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Abstract—This paper presents the design of an ultra-low
energy, rakeness-based compressed sensing (CS) system that
utilizes time-mode (TM) signal processing (TMSP). To realize
TM CS operation, the presented implementation makes use of
monostable multivibrator based analog-to-time converters, fixed-
width pulse generators, basic digital gates and an asynchronous
time-to-digital converter. The TM CS system was designed in a
standard 0.18µm IC process and operates from a supply voltage
of 0.6V. The system is designed to accommodate data from 128
individual sensors and outputs 9-bit digital words with an average
reconstruction SNR of 35.31 dB, a compression ratio of 3.2, with
an energy dissipation per channel per measurement vector of
0.621 pJ at a rate of 2.23 k measurement vectors per second.

Index Terms—compressed sensing, time-mode, time-mode sig-
nal processing, rakeness, energy efficiency, ultra-low energy

I. INTRODUCTION

Today, most of the circuit design is done in CMOS. The
advancement and scaling of CMOS technologies has, in fact,
always been based on improving digital systems’ performance.
Yet, with each new technology node, the supply voltage of the
process node is scaled down as well, which reduces the head-
room that is available to the transistors for operating in saturation
region. Without transistors operating in the saturation region, it is
very hard to realize signal processing and amplification functions
in the analog domain. One possible solution to this problem is
using time-mode signal processing (TMSP) techniques [1]–[4].

Time-mode (TM) circuits represent an analog signal by the
time difference between two binary switching events. Conse-
quently, time-mode operation is inherently lower power when
compared to standard CMOS digital operation. For example, to
transfer N-bit accurate data in a standard CMOS digital circuit,
the number of switchings required on the data line may change
from 0 to N if the data is transmitted in parallel, whereas, in a
TM circuit, transfer of the data always takes two switchings if
the rising and falling edges of a pulse are used for information
transmission. Based on these very simple observations, it is
arguable that more low-power signal processing systems may
be implemented using TMSP techniques in the future.

With today’s increasing focus on both Internet of Things and
biosensors/bioelectronics applications, the design of very low-
energy sensing nodes is the key to enlarge these paradigms to a
wider range of applications. Furthermore, a sensor is no longer
a block devoted only to signal acquisition; it must also be able
to acquire, digitize, compress and finally transmit sensed data
with an almost negligible energy cost.

In this field, the adoption of Analog to Information Conver-
sion (AIC) based on the Compressed Sensing paradigm (CS)
[5], [6] emerges as a low-energy solution that combines data
acquisition and data compression. The CS mechanism is based
on the projection, in the analog domain, of input signal instances
on a set of predefined sensing sequences that are in number
less than the input signal intrinsic dimensionality. The obtained
output, the measurement vector, is then transmitted to a decoder
block to recover the original signal. Alternatively, CS can be
used as a low power compression scheme after signal digitization
[7], [8].
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Figure 1. Proposed TMSP CS system high-level block diagram.

The research work presented here focuses on multi-channel
electrode arrays that characterize a huge set of biomedical
applications [7], [9], [10], where the input signal is the collection
of readings. The proposed system is shown in Figure 1 and
realizes the CS paradigm by using a very energy-efficient TMSP
system. The analog input from 128 electrodes is sensed and
compressed in time-mode and the resulting time-mode signals
are converted to digital using a single asynchronous time-to-
digital converter (A-TDC).

The paper is organized as follows. Sec. II recaps the CS
mathematical background, in Sec. III the TMSP Compressed
Sensing System is presented, while Sec. IV reports simulation
results. Finally, we draw the conclusions.

II. COMPRESSED SENSING

The CS working principle transforms the real information
content of an n dimensional input signal x into a measurement
vector y that is the output of m linear projections of x over
the rows of a matrix A, called the sensing matrix [5]. This
simple acquisition scheme reflects the implementation of an
ideal encoder. Furthermore, in a real scenario, noise and other
system non-idealities affect the final encoder output, which can
be expressed as

y = A(x+ νx) + νy , (1)

where both νx and νy are additive disturbances modelling
the mentioned non-idealities for the input signal and for the
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Figure 2. A compressed sensing measurement row implementation using time-mode signal processing.

measurement vector, e.g., quantization error or signal noise. In
case of m < n, CS provides a compression ratio defined as
CR = n/m.

On the receiver side, a decoder block must be able to recover
the initial information x from the transmitted digital words
composing y and the knowledge of the sensing matrix A. Since
A is a rectangular matrix, retrieving x from y is an ill-posed
problem, i.e., multiple solutions exist. To guarantee a correct sig-
nal reconstruction, the CS decoder requires a proper assumption
on the acquired class of signal, i.e., all input instances x must be
κ-sparse. This means that an n×n orthonormal matrix D exists,
which defines the sparsity basis, so that any vector x = Dξ is
such that ξ, the n-dimensional vector containing projections of
x over the columns of D, has no more than κ � n non-zero
components.

With this assumption, the decoder is designed to give the
reconstructed input signal x̂ = Dξ̂, where ξ̂ is the sparsest vector
ξ that matches (1) with a proper tolerance. This is mapped in
the solution of the following optimization problem [6]

ξ̂ = argmin
ξ
‖ξ‖1 s.t. ‖ADξ − y‖2 < ε , (2)

where ‖ · ‖p stand for the `p norm and ε balances the effects of
both νx and νy .

Finally, proper decoding is ensured assuming A satisfies some
constraints and a minimum number of measurements are avail-
able. In standard CS theory, this is ensured by generating entries
of A as instances of independent and identically distributed
random variables [6]. Along all possible CS encoders already
proposed in the literature, circuit implementations that adopt
either antipodal or ternary random sensing matrices are more
advantageous [8], [11]–[13]. This means that the sensing matrix
entries are still random but are limited to either Aj,k ∈ {−1, 1}
or Aj,k ∈ {−1, 0, 1} where, in the latter case, an increase in the
number of zeros implies a reduction in the number of operations
needed to compute y.

If we assume that for the i-th row of A only d entries are
non-zeros, where the number of 1 and −1 are d+i and d−i , then
the i-th measurement becomes

yi =

d+i∑
j=1

xpi(j) −
d−i∑
j=1

xni(j) , (3)

where pi(·) and ni(·) map the positions of positive and negative
entries of the i-th row of A, respectively.

The CS approach was expanded in [8], [14] where the authors
proposed a soft adaptation of the second-order statistics of the
sensing matrix rows to the second-order statistics of the acquired
class of signals, and this method is called rakeness-based CS.

Rakeness-based CS imposes the following n × n correlation
matrix CA to the rows of A,

CA =
n

2

(
Cx

tr(Cx)
+ In

)
, (4)

where tr(·) stands for matrix trace, In is the n−dimensional
identity matrix and Cx is an estimation of the input signal
correlation matrix.

III. TIME-MODE SIGNAL PROCESSING COMPRESSED
SENSING SYSTEM

We applied time-mode operation and TMSP methods to the
design of a rakeness based CS system in a standard 0.18µm IC
process. Each measurement row of the implemented CS system
is defined by (3) and is mapped to a TMSP implementation, as
shown in Figure 2. As in (3), positive and negative computations
are separated into two time-mode processing chains, one for each
summation. Each measurement row is triggered by a trigger
signal and as each analog-to-time converter (ATC) converts a
voltage input value into a pulse whose width is proportional to
the input signal value, the signal propagates through the chain
of ATCs and fixed-width pulse generators (FWPGs). FWPGs,
represented by the pulse blocks in Figure 2, are required to be
able to trigger the next ATC in the chain with the falling edge
of the previous ATC pulse. In this specific implementation, we
created two parallel chains of d ATCs and connected d − d+i
and d − d−i ATC inputs to AC-ground, for the upper and the
lower chains, respectively. The ATCs with 0 inputs represent
the 0 values in the sensing matrix and these AC-ground connec-
tions are required to equalize the time offset coming from the
ATC. The structures and operation principles of both the ATC
and the negative-edge triggered fixed-width pulse generator are
explained in the following sub-section.

At the end of each chain, negative-edge triggered flip-flops
are employed to capture the final falling edge of the signal
generated by the chain of ATCs. A result pulse, whose width
value is proportional to the calculation given in (3) is generated
by XOR-ing the signals captured by the edge detectors. This
XOR operation effectively creates a pulse signal whose width is
the absolute value of the time difference of the signals at the
edge detector outputs. As the sign information of the subtraction
is lost in the XOR operation, a sign bit is generated by using a
nand-based SR-latch and an inverter (Figure 2).

To convert the result pulse into a digital value for transmission
and/or storing, an 8-bit A-TDC similar to the one in [15] was
designed and employed. The result pulse is fed into the A-TDC
for conversion, and at the same time the negative edge of the
result pulse is used for triggering the next row for calculations.
With such an implementation, we were able to use a single TDC



for processing the result pulse of all the measurements for an
input signal bandwidth limited to 200Hz.

A. Sub-blocks
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Figure 3.

As the ATC in the system, we employ a monostable multi-
vibrator (MSMV) as shown in Figure 3(a) [16]. In this imple-
mentation, a pMOS transistor (M1) acts as a variable resistor
whose resistance is modulated by the current input signal.
When the MSMV is triggered by an input pulse, nodes n1
and n2 are pulled to logic-low and M1 starts charging node
n2. The gate of M1 is driven by the input signal that is to be
converted into time, and sampling is realized by modulating the
instantaneous resistance of M1. Thus, the RC time constant of
the multivibrator is modulated as well, resulting in a pulse whose
width is proportional to the amplitude of the input signal. The
pulse width generated by the ATC is given in [16] by

T = C(R+Ron) ln

[
R

R+Ron

VDD
VDD − Vth

]
, (5)

where R is the average resistance of the pMOS transistor during
pulse generation, Ron the resistance of the NOR gate, and Vth
the switching threshold of the inverter. Assuming Ron << R
and Vth = VDD/2, (5) is simplified to T = 0.69RC.
Furthermore, this ATC implementation has an inherent timeout
feature and will always generate a pulse event at node n1
regardless of the input signal value at Vin, avoiding stalling of
the chain. Capacitor C and transistor M1 were made bigger than
the minimum values required for correct operation to mitigate
process variation effects.

A negative edge triggered FWPG, shown in Figure 3(b), is
used between the ATC blocks as we require the triggering of
the next ATC in the chain to occur during the falling edge of
the pulse generated by the previous ATC. By triggering the next
ATC with the falling edge of the previous ATC output, time
addition operation is realized.

The result of a transistor-level transient simulation of a
measurement row with d = 16 is shown in Figure 4. On the
top and bottom halves of the figure, time-mode calculations for
the +1 Terms and -1 Terms are shown, respectively. Only the
last 2 ATC outputs in their respective chains, i.e., d = 15 and
d = 16, are shown. The outputs of the ATCs are shown in red
and the outputs of the FWPGs are shown in blue. The ATCs
generate signals with varying pulse widths based on their input
signal values, and, therefore the signal in the chain is delayed
by an amount proportional to the voltage inputs applied to the
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Figure 4. Transient simulation of one measurement row of the designed
TMSP CS system with d = 16.

ATCs. The falling edges of the generated pulse signals by the
last ATCs in the chain (d+i = di−i = d = 16) denote the
end of time-mode summation operations, and their difference
gives the time-mode result of (3). For example, in the figure,
the last ATC in the +1 Terms chain generates the final falling
edge earlier, representing a summation value smaller than the
one generated by the -1 Terms chain. Therefore, the resulting
difference, marked by tDiff, is negative. The sign information of
the calculation is captured using the SR-latch and later saved
together with the output of the TDC, resulting in a 9-bit digital
value.

B. System Simulations
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Figure 5. Comparison of the normalized generated pulse width with respect
to the normalized expected value from 512 measurements for a CS system
with d = 16.

To verify the correct time-mode operation of the designed
system, extensive transistor level SPICE simulations were run
using the HSPICE simulator. First, we verified the operation
of the ATC. For input signals that vary between -5 mV and
5 mV around half VDD (0.3V), the ATC realizes the conversion
function tpulse = 30.8 · µs

V ·Vin + 1.235µs, generating pulses in
the range 1.081µs - 1.389µs. We also simulated both a single
ATC and a chain of ATCs and FWPGs for their time-mode
noise (jitter) performance. The simulations show that a single
ATC together with a FWPG has a random jitter of 6.49 ns for
a conversion range of 309 ns, resulting in an SNR of 33.55 dB.



As the number of ATCs and FWPGs increase in the chain, for
every doubling of the number of elements the increase in SNR is
3 dB. Therefore, a chain with at least 2 ATCs satisfy our input
SNR requirement of 35 dB. In our verification and high-level
simulations, jitter values for different d values were implemented
in our models through the νx term in (1).

Next, we simulated and verified the implementation of a CS
measurement row with d = 16 by varying the input signals and
comparing the normalized output of the design in Figure 2 to the
normalized expected value in the voltage domain. The results of
simulating 512 measurements is shown in Figure 5. As can be
seen from the figure, the generated time-mode signals strongly
correlate with the expected value in the time domain with an
R2 value of 0.997.

Table I
PER SAMPLE ENERGY DISSIPATION OF THE MAIN SUB-BLOCKS IN THE CS

SYSTEM.

Block Energy (pJ)
ATC 0.0213

FWPG 0.0117
TDC 1482

After verifying the correct operation of our design, we charac-
terized each element in the implementation for their energy dis-
sipation per computation at a VDD of 0.6V. Energy dissipation
results of the major circuit blocks are presented in Table I. The
TDC energy dissipation value includes the energy dissipation of
the edge detectors, SR latch and the XOR gate. These values
were used to find an energy-optimal implementation, which is
presented in the next section.

IV. SYSTEM SIMULATION RESULTS
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Figure 6. ARSNR simulations for varying values of m and d for time-mode,
standard and rakeness-based CS.

To verify the effectiveness of the proposed architecture, we
investigated an energy optimum time-mode CS implementation
using the results from the previous section. First, to generate
the A matrices, we performed Monte Carlo simulations on a set
of synthetic low-pass signals. We used a chunk of input signals
composed by n = 128 successive samples, such that each input
vector x is sparse with respect to the discrete cosine transform
and where κ = 12. The A matrices are such that only d entries in
each row are non-zero. Furthermore, for the Standard CS, purely
random ternary sensing matrices are employed while for the
rakeness-based CS a proper correlation profile is imposed to each

Table II
ARSNR, ENERGY DISSIPATION, COMPRESSION RATIO AND CS CR

EFFICIENCY IN TERMS OF ENERGY PER MEASUREMENT VECTOR FOR A
128 CHANNEL TMSP CS IMPLEMENTATION.

R
ak

en
es

s

m d ARSNR (dB) E (pJ) CR CRE
40 8 35.31 79.46 3.20 0.0403
36 16 35.41 90.52 3.56 0.0393
41 8 35.68 81.45 3.12 0.0383
37 16 35.95 93.03 3.46 0.0372

St
an

da
rd 57 8 35.22 113.23 2.25 0.0198

58 8 35.49 115.22 2.21 0.0192
52 16 35.78 130.75 2.46 0.0188
59 8 35.80 117.20 2.17 0.0185

row of A according to (4) and by adopting generation methods
described in [8], [17]. The input signal correlation matrix needed
in (4) was estimated on a separated dataset.

To assess the average performance of the implementation, 500
different sets of sensing matrices, for each CS approach, were
applied to 500 different input instances in order to obtain signal
reconstructions by the solution of (2). After that it was possible
to compute, as a figure of merit, the Average Reconstruction
Signal to Noise Ratio (ARSNR)

ARSNR = E

[
‖x‖2
‖x− x̂‖2

]
(6)

where E[·] stands for the expectation. The results of our sim-
ulations with a targeted ARSNR value of 35 dB are given in
Figure 6. We considered both standard CS and rakeness-based
CS implementations. As expected, rakeness-based CS performs
better than standard CS and requires less resources, i.e., smaller
d and m, for satisfying the ARSNR requirement.

As all the d and m pairs that satisfy the ARSNR requirement
are feasible implementation candidates, to be able to compare
them in terms of energy efficiency, we define a metric Com-
pression Ratio per Energy (CRE) as CRE = CR

E , where E is
the energy per measurement vector in pJ. A higher CRE means
higher energy efficiency for the achieved compression ratio. The
results of our simulations are given in Table II. The rows are
sorted for CRE in descending order, separately for both standard
and rakeness-based CS implementations. When the rakeness-
based approach is compared to a standard implementation,
compression ratio increases by 42% and the energy dissipation
reduces by 29.8% for the most energy efficient implementations.
Our implementation for the best CRE dissipates 0,621 pJ per
channel per measurement vector and outputs 2.23 k measurement
vectors per second.

V. CONCLUSIONS

This paper presents the design and the simulation results
a of time-mode, rakeness-based compressed sensing system.
Time-mode signal processing techniques have been applied for
accumulating and subtracting voltage signal values in the time-
domain using energy-efficient simple circuitry. The system was
designed and simulated in a standard 0.18µm process and
operates from a supply voltage of 0.6 V. For an optimal 128-
channel implementation, the energy dissipation per channel is
0.621 pJ per measurement vector for a compression ratio of 3.2.
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