forecasting values are well realized. The
tracking of the true value highlights the good label prediction
effect under unsupervised multi-working conditions, and further
proves the effectiveness and robustness of the algorithm.
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Fig. 13. Comparison of TE component soft sensor RMSE results of different prediction methods.
Fig. 14. Different methods of ball mill parameter soft sensor RMSE results.
able 4
omparison of RMSE of different methods for predicting the load parameters of
he ball mill under various working conditions.
Parameter Method Current working condition

→ 2 → 3 → 4 → 5

MBVR

Bagging 0.2817 0.4225 0.3838 0.5756
JITL-PLS 0.3688 0.4490 0.7043 0.9147
JITL-SVR 0.1510 0.2588 0.5026 0.3571
RPLS 0.6552 0.6519 1.2892 3.3013
MW-PLS 0.2527 0.6149 1.5063 4.0229
MW-SVR 0.7784 0.3603 1.2474 1.4655
EL 0.2851 0.2970 0.4119 0.4468
DASP 0.1228 0.1107 0.0679 0.3749

PD

Bagging 0.0720 0.1950 0.1135 0.4210
JITL-PLS 0.0695 0.1149 0.3406 0.3467
JITL-SVR 0.0342 0.0681 0.1280 0.1534
RPLS 0.1215 0.1530 0.2225 0.6087
MW-PLS 0.0451 0.0456 0.1803 0.4052
MW-SVR 0.0738 0.0935 0.1298 0.1839
EL 0.0444 0.0733 0.0833 0.1506
DASP 0.0319 0.0223 0.0387 0.0543

CVR

Bagging 0.0927 0.2368 0.1557 0.3845
JITL-PLS 0.0908 0.1428 0.1777 0.2471
JITL-SVR 0.0819 0.1355 0.1413 0.1947
RPLS 0.1588 0.2059 0.2640 0.5257
MW-PLS 0.1055 0.1850 0.2718 0.6061
MW-SVR 0.0800 0.0944 0.0922 0.1042
EL 0.0963 0.1329 0.1468 0.1805
DASP 0.0350 0.0260 0.0163 0.0181

5.5. Impact of each part

In order to verify the influence of each part of the method
n the performance of the model, the PLSR model was selected,
hich did not go through the multi-view clustering (No-MC)
57
Fig. 15. Number of categories analysis.

model, did not have the hypergraph manifold regularization (No-
HMR) model, and did not use similar working condition selecting
(No-SDS) model and DASP direct modeling to compare the pre-
diction results of all components under different conditions. As
shown in Figs. 13 and 14 are the experimental results for two
data sets. It can be seen that the prediction error of DASP is
the smallest, and the introduction of each item can further im-
prove prediction accuracy of the model. The reason is that due
to the large differences between the data working conditions,
direct modeling without distribution alignment will lead to un-
satisfactory prediction results, and the effect of joint distribution
adaptation is significantly improved, but in the process of feature
transformation, if the model does not establish constraints on
feature and label, which will destroy its data structure and have a
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Fig. 16. Parameter sensitivity analysis.
reat impact on the effect of domain adaptation. And by selecting
imilar working conditions to improve the generalization of the
odel can make it have the same good effect under different

orecasting conditions.

.6. Parameter sensitivity

In essence, label discretization is equal clustering of continu-
us data. The selection of category number will directly affect the
ange of each segment in the discrete process. In this experiment,
he optimal category number is determined by discretization
f labels into different categories and running DASP. As shown
n Fig. 15. By experimenting with random tasks in two data sets,
t was observed. Within a reasonable range, the prediction ability
radually decreases with the number of optimal categories. If the
umber of categories is too small or too many, the prediction
ccuracy will be reduced. The experiment runs DASP with a wide
ange of values for parameters η, λ and ρ on several random
asks to compare its performance in Fig. 16(a), (b) and (c). DASP
an achieve a robust performance with regard to a wide range
f parameter values. Specifically, the best choices of these pa-
ameters are: λ ∈ [1, 100], η ∈ [0.01, 1], ρ ∈ [0.1, 10]. To sum
p, the performance of DASP stays robust with a wide range of
egularization parameter choices.

. Conclusion

In this paper, a multi-source unsupervised soft sensor method
ased on joint distribution alignment and mapping structure
reservation is adopted. This method preserves the mapping re-
ationship between feature and label, and uses joint distribution
daptation to reduce known modal data and unknown modalities.
he difference of distance between the state data improves the
erformance of the unsupervised soft sensor model. In order to
erify the effectiveness of the method, it was applied to the
oft sensor of TE and the load parameters of wet ball mill with
ultiple working conditions, and the soft sensor modeling of
ultiple working conditions was completed. The experimental

esults show that the method proposed in this paper can effec-
ively improve the prediction accuracy of the model. This paper
ainly uses DASP to model offline data, which can not meet

he real-time requirements temporarily. Further research will be
onducted on the online soft sensor model.
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