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Worflow insights can enable safety- and efficiency improvements in the Cardiac Catheterisation Laboratory 
(Cath Lab). Human pose tracklets from video footage can provide a source of worflow information. However, 
occlusions and visual similarity between personnel make the Cath Lab a challenging environment for the re

identification of individuals. We propose a human pose tracker that addresses these problems specifically, and 
test it on recordings of real coronary angiograms. This tracker uses no visual information for re-identification, 
and instead employs object keypoint similarity between detections and predictions from a third-order motion 
model. Algorithm performance is measured on Cath Lab footage using Higher-Order Tracking Accuracy (HOTA). 
To evaluate its stability during procedures, this is done separately for five different surgical steps of the procedure. 
We achieve up to 0.71 HOTA where tested state-of-the-art pose trackers score up to 0.65 on the used dataset. We 
observe that the pose tracker HOTA performance varies with up to 10 percentage point (pp) between worflow 
phases, where tested state-of-the-art trackers show differences of up to 23 pp. In addition, the tracker achieves up 
to 22.5 frames per second, which is 9 frames per second faster than the current state-of-the-art on our setup in 
the Cath Lab. The fast and consistent short-term performance of the provided algorithm makes it suitable for use 
in worflow analysis in the Cath Lab and opens the door to real-time use-cases. Our code is publicly available at 
https://github.com/RM-8vt13r/PoseBYTE.

1. Introduction

The emerging field of worflow analysis promises tools for the anal

ysis and improvement of surgical procedures [1--3]. Insights into work

flow could be used to improve e.g. procedure efficiency and safety 
through personnel training. We investigate a tool for worflow analysis 
in the Cardiac Catheterisation Laboratory (Cath Lab): a specialised Op

erating Room (OR) for minimally invasive cardiovascular procedures. 
The Cath Lab is equipped for its specialised purpose with a fixed X-Ray 
imaging system containing a ‘C-Arm’ mount, a monitor, and a radiation 
shield.

One diagnostic procedure carried out in the Cath Lab is the coronary 
angiogram (CAG) [4]. During a CAG, cardiovascular access is estab

lished through the wrist or groin area using a catheter. A contrast fluid is 
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administered directly into the coronary artery to detect anomalies on a 
captured X-Ray image. Reference [5] provides a description of the CAG 
in terms of consecutive worflow steps. Its well-defined nature makes 
the CAG suitable for explorative worflow study.

Manual worflow recognition is labour-intensive. In contrast, com

puter-assisted automation [6--8] is cost-effective, scalable, and enables 
real-time use-cases and assistance [9]. Multi-object keypoint detection 
can serve as a stepping stone to activity recognition [10--12]. 2D key

point detectors—or pose estimators—localise predfined objects and 
their keypoints in continuous image pixel (px) space. They quantify de

tection cofidence with a score per detected keypoint.

Multi-Object Tracking builds on detection by assigning the same 
identfier (ID) to the same object in different video frames. A tracker 
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outputs a set of tracklets, each of which contains the per-frame detec

tions of a unique object.

Many human pose tracking algorithms exist [13--16], which were 
benchmarked in general environments [17]. Several existing human 
pose trackers wrongfully swap identities or merge pose in the Cath Lab, 
as personnel occlusion and visual similarity are common.

In this paper we adapt BYTE [18]�-a state-of-the-art bounding box 
tracker—for pose tracking in the Cath Lab. BYTE re-identifies objects or 
persons by comparing bounding box detections on subsequent frames. 
Persons pass each other regularly in the Cath Lab, after which their 
bounding boxes will be hard to distinguish from geometry alone. The 
visual features that BYTE uses to mitigate this problem are less effec

tive here than in the general case, because everyone is dressed very 
similarly. Poses provide more geometric information that can be used 
for re-identification than a bounding box, by specifying keypoint coor

dinates. Therefore, we replace the use of bounding boxes in BYTE by 
human poses such that, after or during occlusion by a person or ob

ject, a person can be re-identified by posture. Additionally we extend 
the constant-velocity motion model that BYTE uses with acceleration 
and jerk to model more complex movement. These changes mitigate 
occlusion-induced problems like identity swaps or lost tracklets. As vi

sual similarity between personnel can cause identity swaps, the tracker 
uses no image data. In the remaining text, we refer to the proposed 
method as ‘PoseBYTE’, indicating its utilisation of human pose data 
rather than bounding boxes for re-identification.

CAG worflow phases [5] differ in terms of appearance and move

ment. For instance, whilst the patient walks to the operating table there 
is a lot of movement and occlusion from ongoing preparations. During 
the intervention there are fewer people and less walking, and more sub

tle hand- and head motion. The lights being switched on or off during 
different phases causes visual differences. For accurate worflow anal

ysis from poses, it is important that a pose tracker works throughout a 
procedure. Therefore, we test PoseBYTE separately during five different 
worflow phases.

Annotated video data are necessary to test pose trackers. We use 30

second video sequences of five CAG worflow phases from the Cath Lab 
of the Reinier de Graaf Gasthuis hospital, Delft, NL, all filmed from four 
viewpoints. Ground-truth human pose tracklets were annotated in the 
footage to evaluate metrics.

Section 2 starts with a description of our dataset, algorithm and ex

periments. Section 3 lists results and discusses those that stand out. 
These are further interpreted in section 4. Finally, section 5 gives a sum

mary.

2. Methods

2.1. Dataset

The recording of CAG procedures in the Reinier de Graaf Gasthuis 
hospital, Delft, NL was approved by the Medical Ethics Committee Lei

den The Hague Delft (protocol number Z19.057, 30-10-2019) and the 
hospital board. Informed consent was collected from all filmed patients 
and staff. Procedures were recorded in the hospital Cath Lab from four 
different viewpoints (Axis M1125) in a resolution of 1920 px × 1080 px
and framerate of 25 frames per second (fps). A cardiologist, scrub nurse, 
up to two lab assistants, and the patient were present during each pro

cedure.

We annotate poses in ten procedure recordings, each performed by 
a different medical team for variability. 51 frames were sampled uni

formly over 30 seconds per procedure, from each of the four synchro

nised viewpoints. This gives a total of 10 × 51 × 4 = 2040 annotated 
frames. The video sequences were hand-selected to show five different 
worflow phases, each taken from two different procedures:

• the patient entering and lying down,

• realisation of endovascular access,

Fig. 1. Schematic of a Kalman filter [20]. A state 𝒙𝑓 is kept internally. Given a 
noisy measurement 𝒅𝑓+1 and a model prediction 𝒙̂𝑓+1 based on 𝒙̂𝑓 , a new state 
𝒙𝑓+1 is produced. 𝒙𝑓+1 contains a denoised measurement and estimated hidden 
variables that are used in the prediction model.

• Use of ultrasound to detect the radial artery for endovascular access,

• X-Ray imaging, and

• closure of the entrywound.

The annotations were made in Computer Vision Annotation Tool (CVAT) 
[19]1 by two authors with an engineering background. Annotation qual

ity was checked by another author who has been a practicing interven

tional cardiologist for over 13 years. Occluded persons and rflections 
in the monitor or windows were not labelled.

2.2. Pose detection

2D human poses are detected per frame with a keypoint detector and 
serve as input to PoseBYTE. Section 2.4.5 discusses the tested detectors.

2.3. PoseBYTE

2.3.1. BYTE

BYTE [18] is a state-of-the-art tracking algorithm that re-identifies 
bounding boxes produced by an object detector [21] between frames. It 
keeps a set of tracklets, each of which keeps a state column vector with 
its position 𝒑𝑓 [px] and velocity 𝒗𝑓 [px f−1] (pixels per frame)

𝒙𝑓 =
[
𝒑𝑓
𝒗𝑓

]
(1)

per frame 𝑓 . Here, the unit f is the time duration of a single frame. 
On each frame, a Kalman filter [20] produces a model-based prediction 
𝒑̂𝑓+1 = 𝒑𝑓 +𝒗𝑓 as visualised in Fig. 1. This is called the prediction step.

Bounding box detection cofidences are classfied as high or low 
with a threshold 𝛾high. A similarity metric, e.g., Intersection over Union 
(IoU) [22] or a visual re-identification feature, measures resemblance 
between high-confidence detections and tracklet predictions 𝒑̂𝑓+1. Sim

ilarity scores above threshold 𝜎high are used in the Hungarian algorithm 
[23] to match detections to predictions. The Kalman filter provides an 
updated state 𝒙𝑓+1 from each match, shown in the right part of Fig. 1. 
This is called the update step.

Low-confidence detections are matched to remaining tracklets with a 
similarity metric that does not rely on visual information. Here, another 
similarity score threshold 𝜎low < 𝜎high is applied. Unmatched tracklets 
are labelled as ‘lost’, their new state being predicted on each frame 
until i) they can be matched to a detection and the tracklet contin

ues, or ii) 𝑓mem frames have passed and the tracklet ends. Remaining 
high-confidence boxes seed new tracklets, which are cofirmed on the 
next frame with a similarity threshold 𝜎new < 𝜎high before proceeding as 
usual.

2.3.2. Pose tracking

We adapt the Kalman filter to store coordinates and velocities per 
keypoint rather than per object. Position and velocity in (1) become

1 Code available: https://github.com/cvat-ai/cvat.
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𝒑𝑓 =

⎡⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑓

𝑦1
𝑓

⋮
𝑥
||
𝑓

𝑦
||
𝑓

⎤⎥⎥⎥⎥⎥⎥⎦
,𝒗𝑓 =

⎡⎢⎢⎢⎢⎢⎢⎣

𝑣𝑥1
𝑓

𝑣𝑦1
𝑓

⋮
𝑣𝑥

||
𝑓

𝑣𝑦
||
𝑓

⎤⎥⎥⎥⎥⎥⎥⎦
, (2)

where  and |□| denote the set of keypoint classes and set cardinal

ity operator, and 𝑥𝑘
𝑓

, 𝑦𝑘
𝑓

, 𝑣𝑥𝑘
𝑓

, 𝑣𝑦𝑘
𝑓

are horizontal (𝑥) and vertical (𝑦) 
position and speed of keypoint 𝑘∈ on frame 𝑓 .

If and only if i) a tracklet and a pose detection are matched, and 
ii) a keypoint in the pose has a cofidence below 𝛾kp, we exclude this 
keypoint from the update step. This is done by leaving out the rows 
corresponding to this keypoint in the Kalman filter observation matrix 
and observation vector during the update. Thus, in this case, the state 
of this keypoint on the next frame is purely its model-based prediction. 
If a keypoint has a cofidence below 𝛾kp when starting a new tracklet, 
we apply a large 10 000 px observation uncertainty to it instead as we 
need to initialise a full initial state. When a tracklet is not matched or no 
keypoints remain after thresholding, the tracklet is lost but can be found 
again as described in section 2.3.1. Whilst a tracklet is lost, predicted 
keypoints act for future matching only and are not saved as part of the 
tracklet. Tracklet keypoint coordinates are taken from the Kalman filter 
update step, and cofidences copied from the detector.

We use the mean of all nonzero keypoint cofidences as pose score, 
and the tightes-fit bounding box as approximate segmentation area. 
Object Keypoint Similarity (OKS) [24] is used as Similarity score, in 
which calculation the Kalman filter prediction is treated as ground truth. 
We do not use any visual clues, as similarities between personnel can 
make this an unreliable feature for pose tracking in the Cath Lab.

2.3.3. Higher-order movement

BYTE uses a constant-velocity model for state prediction. In human 
movement we can suspect higher-order positional derivatives to be in

volved [25]. Therefore, we add acceleration 𝒂𝑓 and jerk 𝒋𝑓 to the model. 
The state vector becomes

𝒙𝑓 =
⎡⎢⎢⎢⎣
𝒑𝑓
𝒗𝑓
𝒂𝑓
𝒋𝑓

⎤⎥⎥⎥⎦
,𝒂𝑓 =

⎡⎢⎢⎢⎢⎢⎢⎣

𝑎𝑥1
𝑓

𝑎𝑦1
𝑓

⋮
𝑎𝑥

||
𝑓

𝑎𝑦
||
𝑓

⎤⎥⎥⎥⎥⎥⎥⎦
, 𝒋𝑓 =

⎡⎢⎢⎢⎢⎢⎢⎣

𝑗𝑥1
𝑓

𝑗𝑦1
𝑓

⋮
𝑗𝑥

||
𝑓

𝑗𝑦
||
𝑓

⎤⎥⎥⎥⎥⎥⎥⎦
, (3)

where 𝒑𝑓 and 𝒗𝑓 are given by (2) and 𝑎𝑥𝑘
𝑓

, 𝑎𝑦𝑘
𝑓

, 𝑗𝑥𝑘
𝑓

, 𝑗𝑦𝑘
𝑓

are accel

eration and jerk. In the prediction step we assume that these decrease 
linearly over time and update them as[
𝒂̂𝑓+1
𝒋̂𝑓+1

]
=
([

𝛼𝑎 𝛼𝑗
0 𝛼𝑗

]
⊗𝐼2||

)[
𝒂𝑓
𝒋𝑓

]
, (4)

where 𝛼𝑎 and 𝛼𝑗 are memory factors, ⊗ denotes the Kronecker prod

uct, and 𝐼𝑥 ∈ ℝ𝑥×𝑥 is an identity matrix. Next we predict velocity and 
position with the 3rd-order derivative motion equations

[
𝒑̂𝑓+1
𝒗̂𝑓+1

]
=
([

1 1 1∕2 1∕6
0 1 1 1∕2

]
⊗𝐼2||

)⎡⎢⎢⎢⎣
𝒑̂𝑓
𝒗̂𝑓
𝒂̂𝑓+1
𝒋̂𝑓+1

⎤⎥⎥⎥⎦
. (5)

We predict in these two steps to ensure that 𝒂𝑓 and 𝒋𝑓 have no effect 
on 𝒙𝑓+1 if the respective memory factor is 0. Note that, if 𝛼𝑎 = 0 but 
𝛼𝑗 ≠ 0, jerk still causes some acceleration in (4).

2.4. Experimental setup

2.4.1. Metrics

Detection- and tracking performance are evaluated with Detec

tion Accuracy (DA) and Association Accuracy (AA) [26]. Higher-Order 
Tracking Accuracy (HOTA) =

√
DA ⋅ AA aggregates these metrics into a 

Table 1
PoseBYTE parameters used for all experiments in sec

tion 2.4.

𝛾high 𝛾kp 𝜎high 𝜎low 𝜎new 𝛼𝑎 𝛼𝑗 𝑓mem

0.5 0.3 0.8 0.5 0.65 0.4 0.8 50 

Table 2
Pose detection models tested in section 2.4.5. Here, OpenPifPaf30T is 
the only model with built-in tracking.

Model Details 
AlphaPose50 ResNet50 [27]+YOLOv3-SPP [28,29]+FastPose [13] 
AlphaPose152 ResNet152 [27]+YOLOv3-SPP [28,29]+FastPose [13] 
OpenPifPaf16C ShuffleNetV2K16 [14,30]+CifCaf [14] 
OpenPifPaf30C ShuffleNetV2K30 [14,30]+CifCaf [14] 
OpenPifPaf30T tShuffleNetV2K30 [14,30]+TrackingPose [14] 

single score. We match detections to annotations as described in [26] 
with OKS as localisation similarity. DA, AA and HOTA are evaluated 
over a range of OKS thresholds from 0.5 to 0.95 with step size 0.05, and 
report the average as per convention [24,26]. Additionally, we measure 
average algorithm speed in [fps].

2.4.2. Worflow phase

Metrics are evaluated separately on each annotated worflow phase 
from section 2.1. This way we observe situational effects on pose track

ing.

2.4.3. Parameters

We use the PoseBYTE parameters from Table 1. Optimal values for 𝛼𝑎
and 𝛼𝑗 are found by ranging each from 0 to 0.9 and evaluating HOTA for 
all worflow phases jointly. We exclude memory factors of 1 to prevent 
instability in the Kalman prediction step.

2.4.4. Ablation study

We test the contribution of each PoseBYTE component on HOTA and 
speed. As a baseline we test bounding box tracking using IoU as ob

ject similarity. Here, we use tightes-fit bounding boxes around each 
pose for tracking but still evaluate metrics on keypoints for consistency. 
Undetected keypoints are estimated by translating and scaling the last 
detected pose to tightly fit the new bounding box after each prediction 
step. Secondly, we add pose data and OKS in the Kalman filter as de

scribed in section 2.3.2. Finally, we include the acceleration and jerk 
from section 2.3.3.

2.4.5. Pose detector

Table 2 introduces all tested pose detectors and their abbreviations in 
this paper. All tests are carried out with AlphaPose152 unless explicitly 
stated otherwise. No detectors are re-trained, i.e., the pre-trained mod

els and code linked in the respective citations from Table 2 are used. 
As the optimal values for 𝛼𝑎 and 𝛼𝑗 rely heavily on the pose detector, 
we select these to maximise HOTA separately for each detector. Other 
parameters are kept the same in accordance to section 2.4.3. We pro

vide baseline tracking results from AlphaPose152 +Human-ReID [13] 
and OpenPifPaf30T.

2.4.6. Qualitative results

For demonstrative purposes we show example pose tracklets from 
AlphaPose152 with Human-ReID or PoseBYTE in the ‘Patient entry’ 
phase. Frames are selected to highlight problems solved or introduced 
by PoseBYTE. We only show keypoints with a detection cofidence of 
at least 𝛾kp.
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Table 3
DA for different acceleration- and jerk memory factors, evalu

ated jointly over all worflow phases.

Table 4
AA for different acceleration- and jerk memory factors, evalu

ated jointly over all worflow phases.

Table 5
PoseBYTE HOTA and speed in fps per worflow phase with the parameters from Table 1 after each addition from section 2.3.

Table 6
HOTA and speed in fps of PoseBYTE and other trackers.

3. Results

Table 3 shows DA for a range of memory factors. Scores range from 
0.63 to 0.65, where a low acceleration factor seems to be preferred. 
Table 4 shows AA in a similar fashion. Here, scores range from 0.72 to 
0.78 and are mostly uniform around 0.78 when 𝛼𝑎 and 𝛼𝑗 are lower than 
0.8. Consequently, HOTA ranges from 0.67 to 0.71 with a preference for 
low 𝛼𝑎 and 𝛼𝑗 .

OpenPose achieves up to 0.69 HOTA with 𝛼𝑎 and 𝛼𝑗 below 0.6, and 
achieves the best AA when 𝛼2

𝑎
+ 𝛼2

𝑗
≈ 0.552. OpenPifPaf16C prefers low 

𝛼𝑎 and 𝛼𝑗 , and scores up to 0.64 HOTA. OpenPifPaf30C yields up to 0.73
HOTA, when 𝛼2

𝑎
+ 𝛼2

𝑗
≤ 0.552 holds. Finally, AlphaPose50 scores up to 

0.70 HOTA and prefers both factors between 0.4 and 0.9.

The optimal memory factors differ per worflow phase. During ‘Pa

tient entry’, keeping both memory factors below 0.8 approaches a HOTA

of 0.74. During ‘Wrist access’ making both factors 0 yields the best HOTA

of 0.70. The ‘Ultrasound’ phase prefers factors of 𝛼2
𝑎
+ 𝛼2

𝑗
≈ 0.62 for a 

HOTA of 0.75. ‘X-Ray’ yields 0.71 HOTA for 𝛼𝑗 ≈ 0.9 − 0.4𝛼𝑎. During 

‘Wound closure’ the best DA of 0.56 is achieved for 𝛼2
𝑎
+ 𝛼2

𝑗
≈ 0.8, and 

the best AA of 0.76 for 𝛼2
𝑎
+ 𝛼2

𝑗
≈ 0.55.

Table 5 shows HOTA and inference speed per added PoseBYTE com

ponent. Tracking poses instead of bounding boxes increases HOTA by 
0 pp to 3 pp depending on the phase. An exception is the ‘Patient en

try’ phase, on which HOTA decreases by 1 pp. Adding 𝛼𝑎 keeps results 
mostly the same, where HOTA decreases by 2 pp during ‘Wrist access’. 
The addition of 𝛼𝑗 increases HOTA by 1 pp on the ‘Wound closure’ 
phase. Speed changes per added component seem negligible, where the 
largest observed change on all phases jointly is 0.5 fps. We observe speed 
differences per worflow phase, where ‘Ultrasound’ yields the lowest 
speeds of 18.0 fps to 18.6 fps and ‘Wrist access’ the highest of 26.7 fps
to 27.8 fps.

For OpenPifPaf16C, which achieves a HOTA score of 0.44 with BYTE, 
the addition of OKS yields a HOTA gain of 20 pp. OpenPifPaf30C sees a 
similar increase from 0.58 to 0.73. OpenPose gains 5 pp with OKS over 
0.64 HOTA with BYTE.

We show results for all considered pose detectors and trackers in Ta

ble 6. The best HOTA of 0.73 is achieved by OpenPifPaf30C +PoseBYTE, 
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with a speed of 5.0 fps. It is closely followed with 0.71 HOTA by 
AlphaPose152 +PoseBYTE�-the fastest model at 22.5 fps. AlphaPose50 + 
PoseBYTE comes close with 0.70 HOTA at 19.1 fps. The lowest HOTA

and speed come from OpenPifPaf30T: 0.53 at 4.3 fps
AlphaPose and OpenPifPaf achieve higher HOTA and speed with 

PoseBYTE than with their own trackers�-Human-ReID and TrackingPose. 
For AlphaPose the HOTA improvement is up to 6 pp whereas for 
OpenPifPaf it is 20 pp. Looking per phase, Human-ReID outperforms 
PoseBYTE by up to 5 pp during ‘Wrist access’, ‘Ultrasound’ and ‘X-Ray’. 
During ‘Patient entry’, PoseBYTE outperforms Human-ReID with up to 
19 pp. OpenPose yields worse HOTA and speed than AlphaPose152 with 
PoseBYTE on all worflow phases except ‘Ultrasound’ and ‘X-Ray’. For 
OpenPifPaf16C there are no such exceptions. AlphaPose152 +PoseBYTE

yields HOTA differences per phase of up to 10 pp, which is 23 pp
with Human-ReID. This difference is present but less pronounced for 
OpenPifPaf30 with 9 pp and 13 pp.

Fig. 2 shows qualitative results of Human-ReID and PoseBYTE during 
‘Patient entry’ with the AlphaPose152 detector. Each row shows a dif

ferent frame in chronological order, where the top row comes first and 
bottom row last. Time intervals between rows are not constant. Each 
pose shows an integer tracking ID and the detection cofidence score 
between 0 and 1.

At the start of the procedure, Human-ReID sees all persons earlier 
than PoseBYTE. Shortly after, PoseBYTE catches up and sees the same 
persons. Between the second and third timesteps, one assistant passes in 
front of the patient and another walks behind the infusion bags. Here, 
an identity swap occurs with Human-ReID between the patient and the 
first assistant, but not with PoseBYTE. Both trackers lose the second 
assistant, after which Human-ReID wrongly assigns a previously seen 
ID and PoseBYTE assigns a new one. Only Human-ReID sees the third 
assistant in the lower-left corner. In the fourth row, Human-ReID re

assigned the first two assistants their initial IDs. A duplicate pose can 
be seen in the patient, which is now assigned both their original ID 
and that of the third assistant in the corner. PoseBYTE is still tracking 
the two assistants, but has assigned a new ID to the patient after an 
assistant passed them in front. In the last row, neither Human-ReID nor 
PoseBYTE has lost or swapped any IDs. Here, Human-ReID sees a pose 
in the rflection of the monitor, which PoseBYTE ignores because of the 
tracklet cofirmation step inherent to BYTE.

4. Discussion

In this work we adapted BYTE for pose tracking in the Cath Lab and 
compared the resulting method to pose trackers from literature.

During the ‘Patient entry’ phase, Human-ReID and TrackingPose

yield HOTA scores of up to 0.60. We observe in videos that Human-ReID

is prone to identity swaps, which could be due to it relying on visual 
clues of similarly-dressed personnel. It occasionally detects duplicate 
poses, which slip past the non-maximum suppression designed to solve 
this very problem [13]. TrackingPose sometimes merges poses that are 
close to each other, possibly because of its multi-frame pose construc

tion creating more opportunity to do so. It also tends to miss visible 
keypoints in partially occluded poses, which Human-ReID solves possi

bly by imposing a prior through bounding box detection. The many (4
to 6) visible persons during ‘Patient entry’ could amplify these issues. 
PoseBYTE uses no visual features and does tracking and detection sepa

rately, which could contribute to it performing up to 18 pp HOTA better 
on this phase. However, this tracker does tend to lose persons quickly 
during occlusions of more than a few frames.

With the ‘Ultrasound’ phase containing 4 to 5 people, one could 
expect the same problems to occur. Although TrackingPose performs 
similarly here, Human-ReID does better with up to 0.76 HOTA�-1 pp
higher than PoseBYTE. A difference between this phase and ‘Patient en

try’ is that, although people occlude each other in both, they walk a lot 
during ‘Patient entry’ and stay in place during ‘Ultrasound’. Their close 
vicinity causes TrackingPose the same problems as before, whilst their 

stillness could be allowing Human-ReID to track more accurately based 
on position. The same is visible in the other low-movement phases ‘Wrist 
access’ and ‘X-Ray’, which both have only 2 to 3 persons in the room be

side the—rarely visible—patient, simplifying the tracking problem.

Modelling acceleration and jerk yielded little HOTA improvement 
for any tested detector. It yielded its largest HOTA improvement of 5 pp
when using the AlphaPose50 detector in the ‘Wound closure’ phase. 
Different combinations of detector and phase yield different optimal 
memory factors. All in all, the benfit of including higher-order move

ment seems negligible.

We aim to provide a tracker that works reliably throughout a pro

cedure. Even though PoseBYTE does not always perform better than 
the benchmark set by the state-of-the-art, its HOTA varies much less 
between worflow phases. For worflow analysis the most important 
phases to analyse through poses are ‘Patient entry’ and ‘Wound closure’, 
as during other phases the system logs provide an alternative source of 
worflow information. During these phases, PoseBYTE delivers a HOTA

improvement of 12 pp to 19 pp with respect to the benchmark.

PoseBYTE speed roughly decreases with the number of people in 
the room when the AlphaPose detector is used. This effect is much less 
pronounced, if at all, with the OpenPifPaf and OpenPose detectors. The 
same can be observed with Human-ReID and TrackingPose, suggesting 
that the slowdown occurs in the detection- and not the tracking stage. 
In either case, PoseBYTE achieves higher speeds than the benchmark 
trackers in all situations, making real-time applications more viable.

For the purpose of worflow analysis, it is important to have a re

liable information source throughout a procedure. PoseBYTE fits this 
description well, as it achieved the lowest HOTA spread of all tested 
trackers over the tested CAG worflow phases. Especially during ‘Patient 
entry’, where few other sources of worflow information are available, 
PoseBYTE improves on the state-of-the-art. Whether its overall HOTA

score of 0.71 is high enough will depend on what information one wants 
to obtain. It will suffice for measuring estimate positions and short-term 
motion of people in the Cath Lab, which can already be indicative of 
worflow. However, the results might not be good enough for analysis 
of fine-grained long-term movement and gestures. Here, the tendency 
of PoseBYTE to lose tracklets after occlusion could interfere. One can 
mitigate the effect of inaccurate motion model predictions by excluding 
keypoints with a cofidence below 𝛾kp.

We did not test for optimal values of PoseBYTE parameters other 
than 𝛼𝑎 and 𝛼𝑗 , and even those latter two were tested only over a limited 
set of values. For reference, a memory factor of 0.9 per frame amounts 
to a memory of only 0.925 = 0.072 per second. The used movement 
model assumes keypoints to move independently of each other, caus

ing anatomically unrealistic predictions over time. This could explain 
why PoseBYTE still has trouble re-identifying poses after occlusions of 
some frames.

In future work more memory factors in the range [0.9,1) could be 
tested, in addition to finding optimal values for other parameters. A 
memory factor for velocity could be included, as we observe movements 
in the Cath Lab to often span short distances. Alternatively a different 
model could be used, built specifically for human motion prediction 
[31]. Finally, the integration of multiple camera views could be inves

tigated as in [32--34].

PoseBYTE yields higher HOTA and speed in the Cath Lab with greater 
stability between different situations than the tested pose trackers from 
literature. With a HOTA score of 0.71 at 22.5 fps, it is a suitable method 
for short-term real-time pose tracking for worflow analysis in the Cath 
Lab.

5. Conclusion

We adapted BYTE for pose tracking in the Cath Lab without rely

ing on visual clues. The algorithm was evaluated in terms of HOTA and 
speed on five annotated CAG worflow phases before, during, and af

ter procedures. PoseBYTE shows stable performance across worflow 
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Fig. 2. Qualitative results of Human-ReID and PoseBYTE during the ‘Patient entry’ phase, where poses are detected with AlphaPose152. Rows show different 
timeframes in chronological order from top to bottom, with varying intervals.

phases and outperforms the current state of the art in terms of HOTA

and speed. The improvement is most apparent when the patient enters 
the room, which is also the least trivial situation for tracking.
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