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U-statistics constitute a large class of estimators, gen-
eralizing the empirical mean of a random variable X
to sums over every k-tuple of distinct observations of
X. They may be used to estimate a regular functional
𝜃(PX) of the law of X. When a vector of covariates
Z is available, a conditional U-statistic describes the
effect of z on the conditional law of X given Z = z,
by estimating a regular conditional functional 𝜃(PX|Z=⋅).
We state nonasymptotic bounds of general conditional
U-statistics and study their asymptotics too. Assum-
ing a parametric model of the conditional functional of
interest, we propose a regression-type estimator based
on conditional U-statistics. Its theoretical properties are
derived, first in a nonasymptotic framework and then
in two different asymptotic regimes. Some examples are
given to illustrate our methods.

K E Y W O R D S

conditional distribution, penalized regression, regression-type
models, U-statistics

1 INTRODUCTION

1.1 Our setting

Let X be a random element with values in a measurable space ( ,), and denote by PX its law.
Often, we will use as a typical example the special case  = RpX , for a fixed dimension pX > 0.
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2 DERUMIGNY

In statistics, many parameters of interest can be seen as a regular functional of PX. A functional
PX → 𝜃(PX) is called regular if it is of the form

𝜃(PX) = E
[
g(X1, … ,Xk)

]
= ∫ g(x1, … , xk)dPX(x1) … dPX(xk), (1)

for a fixed k > 0, a function g ∶ k → R and X1, … Xk
i.i.d.∼ PX. Following Hoeffding (1948), a

natural estimator of 𝜃(PX) is the U-statistics �̂�, defined by

�̂� ∶= |ℑk,n|
−1
∑

𝜎∈ℑk,n

g
(
X𝜎(1), … ,X𝜎(k)

)
,

where ℑk,n is the set of injective functions from {1, … , k} to {1, … ,n}. Remark that ℑk,n is
isomorph to the set of variations of k distinct elements of {1, … ,n}. Therefore, |ℑk,n| =

(
n
k

)

k! =
n(n − 1) … (n − k + 1). For an introduction to the theory of U-statistics, we refer to Korolyuk and
Borovskich (1994) and (Serfling, 1980, chapter 5).

In our framework, we assume that we are actually interested in a random pair (X,Z)where Z is
a p-dimensional covariate. For this, we assume that we observe n i.i.d. pairs (Xi,Zi), i = 1, … ,n.
We want to use the information of the covariate Z to obtain knowledge on the conditional distri-
bution of X. In other words, the object of interest is the mapping z ∈ Rp → PX|Z=z. This mapping
will be denoted by PX|Z=⋅.

Assumption 1. As obtaining results valid uniformly over Rp may not be feasible, we
restrict ourselves in this article to the inference of the mapping z ∈  → PX|Z=z, for
some compact subset  of Rp.

Extending the unconditional framework presented above to the conditional framework, we
say that 𝜃 is a regular conditional functional if it is of the form

𝜃(z1, … , zk)(PX|Z=⋅) ∶= 𝜃(PX|Z=z1 , … ,PX|Z=zk )

= E
⊗

k
i=1PX|Z=zi

[
g(X1, … ,Xk)

]
= E

[

g(X1, … ,Xk)
|
|
|
Zi = zi,∀i = 1, … , k

]

=
∫

g(x1, … , xk)dPX|Z=z1(x1) · · · dPX|Z=zk (xk).

This can be seen as a generalization of 𝜃(PX) to the conditional case. Indeed, when X and Z are
independent, the new functional 𝜃(z1, … , zk)(PX|Z=⋅) is equal to the unconditional functional
𝜃(PX). For convenience, we will use the notation 𝜃(z1, … , zk) ∶= 𝜃(z1, … zk)(PX|Z=⋅), treating
the law of (X,Z) as fixed (but unknown).

The goal of this paper is to study estimators of 𝜃(z1, … , zk), first for fixed z1, … , zk, and then
as a function 𝜃 ∶ → R, given a parametric form.

Stute (1991) defined a kernel-based estimator �̂�(z1, … , zk) of the conditional functional
𝜃(z1, … , zk) by

�̂�(z1, … , zk) ∶=

∑
𝜎∈ℑk,n

g
(
X𝜎(1), … ,X𝜎(k)

)∏k
j=1Kh

(
zj − Z𝜎(j)

)

∑
𝜎∈ℑk,n

∏k
j=1Kh

(
zj − Z𝜎(j)

) , (2)
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DERUMIGNY 3

where h > 0 is the bandwidth, K(⋅) a kernel on Rp, Kh(⋅) ∶= h−pK(⋅∕h), and (Xi,Zi)
i.i.d.∼ PX,Z.

Stute (1991) proved the asymptotic normality of �̂�(z1, … , zk) and its weak and strong consistency.
Dony and Mason (2008) derived its uniform in bandwidth consistency under VC-type conditions
over a class of possible functions g.

1.2 Two-step estimation of 𝜽(z1, … , zk) based on a parametric model

The estimator (2) has several weaknesses. First, the interpretation of the whole hypersurface
(z1, … , zk) → �̂�(z1, … , zk) can be difficult. Indeed, the latter curve is of dimension 1 + p × k,
and it is rather challenging to visualize it even for small values of p and k. Second, for each new
k-tuples (z1, … , zk), the computation of �̂�(z1, … , zk) has a cost of O(nk). Then, if we want to
estimate N values of the conditional functional at N new conditioning tuples, that is, we want
�̂�(z(i)1 , … , z(i)k ), i = 1, … ,N, where

(

z(1)1 , … , z(1)k , … , z(N)1 , … , z(N)k

)

∈ k×N , then the total com-
putational cost of that estimation by (2) is O(Nnk). Third, it is well-known that kernel estimators
are not very smooth, in the sense that they usually present many spurious local minima and max-
ima, and this can be a problem in some applications. Therefore, we may want to build estimators
which are more regular with respect to the conditioning variables z1, … zk, and have a simple
functional form.

To do so, we decompose the function (z1, … , zk) → 𝜃(z1, … , zk) on a basis (𝜓i)i≥0, general-
izing the work of Derumigny and Fermanian (2020). This may not be always easy if the range
of the function 𝜃(⋅, · · · , ⋅) is a strict subset of R. In that case, it is always possible to use a “link
function” Λ, that would be strictly increasing and continuously differentiable and such that the
range Λ◦𝜃(⋅, · · · , ⋅) is exactly R. Whatever the choice of Λ (including the identity function), we
can decompose the latter function on any basis (𝜓i)i≥0. If only a finite number r > 0 of elements
of this basis are necessary to represent the whole function Λ◦𝜃(⋅, · · · , ⋅) over k, then we have
the following parametric model:

∀(z1, … , zk) ∈ k
, Λ (𝜃(z1, … , zk)) = 𝝍(z1, … , zk)T𝛽∗, (3)

where 𝛽
∗ ∈ Rr is the true parameter and 𝝍(⋅) ∶= (𝜓1(⋅), … , 𝜓r(⋅))T ∈ Rr. In most applications,

finding an appropriate basis 𝝍 is not easy. This will depend on the choice of the (conditional)
functional 𝜃. Therefore, the most simple solution consists in choosing a concatenation of several
well-known basis such as polynomials, exponentials, sinuses and cosinuses, indicator functions,
etc. They allow to take into account potential nonlinearities and even discontinuities of the func-
tion Λ◦𝜃(⋅, · · · , ⋅). For the sake of inference, a necessary condition is the linear independence
of such functions, as seen in the following proposition (whose straightforward proof is omitted).
We say that Model (3) is identifiable if for all pairs of distribution PX,Z, P̃X,Z on  × satisfying
Model (3) with corresponding parameters 𝛽, 𝛽 ∈ Rr, 𝛽 ≠ 𝛽 implies that PX,Z ≠ P̃X,Z. Conversely,
Model (3) is not identifiable if the same distribution PX,Z can be represented by two different
vectors 𝛽∗.

Proposition 1. The parameter 𝛽∗ is identifiable in Model (3) if and only if the functions
(𝜓1(⋅), … , 𝜓r(⋅)) are linearly independent P

⊗k
Z -almost everywhere in the sense that, for

all vectors t = (t1, … , tr) ∈ Rr, P
⊗k
Z
(
𝝍(Z1, … ,Zk)Tt = 0

)
= 1 ⇒ t = 0.
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4 DERUMIGNY

With such a choice of a wide and flexible class of functions, it is likely that not all these func-
tions are relevant. This is know as sparsity, that is, the number of nonzero coefficients of 𝛽∗,
denoted by || = |𝛽∗|0 is less than s, for some s ∈ {1, … , r}. Here, | ⋅ |0 denotes the number of
nonzero components of a vector of Rr and  is the set of nonzero components of 𝛽∗. Note that, in
this framework, r can be moderately large, for example 30 or 50, while the original dimension p
is small, for example p = 1 or 2. This corresponds to the decomposition of a function, defined on
a small-dimension domain, in a mildly large basis.

Remark 1. At first sight, in Model (3), there seems to be no noise perturbing the vari-
able of interest. In fact, this can be seen as a simple consequence of our formulation of
the model. In the same way, the classical linear model Y = XT

𝛽
∗ + 𝜀 can be rewritten

as E[Y |X = x] = xT
𝛽
∗ without any explicit noise. By definition, E[Y |X = x] is a deter-

ministic function of a given x. In our case, the corresponding fact is: Λ (𝜃(z1, … , zk))
is a deterministic function of the variables (z1, … , zk). This means that we cannot
write formally a model with noise, such as Λ (𝜃(z1, … , zk)) = 𝝍(z1, … , zk)T𝛽∗ + 𝜀

where 𝜀 is independent of the choice of (z1, … , zk) since the left-hand side of the
latter equality is a (z1, … , zk)-measurable quantity, unless 𝜀 is constant almost surely.

Contrary to more usual models, the explained variable Λ (𝜃(z1, … , zk)), is not observed in
Model (3). Therefore, a direct estimation of the parameter 𝛽∗ (e.g., by the ordinary least squares,
or by the Lasso) is unfeasible. In other words, even if the function (z1, … , zk) → Λ (𝜃(z1, … , zk))
is deterministic (by definition of conditional probabilities), finding the best 𝛽 in Model (3) is far
from being a numerical analysis problem since the function to be decomposed is unknown. Nev-
ertheless, we will replace Λ (𝜃(z1, … , zk)) by the nonparametric estimate Λ

(
�̂�(z1, … , zk)

)
, and

use it as an approximation of the explained variable.
More precisely, in our setting, the statistician chooses a finite collection of points

z′1, … , z′n′ ∈ n′ used as reference values, and a collection ℑk,n′ of injective functions 𝜎 ∶
{1, … , k} → {1, … ,n′}. Note that we are not forced to include all the injective functions inℑk,n′ ,
reducing its number of elements. This will allow us to decrease the computational cost of the pro-
cedure. For every 𝜎 ∈ ℑk,n′ , we estimate �̂�(z′

𝜎(1), … , z′
𝜎(k)). Finally, the estimator 𝛽 is defined as

the minimizer of the following l1-penalized criteria

𝛽 ∶= arg min
𝛽∈Rr

⎡
⎢
⎢
⎣

(n′ − k)!
n′!

∑

𝜎∈ℑk,n′

(

Λ
(

�̂�

(

z′
𝜎(1), … , z′

𝜎(k)

))

− 𝝍
(

z′
𝜎(1), … , z′

𝜎(k)

)T
𝛽

)2

+ 𝜆|𝛽|1

⎤
⎥
⎥
⎦

, (4)

where 𝜆 is a positive tuning parameter (that may depend on n and n′), and | ⋅ |q denotes the lq
norm, for 1 ≤ q ≤∞. Note that the first term in Equation (4) is an incomplete U-statistics since
only the injective functions that belong to ℑk,n′ are used in order to reduce the computational
cost. This procedure is summed up in the following Algorithm 1. Note that even if we study the
general case with any 𝜆 ≥ 0, the corresponding properties of the unpenalized estimator can be
derived by choosing the particular case 𝜆 = 0.

Once an estimator 𝛽 of 𝛽∗ has been computed, the prediction of all the conditional func-
tionals is reduced to the computation of Λ(−1)

(

𝝍(z(i)1 , … , z(i)k )
T
𝛽

)

∶= 𝜃(z(i)1 , … , z(i)k ), for every
i = 1, … ,N. The total computational cost of this new method is therefore O(|ℑk,n′ |n′k + |ℑk,n′ |r +
Ns) operations. The first term corresponds to the cost of evaluating each nonparametric estimator
(2). The second term corresponds to the minimization of the convex optimization program (4),
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DERUMIGNY 5

Algorithm 1. Two-step estimation of 𝛽 and prediction of the conditional parameters
𝜃(z(i)1 , … , z(i)k ), for i = 1, … ,N

Input: A dataset (Xi,1,Xi,2,Zi), i = 1,… ,n
Input: A finite collection of points z′1,… , z′n′ ∈ 

n′ , selected for estimation
Input: A collection of N k-tuples for prediction

(
z(1)1 ,… , z(1)k ,… , z(N)1 ,… , z(N)k

)
∈ k×N

for 𝜎 ∈ ℑk,n′ do
Compute the estimator �̂�

(
z′
𝜎(1),… , z′

𝜎(k)

)
using the sample (Xi,Zi), i = 1,… ,n

end
Compute the minimizer 𝛽 of (4) using the �̂�

(
z′
𝜎(1),… , z′

𝜎(k)

)
, j = 1,… ,n′, estimated in the above

step for i ← 1 to N do
Compute the prediction𝜃(z(i)1 ,… , z(i)k ) ∶= Λ

(−1)(
𝝍(z(i)1 ,… , z(i)k )

T
𝛽
)

end
Output: An estimator 𝛽 and N predictions 𝜃(z(i)1 ,… , z(i)k ), i = 1,… ,N.

and the last one is the prediction cost. Note that the procedure described in Algorithm 1 can pro-
vide a huge improvement compared to the previously available estimator with a cost in O(Nnk)
when N → ∞, i.e. when we want to recover the full function 𝜃(⋅, · · · , ⋅). Moreover, the speed-up
given by Algorithm 1 compared to the original conditional U-statistics (2) even increases with the
sample size n, for moderate choices of n′.

A similar model, called functional response, has already been studied: see, for example, Kowal-
ski and Tu (2008, chapter 6.2). They provide a method to estimate the parameter 𝛽

∗, using
generalized estimating equations. However, they only provide asymptotic results for their estima-
tor, and their algorithm needs to solve a multidimensional equation which has no reason to be
convex.

In Section 2, we provide nonasymptotic bounds for the nonparametric estimator �̂�. Then
Section 3 is devoted to the statement of corresponding bounds, as well as asymptotic properties
for the parametric estimator 𝛽. Finally, a few examples are presented in Section 4. All proofs have
been postponed to the Appendix.

2 THEORETICAL PROPERTIES OF THE
NONPARAMETRIC ESTIMATOR �̂�(⋅)

2.1 Nonasymptotic bounds for Nk

We remark that the estimator �̂� is well-defined if and only if Nk(z1, … , zk) > 0, where

Nk(z1, … , zk) ∶=
k!(n − k)!

n!
∑

𝜎∈ℑ↑k,n

Kh
(
Z𝜎(1) − z1

)
… Kh

(
Z𝜎(k) − zk

)
. (5)

To prove that our estimator �̂�(z1, … , zk) exists with a probability that tends to 1, we will therefore
study the behavior of Nk. We will need the following assumptions to control the kernel K and the
density of Z.
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6 DERUMIGNY

Assumption 2. The kernel K(⋅) is bounded, that is, there exists a finite constant CK
such that K(⋅) ≤ CK and ∫ K(u)du = 1. The kernel is of order 𝛼 for some 𝛼 > 0, that
is, for all j = 1, … , 𝛼 − 1 and all 1 ≤ i1, … , i𝛼 ≤ p, ∫ K(u) ui1 … uij du = 0.

Assumption 3. fZ is 𝛼-times continuously differentiable on , and there exists
finite constants, Cf ,𝛼 , CK,int such that ∀i = 1, … , 𝛼, ∀j1, … , ji ∈ {1, … , p},

supz
|
|
|
|

𝜕
ifZ

𝜕zj1 ··· 𝜕zji
(z)
|
|
|
|
≤ Cf ,𝛼 and ∫ ||

|
K (u)uj1 … uji

|
|
|
du ≤ CK,int.

Assumption 4. fZ(⋅) ≤ fZ,max for some finite constant fZ,max.

Lemma 1. Under Assumptions 2, 3, and 4, we have for any t > 0,

P

(

|
|
|
Nk(z1, … , zk) −

k∏

i=1
fZ(zi)

|
|
|
≤

CK,𝛼

𝛼!
h𝛼 + t

)

≥ 1 − 2 exp
(

−
[n∕k]t2

h−kpC1 + h−kpC2t

)

,

where C1 ∶= 2f k
Z,max||K||

2k
2 , C2 ∶= (4∕3)Ck

K , ||K||22 ∶= ∫ K2 and CK,𝛼 ∶= Ck
K,intC

k
f ,𝛼k𝛼p𝛼 .

This lemma is proved in Section D.1 under a weaker condition than Assumption 3, that in gen-
eral leads to a better constant CK,𝛼 . More can be said if the density fZ is bounded below. Therefore,
we will use the following assumption.

Assumption 5. There exists a constant fZ,min > 0 such that for every z ∈ , fZ(z) >
fZ,min.

If for some 𝜖 > 0, we have CK,𝛼h𝛼∕𝛼! + t ≤ fZ,min − 𝜖, then f̂ (z) ≥ 𝜖 > 0 with probability larger
than on the event whose probability is bound in Lemma 1. We should therefore choose the largest
t possible, which yields the following corollary.

Corollary 1. Under Assumptions 2–5, if CK,𝛼h𝛼∕𝛼! < fZ,min, then the ran-
dom variable Nk(z1, … , zk) is strictly positive with a probability larger than

1 − 2 exp
(

−[n∕k]hkp(fZ,min−CK,𝛼
h𝛼∕𝛼!)2

C1+C2(fZ,min−CK,𝛼
h𝛼∕𝛼!)

)

, guaranteeing the existence of the estimator

�̂�(z1, … , zk) on this event.

2.2 Nonasymptotic bounds in probability for �̂�

In this section, we generalize the bounds given in Derumigny and Fermanian (2019) for the con-
ditional Kendall’s tau to any conditional U-statistics. To establish bounds on �̂� for every fixed n,
we will need some assumptions on the joint law of (X,Z).

Assumption 6. There exists a probability measure 𝜇 on ( ,) such that PX,Z is
absolutely continuous with respect to 𝜇 ⊗ Lebp, where Lebp is the Lebesgue measure
on Rp.

Assumption 7. For every x ∈  , z → fX,Z(x, z) is differentiable almost every-
where up to the order 𝛼 + 1, and there exists finite constants C̃f ,𝛼 , C̃K,int

such that ∀i = 1, … , 𝛼 + 1, ∀j1, … , ji ∈ {1, … , p}, supx,z
|
|
|
|

𝜕
ifX,Z

𝜕zj1 ··· 𝜕zji
(x, z)

|
|
|
|
≤ Cf ,𝛼 and

∫
|
|
|
K (u)uj1 … uji

|
|
|
du ≤ CK,int.
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DERUMIGNY 7

Assumption 8. There exists a constant Cg such that ||g||∞ ≤ Cg < +∞.

The following proposition is proved in Section D.2.

Proposition 2 (Exponential bound for the estimator �̂�(z1, … , zk), with fixed
z1, … zk ∈ k). Under Assumptions 2–8, there exists positive constants C3, … ,C7 such
that, for every t, t′ > 0 such that CK,𝛼h𝛼∕𝛼! + t < fZ,min∕2, we have

P

(
|
|
|
�̂�(z1, … , zk) − 𝜃(z1, … , zk)

|
|
|
< (1 + C3h𝛼 + C4t) ×

(
C5hk+𝛼 + t′

))

≥ 1 − 2 exp
(

−
[n∕k]t2hkp

C1 + C2t

)

− 2 exp
(

−
[n∕k]t′2hkp

C6 + C7t′

)

.

(6)

The precise expression of the constants can be found in the Appendix, where a more general
result is proved under weaker but more sophisticated assumptions. In particular, it is possible to
weaken Assumption 8 and to obtain a similar constant for unbounded g under only (conditional)
moment conditions on g.

3 THEORETICAL PROPERTIES OF THE ESTIMATOR 𝜷

Let us define the matrix Z of dimension |ℑk,n′ | × r by [Z′]i,j ∶= 𝜓j

(

z′
𝜎i(1)

, … , z′
𝜎i(k)

)

, where 1 ≤
i ≤ |ℑk,n′ |, 1 ≤ j ≤ r and 𝜎i is the ith element of ℑk,n′ . The chosen order of ℑk,n′ is arbitrary and
has no impact in practice. In the same way, we define the vector Y of dimension |ℑk,n′ | defined
by Yi ∶= Λ

(

�̂�

(

z′
𝜎i(1)

, … , z′
𝜎i(k)

))

, such that the criterion (4) is in the standard Lasso form 𝛽 ∶=
arg min𝛽∈Rr

[
||Y − Z′

𝛽||2 + 𝜆|𝛽|1
]
,where for any vector v of size |ℑk,n′ |, its scaled norm is defined

by ||v|| ∶= |v|2∕
√
|ℑk,n′ |. Following Derumigny and Fermanian (2020), we define 𝜉i,n, for 1 ≤ i ≤

|ℑk,n′ |, by 𝜉i,n = 𝜉𝜎i,n ∶= Λ
(

�̂�

(

z′
𝜎i(1)

, … , z′
𝜎i(k)

))

− 𝝍
(

z′
𝜎i(1)

, … , z′
𝜎i(k)

)T
𝛽
∗
.

3.1 Nonasymptotic bounds on 𝜷

We will also use the Restricted Eigenvalue (RE) condition, introduced by Bickel, Ritov, and
Tsybakov (2009). For c0 > 0 and s ∈ {1, … , p}, it is defined as follows:

RE(s, c0) condition: The design matrix Z′ satisfies

𝜅(s, c0) ∶= min
{
||Z′𝛿||

|𝛿|2
∶ 𝛿 ≠ 0, |𝛿JC

0
|1 ≤ c0|𝛿J0 |1, J0 ⊂ {1, … , r}, |J0| ≤ s

}

> 0.

Note that this condition is very mild, and is satisfied with a high probability for a large class of
random matrices: see Bellec et al. (2018, section 8.1) for references and a discussion. A (strong)
sufficient condition for the RE(p, c0) condition to hold is the following: all the singular values of
Z are positive. We refer to van de Geer and Bühlmann (2009) for a discussion of the relationship
between the different assumptions used to prove bounds on the Lasso. We will also need the
following regularity assumption on the function Λ(⋅).
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8 DERUMIGNY

Assumption 9. The function z → 𝝍(z) are bounded on  by a constant C𝝍 . More-
over, Λ(⋅) is continuously differentiable. Let  be the range of 𝜃, from k toward R.
On an open neighborhood of  , the derivative of Λ(⋅) is bounded by a constant CΛ′ .

The following theorem is proved in Section D.3 where the expression for the constants
C6,𝜎 ,C7,𝜎 is given.

Theorem 1. Assume that Assumption 9 and Equation (6) hold and that the design
matrix Z′ satisfies the RE(s, 3) condition. Choose the tuning parameter as 𝜆 = 𝛾t, with
𝛾 ≥ 4 and t > 0, and assume that we choose h small enough such that

h ≤ min
((

fZ,min𝛼!
4 CK,𝛼

)1∕𝛼
,

(
t

2C5C8

)1∕(k+𝛼)
)

, (7)

where C8 ∶= C𝝍CΛ′
(
1 + C4fZ,min∕2

)
. Then, we have

P

(

||Z′(𝛽 − 𝛽
∗)|| ≤

4(𝛾 + 1)t
√

s
𝜅(s, 3)

and |𝛽 − 𝛽
∗|q ≤

42∕q(𝛾 + 1)ts1∕q

𝜅2(s, 3)
, for every 1 ≤ q ≤ 2

)

≥ 1 − 2
∑

𝜎∈ℑk,n′

[

exp

(

−
[n∕k]f 2

Z,minhkp

16C1 + 4C2fZ,min

)

+ exp

(

−
[n∕k]t2hkp

4C2
8C6,𝜎 + 2C8C7,𝜎t

)]

,

(8)
for some constant C6,𝜎 ,C7,𝜎 .

The latter theorem gives some bounds that hold in probability for the prediction error ||Z′(𝛽 −
𝛽
∗)||n′ and for the estimation error |𝛽 − 𝛽

∗|q with 1 ≤ q ≤ 2 under the specification (3). Note that
the influence of n′ and r is hidden through the Restricted Eigenvalue number 𝜅(s, 3).

3.2 Asymptotic properties of 𝜷 when n →∞ and for fixed n′

In this part, n′ is still assumed to be fixed and we state the consistency and the asymptotic nor-
mality of 𝛽 as n →∞. Remember that the points z′i are our design points. As above, we adopt
a fixed design: the z′i are arbitrarily fixed or, equivalently, our reasoning are made conditionally
on the second sample. In this section, we follow section 3 of Derumigny and Fermanian (2020)
which gives similar results for the conditional Kendall’s tau, a particular conditional U-statistic
of order 2. Proofs are identical and therefore omitted. Nevertheless, asymptotic properties of 𝛽
require corresponding results on the first-step estimators �̂�. These results are state in Stute (1991)
and recalled for convenience in Section C. For n,n′ > 0, denote by 𝛽n,n′ the estimator (4) with
h = hn and 𝜆 = 𝜆n,n′ .

Lemma 2. We have 𝛽n,n′ = arg min𝛽∈Rp′ Gn,n′ (𝛽), where

Gn,n′ (𝛽) ∶=
2(n′ − k)!

n′!
∑

𝜎∈ℑk,n′

𝜉𝜎,n𝝍
(

z′
𝜎(1), … , z′

𝜎(k)

)T
(𝛽∗ − 𝛽)

+ (n
′ − k)!
n′!

∑

𝜎∈ℑk,n′

{

𝝍

(

z′
𝜎(1), … , z′

𝜎(k)

)T
(𝛽∗ − 𝛽)

}2

+ 𝜆n,n′ |𝛽|1.

(9)
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DERUMIGNY 9

Theorem 2 (Consistency of 𝛽). Under Assumption 10, if n′ is fixed and 𝜆 = 𝜆n,n′ →

𝜆0, then, given z′1, … , z′n′ and as n tends to the infinity, 𝛽n,n′
P

−−→ 𝛽
∗∗ ∶= inf𝛽 G∞,n′ (𝛽),

where

G∞,n′ (𝛽) ∶= 1
n′

∑

𝜎∈ℑk,n′

(

𝝍

(

z′
𝜎(1), … , z′

𝜎(k)

)T
(𝛽∗ − 𝛽)

)2

+ 𝜆0|𝛽|1.

In particular, if 𝜆0 = 0 and < {𝝍
(

z′
𝜎(1), … , z′

𝜎(k)

)

∶ 𝜎 ∈ ℑk,n′ } >= Rr, then

𝛽n,n′
P

−−→ 𝛽
∗.

Theorem 3 (Asymptotic law of the estimator). Under Assumption 11, and if
𝜆n,n′ (nhp

n,n′ )
1∕2 tends to 𝓁 when n →∞, we have (nhp

n,n′ )
1∕2(𝛽n,n′ − 𝛽

∗)
D
−−→u∗ ∶=

arg minu∈Rr F∞,n′ (u), given z′1, … , z′n′ , where

F∞,n′ (u)

∶= 2(n′ − k)!
n′!

∑

𝜎∈ℑk,n′

r∑

j=1
W𝜎𝜓j

(

z′
𝜎(1), … , z′

𝜎(k)

)

uj +
(n′ − k)!

n′!
∑

𝜎∈ℑk,n′

(

𝝍

(

z′
𝜎(1), … , z′

𝜎(k)

)T
u
)2

+ 𝓁
r∑

i=1

(
|ui|1{𝛽∗i =0} + uisign(𝛽∗i )1{𝛽∗i ≠0}

)
,

with W = (W𝜎)𝜎∈ℑk,n′ ∼ (0, H̃) where

[H̃]𝜎,𝜍 ∶=
k∑

j,l=1
1{z′

𝜎(j)=z′
𝜍(l)

}
||K||22

fZ

(

z′
𝜎(j)

)Λ′
(

𝜃

(

z′
𝜎(1), … , z′

𝜎(k)

))

Λ′
(

𝜃

(

z′
𝜍(1), … , z′

𝜍(k)

))

⋅
(

𝜃j,l

(

z′
𝜎(1), … , z′

𝜎(k), z′
𝜍(1), … , z′

𝜍(k)

)

− 𝜃

(

z′
𝜎(1), … , z′

𝜎(k)

)

𝜃

(

z′
𝜍(1), … , z′

𝜍(k)

))

,

and 𝜃j,l is as defined in Equation (C1).
Moreover, lim supn→∞ P(n = ) = c < 1, where n ∶= {j ∶ 𝛽 j ≠ 0} and  ∶= {j ∶

𝛽j ≠ 0}.

This result is mainly of theoretical interest. Nevertheless, one could estimate the matrix
H̃ and construct confidence intervals or hypothesis test from the asymptotic distribution of
(nhp

n,n′ )
1∕2(𝛽n,n′ − 𝛽

∗).
A usual way of obtaining the oracle property is to modify our estimator in an “adaptive” way.

Following Zou (2006), consider a preliminary “rough” estimator of 𝛽∗, denoted by 𝛽n, or more
simply 𝛽. Moreover 𝜈n(𝛽n − 𝛽

∗) is assumed to be asymptotically normal, for some deterministic
sequence (𝜈n) that tends to the infinity. Now, let us consider the same optimization program as
in (4) but with a random tuning parameter given by 𝜆n,n′ ∶= �̃�n,n′∕|𝛽n|

𝛿 , for some constant 𝛿 > 0
and some positive deterministic sequence (�̃�n,n′ ). The corresponding adaptive estimator (solution
of the modified Equation 4) will be denoted by 𝛽n,n′ , or simply 𝛽. Hereafter, we still set n = {j ∶
𝛽 j ≠ 0}.
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10 DERUMIGNY

Theorem 4 (Asymptotic law of the adaptive estimator of 𝛽). Under Assumption 11,
if �̃�n,n′ (nhp

n,n′ )
1∕2 → 𝓁 ≥ 0 and �̃�n,n′ (nhp

n,n′ )
1∕2

𝜈
𝛿

n →∞ when n → ∞, we have

(nhp
n,n′ )

1∕2(𝛽n,n′ − 𝛽
∗)

D
−−→u∗∗


∶= arg minu


∈Rs F̌∞,n′ (u ), where

F̌∞,n′ (u )

∶= 2(n′ − k)!
n′!

∑

𝜎∈ℑk,n′

∑

j∈
W𝜎𝜓j(z′i)uj +

(n′ − k)!
n′!

∑

𝜎∈ℑk,n′

(
∑

j∈
𝜓j(z′i)uj

)2

+ 𝓁
∑

i∈

ui

|𝛽∗i |
𝛿

sign(𝛽∗i ),

and W = (W𝜎)𝜎∈ℑk,n′ ∼
(
0, H̃

)
.

Moreover, when 𝓁 = 0 and the matrix
∑

𝜎∈ℑk,n′
𝝍

(

z′
𝜎(1), … , z′

𝜎(k)

)

𝝍

(

z′
𝜎(1), … , z′

𝜎(k)

)T

is invertible, the oracle property is fulfilled: P(n = ) → 1 as n → ∞.

3.3 Asymptotic properties of 𝜷 jointly in (n,n′)

Now, we consider the framework in which both n and n′ are going to infinity, while the
dimensions p and r stay fixed. We now provide a consistency result for 𝛽n,n′ . Note that the results of
this section are also valid under weaker assumptions (as discussed in the Appendix, Sections D.1
and D.2).

Theorem 5 (Consistency of 𝛽n,n′ , jointly in (n,n′)). Assume that Assumptions 2–9 are

satisfied. Moreover, assume that
∑

𝜎∈ℑk,n′
𝝍

(

z′
𝜎(1), … , z′

𝜎(k)

)

𝝍

(

z′
𝜎(1), … , z′

𝜎(k)

)T
∕n′

converges to a matrix M𝜓,z′ , as n′ → ∞. Assume that 𝜆n,n′ → 𝜆0 and n′ exp(−Anh2kp) →

0 for every A > 0, when (n,n′)→ ∞. Then 𝛽n,n′
P

−−→ arg min𝛽∈Rr G∞,∞(𝛽), as (n,n′) →
∞, where G∞,∞(𝛽) ∶= (𝛽∗ − 𝛽)M𝜓,z′ (𝛽∗ − 𝛽)T + 𝜆0|𝛽|1. Moreover, if 𝜆0 = 0 and M𝜓,z′ is
invertible, then 𝛽n,n′ is consistent and tends to the true value 𝛽∗.

Note that, since the sequence (z′i) is deterministic, we only assume the convergence of the

sequence of deterministic matrices
∑

𝜎∈ℑk,n′
𝝍

(

z′
𝜎(1), … , z′

𝜎(k)

)

𝝍

(

z′
𝜎(1), … , z′

𝜎(k)

)T
∕n′ in Rr2 .

Moreover, if the “second subset” (z′i)i=1,… ,n′ were a random sample (drawn along the law PZ),
the latter convergence would be understood “in probability.” And if PZ satisfies the identifiability
condition (Proposition 1), then M𝜓,z′ would be invertible and 𝛽n,n′ → 𝛽

∗ in probability. Now, we
want to go one step further and derive the asymptotic law of the estimator 𝛽n,n′ .

Theorem 6 (Asymptotic law of 𝛽n,n′ , jointly in (n,n′)). Under Assumptions 2–6 and
under Assumption 16, we have

(n × n′ × hp
n,n′ )

1∕2(𝛽n,n′ − 𝛽
∗)

D
−−→ (0, Ṽ as),

where Ṽ as ∶= V−1
1 V2V−1

1 , V1 is the matrix defined in Assumption 16(iv), and V2 in
Assumption 16(v).

This theorem is proved in Section E where we state Assumption 16.
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DERUMIGNY 11

Remark 2. When the size n′ is too small, estimation of 𝛽 will not be good, even if the
sample size n is large, because we only have too few “noisy observations” of 𝜃. When
the size n′ is large enough, consistent estimation of 𝛽 becomes possible. Furthermore,
our estimator 𝛽 converges at the (nonparametric) rate (nhp

n,n′ )
1∕2,

However, our model is parametric, and we should expect that faster rates are
achievable. Indeed, when n′ → +∞, our estimator 𝛽 converges at the rate (nn′hp

n,n′ )
1∕2,

which is strictly better. This can be interpreted as the following: the first-step esti-
mation does not “filter out” information but gives enough so that we can even beat
the naive first-step estimator. This is possible because we are exploiting the paramet-
ric nature of the model. Therefore, we should be (and are) able to improve on the
non-parametric estimator �̂�.

4 APPLICATIONS

4.1 Examples

Following Example 4.4 in Stute (1991), we consider the function g(x1, x2) ∶= 1{x1 ≤ x2}, with
k = 2. In this case 𝜃(z1, z2) = P(X1 ≤ X2|Z1 = z1,Z2 = z2). The parameter 𝜃(z1, z2) quantifies the
probability that the quantity of interest X be smaller if we knew that Z = z1 than if we knew
that Z = z2.

To illustrate our methods, we choose a simple example, with the Epanechnikov kernel, defined
by K(x) ∶= (3∕4)(1 − u2)1|u| ≤ 1. It is a kernel of order 𝛼 = 2, with ∫ K2 = 3∕5. Assumption 2
is then satisfied with CK ∶= 3∕4. Fix p = 1,  = [−1, 1],  = R, fZ(z) = 𝜙(z)1{|z| ≤ 1}∕(1 −
2Φ(−1)), where Φ and 𝜙 are, respectively, the cdf and the density of the standard Gaussian
distribution and X|Z = z ∼ (z, 1), for every z ∈ .

Assumption 3 is then satisfied with CK,𝛼 = 0.2. Assumption 4 is easily satisfied with
fZ,max = 1∕

(√
2𝜋(1 − 2Φ(−1))

)

≤ 0.59. Therefore, we can apply Lemma 1. We compute the
constants C1 ∶= 2f k

Z,max||K||
2k
2 = 2 × 0.592 × (3∕5)2 ≤ 0.26 and C2 ∶= (4∕3)Ck

K = (4∕3) × (3∕4)2 =
3∕4. Therefore, for any n ≥ 0, h, t > 0, z1, z2 ∈ , we have

P

(
|
|
|
N2(z1, z2) − fZ(z1)fZ(z2)

|
|
|
≤ 0.1h𝛼 + t

)

≥ 1 − 2 exp
(

−
[n∕2]t2

0.26h2 + 0.75h2t

)

,

Assumption 5 is satisfied with fZ,min = 𝜙(1)∕(1 − 2Φ(−1)) > 0.35, so that we can apply
Corollary 1. Therefore, the estimator �̂�(z1, z2) exists with probability greater than 1 −

2 exp
(

− (n−1)h2(0.35−0.1h2)2

0.52+1.5×(0.35−0.1h2)

)

. Note that this probability is greater than 0.99 as soon as n ≥

3
(
0.52 + 1.5 × (0.35 − 0.1h2)

)
∕
(

h2(0.35 − 0.1h2)2
)
. For example, with h = 0.2, it means that the

estimator �̂�(z1, z2) exists with a probability greater than 99% as soon as n is greater than 651.
We list below other possible examples of applications. Conditional moments constitute also

a natural class of U-statistics. They include the conditional variance (pX = 1, k = 2, g(X1,X2) =
X2

1 − X1 ⋅ X2) and the conditional covariance (pX = 2, k = 2, g(X1,X2) ∶= X1,1 × X1,2 − X1,1 × X2,2).
The conditional variance gives information about the volatility of X given the variable Z. Con-
ditional covariances can be used to describe how the dependence moves as a function of the
conditioning variables Z. Higher-order conditional moments (skewness, kurtosis, and so on) can
also be estimated by higher-order conditional U-statistics, and they described, respectively, how
the asymmetry and the behavior of the tails of X change as function of Z.

 14679574, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/stan.12350 by T

echnical U
niversity D

elft, W
iley O

nline L
ibrary on [09/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



12 DERUMIGNY

Gini’s mean difference, an indicator of dispersion, can also be used in this framework. For-
mally, it is defined as the U-statistic with pX = 1, k = 2 and g(X1,X2) ∶= |X1 − X2|. Its conditional
version describes how two variables are far away, on average, given their conditioning variables
Z. for example, X could be the income of an individual, Z could be the position of their home,
and 𝜃(z1, z2) represents the average inequality between the income of two persons, one at point
z1 and the other at point z2.

Other conditional dependence measures can also be written as conditional U-statistics, see
for example, example 1.1.7 of Korolyuk and Borovskich (1994). They show how a U-statistic of
order k = 5 can be used to estimated the dependence parameter

𝜃 =
∫ ∫

(
F1,2(x, y) − F1,2(x,∞)F1,2(∞, y)

)
dF1,2(x, y).

In our framework, we could consider a conditional version, given by

𝜃(z1, z2) =
∫ ∫

(
F1,2|Z=z(x, y) − F1,2|Z=z(x,∞)F1,2|Z=z(∞, y)

)
dF1,2|Z=z(x, y),

where X is of dimension pX = 2.

4.2 Simulation study: nonparametric estimation of the conditional
covariance and correlation

In this section, we consider the estimation of the conditional covariance, which is a U-statistics
for the kernel g(x1, x2) = (x1 − 𝜇1)(x2 − 𝜇2) depending on the two means 𝜇1, 𝜇2. In the conditional
case, this means that we want to estimate

CondCov(X1,X2|Z = z) = E[(X1 − 𝜇1(z)) × (X2 − 𝜇2(z))|Z = z], (10)

where 𝜇i ∶= E[Xi|Z = z]. Note that (10) is a regular conditional functional of order 1 if the condi-
tional means are assumed to be known. If the means are unknown, then this estimator becomes
a regular conditional functional of order 2, since

CondCov(X1,X2|Z = z) = E[X1X2|Z = z] − E[X1|Z = z]E[X2|Z = z]
= E[X1,1X2,1 − X1,1X2,2|Z1 = Z2 = z],

(11)

for two i.i.d. replications (X1,1,X1,2,Z1), (X2,1,X2,2,Z2) of (X1,X2,Z). These two representations of
the conditional covariance naturally correspond to two kernel-based estimators: one is a condi-
tional U-statistic of order 1 that assumes the knowledge of the true conditional mean while the
second is a conditional U-statistics of order 2.

The conditional correlation between X1 and X2 given Z = z can then be defined as

CondCorr(X1,X2|Z = z) ∶= CondCov(X1,X2|Z = z)
√

CondCov(X1,X1|Z = z)CondCov(X2,X2|Z = z)
.

This also gives two possible estimators for the conditional correlation: one which in which the
conditional covariances are replaced by the corresponding conditional U-statistics of order 1 and
another one for which the conditional covariances are replaced by conditional U-statistics of
order 2.
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DERUMIGNY 13

In the first experiment, we choose Z univariate and uniform on the interval [0, 1]. We choose
(X1,X2) given Z = z following a Gaussian distribution with means 𝜇1(z), 𝜇2(z), SD sd1(z), sd2(z)
and correlation 𝜌(z). We fix 𝜇2(z) = 0 and sd2(z)while we will change the conditional parameters
𝜇1, sd1 and 𝜌. The performance of these estimators are evaluated by their integrated mean squared
error (IMSE), defined by:

IMSE(𝜃) =
∫z

E

[(

𝜃(z) − 𝜃
∗(z)

)2
]

dz,

when the true (conditional) parameter is 𝜃
∗ and the estimator is 𝜃. We will denote by 𝜃

(1) the
estimator of the conditional covariance or conditional correlation that depends on the knowledge
of the conditional mean (using Equation 10). Similarly, we will denote by 𝜃

(2) the estimator of the
conditional covariance or conditional correlation that does not depend on the knowledge of the
conditional mean (using Equation 11). This notation ensures that 𝜃(k) is based on U-statistics of
order k, for k = 1, 2.

It would seem natural to conjecture that 𝜃
(1) would have better performance than 𝜃

(2): it
uses some already available knowledge, and is a U-statistics of lower order. Surprisingly and
counter-intuitively, this is far from being true. In Figure A1, the IMSE of the competing estima-
tors are displayed. For the covariance, it seems that the estimator that uses a U-statistic of order 2
achieves a better performance than the one that uses a U-statistic of order 1. For the correlation,
the situation appears to be different, and the performance of both estimators seems rather close.

To confirm these findings, Figure A2 displays the ratio between the IMSE of the two estima-
tors. In each situation, the estimator of the conditional covariance based on (11) is more efficient
than the one that uses the knowledge of the true conditional mean. Such a situation can be related
to the findings of Genest and Segers (2010) who showed that for some copula models, estima-
tion of the marginal distributions (seen as nuisance parameters) leads to an improved efficiency
compared to using the true values. On the contrary, for estimating the conditional correlation, it
seems that knowing the true conditional mean may improve the estimation. Finally, this effect
does not seem to disappear when increasing the sample size.

4.3 Simulation study: estimation of the covariance regression

In this section, we continue to study the same model, but choosing sd1(z) = sd2(z) = 1 and
𝜇2(z) = 0. We choose 𝜌(z) = 0.1 + 0.8 × z, so that CondCov(X1,X2|Z = z) = 0.1 + 0.8 × z. We then
estimate the model

CondCov(X1,X2|Z = z) = 𝛽0 + 𝛽1 × z,

using Algorithm 1. Depending on whether we use the U-statistic (10) or (11), we obtain two dif-
ferent conditional U-statistic estimators (𝛽(1)0 , 𝛽

(1)
1 ) and (𝛽(2)0 , 𝛽

(2)
1 ). The mean squared error of both

estimators are displayed as a function of the bandwidth h in Figure A3.
We find that, in all scenarios, the estimator 𝛽(2)0 using the best bandwidth h has the a lower

mean square-error than the estimator 𝛽
(1)
0 (which uses the knowledge of the true conditional

mean). Surprisingly, the situation is different for the estimation of 𝛽1 and the optimal bandwidth
for both estimators is the same, and furthermore leads to the same MSE. These findings happened
for all considered sample sizes.
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APPENDIX A. FIGURES

F I G U R E A1 Integrated mean square error of the estimators of the conditional covariance and of the
conditional correlation, without and with knowledge of the true conditional mean, for a sample size n = 200 and
for different data-generating processes.
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16 DERUMIGNY

,

F I G U R E A2 Ratio IMSE(𝜃(2))∕IMSE(𝜃(1)) for different data-generating processes and for two sample sizes.
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DERUMIGNY 17

n = 500 n = 1,000 n = 2,000 n = 5,000

x
x

x
x

x

– – – – – – – –

F I G U R E A3 Mean squared error of 𝛽(1)0 , 𝛽(1)1 , 𝛽(2)0 , 𝛽(2)1 as a function of h, for different sample sizes n and
different specification of 𝜇1.
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18 DERUMIGNY

APPENDIX B. NOTATIONS

In the proofs, we will use the following shortcut notation. First, x1∶k denotes the k-tuple
(x1, … , xk) ∈ k. Similarly, for a function 𝜎, 𝜎(1 ∶ k) denotes the tuple (𝜎(1), … , 𝜎(k)), and
X𝜎(1∶k) is the k-tuple (X𝜎(1), … ,X𝜎(k)). For any variable Y and any collection of given points
(z1, … zk), the conditional expectation E[Y |Z1∶k = z1∶k] denotes E[Y |Z1 = z1, … ,Zk = zk]. We
denote by ∫ 𝜙(z1∶k)dz1∶k the integral ∫ 𝜙(z1, … , zk)dz1 · · · dzk for any integrable function
𝜙 ∶ Rk×p → R, and by ∫ g(x1∶k)d𝜇⊗k(x1∶k) the integral ∫ g(z1, … , zk)d𝜇(x1) … d𝜇(xk) for any
𝜇-integrable function g ∶ k → R.

APPENDIX C. ASYMPTOTIC RESULTS FOR �̂�

The estimator �̂�(z1, … , zk) has been first studied by Stute, 1991. He proved the consistency and
the asymptotic normality of �̂�(z1, … , zk). We recall his results.

Assumption 10.

i hn → 0 and nhp
n →∞;

ii K(z) ≥ CK,11{|z|∞≤CK,2} for some CK,1, CK,2 > 0;
iii there exists a decreasing function H ∶ R+ → R+, and positive constants c1, c2 such

that H(t)=o(t−1) and c1H(|z|∞) ≤ K(z) ≤ c2H(|z|∞).

Proposition 3 (Consistency of �̂�, theorem 2 in Stute, 1991). Under Assumption 10,
for P

⊗k
Z -almost all (z1, … , zk),

�̂�(z1, … , zk)
P

−−→ 𝜃(z1, … , zk) as n →∞.

We introduce now a few more notations to state the asymptotic normality of �̂�. For 1 ≤ j, l,m ≤
k and z1, … , z3k ∈ 3k, define

𝜃j,l(z1, … , zk) ∶= E
[
g(X1, … ,Xj−1,X,Xj+1, … ,Xk)g(Xk+1, … ,Xk+l−1,X,Xk+l+1, … ,X2k)

|Z = zj;Zi = zi,∀i = 1, … , k, i ≠ j;Zk+i = zi,∀i = 1, … , k, i ≠ l
]
,

𝜃j,l(z1, … , z2k) ∶= E
[
g(X1, … ,Xj−1,X,Xj+1, … ,Xk)g(Xk+1, … ,Xk+l−1,X,Xk+l+1, … ,X2k)

|Z = zj;Zi = zi,∀i = 1, … , 2k, i ∉ {j, k + l}
]
.

𝜃j,l,m(z1, … , z3k) ∶= E
[
g(X1, … ,Xj−1,X,Xj+1, … ,Xk)

g(Xk+1, … ,Xk+l−1,X,Xk+l+1, … ,X2k)g(X2k+1, … ,X2k+m−1,X,X2k+m+1, … ,X3k)
|Z = zj;Zi = zi,∀i = 1, … , 3k, i ∉ {j, k + l, 2k +m}

]
.

(C1)

Assumption 11.

i hn → 0 and nhp
n → ∞;

ii K is symmetric at 0, bounded and compactly supported;
iii 𝜃j,l is continuous at (z1, … , zk) for all 1 ≤ j, l ≤ k;
1. 𝜃 is two times continuously differentiable in a neighborhood of (z1, … , zk);
iv 𝜃j,l,m is bounded in a neighborhood of (z1, … , zk, z1, … , zk, z1, … , zk) ∈ 3k, for

all 1 ≤ j, l,m ≤ k;
v fZ is twice differentiable in neighborhoods of zi, 1 ≤ i ≤ k.
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DERUMIGNY 19

Proposition 4 (Asymptotic normality of �̂�, corollary 2.4 in Stute (1991)). Under
Assumption 11, we have

√

nhp
n
(
�̂�(z1, … , zk) − 𝜃(z1, … , zk)

) D
−−→ (0, 𝜌2),

where 𝜌2 ∶=
∑k

j,l=11{zj=zl}
(
𝜃j,l(z1, … , zk) − 𝜃

2(z1, … , zk)
)
||K||22∕fZ(zj).

Moreover, let N be a positive integer, and
(

z(1)1 , … , z(1)k , … , z(N)1 , … , z(N)k

)
∈


k×N . Then under similar regularity conditions,

√

nhp
n
(
�̂�(z(i)1 , … , z(i)k ) −

𝜃(z(i)1 , … , z(i)k )
)

i=1,… ,N
D
−−→ (0,H), where, for 1 ≤ j̃, l̃ ≤ N,

[H]j̃,l̃ ∶=
k∑

j,l=1
1{z(j̃)j =z(l̃)l

}

(

𝜃j,l

(

z(j̃)1 , … , z(j̃)k , z(l̃)1 , … , z(l̃)k

)

− 𝜃

(

z(j̃)1 , … , z(j̃)k

)

𝜃

(

z(l̃)1 , … , z(l̃)k

)) ||K||22
fz

(

z(j̃)j

) .

Note that the second part of Proposition 4 above is a consequence of the first one.
Indeed, for every (c1, … , cN) ∈ RN , we can define 𝜃

(

z(1)1 , … , z(1)k , … , z(N)1 , … , z(N)k

)

∶=
∑N
ζ̃=1cζ̃𝜃(z

(ζ̃)
1 , … , z(ζ̃)k ) and corresponding versions of g, �̂� and 𝜌

2. Finally, the conclusion follows
from the Cramér–Wold device.

APPENDIX D. FINITE DISTANCE PROOFS FOR �̂� AND 𝜷

For convenience, we recall Berk’s (1970) inequality (see theorem A in (Serfling, 1980, p. 201)).
Note that, if m = 1, this reduces to Bernstein’s inequality.

Lemma 3. Let k > 0, n ≥ k, X1, … ,Xn i.i.d. random vectors with values in a measur-
able space  and g ∶ k → [a, b] be a real bounded function. Set 𝜃 ∶= E[g(X1∶k)] and
𝜎

2 ∶= Var[g(X1∶k)]. Then, for any t > 0,

P

⎛
⎜
⎜
⎝

(n
k

)−1 ∑

𝜎∈ℑ↑k,n

g
(

X𝜎(1∶k)
)
− 𝜃 ≥ t

⎞
⎟
⎟
⎠

≤ exp
(

−
[n∕k]t2

2𝜎2 + (2∕3)(b − 𝜃)t

)

,

where ℑk,n is the set of injective functions from {1, … , k} to {1, … ,n} and ℑ↑k,n is the
subset of ℑk,n made of increasing functions.

Note that g does not need to be symmetric for this bound to hold. Indeed, if g is not sym-
metric, we can nonetheless apply this lemma to the symmetrized version g̃ defined as g̃(x1∶k) ∶=
(k!)−1∑

𝜎∈ℑk,k
g(x𝜎(1∶k)), and we get the result.

D.1 Proof of Lemma 1
We will actually show the result under the following weaker assumption.
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20 DERUMIGNY

Assumption 12. fZ is 𝛼-times continuously differentiable on  and there exists a
finite constant CK,𝛼 such that, for all z1, … zk,

∫

|
|
|
K (u1) · · ·K (uk)

|
|
|

∑

m1+···+mk=𝛼

(
𝛼

m1∶k

)

⋅
k∏

i=1

p∑

j1,… ,jmi
=1

|
|
|
ui,j1 … ui,jmi

|
|
|

sup
t∈[0,1]

|
|
|
|
|

𝜕
mi fZ

𝜕zj1 · · · 𝜕zjmi

(zi + tui)
|
|
|
|
|

du1 … duk ≤ CK,𝛼

where
(

𝛼

m1∶k

)

∶= 𝛼!∕
(∏k

i=1(mi!)
)

is the multinomial coefficient.

Indeed, Assumption 3 implies that

∫

|
|
|
K (u1) … K (uk)

|
|
|

∑

m1+···+mk=𝛼

(
𝛼

m1∶k

) k∏

i=1
p∑

j1,… ,jmi
=1

|
|
|
ui,j1 … ui,jmi

|
|
|

sup
t∈[0,1]

|
|
|
|
|

𝜕
mi fZ

𝜕zj1 … 𝜕zjmi

(zi + tui)
|
|
|
|
|

du1 … duk

≤ Ck
f ,𝛼 ∫

|
|
|
K (u1) … K (uk)

|
|
|

∑

m1+···+mk=𝛼

(
𝛼

m1∶k

) k∏

i=1

p∑

j1,… ,jmi
=1

|
|
|
ui,j1 … ui,jmi

|
|
|
du1 … duk

≤ Ck
f ,𝛼

∑

m1+···+mk=𝛼

(
𝛼

m1∶k

) k∏

i=1

p∑

j1,… ,jmi
=1
∫

|
|
|
K (ui)

|
|
|

|
|
|
ui,j1 … ui,jmi

|
|
|
du1 … duk

≤ Ck
f ,𝛼

∑

m1+···+mk=𝛼

(
𝛼

m1∶k

) k∏

i=1

p∑

j1,… ,jmi
=1

Ck
K,int

≤ Ck
f ,𝛼

∑

m1+···+mk=𝛼

(
𝛼

m1∶k

) k∏

i=1
pmi CK,int

≤ Ck
f ,𝛼p𝛼Ck

K,int

∑

m1+···+mk=𝛼

(
𝛼

m1∶k

)

≤ Ck
f ,𝛼p𝛼Ck

K,intk
𝛼
,

where in the last line, we use the multinomial theorem. The proof is complete by proving the
following result.

Lemma 4. Under Assumptions 2, 4, and 12, we have for any t > 0,

P

(

|
|
|
Nk(z1, … , zk) −

k∏

i=1
fZ(zi)

|
|
|
≤

CK,𝛼

𝛼!
h𝛼 + t

)

≥ 1 − 2 exp
(

−
[n∕k]t2

h−kpC1 + h−kpC2t

)

,

where C1 ∶= 2f k
Z,max||K||

2k
2 , and C2 ∶= (4∕3)Ck

K and ||K||22 ∶= ∫ K2.
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DERUMIGNY 21

We decompose the quantity to bound into a stochastic part and a bias as follows:

Nk(z1∶k) −
k∏

i=1
fZ(zi) = (Nk(z1∶k) − E[Nk(z1∶k)]) +

(

E[Nk(z1∶k)] −
k∏

i=1
fZ(zi)

)

.

We first bound the bias.

|
|
|
E [Nk(z1∶k)] −

k∏

i=1
fZ(zi)

|
|
|
=
|
|
|
|
|

E

[(n
k

)−1 ∑

𝜎∈ℑk,n

k∏

i=1
Kh
(
Z𝜎(i) − zi

)
]

−
k∏

i=1
fZ(zi)

|
|
|
|
|

= ||
|∫

( k∏

i=1
fZ(zi + hui) −

k∏

i=1
fZ(zi)

) k∏

i=1
K(ui)dui

|
|
|

= ||
|∫

(
𝜙z,u(1) − 𝜙z,u(0)

)
k∏

i=1
K(ui)dui

|
|
|
,

where 𝜙z,u(t) ∶=
∏k

j=1fZ
(
zi + thuj

)
for t ∈ [−1, 1]. Note that this function has at least the same

regularity as fZ, so it is 𝛼-differentiable, and by a Taylor–Lagrange expansion, we get

|
|
|
E[Nk(z1∶k)] −

∏k
i=1fZ(zi)

|
|
|
= ||
|
∫

Rkp

(
𝛼−1∑

i=1

1
i!
𝜙
(i)
z,u(0) +

1
𝛼!
𝜙
(𝛼)
z,u(tz,u)

)
∏k

i=1K(ui)dui
|
|
|
.

For l > 0, we have

𝜙
(l)
z,u(0) =

∑

m1+···+mk=l

(
𝛼

m1∶k

) k∏

i=1

𝜕
mi (fZ (zi + htui))

𝜕tmi
(0)

=
∑

m1+···+mk=l

(
𝛼

m1∶k

) k∏

i=1

p∑

j1,… ,jmi
=1

hmi ui,j1 … ui,jmi

𝜕
mi fZ

𝜕zj1 · · · 𝜕zjmi

(
zi + tz,uhui

)
,

where
(

𝛼

m1∶k

)

∶= 𝛼!∕
(∏k

i=1(mi!)
)

is the multinomial coefficient. Using Assumption 2, for every

i = 1, … , 𝛼 − 1, we get ∫ K(u1) … K(uk)𝜙(i)z,u(0)du1 … duk = 0. Therefore, only the last term
remains and we have

|
|
|
E[Nk(z1∶k)] −

∏k
i=1fZ(zi)

|
|
|
= ||
|
∫

(
1
𝛼!
𝜙
(𝛼)
z,u(tz,u)

)∏k
i=1K(ui)dui

|
|
|
≤

CK,𝛼

𝛼!
h𝛼
,

using Assumption 12.
Second, we bound the stochastic part. We have

Nk(z1∶k) − E[Nk(z1∶k)] = k!(n−k)!
n!

∑

𝜎∈ℑ↑k,n

∏k
i=1Kh

(
Z𝜎(i) − zi

)
−
∏k

i=1E[Kh (Zi − zi)].
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22 DERUMIGNY

Then, we can apply Lemma 3 to the function g defined by g(z̃1, … , z̃k) ∶=
∏k

i=1Kh (z̃i − zi). Here,
we have b = −a = h−kpCk

K , and

Var
[
g(Z1, … ,Zk)2

]
≤ E

[
g(Z1, … ,Zk)2

]
=
∏k

i=1E
[
Kh(Zi − zi)2

]
≤ h−kpf k

Z,max||K||
2k
2 .

Finally, we get

P

((
n
k

)−1
Nk(z1∶k) − E[Nk(z1∶k)] ≥ t

)

≤ exp
(

− [n∕k]t2

2h−kpf k
Z,max||K||

2k
2 +(4∕3)h−kpCk

K t

)

,

■

D.2 Proof of Proposition 2
As in the previous section, we will prove a more general results, under more sophisticated but
weaker assumptions.

Assumption 13. There exists a measure 𝜇 on ( ,) such that PX,Z is absolutely
continuous with respect to 𝜇 ⊗ Lebp, where Lebp is the Lebesgue measure on Rp.

Obviously, Assumption 13 is satisfied as soon as Assumption 6 is satisfied.

Assumption 14. For every x ∈  , z → fX,Z(x, z) is differentiable almost everywhere
up to the order 𝛼. Moreover, there exists a finite constant Cg,f ,𝛼 > 0, such that, for every
positive integers m1, … ,mk such that

∑k
i=1mi = 𝛼, for every 0 ≤ j1, … , jmi ≤ p,

∫

k∏

i=1

|
|
|

(

g (x1, … , xk) − E

[

g(X1, … ,Xk)
|
|
|
Zi = zi,∀i = 1, … , k

])

⋅

(
𝜕

mi fX,Z

𝜕zj1 · · · 𝜕zjmi

(xi, zi + ui) −
𝜕

mi fX,Z

𝜕zj1 · · · 𝜕zjmi

(xi, zi)

)

|
|
|
d𝜇(x1) … d𝜇(xk) ≤ Cg,f ,𝛼

k∏

i=1

|
|
|
ui
|
|
|∞

,

for every choices of x1, … , xk ∈  and z1, … , zk ∈ ,u1, … ,uk ∈
Rp such that zi + ui ∈ . There exists a constant C′

K,𝛼
such that

∑
m1+ ··· +mk=𝛼

(
n

m1∶k

)

∫
∏k

i=1K(ui)
∑p

j1,… ,jmi
=1ui,j1 … ui,jmi

∏k
i=1
|
|
|
ui
|
|
|∞

du1 · · · duk ≤ C′
K,𝛼

.

Lemma 5. Assume that Assumptions 6–8 are satisfied. Then Assumption 14 is satisfied
too.

Proof of Lemma 5. Using successively the fact that g is bounded, Taylor’s inequality,
we obtain

∫

k∏

i=1

|
|
|

(

g (x1, … , xk) − E

[

g(X1, … ,Xk)
|
|
|
Zi = zi,∀i = 1, … , k

])

⋅

(
𝜕

mi fX,Z

𝜕zj1 … 𝜕zjmi

(xi, zi + ui) −
𝜕

mi fX,Z

𝜕zj1 … 𝜕zjmi

(xi, zi)

)

|
|
|
d𝜇(x1) … d𝜇(xk)

≤ Cg
∫

k∏

i=1

|
|
|

(
𝜕

mi fX,Z

𝜕zj1 … 𝜕zjmi

(xi, zi + ui) −
𝜕

mi fX,Z

𝜕zj1 … 𝜕zjmi

(xi, zi)

)

|
|
|
d𝜇(x1) … d𝜇(xk)

≤ Ck
g C̃k

f ,𝛼 ∫

k∏

i=1
|ui|∞d𝜇(x1) … d𝜇(xk) = Ck

g C̃k
f ,𝛼|ui|∞,
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DERUMIGNY 23

since 𝜇 is a probability measure. The second part of Assumption 14 is a consequence
of the second part of Assumption 7 and the fact that |ui|∞ ≤ |ui|1. ▪

An easy situation is the case when g is bounded, that is, when Assumption 8 holds. When g
is not bounded, a weaker result can still be proved under a “conditional Bernstein” assumption.
This assumption will help us to control the tail behavior of g so that exponential concentration
bounds are available.

Assumption 15 (conditional Bernstein assumption). There exists
a positive constant B̃g such that for all l ≥ 1 and z1, … , zk ∈ Rkp,

E

[
|
|
|
g(X1, … ,Xk)

|
|
|

l |
|
|
Z1 = z1, … ,Zk = zk

]

≤ B̃gl!.

To obtain tighter bounds, we will use the notation Bg,z ∶= Bg(z1, … , zk) to denote a positive

number such that E

[
|
|
|
g(X1, … ,Xk)

|
|
|

l |
|
|
Z1 = z1, … ,Zk = zk

]

≤ Bg(z1, … , zk)ll!. Therefore, it is

enough to prove the following result.

Proposition 5 (Exponential bound for the estimator �̂�(z1, … , zk), with fixed
z1, … zk ∈ k). Assume either Assumption 8 or the weaker Assumption 15. Under
Assumptions 2, 4, 5, 12, 13, and 14, for every t, t′ > 0 such that CK,𝛼h𝛼∕𝛼! + t < fZ,min∕2,
we have

P

(
|
|
|
�̂�(z1, … , zk) − 𝜃(z1, … , zk)

|
|
|
< (1 + C3h𝛼 + C4t) ×

(
C5hk+𝛼 + t′

))

≥ 1 − 2 exp
(

−
[n∕k]t2hkp

C1 + C2t

)

− 2 exp
(

−
[n∕k]t′2hkp

C6 + C7t′

)

,

where C3 ∶= 4f k
Z,maxf −2k

Z,minCK,𝛼∕𝛼!, C4 ∶= 4f k
Z,maxf −2k

Z,min and C5 ∶= Cg,f ,𝛼C′
K,𝛼

f −k
Z,min∕𝛼!.

If Assumption 8 is satisfied, the result holds with the following values: C6 ∶=
2C2

g f k
Z,maxf −2k

Z,min||K||
2k
2 , C7 ∶= (8∕3)Ck

KCk
g f −k

Z,min; in the case of Assumption 15, the result
holds with the following alternative values: C̃6 ∶= 128

(
Bg,z + B̃g

)2C2k−1
K f −2k

Z,min, C̃7 ∶=
2
(

Bg,z + B̃g
)

Ck
Kf −k

Z,min.

We have the following decomposition

|�̂�(z1∶k) − 𝜃(z1∶k)|

= ||
|
Nk(z1∶k)−1 (n − k)!

n!
∑

𝜎∈ℑk,n

k∏

i=1
Kh
(
Z𝜎(i) − zi

) (

g(X𝜎(1∶k)) − E

[

g(X1∶k)
|
|
|
Z1∶k = z1∶k

])
|
|
|

=
∏k

i=1fZ(zi)
Nk(z1, … , zk)

⋅ ||
|

(n − k)!
n!

∑

𝜎∈ℑk,n

k∏

i=1

Kh
(
Z𝜎(i) − zi

)

fZ(zi)

(

g(X𝜎(1∶k)) − E

[

g(X1∶k)
|
|
|
Z1∶k = z1∶k

])
|
|
|

=∶
∏k

i=1fZ(zi)
Nk(z1, … , zk)

⋅ ||
|

∑

𝜎∈ℑk,n

S𝜎

|
|
|
.

The conclusion will follow from the next three lemmas, where we will bound separately
∏k

i=1fZ∕Nk, the bias term |
|
|

∑
𝜎∈ℑk,n

E[S𝜎]
|
|
|

and the stochastic component ||
|

∑
𝜎∈ℑk,n

(S𝜎 − E[S𝜎])
|
|
|
.
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24 DERUMIGNY

Lemma 6 (Bound for
∏k

i=1fZ(zi)∕Nk). Under Assumptions 2, 4, 5, and 12, and if for
some t > 0, CK,𝛼h𝛼∕𝛼! + t < f k

Z,min∕2, we have

P

(

|
|
|

1
Nk(z1∶k)

− 1
∏k

i=1fZ(zi)
|
|
|
≤

4
f 2k
Z,min

(
CK,𝛼h𝛼

𝛼!
+ t
))

≥ 1 − 2 exp

(

−
[n∕k]t2

2h−kpf k
Z,max||K||

2k
2 + (4∕3)h−kpCk

Kt

)

,

and on the same event, Nk(z1∶k) is strictly positive and

∏k
i=1fZ(zi)

Nk(z1∶k)
≤ 1 +

4f k
Z,max

f 2k
Z,min

(
CK,𝛼

h𝛼

𝛼!
+ t
)

.

Proof. Using the mean value inequality for the function x → 1∕x, we get

|
|
|

1
Nk(z1∶k)

− 1
∏k

i=1fZ(zi)
|
|
|
≤

1
N2
∗

|
|
|
Nk(z1∶k) −

k∏

i=1
fZ(zi)

|
|
|
,

where N∗ lies between Nk(z1∶k) and
∏k

i=1fZ(zi). By Lemma 1, we get

P

(

|
|
|
Nk(z1∶k) −

k∏

i=1
fZ(zi)

|
|
|
≤

CK,𝛼

𝛼!
h𝛼 + t

)

≥ 1 − 2 exp

(

−
[n∕k]t2

2h−kpf k
Z,max||K||

2k
2 + (4∕3)h−kpCk

Kt

)

.

On this event, ||
|
Nk(z1∶k) −

∏k
i=1fZ(zi)

|
|
|
≤ (1∕2)

∏k
i=1fZ(zi) by assumption, so that

f k
Z,min∕2 ≤ Nk(z1∶k). We have also f k

Z,min∕2 ≤
∏k

i=1fZ(zi). Thus, we have f k
Z,min∕2 ≤ N∗.

Combining the previous inequalities, we finally get

|
|
|

1
Nk(z1∶k)

− 1
∏k

i=1fZ(zi)
|
|
|
≤

1
N2
∗

|
|
|
Nk(z1∶k) −

k∏

i=1
fZ(zi)

|
|
|
≤

4
f 2k
Z,min

(
CK,𝛼h𝛼

𝛼!
+ t
)

.

▪

Now, we provide a bound on the bias.

Lemma 7. Under Assumptions 2 and 14, we have ||
|
E[S𝜎]

|
|
|
≤ Cg,f ,𝛼CK,𝛼hk𝛼∕(f k

Z,min𝛼!).

Proof. We remark that

0 =
∫

(

g(x1∶k) − E

[

g(X1∶k)
|
|
|
Z1∶k = z1∶k

])

fX|Z=z1(x1) · · · fX|Z=zk (xk)d𝜇⊗k(x1∶k)

=
∫

(

g(x1∶k) − E

[

g(X1∶k)
|
|
|
Z1∶k = z1∶k

]) fX,Z(x1, z1) · · · fX,Z(xk, zk)
∏k

i=1fZ(zi)
d𝜇⊗k(x1∶k).

(D1)
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DERUMIGNY 25

We have

E[S𝜎] = E

[
Kh(Z𝜎(1) − z1) · · ·Kh(Z𝜎(k) − zk)

∏k
i=1fZ(zi)

(

g
(
X𝜎(1), … ,X𝜎(k)

)
− E

[

g(X1∶k)
|
|
|
Z1∶k = z1∶k

])
]

=
∫

(

g(x1∶k) − E

[

g(X1∶k)
|
|
|
Z1∶k = z1∶k

]) k∏

i=1

K(ui)
fZ(zi)

fX,Z(xi, zi + hui) d𝜇(xi)dui

=
∫

(

g(x1∶k) − E

[

g(X1∶k)
|
|
|
Z1∶k = z1∶k

])
( k∏

i=1
fX,Z (xi, zi + hui) −

k∏

i=1
fX,Z (xi, zi)

)

k∏

i=1

K(ui)
fZ(zi)

d𝜇(xi)dui.

We apply now the Taylor–Lagrange formula to the function

𝜙x1∶k ,u1∶k (t) ∶=
k∏

i=1
fX,Z (xi, zi + hui) ,

and get

E[S𝜎]

=
∫

(

g(x1∶k) − E

[

g(X1∶k)
|
|
|
Z1∶k = z1∶k

]) (
𝜙x1∶k ,u1∶k (t)(1) − 𝜙x1∶k ,u1∶k (t)(0)

)
k∏

i=1

K(ui)
fZ(zi)

d𝜇(xi)dui

=
∫

(

g(x1∶k) − E

[

g(X1∶k)
|
|
|
Z1∶k = z1∶k

])

⋅

(
𝛼−1∑

j=1

1
j!
𝜙x1∶k ,u1∶k (t)

(j)(0) + 1
𝛼!

𝜙x1∶k ,u1∶k (t)
(𝛼)(tx,u)

) k∏

i=1

K(ui)
fZ(zi)

d𝜇(xi)dui

=
∫

(

g(x1∶k) − E

[

g(X1∶k)
|
|
|
Z1∶k = z1∶k

])

⋅
( 1
𝛼!

𝜙x1∶k ,u1∶k (t)
(𝛼)(tx,u)

) k∏

i=1

K(ui)
fZ(zi)

d𝜇(xi)dui

=
∫

(

g(x1∶k) − E

[

g(X1∶k)
|
|
|
Z1∶k = z1∶k

])

⋅
1
𝛼!
(
𝜙x1∶k ,u1∶k (t)

(𝛼)(tx,u) − 𝜙x1∶k ,u1∶k (t)
(𝛼)(0)

)

k∏

i=1

K(ui)
fZ(zi)

d𝜇(xi)dui.
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26 DERUMIGNY

For every real t, we have

𝜙
(𝛼)(t) =

∑

m1+···+mk=𝛼

(
n

m1∶k

) k∏

i=1

𝜕
mi
(

fX,Z (xi, zi + htui)
)

𝜕tmi

=
∑

m1+···+mk=𝛼

(
n

m1∶k

) k∏

i=1

p∑

j1,… ,jmi
=1

hmi ui,j1 … ui,jmi

𝜕
mi fX,Z

𝜕zj1 · · · 𝜕zjmi

(xi, zi + htui)

= h𝛼
∑

m1+···+mk=𝛼

(
n

m1∶k

) k∏

i=1

p∑

j1,… ,jmi
=1

ui,j1 … ui,jmi

𝜕
mi fX,Z

𝜕zj1 · · · 𝜕zjmi

(xi, zi + htui) .

(D2)

Therefore, we get

E[S𝜎] =
∑

m1+···+mk=𝛼

(
n

m1∶k

)

∫

k∏

i=1

K(ui)
∏k

i=1fZ(zi)

p∑

j1,… ,jmi
=1

ui,j1 … ui,jmi

⋅
(

g(x1∶k) − E

[

g(X1∶k)
|
|
|
Z1∶k = z1∶k

])

⋅

(
𝜕

mi fX,Z

𝜕zj1 … 𝜕zjmi

(xi, zi + htui) −
𝜕

mi fX,Z

𝜕zj1 … 𝜕zjmi

(xi, zi)

)

d𝜇(x1)du1 … d𝜇(xk)duk,

and, using Assumption 7, this yields

|
|
|
E[S𝜎]

|
|
|
≤

Cg,f ,𝛼CK,𝛼h𝛼+k

f k
Z,min𝛼!

.

▪

Now we bound the stochastic component. We have the following equality

|
|
|

∑

𝜎∈ℑk,n

(S𝜎 − E[S𝜎])
|
|
|
= ||
|

(n − k)!
n!

∑

𝜎∈ℑk,n

g
(
(X𝜎(1),Z𝜎(1)) , … , (X𝜎(k),Z𝜎(k))

) |
|
|

with the function g̃ defined by

g̃ ((X1,Z1) , … , (Xk,Zk))

= Kh (Z1 − z1) · · ·Kh (Zk − zk)
∏k

i=1fZ(zi)

(

g(X1∶k) − E

[

g(X1∶k)
|
|
|
Z1∶k = z1∶k

])

− E

[
Kh (Z1 − z1) · · ·Kh (Zk − zk)

∏k
i=1fZ(zi)

(

g(X1∶k) − E

[

g(X1∶k)
|
|
|
Z1∶k = z1∶k

])
]

By construction, E
[
g̃ ((X1,Z1) , … , (Xk,Zk))

]
= 0. If g̃ is bounded, we can derive an imme-

diate bound for this stochastic component. Indeed, we would have ||g̃||∞ ≤ 4Ck
Kh−kpCk

g∕f k
Z,min.
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DERUMIGNY 27

Moreover, we have

Var
[
g̃ ((X1,Z1) , … , (Xk,Zk))

]
≤ E

[
K2

h (Z1 − z1) · · ·K2
h (Zk − zk)

∏k
i=1f 2

Z (zi)
g2(X1, … ,Xk)

]

≤ C2
g f k

Z,maxf −2k
Z,minh−kp||K||2k

2 .

Therefore, we can apply Lemma 3, and we get

P

⎛
⎜
⎜
⎝

|
|
|

∑

𝜎∈ℑk,n

(S𝜎 − E[S𝜎])
|
|
|
> t
⎞
⎟
⎟
⎠

≤ 2 exp

(

−
[n∕k]t2

2C2
g f k

Z,maxf −2k
Z,minh−kp||K||2k

2 + (8∕3)Ck
Kh−kpCk

g f −k
Z,mint

)

.

In the following Lemma 8, our goal will be to bound the stochastic component using only
Assumption 15 on the conditional moments of g.

Lemma 8. Under Assumptions 2, 5, and 15, for every t > 0, we have

P

⎛
⎜
⎜
⎝

∑

𝜎∈ℑk,n

S𝜎 − E[S𝜎] > t
⎞
⎟
⎟
⎠

≤ exp
⎛
⎜
⎜
⎝

−
t2f 2k

Z,minhkp[n∕k]

128
(

Bg,z + B̃g
)2C2k−1

K + 2t
(

Bg,z + B̃g
)

Ck
Kf k

Z,min

⎞
⎟
⎟
⎠

.

Proof. Using the same decomposition for U-statistics as in Hoeffding (1963), we
obtain

∑

𝜎∈ℑk,n

S𝜎 − E[S𝜎] =
1
n!

∑

𝜎∈ℑn,n

1
[n∕k]

[n∕k]∑

i=1
Vn,i,𝜎 ,

where

Vn,i,𝜎 ∶= g̃
((

X𝜎(1+(i−1)k),Z𝜎(2+(i−1)k)
)
, … ,

(
X𝜎(ik),Z𝜎(jk)

))
.

For any 𝜆 > 0, we have

P

⎛
⎜
⎜
⎝

∑

𝜎∈ℑk,n

S𝜎 − E[S𝜎] > t
⎞
⎟
⎟
⎠

≤ e−𝜆t
E

⎡
⎢
⎢
⎣

exp
⎛
⎜
⎜
⎝

𝜆

∑

𝜎∈ℑk,n

S𝜎 − E[S𝜎]
⎞
⎟
⎟
⎠

⎤
⎥
⎥
⎦

≤ e−𝜆t
E

⎡
⎢
⎢
⎣

exp
⎛
⎜
⎜
⎝

𝜆
1
n!

∑

𝜎∈ℑn,n

1
[n∕k]

[n∕k]∑

i=1
Vn,i,𝜎

⎞
⎟
⎟
⎠

⎤
⎥
⎥
⎦

≤ e−𝜆t 1
n!

∑

𝜎∈ℑn,n

E

[

exp

(

𝜆
1

[n∕k]

[n∕k]∑

i=1
Vn,i,𝜎

)]

≤ e−𝜆t 1
n!

∑

𝜎∈ℑn,n

[n∕k]∏

i=1
E

[

exp
(

𝜆
1

[n∕k]
Vn,i,𝜎

)]

≤ e−𝜆t

(

sup
𝜎∈ℑn,n, i=1,… ,[n∕k]

E
[
exp

(
𝜆[n∕k]−1Vn,i,𝜎

)]
)[n∕k]

.

(D3)
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28 DERUMIGNY

Let l ≥ 2. Using the inequality (a + b + c + d)l ≤ 4l(al + bl + cl + dl), we get

E
[
|Vn,i,𝜎|

l] = E
[
|Vn,1,𝜎|

l]
≤ 4l

E

[

|g(X𝜎(1), … ,X𝜎(k))|l
k∏

i=1

|Kh|
l (Z𝜎(i) − zi

)

f l
Z(zi)

]

+ 4l
E

[

|
|
|
E

[

g(X1∶k)
|
|
|
Z1∶k = z1∶k

]
|
|
|

l k∏

i=1

|Kh|
l (Z𝜎(i) − zi

)

f l
Z(zi)

]

+ 4l
|
|
|
|
|

E

[

g(X𝜎(1), … ,X𝜎(k))
k∏

i=1

Kh
(
Z𝜎(i) − zi

)

f l
Z(zi)

]
|
|
|
|
|

l

+ 4l
|
|
|
|
|

E

[

|
|
|
E

[

g(X1∶k)
|
|
|
Z1∶k = z1∶k

]
|
|
|

k∏

i=1

Kh
(
Z𝜎(i) − zi

)

f l
Z(zi)

]
|
|
|
|
|

l

.

Using Jensen’s inequality for the function x → |x|p with the second, third, and fourth
terms, and the law of iterated expectations for the first and the third terms, we get

E
[
|Vn,i,𝜎|

l]
≤ 4l ⋅ 2 E

[

E

[

|g(X𝜎(1), … ,X𝜎(k))|l
|
|
|
Z𝜎(1), … ,Z𝜎(k)

] k∏

i=1

|Kh|
l (Z𝜎(i) − zi

)

f l
Z(zi)

]

+ 4l ⋅ 2 E

[

E

[
|
|
|
g(X1∶k)

|
|
|

l|
|
|
Zi = zi,∀i = 1, … , k

] k∏

i=1

|Kh|
l (Z𝜎(i) − zi

)

f l
Z(zi)

]

≤ 4l ⋅ 2 E

[
(

Bl
g(Z1, … ,Zk) + Bl

g(z1, … , zk)
)ll!

k∏

i=1

|Kh|
l (Z𝜎(i) − zi

)

f l
Z(zi)

]

≤ 4l ⋅ 2
(

B̃l
g + Bl

g(z1, … , zk)
)

l!(h−kpCk
Kf −k

Z,min)
l−1 f −k

Z,min

≤ 2
(

4
(

B̃g + Bg,z
)

h−kpCk
Kf −k

Z,min

)l
l! hkpC−1

K ,

where Bg,z ∶= Bg(z1, … , zk). Remarking that E[Vn,i,𝜎] = 0 by construction of g̃, we
obtain

E
[
exp

(
𝜆[n∕k]−1Vn,i,𝜎

)]
= 1 +

∞∑

l=2

E
[
(𝜆[n∕k]−1Vn,i,𝜎)l

]

l!

≤ 1 + 2C−1
K hkp

∞∑

l=2
(4𝜆[n∕k]−1 (Bg,z + B̃g

)
h−kpCk

Kf −k
Z,min)

l

≤ 1 + 2C−1
K hkp ⋅

(

4𝜆[n∕k]−1 (Bg,z + B̃g
)

h−kpCk
Kf −k

Z,min

)2

1 − 4𝜆[n∕k]−1
(

Bg,z + B̃g
)

h−kpCk
Kf −k

Z,min

≤ exp
⎛
⎜
⎜
⎝

32𝜆2[n∕k]−2(Bg,z + B̃g
)2h−kpC2k−1

K f −2k
Z,min

1 − 4𝜆[n∕k]−1
(

Bg,z + B̃g
)

h−kpCk
Kf −k

Z,min

⎞
⎟
⎟
⎠

,
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DERUMIGNY 29

where the last statement follows from the inequality 1 + x ≤ exp(x). Combining the
latter bound with Equation (D3), we get

P

⎛
⎜
⎜
⎝

∑

𝜎∈ℑk,n

S𝜎 − E[S𝜎] > t
⎞
⎟
⎟
⎠

≤ exp
(

−𝜆t + 32𝜆2(Bg,z+B̃g)2C2k−1
K

f 2k
Z,minhkp[n∕k]−4𝜆(Bg,z+B̃g)Ck

K f k
Z,min

)

. (D4)

Remarking that the right-hand side term inside the exponential is of the form −𝜆t +
a𝜆2

b−c𝜆
, we choose the value

𝜆∗ = tb
2a+tc

=
tf 2k

Z,minhkp[n∕k]

64(Bg,z+B̃g)2C2k−1
K +t(Bg,z+B̃g)Ck

K f k
Z,min

, (D5)

such that −𝜆∗t + a𝜆2
∗

b−c𝜆∗
= − t2b

4a+2ct
= − t

2
𝜆∗. Therefore, the right-hand side term of

Equation (D4) can be simplified, and combining this with Equation (D5), we obtain

P

⎛
⎜
⎜
⎝

∑

𝜎∈ℑk,n

S𝜎 − E[S𝜎] > t
⎞
⎟
⎟
⎠

≤ exp
⎛
⎜
⎜
⎝

−
t2f 2k

Z,minhkp[n∕k]

128
(

Bg,z + B̃g
)2C2k−1

K + 2t
(

Bg,z + B̃g
)

Ck
Kf k

Z,min

⎞
⎟
⎟
⎠

.

▪

D.3 Proof of Theorem 1
By Proposition 2, for every t1, t2 > 0 such that CK,𝛼h𝛼∕𝛼! + t < fZ,min∕2, we have

P
(
|�̂�(z1, … , zk) − 𝜃(z1, … , zk)| < (1 + C3h𝛼 + C4t1) ×

(
C5hk+𝛼 + t2

))

≥ 1 − 2 exp

(

−
[n∕k]t2

1hkp

C1 + C2t1

)

− 2 exp

(

−
[n∕k]t2

2hkp

C6 + C7t2

)

,

We apply this proposition to every k-tuple
(

z′
𝜎(1), … , z′

𝜎(k)

)

where 𝜎 ∈ ℑk,n′ . Combining it with
Assumption 9, we get

P

(

sup
i
|𝜉i,n| < CΛ′ (1 + C3h𝛼 + C4t1) ×

(
C5hk+𝛼 + t2

)
)

≥ 1 − 2
|ℑk,n′ |∑

i=1

[

exp

(

−
[n∕k]t2

1hkp

C1 + C2t1

)

+ exp

(

−
[n∕k]t2

2hkp

C6 + C7t2

)]

,

Choosing t1 ∶= fZ,min∕4 and using the bound (7) on h, we get

P

(

sup
i
|𝜉i,n| < CΛ′

(

1 + C3
fZ,min𝛼!
4CK,𝛼

+ C4
fZ,min

4

)

×
(

C5hk+𝛼 + t2
)
)

≥ 1 − 2
|ℑk,n′ |∑

i=1

[

exp

(

−
[n∕k]f 2

Z,minhkp

16C1 + 4C2fZ,min

)

+ exp

(

−
[n∕k]t2

2hkp

C6 + C7t2

)]

.

 14679574, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/stan.12350 by T

echnical U
niversity D

elft, W
iley O

nline L
ibrary on [09/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



30 DERUMIGNY

Choosing t2 = t∕(2C8) = t∕
(

2C𝝍CΛ′
(

1 + C3
fZ,min𝛼!
4CK,𝛼

+ C4
fZ,min

4

))

, and using the bound (7) on h𝛼 ,
we get

P

(

sup
i
|𝜉i,n| < t∕C𝝍

)

≥ 1 − 2
|ℑk,n′ |∑

i=1

[

exp
(

−
[n∕k]f 2

Z,minhkp

16C1+4C2fZ,min

)

+ exp
(

− [n∕k]t2hkp

4C2
8C6+2C8C7t

)]

.

This gives the values of C6,𝜎 and C7,𝜎 . Note that, if Assumption 8 is satisfied, the result
holds with C6,𝜎 and C7,𝜎 constant, respectively to C6 and C7 defined in Proposition 5. In
the case of Assumption 15, the result holds with the following alternative values: C6,𝜎 ∶=

128
(

Bg(z′
𝜎(1), … , z′

𝜎(k)) + B̃g

)2
C2k

K f −2k
Z,min and C7,𝜎 ∶= 2

(

Bg(z′
𝜎(1), … , z′

𝜎(k)) + B̃g

)

Ck
Kf −k

Z,min.

On the same event, we have maxj=1,… ,p′
|
|
|

1
n′
∑n′

i=1Z′i,j𝜉i,n
|
|
|
≤ t, by Assumption 9. The conclusion

results from the following lemma.

Lemma 9 (From Derumigny and Fermanian, 2020, lemma 25). Assume that
maxj=1,… ,p′

|
|
|

1
n′
∑n′

i=1Z′i,j𝜉i,n
|
|
|
≤ t, for some t > 0, that the assumption RE(s, 3) is satisfied,

and that the tuning parameter is given by 𝜆 = 𝛾t, with 𝛾 ≥ 4. Then, ||Z′(𝛽 − 𝛽
∗)|| ≤

4(𝛾 + 1)t
√

s
𝜅(s, 3)

and |𝛽 − 𝛽
∗|q ≤

42∕q(𝛾 + 1)ts1∕q

𝜅2(s, 3)
, for every 1 ≤ q ≤ 2.

■

APPENDIX E. PROOF OF THEOREM 6

We detail the assumption which we will use to prove Theorem 6.

Assumption 16.

(i) The support of the kernel K(⋅) is included into [−1, 1]p. Moreover, for all n,n′ and
every (i, j) ∈ {1, … ,n′}2, i ≠ j, we have |z′i − z′j |∞ > 2hn,n′ .

(ii) (a) n′(nhp+4𝛼
n,n′ + h2𝛼

n,n′ + hp
n,n′ + (nhp

n,n′ )
−1) → 0, (b) 𝜆n,n′ (n′ n hp

n,n′ )
1∕2 → 0, (c)

n′ n hp
n,n′ →∞ and n hp+2𝛼−𝜖

n,n′ ∕ ln n′ → ∞ for some 𝜖 ∈ [0, 2𝛼[.
(iii) The distribution Pz′,n′ ∶= |ℑk,n′ |

−1∑
𝜎∈ℑk,n′

𝛿(z′
𝜎(1),… ,z′

𝜎(k)) weakly converges as n′ →
∞, to a distribution Pz′,k,∞ on Rkp. There exists a distribution Pz′,∞ on Rkp, with
a density fz′,∞ with respect to the p-dimensional Lebesgue measure such that
Pz′,k,∞ = P

⊗k
z′,∞.

(iv) The matrix V1 ∶= ∫ 𝝍(z′1, … z′k)𝝍(z
′
1, … z′k)

Tfz′,∞(z′1) … fz′,∞(z′k)dz′1 … dz′k is
nonsingular.

(v) Λ(⋅) is two times continuously differentiable. Let  be the range of 𝜃, from k

toward R. On an open neighborhood of  , the second derivative ofΛ(⋅) is bounded
by a constant CΛ′′ .

(vi) Several integrals exist and are finite, including

Ṽ 1 ∶=
∫

𝜃
(
z′1, … , z′k

)
Λ′
(
𝜃
(
z′1, … , z′k

))
𝝍
(
z′1, … , z′k

)

fz′,∞(z1) · · · fz′,∞(zk) dz1 · · · dzk and
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DERUMIGNY 31

V2 ∶=
∫

||K||22
fZ(z′1)

g (x1, x2, … , xk) g
(
x1, y2, … , yk

)

Λ′2 (
𝜃(z′1, … , z′k)

)
𝝍
(
z′1, … , z′k

)
𝝍
(
z′1, … , z′k

)T

× fX|Z=z′1(x1) d𝜇(x1)d𝜇(z′1)
k∏

i=2
fX|Z=z′i (yi)fX|Z=z′i (xi)fz′,∞(z′i) d𝜇(xi)d𝜇(yi)dz′i .

Define r̃n,n′ ∶= (n × n′ × hp
n,n′ )

1∕2, u ∶= r̃n,n′ (𝛽 − 𝛽
∗) and ûn,n′ ∶= r̃n,n′ (𝛽n,n′ − 𝛽

∗), so that
𝛽n,n′ = 𝛽

∗ + ûn,n′∕r̃n,n′ . We define for every u ∈ Rp′,

Fn,n′ (u) ∶=
−2r̃n,n′

|ℑk,n′ |

∑

𝜎∈ℑk,n′

𝜉𝜎,n𝝍
(

z′
𝜎(1), … , z′

𝜎(k)

)T
u

+ 1
|ℑk,n′ |

∑

𝜎∈ℑk,n′

{

𝝍

(

z′
𝜎(1), … , z′

𝜎(k)

)T
u
}2

+ 𝜆n,n′ r̃2
n,n′

(
|
|
|
|
𝛽
∗ + u

r̃n,n′

|
|
|
|1
− |𝛽∗|1

)

,

(E1)

and we obtain ûn,n′ = arg minu∈Rp′ Fn,n′(u) applying Lemma 9.

Lemma 10. Under the same assumptions as in Theorem 6,

T1 ∶=
r̃n,n′

|ℑk,n′ |

∑

𝜎∈ℑk,n′

𝜉𝜎,n𝝍
(

z′
𝜎(1), … , z′

𝜎(k)

) D
−−→ (0,V2).

This lemma is proved in E.1. It will help to control the first term of Equation (E1), which is
simply −2TT

1 u.
Concerning the second term of Equation (E1), using Assumption 16(iii), we have for every

u ∈ Rp′

1
|ℑk,n′ |

∑

𝜎∈ℑk,n′

{

𝝍

(

z′
𝜎(1), … , z′

𝜎(k)

)T
u
}2

→
∫

(
𝝍(z′1, … , z′k)

Tu
)2fz′,∞(z′1) … fz′,∞(z′k) dz′1 … dz′k.

(E2)

This has to be read as a convergence of a sequence of real numbers indexed by u, because the
design points z′i are deterministic. We also have, for any u ∈ Rp′ and when n is large enough,

|
|
|
𝛽
∗ + u

r̃n,n′

|
|
|1
− ||
|
𝛽
∗||
|1
=

p′∑

i=1

(
|ui|

r̃n,n′
1{𝛽∗i =0} +

ui

r̃n,n′
sign(𝛽∗i )1{𝛽∗i ≠0}

)

.

Therefore, by Assumption 16(ii)(b), for every u ∈ Rp′,

𝜆n,n′ r̃2
n,n′

(
|
|
|
𝛽
∗ + u

r̃n,n′

|
|
|1
− ||
|
𝛽
∗||
|1

)

→ 0, (E3)

when (n,n′) tends to the infinity. Combining Lemma 10 and Equations (E1)–(E3), and defining
the function F∞,∞ by

F∞,∞(u) ∶= 2W̃Tu +
∫

(
𝝍(z′1, … , z′k)

Tu
)2fz′,∞(z′1) … fz′,∞(z′k) dz′1 … dz′k,
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32 DERUMIGNY

where u ∈ Rr and W̃ ∼ (0,V2), we obtain that every finite-dimensional margin of Fn,n′ weakly
converges to the corresponding margin of F∞,∞. Now, applying the convexity lemma, we get

ûn,n′
D
−−→u∞,∞, where u∞,∞ ∶= arg min

u∈Rr
F∞,∞(u).

Since F∞,∞(u) is a continuously differentiable convex function, apply the first-order condition
∇F∞,∞(u) = 0, which yields

2W̃ + 2
∫
𝝍(z′1, … , z′k)𝝍(z

′
1, … , z′k)

Tu∞,∞fz′,∞(z′1) … fz′,∞(z′k) dz′1 … dz′k = 0.

As a consequence u∞,∞ = −V−1
1 W̃ ∼ (0, Ṽ as), using Assumption 16(iv). We finally obtain

r̃n,n′
(
𝛽n,n′ − 𝛽

∗) D
−−→

(
0, Ṽ as

)
, as claimed. ■

E.1 Proof of Lemma 10
Using a Taylor expansion yields

T1 ∶=
r̃n,n′

|ℑk,n′ |

∑

𝜎∈ℑk,n′

𝜉𝜎,n𝝍
(

z′
𝜎(1), … , z′

𝜎(k)

)

=
r̃n,n′

|ℑk,n′ |

∑

𝜎∈ℑk,n′

(

Λ
(

�̂�

(

z′
𝜎(1), … , z′

𝜎(k)

))

− Λ
(

𝜃

(

z′
𝜎(1), … , z′

𝜎(k)

)))

𝝍

(

z′
𝜎(1), … , z′

𝜎(k)

)

= T2 + T3,

where the main term is

T2 ∶=
r̃n,n′

|ℑk,n′ |

∑

𝜎∈ℑk,n′

Λ′
(

𝜃

(

z′
𝜎(1), … , z′

𝜎(k)

))(

�̂�

(

z′
𝜎(1), … , z′

𝜎(k)

)

− 𝜃

(

z′
𝜎(1), … , z′

𝜎(k)

))

𝝍

(

z′
𝜎(1), … , z′

𝜎(k)

)

,

and the remainder is

T3 ∶=
r̃n,n′

|ℑk,n′ |

∑

𝜎∈ℑk,n′

𝛼3,𝜎 ⋅
(

�̂�

(

z′
𝜎(1), … , z′

𝜎(k)

)

− 𝜃

(

z′
𝜎(1), … , z′

𝜎(k)

))2
𝝍

(

z′
𝜎(1), … , z′

𝜎(k)

)

,

with ∀𝜎 ∈ ℑk,n′ , |𝛼3,𝜎| ≤ CΛ′′∕2, by Assumption 16(v).
Let us define 𝝍𝜎 ∶= Λ′

(

𝜃

(

z′
𝜎(1), … , z′

𝜎(k)

))

𝝍

(

z′
𝜎(1), … , z′

𝜎(k)

)

, for every 𝜎 ∈ ℑk,n′ . Using
the definition (2), we rewrite T2 ∶= T4 + T5 where

T4 ∶=
r̃n,n′

|ℑk,n′ | ⋅ |ℑk,n|

∑

𝜎∈ℑk,n′

∑

𝜍∈ℑk,n

∏k
i=1Kh

(

Z𝜍(i) − z′
𝜎(i)

)

∏k
i=1fZ(z′

𝜎(i))
(

g
(
X𝜍(1), … ,X𝜍(k)

)
− 𝜃

(

z′
𝜎(1), … , z′

𝜎(k)

))

𝝍𝜎,
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DERUMIGNY 33

T5 ∶=
r̃n,n′

|ℑk,n′ | ⋅ |ℑk,n|

∑

𝜎∈ℑk,n′

∑

𝜍∈ℑk,n

k∏

i=1
Kh

(

Z𝜍(i) − z′
𝜎(i)

)(

g
(
X𝜍(1), … ,X𝜍(k)

)
− 𝜃

(

z′
𝜎(1), … , z′

𝜎(k)

))

×
⎛
⎜
⎜
⎝

1
Nk(z′

𝜎(1), … , z′
𝜎(k))

− 1
∏k

i=1fZ(z′
𝜎(i))

⎞
⎟
⎟
⎠

𝝍𝜎.

To lighten the notations, we will define K𝜎,𝜍 ∶=
∏k

i=1Kh

(

Z𝜍(i) − z′
𝜎(i)

)

, g𝜍 ∶= g
(
X𝜍(1), … ,X𝜍(k)

)
,

𝜃𝜎 ∶= 𝜃

(

z′
𝜎(1), … , z′

𝜎(k)

)

, fZ′,𝜎 ∶=
∏k

i=1fZ(z′
𝜎(i)), and N𝜎 ∶= Nk(z′

𝜎(1), … , z′
𝜎(k)), for every 𝜎 ∈ ℑk,n′

and 𝜍 ∈ ℑk,n, so that

T4 ∶=
r̃n,n′

|ℑk,n′ | ⋅ |ℑk,n|

∑

𝜎∈ℑk,n′

∑

𝜍∈ℑk,n

K𝜎,𝜍

fZ′,𝜎

(
g𝜍 − 𝜃𝜎

)
𝝍𝜎, (E4)

T5 ∶=
r̃n,n′

|ℑk,n′ | ⋅ |ℑk,n|

∑

𝜎∈ℑk,n′

∑

𝜍∈ℑk,n

K𝜎,𝜍

(
g𝜍 − 𝜃𝜎

)
(

1
N𝜎

− 1
fZ′,𝜎

)

𝝍𝜎. (E5)

Using 𝛼-order limited expansions, we get

E[T4] =
r̃n,n′

|ℑk,n′ |

∑

𝜎∈ℑk,n′
∫

∏k
i=1Kh

(

zi − z′
𝜎(i)

)

fZ′,𝜎
(g (x1∶k) − 𝜃𝜎)

k∏

i=1
fX,Z(xi, zi)d𝜇⊗k(x1∶k)dz1∶k

=
r̃n,n′

|ℑk,n′ |

∑

𝜎∈ℑk,n′
∫

∏k
i=1K (ti)
fZ′,𝜎

(g (x1∶k) − 𝜃𝜎)
k∏

i=1
fX,Z(xi, z′𝜎(i) + hti)d𝜇⊗k(x1∶k)dt1∶k

=
r̃n,n′hk𝛼

|ℑk,n′ |

∑

𝜎∈ℑk,n′
∫

∏k
i=1K (ti)
fZ′,𝜎

(g (x1∶k) − 𝜃𝜎)
k∏

i=1
d(𝛼)Z fX,Z(xi, z∗𝜎(i))d𝜇

⊗k(x1∶k)dt1∶k

= O
(

r̃n,n′hk𝛼) = O
(

(n × n′ × hp+2k𝛼
n,n′ )1∕2

)

= o(1),

(E6)

where above, z∗i denote some vectors in Rp such that |z′i − z∗i |∞ ≤ 1, depending on z′i and xi. We
can therefore use the centered version of T4, defined as

T4 − E[T4] =
r̃n,n′

|ℑk,n′ | ⋅ |ℑk,n|

∑

𝜎∈ℑk,n′

∑

𝜍∈ℑk,n

g𝜎,𝜍 ,

g𝜎,𝜍 ∶=
𝝍𝜎

fZ′,𝜎

(
K𝜎,𝜍

(
g𝜍 − 𝜃𝜎

)
− E

[
K𝜎,𝜍

(
g𝜍 − 𝜃𝜎

)])
.

Computation of the limit of the variance matrix Var[T4].
We have Var[T4] = E[T4TT

4 ] + o(1).

Var[T4] =
r̃2

n,n′

|ℑk,n′ |2 ⋅ |ℑk,n|2

∑

𝜎,𝜎∈ℑk,n′

∑

𝜍,𝜍∈ℑk,n

E[g𝜎,𝜍gT
𝜎,𝜍
] + o(1).
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34 DERUMIGNY

By independence, E[g𝜎,𝜍gT
𝜎,𝜍
] = 0 as soon as 𝜍 ∩ 𝜍 = ∅, where we identify a permutation 𝜍 and its

image 𝜍({1, … , k}). Therefore, we get

Var[T4] ≃
nn′hp

n,n′

|ℑk,n′ |2 ⋅ |ℑk,n|2

∑

𝜎,𝜎∈ℑk,n′

∑

𝜍,𝜍∈ℑk,n
𝜍∩𝜍≠∅

E

[

g𝜎,𝜍 gT
𝜎,𝜍

]

=
nn′hp

n,n′

|ℑk,n′ |2 ⋅ |ℑk,n|2

∑

𝜎,𝜎∈ℑk,n′

∑

𝜍,𝜍∈ℑk,n
𝜍∩𝜍≠∅

g𝜎,𝜍,𝜎,𝜍 − g̃
𝜎

g̃T
𝜎
,

where g̃
𝜎
∶= 𝝍𝜎E

[
K𝜎,𝜍

(
g𝜍 − 𝜃𝜎

)]
∕fZ′,𝜎 and

g𝜎,𝜍,𝜎,𝜍 ∶=
𝝍𝜎𝝍

T
𝜎

fZ′,𝜎fZ′,𝜎
E
[
K𝜎,𝜍K𝜎,𝜍

(
g𝜍 − 𝜃𝜎

) (
g𝜍 − 𝜃𝜎

)]
.

Assume now that 𝜍 ∩ 𝜍 is of cardinality 1, that is, there exists only one couple (j, j) ∈ {1, … , k}2

such that 𝜍(j) = 𝜍(j). Then,

g𝜎,𝜍,𝜎,𝜍 =
𝝍𝜎𝝍

T
𝜎

fZ′,𝜎fZ′,𝜎 ∫
(g(X1∶k) − 𝜃𝜎)

(

g(xk+1, … , xk+j−1, xj, xk+j+1, … , x2k) − 𝜃𝜎

)

⋅
k∏

i=1
Kh

(

zi − z′
𝜎(i)

)

fX,Z(xi, zi)d𝜇(xi)dzi ⋅ Kh

(

zj − z′
𝜎(j)

)

⋅
k∏

i=1, i≠j

Kh

(

zk+i − z′
𝜎(i)

)

fX,Z(xk+i, zk+i)d𝜇(xk+i)dzk+i

=
𝝍𝜎𝝍

T
𝜎

fZ(zj) ∫
(g(X1∶k) − 𝜃𝜎)

(

g(xk+1, … , xk+j−1, xj, xk+j+1, … , x2k) − 𝜃𝜎

)

⋅
k∏

i=1
K(ti)

fX,Z(xi, z′
𝜎(i) + hti)

fZ(z′
𝜎(i))

d𝜇(xi)dti ⋅ h−pK
⎛
⎜
⎜
⎝

ti +
z′
𝜎(j) − z′

𝜎(j)

h

⎞
⎟
⎟
⎠

⋅
k∏

i=1, i≠j

K(tk+i)
fX,Z(xk+i, z′

𝜎(i)
+ htk+i)

fZ(zk+i)
d𝜇(xk+i)dtk+i

≃
𝝍𝜎𝝍

T
𝜎

fZ(zj) ∫
(g(X1∶k) − 𝜃𝜎)

(

g(xk+1, … , xk+j−1, xj, xk+j+1, … , x2k) − 𝜃𝜎

)

⋅
k∏

i=1
K(ti)

fX,Z(xi, z′
𝜎(i))

fZ(zi)
d𝜇(xi)dti ⋅ h−pK

⎛
⎜
⎜
⎝

ti +
z′
𝜎(j) − z′

𝜎(j)

h

⎞
⎟
⎟
⎠

⋅
k∏

i=1, i≠j

K(tk+i)
fX,Z(xk+i, z′

𝜎(i)
)

fZ(z′
𝜎(i)
)

d𝜇(xk+i)dtk+i.
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DERUMIGNY 35

By assumption, this is zero unless 𝜎(j) = 𝜎(j). In this case, it can be simplified, giving

g𝜎,𝜍,𝜎,𝜍 ≃
𝝍𝜎𝝍

T
𝜎

fZ(zj)hp ∫
K2
∫
(g(x1∶k) − 𝜃𝜎)

(

g(xk∶2k,j→j) − 𝜃𝜎

)

⋅
k∏

i=1
fX|Z=z′

𝜎(i)
(xk)d𝜇(xi)

k∏

i=1, i≠j

fX|Z=z′
𝜎(i)
(xk+i)d𝜇(xk+i) =∶ h−pg

𝜎,𝜎,j,j,

where xk∶2k,j→j ∶= (xk+1, … , xk+j−1, xj, xk+j+1, … , x2k).
Note that, if 𝜍 ∩ 𝜍 is of cardinality strictly greater than 1, some supplementary powers of h−p

arise thanks to the repeated kernels in 𝜍 and 𝜍. As a consequence, they are of lower order and
therefore negligible. Using 𝛼-order expansions as in Equation (E6), we get sup

𝜎
|g̃

𝜎
| = O(hk𝛼).

Thus,

Var[T4] ≃ O
(

nn′hp+2k𝛼
n,n′

)

+
nn′hp

n,n′

|ℑk,n′ |2 ⋅ |ℑk,n|2

∑

𝜍∈ℑk,n

k∑

j,j=1

∑

𝜍∈ℑk,n
𝜍(j)=𝜍(j), |𝜍∩𝜍|=1

∑

𝜎,𝜎∈ℑk,n′ , 𝜎(j)=𝜎(j)

h−pg
𝜎,𝜎,j,j

≃ n′
|ℑk,n′ |2

k∑

j,j=1

∑

𝜎,𝜎∈ℑk,n′ , 𝜎(j)=𝜎(j)

g
𝜎,𝜎,j,j

→
k∑

j,j=1

gj,j,∞ = V2,

where

gj,j,∞ ∶= ∫ Λ′
(
𝜃
(
z′1∶k

))
Λ′
(

𝜃

(

z′
k∶2k,j→j

))

𝝍
(
z′1∶k

)
𝝍

T
(

z′
k∶2k,j→j

) ∫ K2

fZ(z′j) ∫
(

g(x1∶k) − 𝜃(z′1∶k)
)

⋅
(

g(xk∶2k,j→j) − 𝜃(z′
k∶2k,j→j

)
) 2k∏

i=1,i≠k+j

fX|Z=z′i (xi)fZ′,∞(z′i)d𝜇(xi)dz′i .

In Section E.2, we will prove that T4 is asymptotically Gaussian; therefore, its asymptotic variance
will be given by V2.

Now, decompose the term T5, defined in Equation (E5), using a Taylor expansion of the
function x → 1∕(1 + x) at 0.

1
N𝜎

− 1
fZ′,𝜎

= 1
fZ′,𝜎

⎛
⎜
⎜
⎝

1
1 + N

𝜎
−fZ′ ,𝜎

fZ′ ,𝜎

− 1
⎞
⎟
⎟
⎠

= −
N𝜎 − fZ′,𝜎

f 2
Z′,𝜎

+ T7,𝜎 ,

where

T7,𝜎 ∶= 1
fZ′ ,𝜎
(1 + 𝛼7,𝜎)−3

(N𝜎 − fZ′,𝜎

fZ′,𝜎

)2

, with |𝛼7,𝜎| ≤
|
|
|
|
|

N𝜎 − fZ′,𝜎

fZ′,𝜎

|
|
|
|
|

.
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36 DERUMIGNY

We have therefore the decomposition T5 = −T6 + T7, where

T6 ∶=
r̃n,n′

|ℑk,n′ | ⋅ |ℑk,n|

∑

𝜎∈ℑk,n′

∑

𝜍∈ℑk,n

K𝜎,𝜍

(
g𝜍 − 𝜃𝜎

) N𝜎 − fZ′,𝜎

f 2
Z′,𝜎

𝝍𝜎, (E7)

T7 ∶=
r̃n,n′

|ℑk,n′ | ⋅ |ℑk,n|

∑

𝜎∈ℑk,n′

∑

𝜍∈ℑk,n

K𝜎,𝜍

(
g𝜍 − 𝜃𝜎

)
T7,𝜎𝝍𝜎. (E8)

Summing up all the previous equation, we get

T1 = (T4 − E[T4]) − T6 + T7 + T3 + o(1).

Afterwards, we will prove that all the remainders terms T6, T7, and T3 are negligible, that is, they
tend to zero in probability. These results are respectively proved in Sections E.3, E.4, and E.5.
Combining all these elements with the asymptotic normality of T4 (proved in Section E.2), we get
T1

D
−−→ (0,V2), as claimed. ■

E.2 Proof of the asymptotic normality of T4
Using the Hájek projection of T4, we define

T4 − E[T4] = T4,1 + T4,2, where

T4,1 ∶=
r̃n,n′

|ℑk,n′ | ⋅ |ℑk,n|

∑

𝜎∈ℑk,n′

∑

𝜍∈ℑk,n

k∑

i=1
E[g𝜎,𝜍|𝜍(i)],

T4,2 ∶=
r̃n,n′

|ℑk,n′ | ⋅ |ℑk,n|

∑

𝜎∈ℑk,n′

∑

𝜍∈ℑk,n

(

g𝜎,𝜍 −
∑

i=1,… ,k
E[g𝜎,𝜍|𝜍(i)]

)

,

denoting by |i the conditioning with respect to (Xi,Zi), for i ∈ {1, … ,n}. We will show that T4,1
is asymptotically normal, and that T4,2 = o(1).

Using the fact that the (Xi,Zi)i are i.i.d., and denoting by Id the injective function i → i, we
have

T4,1 =
kr̃n,n′

n|ℑk,n′ |

∑

𝜎∈ℑk,n′

n∑

i=1
E

[
𝝍𝜎

fZ′,𝜎
K𝜎,Id (gId − 𝜃𝜎) − g

𝜎

|
|
|
i
]

≃
kr̃n,n′

n|ℑk,n′ |

∑

𝜎∈ℑk,n′

n∑

i=1
E

[
𝝍𝜎

fZ′,𝜎
K𝜎,Id (gId − 𝜃𝜎)

|
|
|
i
]

=∶
n∑

i=1
𝛼4,i,n,

because sup
𝜎
|g

𝜎
| = O(hk𝛼), as proved in the previous section, hence negligible. The 𝛼4,i,n, for

1 ≤ i ≤ n, form a triangular array of i.i.d. variables. To prove the asymptotic normality of T4,1, it
remains to check Lyapunov’s condition, that is, we will show that

∑n
i=1E

[
|𝛼4,i,n|

3
∞
]
→ 0. We have

n∑

i=1
E
[
|𝛼4,i,n|

3
∞
]
= n E

[
|𝛼4,1,n|

3
∞
]

=
k3nr̃3

n,n′

n3|ℑk,n′ |3

∑

𝜎,𝜈,𝜗∈ℑk,n′

𝝍𝜎 ⊗ 𝝍 𝜈 ⊗ 𝝍𝜗

fZ′,𝜎fZ′,𝜈fZ′,𝜗
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DERUMIGNY 37

E
[
E
[
K𝜎,Id

(
gId − 𝜃𝜎

)
|1
]
E
[
K𝜈,Id

(
gId − 𝜃𝜈)

)
|1
]
E
[
K𝜗,Id

(
gId − 𝜃𝜗)

)
|1
]]

=
k3r̃3

n,n′

n2|ℑk,n′ |3

∑

𝜎,𝜈,𝜗∈ℑk,n′

𝝍𝜎 ⊗ 𝝍𝜈 ⊗ 𝝍𝜗

fZ(z′
𝜈(1))fZ(z′

𝜗(1)) ∫
Kh
(
z1 − z′

𝜎(1)
)

Kh
(
z1 − z′

𝜈(1)
)

Kh
(
z1 − z′

𝜗(1)
)

⋅
k∏

i=2
Kh
(
zi − z′

𝜎(i)
)

Kh
(
zk+i − z′

𝜈(i)
)

Kh
(
z2k+i − z′

𝜗(i)
)

⋅
(

g(x1∶k) − 𝜃𝜎)
)(

g(x1, x(k+2)∶(2k)) − 𝜃𝜈)
(

g(x1, x(2k+2)∶(3k)) − 𝜃𝜗)

⋅
k∏

i=1

fX,Z(xi, zi)
fZ(z′

𝜎(i))
d𝜇(xi)dzi

k∏

i=2

fX,Z(xk+i, zk+i)
fZ(z′

𝜈(i))
d𝜇(xk+i)dzk+i

k∏

i=2

fX,Z(x2k+i, z2k+i)
fZ(z′

𝜗(i))
d𝜇(x2k+i)dz2k+i

≃
k3r̃3

n,n′

n2|ℑk,n′ |3

∑

𝜎,𝜈,𝜗∈ℑk,n′

𝝍𝜎 ⊗ 𝝍𝜈 ⊗ 𝝍𝜗

fZ(z′
𝜈(1))fZ(z′

𝜗(1))

∫
h−2pK(t1)K

(

t1 +
z′
𝜎(1) − z′

𝜈(1)

h

)

K

(

t1 +
z′
𝜎(1) − z′

𝜗(1)

h

)

⋅
k∏

i=2
Kh
(
ti
)

Kh
(
tk+i

)
Kh
(
t2k+i

)(
g(x1∶k) − 𝜃𝜎)

)(
g(x1, x(k+2)∶(2k)) − 𝜃𝜈)

(
g(x1, x(2k+2)∶(3k)) − 𝜃𝜗)

⋅
k∏

i=1
fX|Z=z′

𝜎(i)
(xi)d𝜇(xi)dzi

k∏

i=2
fX|Z=z′

𝜈(i)
(xk+i)d𝜇(xk+i)dzk+i

k∏

i=2
fX|Z=z′

𝜗(i)
(x2k+i, t2k+i)d𝜇(x2k+i)dt2k+i,

where in the last equivalent, we use a change of variable from the zi to the ti, and then the
continuity of the density fX,Z with respect to z, because h = o(1).

Because of our assumptions, the terms of the sum for which 𝜎(1) ≠ 1 or 𝜈(1) ≠ 1 are zero.
Therefore, we get

n∑

i=1
E
[
|𝛼4,i,n|

3
∞
]
=

r̃3
n,n′h

−2p

n2|ℑk,n′ |3

∑

𝜎,𝜈,𝜗∈ℑk,n′ ,𝜎(1)=𝜈(1)=1
O(1) = O

(
(nn′hp)3∕2

n2n′2h2p

)

= O
(

1
(nn′hp)1∕2

)

= o(1).

We prove now that T4,2 = o(1). Note first that, by construction, E[T4,2] = 0. Computing its
variance, we get

E
[
T4,2TT

4,2
]

= E

⎡
⎢
⎢
⎣

r̃2
n,n′

|ℑk,n′ |2 ⋅ |ℑk,n|2

∑

𝜎,𝜎∈ℑk,n′

∑

𝜍,𝜍∈ℑk,n

(

g𝜎,𝜍 −
∑

i=1,… ,k
E

[

g𝜎,𝜍
|
|
|
𝜍(i)

]
)
⎛
⎜
⎜
⎝

g𝜎,𝜍 −
∑

i=1,… ,k

E

[

g𝜎,𝜍
|
|
|
𝜍(i)

]⎞
⎟
⎟
⎠

T
⎤
⎥
⎥
⎦

=∶
r̃2

n,n′

|ℑk,n′ |2 ⋅ |ℑk,n|2

∑

𝜎,𝜎∈ℑk,n′

∑

𝜍,𝜍∈ℑk,n

E
[
g̃
𝜎,𝜎,𝜍,𝜍

]
.

(E9)

Because of E[g𝜎,𝜍] = 0 and by independence, the terms in the latter sum for which 𝜍 ∩ 𝜍 = ∅ are
zero. Otherwise, there exists j1, j2 ∈ {1, … , k} such that 𝜍(j1) = 𝜍(j2). If 𝜍 ∩ 𝜍 is of cardinal 1,
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38 DERUMIGNY

meaning that there is no other identities between elements of 𝜍 and 𝜍, then we will show that the
corresponding term is zero as well. We place ourselves in this case, assuming that |𝜍 ∩ 𝜍| = 1, and
we get

E
[
g̃
𝜎,𝜎,𝜍,𝜍

]
= E

⎡
⎢
⎢
⎣

(

g𝜎,𝜍 −
∑

i=1,… ,k
E

[

g𝜎,𝜍
|
|
|
𝜍(i)

]
)
⎛
⎜
⎜
⎝

gT
𝜎,𝜍
−

∑

i=1,… ,k

E

[

gT
𝜎,𝜍

|
|
|
𝜍(i)

]⎞
⎟
⎟
⎠

⎤
⎥
⎥
⎦

= E

[(

g𝜎,𝜍 − E

[

g𝜎,𝜍
|
|
|
𝜍(j1)

])(

gT
𝜎,𝜍
− E

[

gT
𝜎,𝜍

|
|
|
𝜍(j2)

])]

= E

[

E

[(

g𝜎,𝜍 − E

[

g𝜎,𝜍
|
|
|
𝜍(j1)

])(

gT
𝜎,𝜍
− E

[

gT
𝜎,𝜍

|
|
|
𝜍(j1)

])
|
|
|
𝜍(j1)

]]

= E

[

E

[

g𝜎,𝜍gT
𝜎,𝜍

|
|
|
𝜍(j1)

]]

− E

[

E

[

g𝜎,𝜍
|
|
|
𝜍(j1)

]

E

[

gT
𝜎,𝜍

|
|
|
𝜍(j1)

]]

= 0.

Therefore, nonzero terms in Equation (E9) correspond to the case where there exists j3 ≠ j1, j4 ≠ j1
such that 𝜍(j3) = 𝜍(j4). It is equivalent to |𝜍 ∩ 𝜍| ≥ 2. We will ignore higher-order terms, that is, the
ones for which |𝜍 ∩ 𝜍| > 2, as they yield higher powers of hp and are therefore negligible. Finally,
Equation (E9) becomes

E
[
T4,2TT

4,2
]
≃

r̃2
n,n′

|ℑk,n′ |2 ⋅ |ℑk,n|2

∑

𝜎,𝜎∈ℑk,n′

∑

𝜍,𝜍∈ℑk,n
|𝜍∩𝜍|=2

(

E

[

g𝜎,𝜍gT
𝜎,𝜍

]

− 2kE

[

E

[

g𝜎,𝜍
|
|
|
𝜍(i)

]

E

[

gT
𝜎,𝜍

|
|
|
𝜍(i)

]])

.

As before, using change of variables and limited expansions, we can prove that

r̃2
n,n′

|ℑk,n′ |2 ⋅ |ℑk,n|2

∑

𝜎,𝜎∈ℑk,n′

∑

𝜍,𝜍∈ℑk,n
|𝜍∩𝜍|=2

E

[

g𝜎,𝜍gT
𝜎,𝜍

]

= o(1),

and similarly for the other term.

E.3 Convergence of T6 to 0
Using Equation (E7), we have T6 = T6,1 + T6,2, where

T6,1 ∶=
r̃n,n′

|ℑk,n′ | ⋅ |ℑk,n|

∑

𝜎∈ℑk,n′

∑

𝜍∈ℑk,n

K𝜎,𝜍

(
g𝜍 − 𝜃𝜎

) N𝜎 − E[N𝜎]
f 2
Z′,𝜎

𝝍𝜎, (E10)

T6,2 ∶=
r̃n,n′

|ℑk,n′ | ⋅ |ℑk,n|

∑

𝜎∈ℑk,n′

∑

𝜍∈ℑk,n

K𝜎,𝜍

(
g𝜍 − 𝜃𝜎

) E[N𝜎] − fZ′,𝜎

f 2
Z′,𝜎

𝝍𝜎. (E11)

We first prove that T6,1 = o(1). Using Equation (5), we have

T6,1 =
r̃n,n′

|ℑk,n′ | ⋅ |ℑk,n|

∑

𝜎∈ℑk,n′

∑

𝜍∈ℑk,n

1
f 2
Z′,𝜎

K𝜎,𝜍

(
g𝜍 − 𝜃𝜎

) (

Nk(z′𝜎(1∶k)) − E[Nk(z′𝜎(1∶k))]
)

𝝍𝜎

=
r̃n,n′

|ℑk,n′ | ⋅ |ℑk,n|

∑

𝜎∈ℑk,n′

∑

𝜍∈ℑk,n

1
f 2
Z′,𝜎

K𝜎,𝜍

(
g𝜍 − 𝜃𝜎

)
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DERUMIGNY 39

∑

𝜈∈ℑk,n

( k∏

i=1
Kh

(

Z𝜈(i) − z′
𝜎(i)

)

− E

[ k∏

i=1
Kh

(

Z𝜈(i) − z′
𝜎(i)

)
])

𝝍𝜎

=
r̃n,n′

|ℑk,n′ | ⋅ |ℑk,n|

∑

𝜎∈ℑk,n′

∑

𝜍,𝜈∈ℑk,n

1
f 2
Z′,𝜎

K𝜎,𝜍

(
g𝜍 − 𝜃𝜎

) (
K𝜎,𝜈 − E

[
K𝜎,𝜈

])
𝝍𝜎.

The terms for which |𝜍 ∩ 𝜈| ≥ 1 induce some powers of (nhp)−1, and are therefore negligible.
We remove them to obtain an equivalent random vector T6,1, which is centered. Therefore it is
sufficient to show that its second moment tends to 0.

E

[

T6,1T
T
6,1

]

=
r̃2

n,n′

|ℑk,n′ |2 ⋅ |ℑk,n|2

∑

𝜎,𝜎∈ℑk,n′

∑

𝜍,𝜈∈ℑk,n
𝜍∩𝜈=∅

∑

𝜍,𝜈∈ℑk,n
𝜍∩𝜈=∅

𝝍𝜎

f 2
Z′,𝜎

𝝍
T
𝜎

f 2
Z′,𝜎

g𝜎,𝜎,𝜍,𝜍,𝜈,𝜈 ,

g𝜎,𝜎,𝜍,𝜍,𝜈,𝜈 ∶= E
[
K𝜎,𝜍

(
g𝜍 − 𝜃𝜎

) (
K𝜎,𝜈 − E

[
K𝜎,𝜈

])
K𝜎,𝜍

(
g𝜍 − 𝜃𝜎

) (
K𝜎,𝜈 − E

[
K𝜎,𝜈

])]
.

The term g𝜎,𝜎,𝜍,𝜍,𝜈,𝜈 is 0 in two cases: if 𝜈 ∩ (𝜍 ∪ 𝜍 ∪ 𝜈) or if 𝜈 ∩ (𝜍 ∪ 𝜍 ∪ 𝜈). This condition can be
written as

∅ =
[
𝜈 ∩ (𝜍 ∪ 𝜈)

]
∪
[
𝜈 ∩ (𝜍 ∪ 𝜈)

]
= (𝜈 ∪ 𝜈) ∩ (𝜍 ∪ 𝜈) ∩ (𝜍 ∪ 𝜈).

We deduce that nonzero terms arise only when there exists j1, j2 ∈ {1, … , k} such that: 𝜈(j1) =
𝜈(j2) or 𝜈(j1) = 𝜍(j2) or 𝜈(j1) = 𝜍(j2). Therefore, we can write E

[

T6,1T
T
6,1

]

= T6,1,1 + T6,1,2 + T6,1,3,
where

T6,1,1 =
r̃2

n,n′

|ℑk,n′ |2 ⋅ |ℑk,n|2

k∑

j1,j2=1

∑

𝜎,𝜎∈ℑk,n′

∑

𝜍,𝜈∈ℑk,n
𝜍∩𝜈=∅

∑

𝜍,𝜈∈ℑk,n
𝜍∩𝜈=∅,𝜈(j2 )=𝜈(j1)

𝝍𝜎

f 2
Z′,𝜎

𝝍
T
𝜎

f 2
Z′,𝜎

g𝜎,𝜎,𝜍,𝜍,𝜈,𝜈 ,

T6,1,2 =
r̃2

n,n′

|ℑk,n′ |2 ⋅ |ℑk,n|2

k∑

j1,j2=1

∑

𝜎,𝜎∈ℑk,n′

∑

𝜍,𝜈∈ℑk,n
𝜍∩𝜈=∅

∑

𝜍,𝜈∈ℑk,n
𝜍∩𝜈=∅,𝜍(j2 )=𝜈(j1)

𝝍𝜎

f 2
Z′,𝜎

𝝍
T
𝜎

f 2
Z′,𝜎

g𝜎,𝜎,𝜍,𝜍,𝜈,𝜈 ,

T6,1,3 =
r̃2

n,n′

|ℑk,n′ |2 ⋅ |ℑk,n|2

k∑

j1,j2=1

∑

𝜎,𝜎∈ℑk,n′

∑

𝜍,𝜈∈ℑk,n
𝜍∩𝜈=∅

∑

𝜍,𝜈∈ℑk,n
𝜍∩𝜈=∅,𝜈(j1 )=𝜍(j2)

𝝍𝜎

f 2
Z′,𝜎

𝝍
T
𝜎

f 2
Z′,𝜎

g𝜎,𝜎,𝜍,𝜍,𝜈,𝜈 ,

We will prove that T6,1,1 = o(1). The two other terms can be treated in a similar way. Because of
our assumptions, the terms for which 𝜎(j1) ≠ 𝜎(j2) are zero. This divides the number of possible
terms by n′. By using limited expansions as in Equation (E6), we get that g𝜎,𝜎,𝜍,𝜍,𝜈,𝜈 = O(hk𝛼−p).
Therefore, we have T6,1,1 = O

(
nn′hp

nn′
hk𝛼−p

)

= O(hk𝛼) = o(1).
Concerning T6,2, its variance matrix is given by

Var
[
T6,2

]
=

r̃2
n,n′

|ℑk,n′ |2 ⋅ |ℑk,n|2

∑

𝜎,𝜎∈ℑk,n′

∑

𝜍,𝜍∈ℑk,n

E[N𝜎] − fZ′,𝜎

f 2
Z′,𝜎

E[N𝜎] − fZ′,𝜎

f 2
Z′,𝜎

𝝍𝜎𝝍𝜎g
𝜎,𝜎,𝜍,𝜍

,

g
𝜎,𝜎,𝜍,𝜍

∶= E
[
K𝜎,𝜍K𝜎,𝜍

(
g𝜍 − 𝜃𝜎

)(
g𝜍 − 𝜃𝜎

)]
− E

[
K𝜎,𝜍

(
g𝜍 − 𝜃𝜎

)]
E
[
K𝜎,𝜍

(
g𝜍 − 𝜃𝜎

))]
.
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40 DERUMIGNY

Note that g
𝜎,𝜎,𝜍,𝜍

= 0 when 𝜍 ∩ 𝜍 = ∅. This divides the number of terms in the sum above by n,
and imposes that 𝜎 ∩ 𝜍 ≠ 0, which divides the number of terms in the sum above by another n′.
Finally, limited expansions gives a bound of hk𝛼−p. Summing up all these elements, we obtain

Var
[
T6,2

]
= O

( r̃2
n,n′

nn′
hk𝛼−p

)

= O(hk𝛼) = o(1). Similarly, we get E
[
T6,2

]
= o(1) by a Taylor expansion.

E.4 Convergence of T7 to 0
We recall Equation (E8):

T7 =
r̃n,n′

|ℑk,n′ | ⋅ |ℑk,n|

∑

𝜎∈ℑk,n′

∑

𝜍∈ℑk,n

K𝜎,𝜍

(
g𝜍 − 𝜃𝜎

)
T7,𝜎𝝍𝜎,

T7,𝜎 ∶=
1

fZ′,𝜎
(1 + 𝛼7,𝜎)−3

(N𝜎 − fZ′,𝜎

fZ′,𝜎

)2

, with |𝛼7,𝜎| ≤
|
|
|
|
|

N𝜎 − fZ′,𝜎

fZ′,𝜎

|
|
|
|
|

.

By Lemma 1 applied to z1 = z′
𝜎(1), … , zn′ = z′

𝜎(n′), for 𝜎 ∈ ℑk,n′ , we get

P

(

sup
𝜎∈ℑk,n′

|
|
|
N𝜎 − fZ′,𝜎

|
|
|
≤

CK,𝛼

𝛼
h𝛼 + t

)

≥ 1 − 2 exp
(

−
[n∕k]t2

h−kpC1 + h−kpC2t

)

,

for any t > 0. Therefore, sup
𝜎∈ℑk,n′

|T7,𝜎| = OP(h2𝛼) by choosing t = h𝛼∕k. Then,

|T7| ≤ sup
𝜎∈ℑk,n′

|T7,𝜎|
r̃n,n′

|ℑk,n′ | ⋅ |ℑk,n|

∑

𝜎∈ℑk,n′

∑

𝜍∈ℑk,n

|K𝜎,𝜍| ⋅
|
|
|
g𝜍 − 𝜃𝜎

|
|
|
⋅ |𝝍𝜎|.

The expectation of the double sum is O(h𝛼), by 𝛼-order limited expansions. By Markov’s inequality,
we deduce

T7 = OP

(

r̃n,n′ sup
𝜎∈ℑk,n′

|T7,𝜎|h𝛼)

)

= OP(r̃n,n′h3𝛼) = OP

(
(nn′hp+3𝛼)1∕2)

,

therefore T7 = oP(1).

E.5 Convergence of T3 to 0
We have

T3 ∶=
r̃n,n′

|ℑk,n′ |

∑

𝜎∈ℑk,n′

𝛼3,𝜎 ⋅
(

�̂�

(

z′
𝜎(1), … , z′

𝜎(k)

)

− 𝜃

(

z′
𝜎(1), … , z′

𝜎(k)

))2
𝝍

(

z′
𝜎(1), … , z′

𝜎(k)

)

,

with ∀𝜎 ∈ ℑk,n′ , |𝛼3,𝜎| ≤ CΛ′′∕2. Therefore

T3 ≲
r̃n,n′

|ℑk,n′ |

∑

𝜎∈ℑk,n′

(

�̂�

(

z′
𝜎(1), … , z′

𝜎(k)

)

− 𝜃

(

z′
𝜎(1), … , z′

𝜎(k)

))2

≲
r̃n,n′

|ℑk,n′ |

⎛
⎜
⎜
⎝

1
|ℑk,n|

∑

𝜍∈ℑk,n

K𝜎,𝜍

fZ′,𝜎

(
g𝜍 − 𝜃𝜎

)
+ K𝜎,𝜍

(
g𝜍 − 𝜃𝜎

)
(

1
N𝜎

− 1
fZ′,𝜎

)⎞
⎟
⎟
⎠

2

= T8 + T9 + T10,
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where

T8 ∶=
r̃n,n′

|ℑk,n′ | ⋅ |ℑk,n|2

∑

𝜎∈ℑk,n′

∑

𝜍,𝜍∈ℑk,n

K𝜎,𝜍K𝜎,𝜍

f 2
Z′,𝜎

(
g𝜍 − 𝜃𝜎

) (
g𝜍 − 𝜃𝜎

)
,

T9 ∶=
r̃n,n′

|ℑk,n′ | ⋅ |ℑk,n|2

∑

𝜎∈ℑk,n′

∑

𝜍,𝜍∈ℑk,n

K𝜎,𝜍K𝜎,𝜍

fZ′,𝜎

(
g𝜍 − 𝜃𝜎

) (
g𝜍 − 𝜃𝜎

)
(

1
N𝜎

− 1
fZ′,𝜎

)

,

T10 ∶=
r̃n,n′

|ℑk,n′ | ⋅ |ℑk,n|2

∑

𝜎∈ℑk,n′

∑

𝜍,𝜍∈ℑk,n

K𝜎,𝜍K𝜎,𝜍

(
g𝜍 − 𝜃𝜎

) (
g𝜍 − 𝜃𝜎

)
(

1
N𝜎

− 1
fZ′,𝜎

)2

.

We show that T8 = o(1). The two other terms can be treated in a similar way.

E [|T8|] = E

⎡
⎢
⎢
⎣

r̃n,n′

|ℑk,n′ | ⋅ |ℑk,n|2

∑

𝜎∈ℑk,n′

∑

𝜍,𝜍∈ℑk,n

|K𝜎,𝜍K𝜎,𝜍|

f 2
Z′,𝜎

|
|
|
g𝜍 − 𝜃𝜎

|
|
|
⋅ ||
|
g𝜍 − 𝜃𝜎

|
|
|

⎤
⎥
⎥
⎦

=
r̃n,n′

|ℑk,n′ | ⋅ |ℑk,n|2

∑

𝜎∈ℑk,n′

∑

𝜍,𝜍∈ℑk,n
∫

∏k
i=1
|
|
|
Kh

(

z𝜍(i) − z′
𝜎(i)

)

Kh

(

z𝜍(i) − z′
𝜎(i)

)
|
|
|

f 2
Z′,𝜎

⋅ ||
|
g
(
x𝜍(1∶k)

)
− 𝜃𝜎

|
|
|

|
|
|
g
(
x𝜍(1∶k)

)
− 𝜃𝜎

|
|
|

∏

i ∈ 𝜍(1∶k) ∪ 𝜍(1∶k)

fX,Z(xi, zi)d𝜇(xi)dzi.

Note that terms for which 𝜍 ≠ 𝜍 ∈ ℑk,n′ are zero, because the z′i are distinct and because of our
Assumption 16(i). Therefore, we get

E [|T8|] =
r̃n,n′

|ℑk,n′ | ⋅ |ℑk,n|2

∑

𝜎∈ℑk,n′

∑

𝜍∈ℑk,n
∫

∏k
i=1Kh

(

z𝜍(i) − z′
𝜎(i)

)2

f 2
Z′,𝜎

(
g
(
x𝜍(1∶k)

)
− 𝜃𝜎

)2

∏

i ∈ 𝜍(1∶k)
fX,Z(xi, zi)d𝜇(xi)dzi

=
r̃n,n′

|ℑk,n′ | ⋅ |ℑk,n|

∑

𝜎∈ℑk,n′
∫

∏k
i=1Kh

(

zi − z′
𝜎(i)

)2

f 2
Z′,𝜎

(
g
(
x𝜍(1∶k)

)
− 𝜃𝜎

)2
k∏

i=1
fX,Z(xi, zi)d𝜇(xi)dzi

=
r̃n,n′h−kp

|ℑk,n′ | ⋅ |ℑk,n|

∑

𝜎∈ℑk,n′
∫

∏k
i=1K(ti)2

f 2
Z′,𝜎

(
g
(
x𝜍(1∶k)

)
− 𝜃𝜎

)2
k∏

i=1
fX,Z(xi, z′𝜎(i) + hti)d𝜇(xi)dzi

= O
(

r̃n,n′h−kp

|ℑk,n|

)

= O

((
n × n′ × h(1−k)p

|ℑk,n|2

)1∕2
)

= o(1).

■
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