
TU Delft

Bachelor final project
Mathematics and Physics

Analysis of a Nonlinear Rouse Model

D.J. van Dijk

supervised by
Johan Dubbeldam

and
Marileen Dogterom

September 6, 2018

Preface

This Bachelor Final Project is largely inspired by a paper of Vandebroek-Vanderzande [3].
This paper is about how a Rouse polymer behave in a crowded environment such as a
human cell. Or as the title of their paper puts it; the dynamics of a polymer in an active
and viscoelastic bath.
This title sounds quite technical. As this thesis should be readable by my peers, i.e. final

year mathematics and physics bachelor students, some background information should
be provided. This will be done in the first chapter. In this chapter the reader will be
introduced to concepts such as: Brownian motion, the Rouse model and Rouse modes.
In the second chapter a variation on the Rouse model will be introduced: a semiflex-

ible chainmodel. In this model the angles between particles in the polymer play an
important role. From first sight it’s not clear what kind of implications this adjust-
ment has. By performing numerical simulations I’ll try to give an answer to this. I
would like to advert that the code for the simulations can be found online at: https:

//github.com/daanvandijk/polymers.
In the third chapter the semiflexible chainmodel will be studied from an analytical per-

spective. By using an Adomian decomposition scheme a short time limit will be derived.
This will give a quantitative understanding of the behavior of the semiflexible chainmodel
in short time-frames.

At last I would like to take this opportunity to thank my main supervisor Johan Dubbel-
dam. Collaborating with you has been very pleasant. I don’t know many people who
react more enthusiastically and encouraging to my ideas. Even when life kicked back for
me personally and I had to take a break from this project, you reacted very calmly. Know
that I’m appreciative and grateful for that.

1

https://github.com/daanvandijk/polymers
https://github.com/daanvandijk/polymers

Contents

1 Introduction 4
1.1 Motivation . 4
1.2 Brownian motion . 4
1.3 Rouse model . 4
1.4 Rouse modes . 6
1.5 Statistical quantifiers . 7
1.6 The model of Vandebroek-Vanderzande . 7

2 Semiflexible chain model 10
2.1 Motivation . 10
2.2 Energy relation . 10
2.3 Force relation . 11
2.4 Simulations . 12

2.4.1 Time integration-scheme . 12
2.5 Stability of the simulations . 13

2.5.1 Difficulties of the simulations . 13
2.5.2 Speeding up Matlab code . 14

2.6 Simulations results . 15

3 Adomian decomposition 17
3.1 Motivation . 17
3.2 Introduction . 17
3.3 Finding inverse of linear operators using Fourier transform 19
3.4 Applied to our model . 21

4 Conclusion 25

Appendices 27

A Derivation forces from potentials 27

B Derivation of the Rouse Modes 34

C Gaussian integral with complex argument 38

2

Notation

This is a summary of some of the notation used throughout the thesis. Notice that vectors
have no typographic indication; they are not boldfaced or have arrows above them. When
quantities such as position and force are considered, the reader should keep in mind that
these are 3 dimensional. Inner products are notated with a dot. On the other hand,
quantities such as angles and energy are just scalars.

• The letter t is associated with time.

• R is associated with position.

• The letter ξ is associated with stochastic forces. In the discrete models
ξn(t) = ξx,nx̂+ ξy,nŷ+ ξz,nẑ denotes the stochastic force working on the nth particle.
In the continuous model this is notated as ξ(n, t).

• The letter U is associated with potentials.

• The letter θ is associated with angles.

• The constants k > 0 and a > 0 are associated with the spring- and angle-potentials
respectively.

• The constant l > 0 is associated with average length between particles.

• The letter N is associated with: the number of timesteps Nt or the number of
particles Np.

• Expectations of stochastic variables will be notated with angle notation, e.g. 〈ξ〉.

3

1 Introduction

1.1 Motivation

Before going in-depth into all the mathematics and physics, there should be some moti-
vation. Why is polymer dynamics worth studying?
In essence; carbon life is all about polymers! From RNA and DNA to cellulose to carbo-

hydrates. Carbon life indeed relies a lot on polymers.
We already know a lot about how polymers behave in a not-so-crowded environment.

That is; in the statistical physics kind of way; we can successfully predict diffusion speeds
outside of cells. But it’s much harder to describe what happens in the inside of cells. It’s
quite hard to study the living contents of cells. You cannot simply cut it open and see
what happens the same way you would open a cuckoo-clock and see it’s internal mechanism
ticking away. The scale of cells is simply too small. And furthermore breaking open a cell
would disturb it’s processes. So therefore there’s need for models that make predictions.

1.2 Brownian motion

Historically speaking Robert Brown was the first person to investigate stochastic motion.
In 1827 he studied small pollen of grains in water which moved in a very irregular way.
It was not until 1905 before Albert Einstein could give a satisfactory explanation for the
stochastic motion [13]. The pollen were being moved by collisions with individual water
molecules. This reasoning was one of the first convincing arguments for the evidence of
molecules and atoms. Einstein and others, such as Paul Langevin, derived that these
pollen should diffuse with speed σcm ∝

√
t.

Figure 1: On the left a single trial of Brownian motion is showed in the x, y-plane for a
certain time t. On the right a small ensemble of Brownian trials is showed. Notice how
over time the particles in the ensemble start moving away from the origin. This spreading
out is often referred to as diffusion.

1.3 Rouse model

The Rouse Model is one of the first models that tries to describe the dynamics of polymers.
It was proposed by Prince E. Rouse in 1953. In essence it’s a chain of Rouse beads
connected to each other via harmonic springs. Its use is to give insight in certain statistical

4

Figure 2: On the left an ensemble of Brownian motion is showed. It can be derived that
the diffusion factor σcm is proportional to

√
t.

physics questions, such as: “how fast do polymers diffuse?” Although the Rouse model is
relatively simple, it successfully predicts the long-time diffusion factor.
So consider Np point mass-particles connected together via springs. The system of equa-

tions then reads:
∂Rn
∂t

= −k(2Rn −Rn+1 −Rn−1) + ξn(t) (1)

where Rn is the position of the n-th particle; n ∈ {0, 1, .., Np−1}. The boundary conditions
arise from the fact that this chain is open-ended;{

R0 = R−1

RNp−1 = RNp
(2)

The ‘particles’ R−1 and RNp are sometimes called phantom beads, since they don’t really
exists. The stochastic forces are normally distributed and characterized by their first- and
second-moments: {

〈ξn(t)〉 = 0

〈ξn(t) · ξm(t′)〉 = δn,mδ(t− t′)
(3)

where δ is the Dirac-delta function. The yielded diffusion factor of the Rouse model is,
similar to a single Brownian particle:

σcm ∝
√
t (4)

m k

Figure 3: An illustration of the Rouse model: a series of pointmasses m connected with
springs k to their two nearest neighbors.

5

1.4 Rouse modes

An important tool for studying the Rouse model are the so called Rouse modes. The
transform is given by:

X[Rn] =
1

Np

Np−1∑
n=0

Rn cos

(
πp(n+ 1/2)

Np

)
, n, p ∈ {0, 1, ..., Np − 1} (5)

And the inverse transform is given by:

X−1[Xp] =
∑
|p|<Np

Xp cos

(
πp(n+ 1/2)

Np

)
(6)

It’s helpful to realize that the Rouse modes are in essence a Fourier series transform such
that the boundary conditions 2 of the Rouse model are satisfied. Therefore it also inherits
all the properties of Fourier series. For more details about how to derive these modes see
Appendix B.

Remark 1.1 (Notation). In texts such as [2] and [3] the notation Xp for X[Rn] is used.

Remark 1.2. In the Rouse mode domain, one can linearize the system of equations given
by (1), that is

∂Xp

∂t
= −kpXp + ξp (7)

After an explicit solution for Xp is found, one can transform back to Rn. This is one of
many examples where it’s easier to solve a problem in the Fourier domain.

Remark 1.3. Notice that the center of mass is given by the first Rouse mode, i.e.

X0 =
1

Np

Np−1∑
n=0

Rn = Rcm

Figure 4: An example of a (non-important) 2D polymer Rn and it’s Rouse modes Xp.
These modes were obtained by evaluating the transform 5 for the x- and y-direction.
Notice that the left and the right side contains equal amount of information. I.e. on the
left side there are 9 points Rn = (xn, yn). And on the right side there are 9 Rouse modes in
the x-direction and 9 Rouse modes in the y-direction. Furthermore notice that the zeroth
Rouse mode in the y-direction is 0. This is because the center of mass in the y-direction
is 0.

Remark 1.4. Notice that it’s in some sense easier to look at a plot in Rouse space compared
to Euclidean space (see for example figures 4 and 5). Especially if it’s 3 dimensional Eu-
clidean space. Depth is something that can be easily misinterpreted. I.e. a 2D projection
of 3D euclidean space loses information while on the other hand the Rouse modes do not.

6

Figure 5: Another example of a (non-important) polymer Rn and it’s Rouse modes Xp.
Notice that this polymer contains more higher-frequency modes than the one in figure 4.
This can also be seen in real space; the polymer Rn in this figure is much more entangled
than the one in figure 4. Moreover the center of mass in the y-direction is not 0, unlike
figure 4.

1.5 Statistical quantifiers

There should be some regard to the statistical quantifiers that are often regarded in poly-
mer dynamics. As was showed earlier, one of the quantities people are often interested in
is the center of mass of polymers since this is a measure for diffusion. For a Rouse polymer
with Np point-masses the center of mass Rcm is classically defined as

Rcm(t) =
1

Np

Np−1∑
n=0

Rn(t) (8)

It’s first and second moment are then given by

µcm(t) = 〈Rcm(t)〉 =
1

Np

Np−1∑
n=0

〈Rn(t)〉 (9)

σ2cm(t) = 〈(Rcm(t)−Rcm(0))2〉 − 〈Rcm(t)−Rcm(0)〉2 (10)

Another interesting statistical quantifier is the normed end-to-end length.

Ree =
|R0 −RNp |∑Np−1

n=0 |Rn −Rn+1|
(11)

Notice 0 ≤ Ree ≤ 1. When Ree = 1, the polymer is in a stretched state, just like uncooked
spaghetti. When Ree is very small, then the polymer is in a very entangled state.

Remark 1.5. Notice that even though Rn is usually 3-dimensional, quantifiers such as
σcm(t) often gets plotted along only one axis (e.g. figure 7). The reason for this is that
the considered equations of motion do not favor any direction of space in any sense. I.e.
σcm(t) · x̂ will be proportional to σcm(t) · ŷ etc. And since we often only care about the
order of t plotting the mean of the three directions σcm(t) (or even only one direction
σcm(t), say σcm(t) · x̂) seems reasonable enough.

1.6 The model of Vandebroek-Vanderzande

This thesis was largely inspired by [3]. Before stating their results, first a small summary
of their model. They also consider an open Rouse chain of a fixed number of particles.

7

The equation of motion of the n-th particle reads:∫ t

0
K(t− τ)

dRn(τ)

dt
dτ = −k (2Rn(t)−Rn+1(t)−Rn−1(t)) + ξT,n(t) + ξA,n(t) (12)

with the memory kernel K(t) (for the interested reader, see: [10])

K(t) = (2− α)(1− α)t−α, 0 < α < 1. (13)

Figure 6: The kernel function K(t) for several values of α. The intuition is as follows: For
a high value of α the information from the past is relatively unimportant. For a low value
of α the information from the past is relatively important.

Here ξT,n(t) and ξT,n(t) are normally-distributed stochastic variables, with expectation:

〈ξT,n〉 = 〈ξA,n〉 = 0 (14)

The thermal force ξT,n(t) acting on the n-th monomer has its correlation coupled with the
kernel K(t) by the second fluctuation-dissipation theorem〈

ξT,n(t) · ξT,m(t′)
〉

= 3kBTK(|t− t′|)δn,m. (15)

The active force ξA,n(t) acting on the n-th monomer has an assumed correlation of〈
ξA,n(t) · ξA,m(t′)

〉
= 3C exp(−|t− t′|/τA)δn,m. (16)

Here C characterizes the strength of the active noise, and τA gives information about the
timescale of the active forces.
The kernel function for several values of α is shown in figure 6. Note that if α → 1,
then K(t)→ δ(t). This results in viscous behavior. For viscous behavior the equations of
motion read:

dRn
dt

= −k(2Rn(t)−Rn+1(t)−Rn−1(t)) + ξT,n(t) + ξA,n(t) (17)

Remark 1.6. In general the kernel K(t) doesn’t work well in a numerical time-integration
scheme. I.e. the exponential behavior of the kernel throws a spanner in the works and
should be dealt with care. For that reason I only consider the case K(t) = δ(t).

Remark 1.7. In conclusion, the essential difference between Rouse model and Vanderzande-
Vandebroek is: 1) the introduction of active forces, and 2) the memory kernel K(t).

8

Figure 7: Log-log plot of the centre of mass as a function of time for a Rouse chain in a
viscoelastic medium (α = 0.7) in the presence of active forces. Compared to that without
active forces (dashed line). The inset shows the same for the viscous case, α = 1. (Source:
[3])

Now that the model is introduced their results can be discussed. The active forces on
small time-scales, w.r.t. the rouse time τR, induce a faster diffusion rate. In comparison
to a model without active forces, this rate is squared. This can be seen in figure 7. For
large time-scales this diffusion rate asymptotically goes back to the regular rouse model.
The term for this high diffusion rate, coined by the authors, is superdiffusion. The authors
compared their model to experimental studies. Chromosomal loci in the bacteria E. Loci
move very rapidly. It isn’t yet clear if this is due to active processes or can be explained
by other reasons such as stress relaxation.

9

2 Semiflexible chain model

2.1 Motivation

In all the previous models described there was never a restriction set on the angle between
successive particles. Surely these angles can not be arbitrarily. One would expect that if a
polymer has a breaking point; if the angle between particles becomes too large the string
would just break. There are numerous ways of taking such behavior into account. In the
model proposed here we introduce an angle potential.
This introduces some sort of ‘penalty’ on the angle between particles; the angle induces

a force that pushes particles back to a low energy state. Qualitatively speaking: when the
angle between particles becomes larges also the induced force becomes larger.
It is important to understand that this penalty still allows for arbitrary states. There is

nothing that says that certain states are not allowed. And there is also still no breaking
point of any kind. The only thing this new angle potential does is inducing a force that
minimizes the angle between particles.

2.2 Energy relation

Let’s say we have N particles with positions {Rn}Nn=1 In this model the particles behave
according to the following energy equation:

U =
k

2

N−1∑
n=1

|Rn −Rn+1 − ln|2 +
a

2

N−1∑
n=2

(1− cos θn)2 (18)

Here θn is the angle between particles (n − 1), n, (n + 1), see figure 8. Furthermore, the
values ln > 0 are parameters of the model1. They denote the steady-state length between
particles n and n+ 1. Usually ln = l, the same for every particle. The term cos θn can be
expressed in the positions of the particles {Rn}Nn=1. Define

un := Rn −Rn−1 (19)

We consider a 3-dimensional universe. The geometric interpretation of the inner product
states that:

cos θn =
un · un+1

|un| · |un+1|
(20)

m
m

m

x

y

0

Rn−1

Rn

Rn+1

Figure 8: Here you can see how θn is defined from un.

Substituting this back in (18) yields:

U =
k

2

N−1∑
n=1

|Rn −Rn+1 + ln|2 +
a

2

N−1∑
n=2

(
1− un · un+1

|un| · |un+1|

)2

(21)

1Without ln, the numerical simulations would be unstable.

10

Let’s define Rn in terms of it’s components along the x, y, z-axes:

Rn(t) := xn(t)x̂+ yn(t)ŷ + zn(t)ẑ.

The total energy U together with the random forces {ξn(t)}Nn=1 induce a force working on
every particle Rn with n ∈ {1, ..., N}:

Fn = −∇nU + ξn(t), where ∇nU :=
∂U

∂xn
x̂+

∂U

∂yn
ŷ +

∂U

∂zn
ẑ.

The stochastic force working on the nth particle is given by:

ξn(t) = ξT,n(t) + ξA,n(t)H(t). (22)

HereH(t) is the Heaviside step function. Just like in the model of Vandebroek-Vanderzande
ξT,n(t) represents the thermal force and ξA,n(t) represents the active force. They are given
by:

〈ξT,n(t) · ξT,m(t′)〉 = 3kBTδ(|t− t′|)δn,m (23)

〈ξA,n(t) · ξA,m(t′)〉 = 3C exp(−|t− t′|/τA)δn,m (24)

Remark 2.1. Note that the resulting equation looks very much the same as the viscous
limit of Vandebroek-Vanderzande (17). I’ve chosen to not consider the exponential memory
kernel K(t), because this makes numerical simulations much harder.

2.3 Force relation

In appendix A the explicit terms for the force relation were:

∇n

(
k

2

N−1∑
i=1

|Ri −Ri+1 − li|2
)

= k(Rn −Rn−1)
(

1− l

|Rn−1 −Rn|

)
+ k(Rn −Rn+1)

(
1− l

|Rn+1 −Rn|

)
(25)

And

−Fangle,n

2a
= sin(θn−1/2) ·

(
Rn−2 −Rn−1 − cos(θn−1)

Rn−1 −Rn
|Rn −Rn−1|2

)
+ sin(θn/2) ·

(
2Rn −Rn−1 −Rn+1 −

(
Rn+1 −Rn
|Rn −Rn+1|2

+
Rn−1 −Rn
|Rn −Rn−1|2

)
cos(θn)

)
+ sin(θn+1/2) ·

(
Rn+2 −Rn+1 − cos(θn+1)

Rn+1 −Rn
|Rn −Rn+1|2

)
(26)

Proposition 2.1. The equilibrium solution described by

∂Rn
∂t

= −k(2Rn −Rn+1 −Rn−1)− Fn,angle

is stable.

Remark 2.2. Chapter 4.3 from [6] gives conditions for the stability of equilibrium solu-
tions of non-linear systems. I.e. consider a nonlinear-system ẋ = Ax + g(x). Suppose
g(x)/max{|x1|, ..., |xn|} is a continuous function and vanishes for x = 0. Then the equi-
librium solution x(t) = 0 is asymptotically stable if all the eigenvalues of A have negative
real part.

11

Proof. Notice that the system can be transformed to Rouse coordinates:

∂Xp

∂t
= −kpXp − Fp,angle

where kp = 4k sin2
(πp
2N

)
. In particular, for the zeroth Rouse mode:

∂X0

∂t
=
∂Rcm

∂t
= −F0,angle

First considering the Rouse modes excluding the zeroth mode: ∂X1/∂t
...

∂XN−1/∂t

 =

−k1 0
. . .

0 −kN−1

 X1

...
XN−1

+ “non-linear terms”

Clearly, all of the eigenvalues of A are negative. Furthermore, by definition, the non-linear
terms will vanish for the equivalence class of when the angles between particles are 0.
Therefore, the system excluding the zeroth Rouse mode is stable. The zeroth Rouse mode
must also be stable, since for small angles, the non-equilibrium term will vanish.

2.4 Simulations

2.4.1 Time integration-scheme

In order to evaluate this problem numerically, it needs to be discretized in time. If a
Euler-forward time integration scheme was going to be used, then the equations would
look as follows:

Rn(t+ ∆t)−Rn(t) = −k∆t(2Rn(t)−Rn+1(t)−Rn−1(t))
− a∆t · (1− cos θn+1) · F+1

n

− a∆t · (1− cos θn) · F 0
n

− a∆t · (1− cos θn−1) · F−1n

+
√

∆t(ξT,n(t) + ξA,n(t))

Note the square root before the stochastic function. This is due to the fact that this is a
Brownian motion process. By practically experimenting the Euler-forward scheme didn’t
converge fast enough. Instead the Runge-Kutta4 method, as described in [7] was used:

k1,n = F
(
{Rn(t)}Npn=1

)
k2,n = F

(
{Rn(t)}Npn=1 +

k1,n
2

)
k3,n = F

(
{Rn(t)}Npn=1 +

k2,n
2

)
k4,n = F

(
{Rn(t)}Npn=1 + k3,n

)
And finally

Rn(t+ ∆t)−Rn(t) = ∆t
k1,n + 2k2,n + 2k3,n + k4,n

6
+
√

∆tξn(t)

Initial condition

What is a good initial condition to choose? One should spent some time on this question.
Because of the potential in which the polymers live, a polymer has a certain amount of

12

entropy. Choosing a high entropy state as an initial condition would skew the results.
Based on the parameters kBT, k, a, C and l the following initial condition was defined:

|Rn −Rn+1| ∼ N (µl, σl)

θn ∼ N (µθ, σθ)

For a reference of the precise numerical values, see table 1.

Name Np Nt dt a k C kBT l µl σl µθ σθ Trials

Rouse model 64 1e+05 1e-08 0 1e+05 0 1e-07 1e-07 1e-07 2e-08 0 0 100
Rouse model 64 1e+05 1e-05 0 1e+05 0 1e-07 1e-07 1e-07 2e-08 0 0 100
zande-broek 64 1e+05 1e-07 0 1e+05 1e-06 1e-07 1e-07 1e-07 2e-08 0 0 100
Semiflexible 64 1e+05 1e-07 10 1e-06 1e-06 1e-07 1e-07 1e-07 2e-08 0 0 100
Semiflexible 64 1e+05 1e-08 10 1e-06 0 1e-07 1e-07 1e-07 2e-08 0 0 100

Table 1: Experiment parameters

2.5 Stability of the simulations

For the simulations it’s important to know how large the timestep can be. For a linear
model, it’s relatively straightforward to determine this based on the differential equation
and time-integration scheme. For the problem under consideration here, this was not so
easy.
First of all, the system is not linear, i.e. dRn

dt can not be written as dRn
dt = A·[R1...RNp]

T +
g(t), where A would be a matrix. I.e. equation 26 can not be written that way. So methods
such as Richardson error estimation as described in [7] will not work.
Secondly, the system has a stochastic part. So directly comparing polymer trials with

each other makes not really sense. Since there is not one unique solution where every
initial condition will converge towards.
What does make sense however was comparing the statistical quantifiers with each other.

One can check if they are reasonably smooth and follow predictions of the theory. If these
are not smooth enough one can simply do the experiments again with a smaller timestep.

2.5.1 Difficulties of the simulations

Notice these simulations are not a light computing task. Just to get an idea of the scale
and difficulties of the simulations:

• Let’s say an ensemble of 100 polymers is considered.

• Every polymer is built up of 64 particles and is 3 dimensional.

• The number of time steps is 1e5. Notice that for the Runge-Kuta4 scheme, in some
sense, this results in 4 times as many actual steps.

If everything is a double datatype, then the amount of data that passes through the system
is in the order of

100 · (64 · 3) · (4 · 1e5) · (8 bytes per double) = 46 Gigabyte

Furthermore also the stochastic forces also need to be generated, i.e.

• For the thermal forces 1e5 points must be generated.

• The active forces need to be exponentially auto-correlated with itself. So for every
timestep a multivariate conditional normal distribution must be calculated.

I won’t go into further details. The interested reader can lookup the source code online.

13

2.5.2 Speeding up Matlab code

Initially I wrote all of the simulations in Matlab. I quickly noticed that these took too long
to finish. This can be explained by the fact that Matlab isn’t very well optimized. Things
such as for-loops or function calls take relatively long when compared to a language such
as C.
It was possible to automatically, after some tweaking, convert all of the Matlab code to

C++, with the Matlab Coder applet. This applet generates C++ code and compiles it into
a MEX function, which in turn can be called like a regular function from Matlab itself.
By doing this the initial Matlab code was sped-up by a factor of approximately 300 times.
However, the compiling of the MEX took quite a long time; approximately 30 seconds.

This made quickly editing a testing code quite frustrating. Furthermore, it wasn’t possible
to enable multithreading. Simulating polymers is something that can easily be done in
parallel. This can improve the simulation time by a factor equal to the number of threads
available on the system.
Therefore, in the end, I wrote a native C++ application for all of the simulations. This

can be found online. There’s Matlab and Python integration. Meaning that the user can
import the experiments performed by the C++ code directly into the Matlab and Python
environment. So data-analysis and plots can be performed by Matlab and Python.

14

2.6 Simulations results

Figure 9: Comparison of the diffusion
between two Rouse model ensembles
with different time-steps, showing the
stability of the simulations.

Figure 10: The diffusion for the
Vanderzande-Vandebroek model com-
pared with the Rouse model. Notice the
drop-off of Vanderzande-Vandebroek at
large times, just like in figure 7

Figure 11: The diffusion for the semiflex-
ible chainmodel, for an ensemble with-
and without active forces.

Figure 12: The diffusion of the middle
monomer for the Rouse model.

15

Figure 13: The diffusion of the middle
monomer for the semiflexible model. No-
tice the nonlinear behavior for small time
steps.

Figure 14: The diffusion of the mid-
dle monomer for the Vanderzande-
Vandebroek model.

Figure 15: A comparison between the
variance of the end-to-end Ree distance
of the three models. The semiflexible
model plotted here is non-active.

16

3 Adomian decomposition

3.1 Motivation

The goal of this chapter is to study the semiflexible chainmodel from a analytical perspec-
tive. Quite naturally the first thing I tried was directly applying perturbation theory. As
it turns out, the yielded system of equations was, as far to my knowledge, too hard to work
with. For the interested reader, the details of this trial are in remark 3.1. The next thing
to attempt was making the model continuous. As it turns out, some of the difficulties
disappear then. I.e. dealing with ∂2R/∂n2 is easier than with 2Rn −Rn+1 −Rn−1.
Remark 3.1 (First failed attempt). Recall un = Rn − Rn−1. In the spirit of perturbation
theory consider un = ln + εn. Assume |un| ≈ l, the average length between neighbors. Of
course, one is not concerned about the linear part of the model. So, let’s try to approximate
the angle force. For F 0

n this yields:

F 0
n(un, un+1) =

un − un+1

|un| · |un+1|
+

(
un
|un|2

− un+1

|un+1|2

)
un · un+1

|un| · |un+1|

≈ un − un+1

l2
+
(un
l2
− un+1

l2

) un · un+1

l2

=
un − un+1

l2

(
2 +

un · un+1

l2

)
And F−1n

F−1n (un−1, un) =
un−1 · un
|un−1| · |un|

un
|un|2

− un−1
|un−1| · |un|

≈ un−1 · un
l2

un
l2
− un−1

l2

Now consider

∂un
∂t

= −k(2un − un+1 − un−1)− Fn,angle(un−1, un, un+1) + ξn

Where Fn,angle(un−1, un, un+1) is a linear combination of F−1n , F 0
n , F

+1
n . It was not obvious

to me how one progresses from here.

3.2 Introduction

As said in the motivation, one way to progress further, is to make the discrete model
continuous. The system of stochastic ordinary differential equations will then become
stochastic partial differential equation. In table 2 a comparison between these two models
is made.

Remark 3.2. From a strictly theoretical perspective it’s not clear whatsoever that proving
anything in the continuous model will also prove the same thing in the discrete model,
or the other way around. But still one can reasonably expect the two models behave
similarly. The argument for this is if the number of particles goes to infinity, then all of
the summations over n will converge to a Riemann integral:

∞∑
n=0

... −→
∫ Np

n=0
...dn

with Np some constant, usually taken 1.

The continuous analogue of the semiflexible chainmodel I propose is:

∂R

∂t
= k

∂2R

∂n2
+ a

(
∂2R

∂n2

)2

+ ξ(n, t) (27)

17

Continuous Discrete

Position notation R(n, t) Rn(t)

Time derivative ∂R/∂t dRn/dt

First-order derivative ∂R/∂n Rn+1 −Rn

Second-order derivative ∂2R/∂n2 Rn+1 +Rn−1 − 2Rn

Center of mass
∫ Np

0
R(n, t)dn

∑Np−1
n=0 Rn/Np

Rouse transform X[R] =
∫ Np

0
R cos(πpn/Np)dn X[Rn] =

∑Np−1
n=0 Rn cos(πp(n+ 1/2)/Np)

Table 2: Comparison of the continuous and discrete model.

with boundary conditions
∂R

∂n

∣∣∣∣
n=0

=
∂R

∂n

∣∣∣∣
n=1

= 0 (28)

Notice that some liberty was taken in the choice of the angle potential/force, see figure
16.

Figure 16: A comparison between the discrete potential (18) and the continuous potential
(27) for some simple - and unimportant - configuration R(n, t = 0). The potentials were
re-scaled in order to be compared together. Notice that the peaks of both potentials
are approximately at the same place, although they’re surely not identical. But for a
qualitative analysis, it’s hoped that this is good enough. I.e. one could expect the two
systems to behave similarly.

Now, as the title of this chapter suggests, this p.d.e. was further examined with the
Adomian decomposition scheme, as a reference I used [11] and [12]. Without further ado:

Proposition 3.1 (Adomian decomposition scheme). Let L(y) = N(y) be a non-linear
differential equation with initial condition y(0). Let {An}n∈N and {yn}n∈N be two sequences
defined as follows:

y0 = y(0) (29)

An =
∂n

∂λn
N(
∑n

k=0 ykλ
k)

n!

∣∣∣∣
λ=0

(30)

yn+1 = L−1(An) (31)

For reasonable operators N and L one may expect that
∑∞

n=1 yn = y.

18

Remark 3.3. Adomian decomposition can be seen as a generalization of the Picard-Lindelöf
theorem, which gives conditions for the existence and uniqueness of solutions to first-
order differential equations with given initial conditions. I.e. let L = d

dt and N(y) =
f(t, y). Where f is Lipschitz continuous in y and continuous in t. Then the Adomian
decomposition scheme indeed becomes the same as Picard iteration. See example 3.1.

Remark 3.4. The reason that makes this scheme attractive is that the operator N is
directly applied. It’s often quite hard to find an inverse for N , as opposed to finding an
inverse for L.
Another reason this scheme is interesting, is that it’s relative easy to implement in soft-

ware packages that support symbolic math. Notice that this is fundamentally different
than performing numerical integration. The symbolic math method returns a series ex-
pansion and the numerical integration returns a list numerical values that approximate
the solution.

Remark 3.5. Proposition 3.1 is quite vague with respect to what reasonable operators N
and L are. Convergence can be proved for specific N and L. A standard way of doing
this is proving that there is some contraction and then invoking the Banach fixed-point
theorem. Just like in a standard proof of the Picard-Lindelöf theorem.

Example 3.1. Consider L(y) = N(y) where L(y) = dy
dt , N(y) = y2. The initial condition

y(0) = 1. Notice that L−1(·) =
∫ t
0 (·)dτ .

A0 = N(y0) = 1

y1 = L−1(A0) = t

A1 =
∂

∂λ
N(y0 + λy1)

∣∣∣∣
λ=0

=
∂

∂λ
(1 + 2λt+ λ2t2)

∣∣∣∣
λ=0

= 2t

y2 = L−1(A1) = t2

A2 =
1

2

∂2

∂λ2
N(y0 + λy1 + λ2y2)

∣∣∣∣
λ=0

=
1

2

∂2

∂λ2
(λ2(3t2) + ...)

∣∣∣∣
λ=0

= 3t2

y3 = L−1(A2) = t3

A3 =
1

6

∂3

∂λ3
N(y0 + λy1 + λ2y2 + λ3y3)

∣∣∣∣
λ=0

= 4t3

y4 = L−1(A3) = t4

Listing 1: Maple implementation

Linv := y −> i n t (subs (t=s , y) , s = 0 . . t) ;
N := y −> y ˆ2 ;
y (0) := 1 ;
f o r n from 0 to 10 do
A(n) := eva l (d i f f (N(sum(y (k) ∗ lambdaˆk , k = 0 . . n)) / f a c t o r i a l (n) , [

lambda$n]) , lambda = 0) ;
y (n+1) := Linv (A(n)) ;
end do ;

3.3 Finding inverse of linear operators using Fourier transform

Definition 3.1. The Fourier transform F [·] of a function f in Schwartz space S(Rn) is
defined by

F [f] ≡ f̂(ξ) :=

∫
Rn
e−ix·ξf(x)dx, ξ ∈ Rn (32)

The inverse Fourier transformation F−1[·] is given by

F−1[f̂] := (2π)−n
∫
Rn
eix·ξ f̂(ξ)dξ, x ∈ Rn (33)

19

Example 3.2. Consider the following linear differential operator

L =
d

dt
+ k (34)

Using the Fourier transform:
L̂y(s) = (is+ k)ŷ

Notice that L̂−1 = 1/(is+ k), since L̂−1L̂ = L̂L̂−1 = 1. Furthermore

F−1[L−1] = F−1 [1/(is+ k)] = e−ktu(t)

Now the relation Ly = γ and L−1 ∗ γ = y holds. The latter can be explicitly written as:

L−1 ∗ y =

∫ ∞
−∞

e−k(t−τ)u(t− τ)y(τ)dτ

=

∫ t

−∞
e−k(t−τ)y(τ)dτ

= e−kt
∫ t

−∞
ekτy(τ)dτ

For this example it’s relatively easy to directly check that L(L−1 ∗ y) = L−1 ∗ (Ly) = y.
Using the fundamental theorem of calculus:

L(L−1 ∗ γ) =

(
d

dt
+ k

)
e−kt

∫ t

−∞
ekτγ(τ)dτ

= e−kt
d

dt

∫ t

−∞
ekτγ(τ)dτ

= γ(t)

And the converse

L−1(Ly) = e−kt
∫ t

−∞
ekτ
(
dy

dτ
+ ky(τ)

)
dτ

= e−kt
∫ t

−∞
ekτ

dy

dτ
dτ + ke−kt

∫ t

−∞
ekτy(τ)dτ

= e−kt
[
ekτy(τ)

]t
−∞
− ke−kt

∫ t

−∞
ekτy(τ)dτ + ke−kt

∫ t

−∞
y(τ)dτ

= y(t)

So, indeed L−1 is found. Notice that normally checking L(L−1 ∗ y) = L−1 ∗ (Ly) = y
directly is not so easy. But this is also not necessary, since this is guaranteed by Fourier
Analysis.

Remark 3.6. This method gives convergence in Lp sense, which is in turn implies conver-
gence in 〈·〉 sense.

Now reconsider the linear operator used in the continuous semiflexible chainmodel:

L =
∂

∂t
− k ∂

2

∂n2

Taking the two dimensional Fourier transform

L̂u = (iτ + k(iη)2)û = (iτ − kη2)û (35)

The goal now is to find L−1 by taking the inverse Fourier transform.

20

Proposition 3.2. (Gaussian Fourier transform)

F [e−αx
2
] =

√
π/αe−ξ

2/4α, α > 0 (36)

Proof. First consider f(x) = e−x
2
. Notice that

d

dξ
f̂(ξ) =

d

dξ

∫
R
e−x

2
e−ixξdx

=

∫
R
e−x

2
(−ix)e−ixξdx

=
i

2

∫
R

(
d

dx
e−x

2

)
e−ixξdx

Now using integration by parts:
∫
fG = FG| −

∫
Fg;

d

dξ
f̂(ξ) = − i

2

∫
R
e−x

2
(−iξ)e−ixξdx =

−ξ
2
f̂(ξ)

The solutions of the above ordinary differential equation is given by:

f̂(ξ) = C exp(−ξ2/4)

The integration constant C can be found by: C = f̂(0) =
∫
R f(x)dx =

√
π. Now using

the scaling property F [f(αx)] = f̂(ξ/α)/α, we can find F [e−αx
2
] =

√
π/αe−ξ

2/4α.

Now using the previous proposition gives:

F−1
[

1

iτ − kη2

]
= F−1

[
e−kη

2tu(t)
]

(first taking the fourier inverse w.r.t. η)

=
e−n

2/4kt

2
√
πkt

u(t)

Here u(t) denotes the Heaviside function. Now, there is an expression for the L−1 operator.
It can be applied with a convolution, i.e.

L−1 ∗R(n, t) =

∫ Np

0
dη

∫ t

0
dτ
e−(n−η)

2/4k(t−τ)

2
√
πk(t− τ)

R(η, τ)

3.4 Applied to our model

Proposition 3.3. Consider the continuous semiflexible chainmodel with operators

L =
∂

∂t
− k ∂

2

∂n2

N =

(
∂2

∂n2

)2

Let φ0(n, t = 0) be an initial condition. Let {Am(n, t)}m≥0 and {φm}m≥0 be two sequences
defined as

Am(n, t) =
∂

∂λ

N
(∑m

k=0 λ
kφk
)

m!

∣∣∣∣∣
λ=0

(37)

φm+1(n, t) =

∫ t

0
dτ

(
lim
τ↓0

∫ Np

0
dη
e−(n−η)

2/4k(t−τ)√
4πk(t− τ)

Am(η, τ)

)
(38)

Denote

Φ(n, t) :=

∞∑
m=0

φm(n, t) (39)

Then Φ(n, t) will converge in the short time limit.

21

Remark 3.7. Unfortunately, I was unsuccessful in finding a proof of convergence for this
proposition. In order to do so, one would need to come up with a contraction, and invoke
the Banach fixed-point theorem. Hopefully, by the text below, I can make this proposition
somewhat plausible.

Listing 2: Maple implementation

N := R −> a (d i f f (R, n$2)) ˆ2 ;
L := R −> d i f f (R, t$1) − k ∗ d i f f (R, k$2) ;
K := exp(−eta ˆ2/(4∗k∗ tau)) / s q r t (4∗Pi∗k∗ tau) ;
assume (k>0) ; assume (a>0) ;
phi (0) := C∗ cos (p∗Pi∗n) ;
f o r m from 0 to 5 do ;
A(m) := eva l (d i f f (N(sum(phi (k) ∗ lambdaˆk , k = 0 . . n)) / f a c t o r i a l (n) , [

lambda$n]) , lambda = 0) ;
stmnt1 := i n t (K∗ subs ({n=n−eta , t=t−tau } , A(m)) , eta =0. .2∗Pi) ;
stmnt2 := l i m i t (stmnt1 , tau=0, r i g h t)
stmnt3 := i n t (stmnt2 , tau =0. . t)
phi (m+1) := s i m p l i f y (stmnt3) ;
end do ;

Figure 17: The error Em := |L(
∑m

k=0 φ
k) − N(

∑m
k=0 φ

k)|. Notice that it seems that
Em → 0 for m→∞. The constants are taken as; C = 1, a = 0.005, p = 2, t = 0.01.

Proposition 3.4. Consider φ0p = cp cos(pπn), with cp > 0 a constant. Then the first
coefficient of the Adomian decomposition are given by:

φ0p(n, t) = cp cos(pπn)

φ1p(n, t) =
ac2pp

4π4t

2
cos(pπn)2

Remark 3.8. Notice that when a = 0, this takes us back to the original Rouse model.

Proof.

A0 = N(φp) = ac2p(pπ)4 cos2(pπn)

φ1p = K ∗A0

=

∫ t

0
dτ

∫ 2

0
dη
e−η

2/4kτ

√
4πkτ

ac2p(pπ)4 cos2(πp(n− η))

22

Figure 18: Here you can see the first-order perturbation of the first Rouse mode X0 =
cos(πn).

Considering the inner-most integral, we can do some substitution. Denote η̃ = η/
√

4kτ .

Iinner :=

∫ 2

0
dη

e−η
2/4kτ

√
4πkτ

ac2p(pπ)4 cos2(πp(n− η))

=

∫ 2/
√
4kτ

0

√
4kτdη̃

e−η̃
2

√
4πkτ

ac2p(pπ)4 cos2(πp(n−
√

4kτη))

=
ac2p(pπ)4
√
π

∫ 2/
√
4kτ

0
dη̃ e−η̃

2
cos2(πp(n−

√
4kτη))

Now we can convert this integral to an error function, see proposition C.1 from the ap-
pendix, and the identity cos(x)2 = (1 + sin(2x))/2.

Iinner =
ac2p(pπ)4
√
π

∫ 2/
√
4kτ

0
dη̃ e−η̃

2 1 + sin(2πp(n−
√

4kτη))

2

=
ac2p(pπ)4
√
π

(√
π

4
erf(2/

√
4kτ) +

1

2
O2pπn

2pπ
√
4kτ

(2/
√

4kτ)

)
Now in order to simplify we consider the short time limit:

lim
τ↓0

Iinner =
ac2p(pπ)4

2
√
π

(
1

2
erf(∞) +

1

2
O2pπn

0 (∞)

)
Notice that:

O2pπn
0 (∞) =

∫ ∞
0

dηe−η
2

sin(0η + 2pπn)

= sin(2pπn)

√
π

2
erf(∞)

= sin(2pπn)

√
π

2

Evaluating the outer integral now, using the identity

φ1p =

∫ t

0
dτIinner

=
ac2p(pπ)4

4
(1 + sin(2pπn)) t

=
ac2p(pπ)4t

2
cos(pπn)2

23

Remark 3.9. At t = 0 an arbitrary initial condition can be approximated using finitely
many Rouse modes, i.e.

φ(n) =

P∑
p=0

cpφ
0
p (40)

where φ0p = Xp = cos(pπn) and cp =
∫ 2
0 φ(n)φ0pdn.

Proposition 3.5. Let φ(n) be an arbitrary initial condition. The short-term time limit
of the semiflexible chainmodel can be approximated by:Φ1

...
ΦP

 = A

φ
0
1
...
φ0P

+

K ∗ ξ1...
K ∗ ξP

 (41)

where A(t) is some matrix containing constants cp, a, p, π.

Proof. Follows from the fact that the polymer at t = 0 can be decomposed in Rouse
modes. Then first-order Adomian decomposition can be applied to these individual modes
by proposition 3.3, yielding the result.

24

4 Conclusion

In summary, the Rouse model and the model of Vanderzande-Vandebroek (in the viscous
limit) has been numerically examined. These numerical calculations are inline with the
predictions of theory.
Furthermore, a semiflexible chainmodel has been formulated and also numerically been

tested. The numerical tests showed that the diffusion σcm of the semiflexible chainmodel
behaved quite similar to the Rouse model and the model of Vanderzande-Vandebroek,
depending if active forces were enabled. Also, an analytical analysis of the semiflexible
chainmodel has been performed; i.e. a Adomian decomposition scheme giving a short
time-limit has been proposed. Unfortunately, the convergence of this scheme has not yet
been proven in this thesis. For that, one would have to find a contraction, and apply
the Banach-fixed point theorem. Nevertheless, this scheme has, hopefully, been made
somewhat plausible.
Once the convergence has been proven, one could derive – analytically – what the short-

term statistical properties of the Semiflexible chainmodel are. This inline with the sup-
plemental document supplied by Vanderzande-Vandebroek.
Furthermore, it would be interesting to further investigate how the numerical simula-

tions and the Adomian decomposition match-up in practice for simulating the semiflexible
chainmodel. For example; would it be possible to speed-up simulations by applying the
Adomian decomposition method instead of time integration?

25

References

[1] C.W. Gardiner, Handbook of Stochastic Methods, Third edition, Springer, ISBN 3-540-
20882-8

[2] M. Doi, S.F. Edwards, The theory of polymer dynamics, Clarendon Press (Oxford),
ISBN 0-19-852033-6.

[3] Hans Vandebroek and Carlo Vanderzande, Dynamics of a polymer in an active and
crowded environment, arXiv:1507.00889v2

[4] Steven B. Smith, Laura Finzi, Carlos Bustamante. Direct Mechanical Measurements of
the Elasticity of Single DNA Molecules by Using Magnetic Beads, Science 258 (5085)

[5] John. F. Marko, Eric D. Siggia, Stretching DNA, Macromolecules 1995, 28, 8759

[6] Martin Braun. Differential Equations and Their Applications, Fourth edition, Springer

[7] C. Vuik, F.J. Vermolen, M.B. van Gijzen, M.J. Vuik. Numerical methods for ordinary
differential equations, Delft Academic Press, ISBN 9789065623737

[8] Charalambos D. Aliprantis and Owen Burkinshaw, Principles of real analysis. Third
edition, Academic Press

[9] Dorothee Frey, Lecture notes Fourier Analysis. TU Delft (2017)2

[10] A.W.C. Lau, A. Davies, J.C. Crocker, T.C. Lubensky, Microrheology, Stress fluctua-
tions, and Active Behavior of Living Cells, Physical review letters, DOI: 10.1103/Phys-
RevLett.91.198101

[11] Sennur Somali, Guzin Gokmen, Adomian decomposition method for nonlinear Sturm-
Liouville problems, Surveys in Mathematics and its Applications, ISSN 1842-6298

[12] K.K. Kataria, P. Vellaisamy, Simple parametrization methods for generat-
ing Adomian polynomials, Applicable Analysis and Discrete Mathematics, DOI:
10.2298/AADM160123001K

[13] Crispin Gardiner, Stochastic Methods: A Handbook for the Natural and Social Sci-
ences, Springer, ISBN: 978-3540707127

2These lecture notes are largely based on J. Korevaar’s lecture notes, which are available online via
https://staff.fnwi.uva.nl/j.korevaar/Foubook.pdf

26

https://staff.fnwi.uva.nl/j.korevaar/Foubook.pdf

Appendices

A Derivation forces from potentials

Remark A.1. These calculations have largely been checked with the numerical simulation
program. See polymer::test () from src/angle.cpp in the github repository. This improves
confidence in below calculations.

Proposition A.1. For n,m, o ∈ N, with n 6= o and n 6= m, the following equations hold:

∇n|Rn −Ro| =
Rn −Ro
|Rn −Ro|

(42)

∇n
1

|Rn −Ro|
= − Rn −R0

|Rn −Ro|3
(43)

∇n
Rn ·Rm
|Rn −Ro|

=
Rm

|Rn −Ro|
−Rn ·Rm ·

Rn −R0

|Rn −Ro|3
(44)

∇n
Rn ·Rn
|Rn −Ro|

=
2Rn

|Rn −Ro|
−Rn ·Rn

Rn −Ro
|Rn −Ro|3

(45)

∇n
Rn ·Rm

|Rn −Rm| · |Rn −Ro|
=

Rm
|Rn −Rm| · |Rn −Ro|

−Rn ·Rm
Rn −Rm

|Rn −Rm|3 · |Rn −Ro|

−Rn ·Rm
Rn −Ro

|Rn −Rm| · |Rn −Ro|3
(46)

∇n
Rn ·Rn

|Rn −Rm| · |Rn −Ro|
=

2Rn
|Rn −Rm| · |Rn −Ro|

−Rn ·Rn
Rn −Rm

|Rn −Rm|3 · |Rn −Ro|

−Rn ·Rn
Rn −Ro

|Rn −Rm| · |Rn −Ro|3
(47)

∇n
1

|Rn −Rm| · |Rn −Ro|
=

Rm −Rn
|Rn −Rm|3 · |Ro −Rn|

+
Ro −Rn

|Rn −Rm| · |Rn −Ro|3
(48)

Proof. Starting with (42);

∇n|Rn −Ro| =
∂

∂xn

√
(xn − xo)2 + (yn − yo)2 + (zn − zo)2x̂+ ...ŷ + ...ẑ

=
xn − xo√

(xn − xo)2 + (yn − yo)2 + (zn − zo)2
x̂+ ...ŷ + ...ẑ

=
Rn −Ro
|Rn −Ro|

Starting with (43), we use the chain rule:

∇n
1

|Rn −Ro|
= − 1

|Rn −Ro|2
∇n|Rn −Ro|

Substituting (42) gives (43).
Now for (44), we use the quotient rule of the divergence:

∇n
Rn ·Rm
|Rn −Ro|

=
(∇nRn ·Rm) · |Rn −Ro| −Rn ·Rm · (∇n|Rn −Ro|)

|Rn −Ro|2

27

Now we have to find the two individual divergences in the above equation:

∇nRn ·Rm =
∂

∂xn
(xnxm + ynym + znzm)x̂+ ...ŷ + ...ẑ

= xmx̂+ ymŷ + zmẑ

= Rm

Substituting back gives (44).
Now (45). Again applying the quotient rule:

∇n
Rn ·Rn
|Rn −Ro|

=
(∇nRn ·Rn)|Rn −Ro| −Rn ·Rn · (∇n|Rn −Ro|)

|Rn −Ro|2

Now only one divergence identity is missing:

∇nRn ·Rn =
∂

∂xn
(x2n + y2n + z2n)x̂+ ...ŷ + ...ẑ = 2xnx̂+ 2ynŷ + 2znẑ = 2Rn

Substituting this gives (45).
Now (46). Once again applying the quotient rule:

∇n
Rn ·Rm

|Rn −Rm| · |Rn −Ro|
=

(∇nRn ·Rm) · |Rn −Rm| · |Rn −Ro|
|Rn −Rm|2 · |Rn −Ro|2

− Rn ·Rm · (∇n|Rn −Rm| · |Rn −Ro|)
|Rn −Rm|2 · |Rn −Ro|2

=
Rm

|Rn −Rm| · |Rn −Ro|

−Rn ·Rm
(∇n|Rn −Rm|) · |Rn −Ro|+ |Rn −Rm| · (∇n|Rn −Ro|)

|Rn −Rm|2 · |Rn −Ro|2

=
Rm

|Rn −Rm| · |Rn −Ro|
−Rn ·Rm

Rn −Rm
|Rn −Rm|3 · |Rn −Ro|

−Rn ·Rm
Rn −Ro

|Rn −Rm| · |Rn −Ro|3

And hereby the identity is proven.
Now (47). Applying the quotient rule:

∇n
Rn ·Rn

|Rn −Rm| · |Rn −Ro|
=

(∇nRn ·Rn) · |Rn −Rm| · |Rn −Ro|
|Rn −Rm|2 · |Rn −Ro|2

−Rn ·Rn
∇n|Rn −Rm| · |Rn −Ro|
|Rn −Rm|2 · |Rn −Ro|2

=
2Rn

|Rn −Rm| · |Rn −Ro|
−Rn ·Rn

Rn −Rm
|Rn −Rm|3 · |Rn −Ro|

−Rn ·Rn
Rn −Ro

|Rn −Rm| · |Rn −Ro|3

Now (48). Applying the chain rule:

∇n
1

|Rn −Rm| · |Rn −Ro|
=

−1

|Rn −Rm|2 · |Rn −Ro|2
·
(
Rn −Rm
|Rn −Rm|

· |Rn −Ro|+ |Rn −Rm| ·
Rn −Ro
|Rn −Ro|

)
=

Rm −Rn
|Rn −Rm|3 · |Ro −Rn|

+
Ro −Rn

|Rn −Rm| · |Rn −Ro|3

And this is the proof of the last identity, completing the proof.

28

Spring force

The vector associated with the i-th spring is notated by li. Here |li| = l for all i. In other
words; the length of all the springs is constant when no forces act on it. Also, li and
(Ri −Ri+1) point in the same direction such that:

li · (Ri −Ri+1)

|li| · |Ri −Ri+1|
= 1

Now we can explicitly define li;

li := l
Ri −Ri+1

|Ri −Ri+1|
(49)

Let’s first consider the first term of the right hand side of (21). For all the monomers
except the first and last (i 6= 1, N), the following holds:

∇n

(
k

2

N−1∑
i=1

|Ri −Ri+1 − li|2
)

=
k

2
∇n
(
|Rn−1 −Rn − ln−1|2 + |Rn −Rn+1 − ln|2

)
We may rewrite the two terms on the right hand side in the following way:

∇n|Rn−1 −Rn − ln−1|2 = ∇n
∣∣∣∣Rn−1 −Rn − l Rn−1 −Rn|Rn−1 −Rn|

∣∣∣∣2
= ∇n

∣∣∣∣(Rn−1 −Rn)

(
1− l

|Rn−1 −Rn|

)∣∣∣∣2
= ∇n

(
|Rn−1 −Rn|2

(
1− l

|Rn−1 −Rn|

)2
)

Using the product rule:

∇n|Rn−1 −Rn − ln−1|2 =
(
∇n|Rn−1 −Rn|2

)(
1− l

|Rn−1 −Rn|

)2

+ |Rn−1 −Rn|2∇n
(

1− l

|Rn−1 −Rn|

)2

= 2|Rn−1 −Rn| (∇n|(Rn−1 −Rn)|)
(

1− l

|Rn−1 −Rn|

)2

+ 2|Rn−1 −Rn|2
(

1− l

|Rn−1 −Rn|

)
∇n
(

1− l

|Rn−1 −Rn|

)

From (42) we know that:

∇n|Rn−1 −Rn| =
Rn −Rn−1
|Rn−1 −Rn|

And from (43) we know that:

∇n
(

1− l

|Rn−1 −Rn|

)
= ∇n

−l
|Rn−1 −Rn|

= l
Rn −Rn−1
|Rn−1 −Rn|3

29

Substituting gives:

∇n|Rn−1 −Rn − ln−1|2 = 2|Rn−1 −Rn|
Rn −Rn−1
|Rn−1 −Rn|

(
1− l

|Rn−1 −Rn|

)2

+ 2|Rn−1 −Rn|2
(

1− l

|Rn−1 −Rn|

)
l
Rn −Rn−1
|Rn−1 −Rn|3

= 2(Rn −Rn−1)
(

1− l

|Rn−1 −Rn|

)2

+ 2l

(
1− l

|Rn−1 −Rn|

)
Rn −Rn−1
|Rn−1 −Rn|

= 2(Rn −Rn−1)
(

1− l

|Rn−1 −Rn|

)
Likewise:

∇n|Rn −Rn+1 − ln|2 = 2(Rn −Rn+1)

(
1− l

|Rn+1 −Rn|

)
Finally:

∇n

(
k

2

N−1∑
i=1

|Ri −Ri+1 − li|2
)

= k(Rn −Rn−1)
(

1− l

|Rn−1 −Rn|

)
+ k(Rn −Rn+1)

(
1− l

|Rn+1 −Rn|

)
(50)

And notice if l = 0 this reduces to the familiar equation:

∇n

(
k

2

N−1∑
i=1

|Ri −Ri+1 − li|2
)

= k · (2Rn −Rn−1 −Rn+1) (51)

Angle force

Now let’s consider the second part of equation (21). Notice that the particle Rn only
occurs in un and un+1;

...

un−1 = Rn−1 −Rn−2
un = Rn −Rn−1

un+1 = Rn+1 −Rn
un+2 = Rn+2 −Rn+1

...

Therefore Rn only occurs in θn, θn+1, θn+2. In other words; all the other angles are not a
function of Rn. This is important to realize because this simplifies calculating Fn greatly;
for all the monomers except the first and last monomer3 the following holds:

∇n

(
a

2

N−2∑
i=1

(
1− ui · ui+1

|ui| · |ui+1|

)2
)

=
a

2
∇n
(

1− un+1 · un+2

|un+1| · |un+2|

)2

+
a

2
∇n
(

1− un · un+1

|un| · |un+1|

)2

+
a

2
∇n
(

1− un−1 · un
|un−1| · |un|

)2

3Since θ1 and θN don’t exists, also ∇1(1− cos θ1)2 and ∇N (1− cos θN)2 don’t exist.

30

We define:

F−n (un−1, un) := ∇n
(

1− un · un−1
|un| · |un−1|

)
F 0
n(un, un+1) := ∇n

(
1− un+1 · un
|un+1| · |un|

)
F+
n (un+1, un+2) := ∇n

(
1− un+2 · un+1

|un+2| · |un+1|

)

Notice that because of the chain rule we can simplify things a bit further:

a

2
∇n
(

1− un · un−1
|un| · |un−1|

)2

= a(1− cos θn−1)F
−
n (un−1, un) (52)

a

2
∇n
(

1− un+1 · un
|un+1| · |un|

)2

= a(1− cos θn)F 0
n(un, un+1) (53)

a

2
∇n
(

1− un+2 · un+1

|un+2| · |un+1|

)2

= a(1− cos θn+1)F
+
n (un+1, un+2) (54)

Now we want to describe the above equations in terms of the positions {Rn}Nn=1. In order
to do this I present the following proposition.

Applying the proposition

No we can write out F−n , F
0
n , F

+
n as a function of the positions {Rn}Nn=1.

Finding an expression for F−n

F−n (Rn−2, Rn−1, Rn) = ∇n
(

1− (Rn−1 −Rn−2) · (Rn −Rn−1)
|Rn−1 −Rn−2| · |Rn −Rn−1|

)
= ∇n

(
1− Rn−1 ·Rn −Rn−1 ·Rn−1 −Rn−2 ·Rn +Rn−2 ·Rn−1

|Rn−1 −Rn−2| · |Rn −Rn−1|

)
= ∇n

(
Rn−1 ·Rn−1 +Rn−2 ·Rn −Rn−2 ·Rn−1 −Rn−1 ·Rn

|Rn−1 −Rn−2| · |Rn −Rn−1|

)

Because of the proposition we have:

∇n
Rn−1 ·Rn−1 −Rn−2 ·Rn−1

|Rn −Rn−1|
= (Rn−1 ·Rn−1 −Rn−2 ·Rn−1)

Rn−1 −Rn
|Rn −Rn−1|3

∇n
(Rn−2 −Rn−1) ·Rn ·Rn

|Rn −Rn−1|
=
Rn−2 −Rn−1
|Rn −Rn−1|

+ (Rn−2 −Rn−1) ·Rn
Rn−1 −Rn
|Rn −Rn−1|3

Substituting this back gives:

|Rn−1 −Rn−2|F−n (Rn−2, Rn−1, Rn) = (Rn−1 ·Rn−1 −Rn−2 ·Rn−1)
Rn−1 −Rn
|Rn −Rn−1|3

+
Rn−2 −Rn−1
|Rn −Rn−1|

+ (Rn−2 −Rn−1) ·Rn
Rn−1 −Rn
|Rn −Rn−1|3

(55)

Rewriting a bit:

|Rn−1 −Rn−2| · |Rn −Rn−1| · F−n (Rn−2, Rn−1, Rn) = Rn−2 −Rn−1

+ (Rn−1 ·Rn−1 −Rn−2 ·Rn−1 + (Rn−2 −Rn−1) ·Rn)
Rn−1 −Rn
|Rn −Rn−1|2

31

Now using the geometric interpretation (20) this simplifies to:

|un−1| · |un| · F−n (Rn−2, Rn−1, Rn) = Rn−2 −Rn−1 + (−un−1 · un)
Rn−1 −Rn
|Rn −Rn−1|2

Finally:

F−n (Rn−2, Rn−1, Rn) =
Rn−2 −Rn−1
|un−1| · |un|

− cos(θn−1)
Rn−1 −Rn
|Rn −Rn−1|2

(56)

Finding an expression for F+
n

We also rewrite F+
n in terms of Rn+2, Rn+1, Rn:

F+
n (Rn, Rn+1, Rn+2) = ∇n

(
1− (Rn+1 −Rn) · (Rn+2 −Rn+1)

|Rn −Rn+1| · |Rn+2 −Rn+1|

)
Now without further deriving, we note the following symmetry between F−n and F+

n :

F+
n (Rn, Rn+1, Rn+2) = F−n (Rn+2, Rn+1, Rn) (57)

Finding an expression for F 0
n

Now we determine F 0
n :

F 0
n(Rn−1, Rn, Rn+1) = ∇n

(
1− (Rn −Rn−1) · (Rn+1 −Rn)

|Rn −Rn−1| · |Rn −Rn+1|

)
= ∇n

(
1− Rn ·Rn+1 −Rn ·Rn −Rn−1 ·Rn+1 +Rn−1 ·Rn

|Rn −Rn−1| · |Rn −Rn+1|

)
= ∇n

(
Rn ·Rn +Rn−1 ·Rn+1 −Rn ·Rn+1 −Rn−1 ·Rn

|Rn −Rn−1| · |Rn −Rn+1|

)

Using the above proposition:

∇n
Rn ·Rn

|Rn −Rn−1| · |Rn −Rn+1|
=

2Rn
|Rn −Rn−1| · |Rn −Rn+1|

+Rn ·Rn
Rn−1 −Rn

|Rn −Rn−1|3 · |Rn −Rn+1|

+Rn ·Rn
Rn+1 −Rn

|Rn −Rn−1| · |Rn −Rn+1|3

∇n
Rn−1 ·Rn+1

|Rn −Rn−1| · |Rn −Rn+1|
= (Rn−1 ·Rn+1)

Rn−1 −Rn
|Rn −Rn−1|3 · |Rn −Rn+1|

+ (Rn−1 ·Rn+1)
Rn+1 −Rn

|Rn −Rn−1| · |Rn −Rn+1|3

∇n
−Rn · (Rn+1 +Rn−1)

|Rn −Rn−1| · |Rn −Rn+1|
= − Rn−1 +Rn+1

|Rn −Rn−1| · |Rn −Rn+1|

+Rn · (Rn−1 +Rn+1)
Rn −Rn−1

|Rn −Rn−1|3 · |Rn −Rn+1|

+Rn · (Rn−1 +Rn+1)
Rn −Rn+1

|Rn −Rn−1| · |Rn −Rn+1|3

This gives:

|Rn −Rn−1| · |Rn −Rn+1| · F 0
n(Rn−1, Rn, Rn+1) = 2Rn −Rn−1 −Rn+1

+

(
Rn+1 −Rn
|Rn −Rn+1|2

+
Rn−1 −Rn
|Rn −Rn−1|2

)
[Rn−1 ·Rn+1 +Rn ·Rn −Rn · (Rn−1 +Rn+1)] (58)

32

Using the geometric interpretation (20) this simplifies to:

|un| · |un+1| · F 0
n(Rn−1, Rn, Rn+1) = 2Rn −Rn−1 −Rn+1

+

(
Rn+1 −Rn
|un+1|2

+
Rn−1 −Rn
|un|2

)
[−un · un+1]

Which is:

F 0
n(Rn−1, Rn, Rn+1) = 2Rn −Rn−1 −Rn+1 −

(
Rn+1 −Rn
|Rn −Rn+1|2

+
Rn−1 −Rn
|Rn −Rn−1|2

)
cos(θn)

(59)

Explicit expression angle force

So this leads up to an expression for Fangle,n as an explicit function of the particles
{Rn(t)}Nn=1}. For almost all of the particles (n 6= 1, 2, N − 1, N) we have:

−Fangle,n = a · (1− cos θn−1) · F−1n

+ a · (1− cos θn) · F 0
n

+ a · (1− cos θn+1) · F+1
n

The forces for the remaining particles are given by:

−Fangle,1 = a · (1− cos θ2) · F+1
n

−Fangle,2 = +a · (1− cos θ2) · F 0
n + a · (1− cos θ3) · F+1

n

−Fangle,N−1 = a · (1− cos θN−2) · F−1n + a · (1− cos θN − 1) · F 0
n

−Fangle,N = a · (1− cos θN − 1) · F−1n

Substituting gives:

−Fangle,n = a · (1− cos θn−1) ·
(
Rn−2 −Rn−1 − cos(θn−1)

Rn−1 −Rn
|Rn −Rn−1|2

)
+ a · (1− cos θn) ·

(
2Rn −Rn−1 −Rn+1 −

(
Rn+1 −Rn
|Rn −Rn+1|2

+
Rn−1 −Rn
|Rn −Rn−1|2

)
cos(θn)

)
+ a · (1− cos θn+1) ·

(
Rn+2 −Rn+1 − cos(θn+1)

Rn+1 −Rn
|Rn −Rn+1|2

)
Expressing in complex coefficients, and using the identity; 1− cos(x) = 2 sin2(x/2):

−Fangle,n

2a
= sin(θn−1/2) ·

(
Rn−2 −Rn−1 − cos(θn−1)

Rn−1 −Rn
|Rn −Rn−1|2

)
+ sin(θn/2) ·

(
2Rn −Rn−1 −Rn+1 −

(
Rn+1 −Rn
|Rn −Rn+1|2

+
Rn−1 −Rn
|Rn −Rn−1|2

)
cos(θn)

)
+ sin(θn+1/2) ·

(
Rn+2 −Rn+1 − cos(θn+1)

Rn+1 −Rn
|Rn −Rn+1|2

)
(60)

33

B Derivation of the Rouse Modes

This derivation is inspired by Doi M, Edwards S.F. The theory of Polymer Dynamics
(Oxford 1994) Appendix 4.II. The main difference is that they derive the Rouse Modes for
when n is a continuous variable in [0, Np − 1]. In this document only discrete n is used,
i.e. n ∈ {0, 1, ..., Np − 1}.

Lemma B.1 (Summation by parts). Let {an}n≥1 and {bn}n≥1 be two sequences in R.
And let An =

∑n
i=1 ai, then the following identity holds:

k∑
n=j+1

anbn =
k−1∑
n=j

An(bn − bn+1) +Akbk −Ajbj , k > j (61)

In particular, for j = 0

k∑
n=1

anbn =

k−1∑
n=1

An(bn − bn+1) +Akbk (62)

Proof. Notice that An+1 −An = an+1 for all n ≥ 1 and A1 = a1.

k∑
n=j+1

anbn =

k∑
n=j+1

(An −An−1)bn

=

k∑
n=j+1

Anbn −
k∑

n=j+1

An−1bn

=

k∑
n=j+1

Anbn −
k∑
n=j

Anbn+1

=

k−1∑
n=j

An(bn − bn+1) +Akbk −Ajbj

This holds only of course when j < k. And if we hold to convention
∑

x∈∅ x = 0 then the
case for j = 0 immediately follows.

Remark B.1. Notice that this is similar with the well known integration by parts formula∫
fG = FG| −

∫
fG in the sense that an ∼= f and bn ∼= G. Furthermore, the summation

by parts lemma is sometimes called Abel’s lemma.

Definition B.1. The first numerical derivative of Rn is denoted by ∆Rn and given by:

∆Rn = Rn+1 −Rn (63)

The second order numerical derivate of

Theorem B.1. Let I = {0, 1, ..., N−1} and {xi}i∈I be a sequence in R. Then there exists
a linear transform X : {xi}i∈I × I → {Xp}p∈I , denoted by Xp = X[xn]p, such that the
rouse model (17) can be transformed and characterized by the following form

∂

∂t
X[Rn]p = −kpX[Rn]p +X[ξn]p, kp > 0 (64)

Proof. Consider the following linear transformation:

Xp =
1

Np2

Np−1∑
n=0

Rnc
p
n (65)

34

We’ll try to find expressions for cpn in order to transform the rouse model

∂Rn
∂t

= −k(2Rn −Rn−1 −Rn+1) + ξn (66)

to the following form
∂Xp

∂t
= −kpXp + ξp (67)

We need to introduce a few boundary conditions in order to make sense of the first- and
second-order numerical derivatives4

R−1 = R0, RN = RN−1, R−2 = −R−1, RN+1 = −RN (68)

Notice that these boundary conditions are also known as ‘phantom beads’. Substitution
gives

1

N

Np−1∑
n=0

∂Rn
∂t

cpn =
1

N

Np−1∑
n=0

[−k(2Rn −Rn+1 −Rn−1) + ξn)] cpn

Now applying summation by parts

Np−1∑
n=0

−k(2Rn −Rn+1 −Rn−1)cpn =

Np−1∑
n=0

−k(Rn −Rn+1) · (cpn − c
p
n+1)

−k(Rn −Rn+1) · cpn|
Np−1
n=−1

=

Np−1∑
n=0

−k(Rn −Rn+1) · (cpn − c
p
n+1)

In above equation the boundary terms disappeared due to the phantom beads of the Rouse
model R0 = R−1 and RNp−1 = RNp . Doing summation by parts a second time will give:

Np−1∑
n=0

−k(Rn −Rn+1) · (cpn − c
p
n+1) = −kRn(cpn − c

p
n+1)

∣∣Np−1
n=−1

+

Np−1∑
n=0

−kRn · (2cpn − c
p
n+1 − c

p
n−1)

Therefore we have conditions for cpn
k(2cpn − cpn+1 − c

p
n−1) = −kpcpn

cp0 − c
p
−1 = 0

cpNp − c
p
Np−1 = 0

(69)

This has the well known solution:

cpn = cos

(
πp(n+ 1/2)

N

)
(70)

2 cos

(
πp(n+ 1/2)

N

)
−cos

(
πp(n+ 3/2)

N

)
−cos

(
πp(n− 1/2)

N

)
=
kp
k

cos

(
πp(n+ 1/2)

N

)
Notice, by the identity cos(x)− cos(y) = −2 sin(x/2 + y/2) sin(x/2− y/2), we have

cos

(
πp(n+ 1/2)

N

)
− cos

(
πp(n+ 3/2)

N

)
= 2 sin

(
πp(n+ 1)

N

)
sin
(πp

2N

)
cos

(
πp(n+ 1/2)

N

)
− cos

(
πp(n− 1/2)

N

)
= −2 sin

(πpn
N

)
sin
(πp

2N

)
4I.e. Rn+1−Rn can be seen as a first order derivative and 2Rn−Rn+1−Rn−1 can be seen as a second

order derivative.

35

Therefore:

kp
k

cos

(
πp(n+ 1/2)

N

)
= 2

(
sin

(
πp(n+ 1)

N

)
− sin

(πpn
N

))
sin
(πp

2N

)
= 4 cos

(
πp(n+ 1/2)

N

)(
sin

πp

2N

)2
=⇒ kp = 4k sin2

(πp
2N

)
It makes sense at this point to take ξp = 1

N

∑Np−1
n=0 ξnc

p
n. Conclusion: the

Remark B.2. The inverse transform is given by

X−1 [Xp] =
∑
p<|Np|

Xpc
p
n = X0 + 2

Np−1∑
p=1

Xpc
p
n (71)

Remark B.3. We see that the eigenfunctions we found are all cosine-functions. Therefore
the Rouse modes can be seen as a Fourier series transform from n→ p.
Notice that it’s slightly easier to derive kp using properties of Fourier series transform.

I.e. let F [·] be the Fourier series transform given by F [f(n)](ω) =
∑

n∈Z f(n)e−iωn, then
F [f(n− no)] = e−in0ωF [f(n)]. It follows that

∂F [Rn]

∂t
= −k(1− eiω + 1− eiω)F [Rn] + F [ξn]

= −k(2− 2 cos(ω/2))F [Rn] + F [ξn]

= −4k sin2(ω/2)F [Rn] + F [ξn]

Showing that indeed kp = 4k sin2 (πp/2N).

Proposition B.1. The Rouse transform of the stochastic force ξn(t) characterized by

〈ξn(t)〉 = 0

〈ξn(t) · ξm(t+ τ)〉 = δn,mCe
−τ/τA

is given by

〈ξp〉 = 0

〈ξp(t) · ξq(t+ τ)〉 = δp,qCe
−τ/τA

Proof. The first moment:

〈ξp〉 =

∫ N

0
〈ξn(t)〉 cos

(pπn
N

)
dn = 0

The second moment, we use the 2D Rouse transform similar to the 2D Fourier transform:

〈ξp(t) · ξq(t+ τ)〉 =

∫ N

0
dn

∫ N

0
dm δn,m cos

(pπn
N

)
cos
(qπm
N

)
Ce−τ/τA

= Ce−τ/τA
∫ N

0
dn cos

(pπn
N

)
cos
(qπn
N

)
= Ce−τ/τA

∫ N

0
dn

1

2

(
cos

(
(p+ q)πn

N

)
+ cos

(
(p− q)πn

N

))
=
Ce−τ/τA

2

[
N

(p+ q)π
sin

(
(p+ q)πn

N

)
+

N

(p− q)π
sin

(
(p− q)πn

N

)]N
0

=
Ce−τ/τA

2

[
N

(p− q)π
sin

(
(p− q)πn

N

)]N
0

36

Now using the identity sin(x)/x→ 1 when x→ 0 gives:

〈ξp(t) · ξq(t+ τ)〉 =
Ce−τ/τA

2
2

[
sin(x)

x

]
x=0

= δp,qCe
−τ/τA

37

C Gaussian integral with complex argument

The motivation for this appendix is to evaluate integrals such as∫ n

0
dηe−η

2
cos(Cη)

in terms of error functions.

Definition C.1. The error function is defined as:

erf(x) =
1√
π

∫ x

−x
e−t

2
dt =

2√
π

∫ x

0
e−t

2
dt

Remark C.1. Recall the following important properties of error functions:

• erf(r) = −erf(−r) for any r ∈ R, since the Gaussian is an even function.

• erf(z̄) = erf(z) for any z ∈ C

• limr→±∞ erf(r) = ±1

Proposition C.1.∫ n

0
dηe−η

2
cos(Cη) =

√
πe−C

2/4

4
(erf(n+ iC/2) + erf(n− iC/2)) (72)∫ n

0
dηe−η

2
sin(Cη) =

√
πe−C

2/4

4i
(erf(n− iC/2)− erf(n+ iC/2) + 2erf(iC/2)) (73)

Proof. 1) Using Euler’s formula we get∫ n

0
dηe−η

2
cos(Cη) =

∫ n

0
dηe−η

2 eiCη + e−iCη

2

=

∫ n

0
dη
e−η

2+iCη + e−η
2−iCη

2

Notice that by completing the square:

(η ± iC/2)2 = η2 ± iCη − C2/4

Preparing substitution;

−η2 + iCη = −(η − iC/2)2 − C2/4 = −η21 − C2/4

η ∈ [0, n] ⇐⇒ η1 ∈ [0− iC/2, n− iC/2]

−η2 − iCη = −(η + iC/2)2 − C2/4 = −η22 − C2/4

η ∈ [0, n] ⇐⇒ η2 ∈ [0 + iC/2, n+ iC/2]

Substitution gives:∫ n

0
dηe−η

2+iCη =

∫ n−iC/2

0−iC/2
dη1e

−η21−C2/4

= e−C
2/4

∫ n−iC/2

0−iC/2
dη1e

−η21

=

√
πe−C

2/4

2
(erf(n− iC/2)− erf(−iC/2))

38

Now the other term, which of course goes similar:∫ n

0
dηe−η

2−iCη =

∫ n+iC/2

0+iC/2
dη2e

−η22−C2/4

= e−C
2/4

∫ n+iC/2

0+iC/2
dη2e

−η22

=

√
πe−C

2/4

2
(erf(n+ iC/2)− erf(iC/2))

Putting it all together:

2

∫ n

0
dηe−η

2
cos(Cη) =

√
πe−C

2/4

2
(erf(n− iC/2)− erf(−iC/2))

+

√
πe−C

2/4

2
(erf(n+ iC/2)− erf(iC/2))

=

√
πe−C

2/4

2
(erf(n+ iC/2) + erf(n− iC/2))

2) Now for the sine-integral. Using Euler’s formula we get:∫ n

0
dηe−η

2
sin(Cη) =

∫ n

0
dη
e−η

2+iCη − e−η2−iCη

2i

The substitution steps we don’t have to repeat again, there’s only some different constant
involved.

2i

∫ n

0
dηe−η

2
sin(Cη) =

√
πe−C

2/4

2
(erf(n− iC/2)− erf(−iC/2))

−
√
πe−C

2/4

2
(erf(n+ iC/2)− erf(iC/2))

=

√
πe−C

2/4

2
(erf(n− iC/2)− erf(n+ iC/2) + 2erf(iC/2))

Definition C.2. Let’s define for C,ϕ ∈ R

OϕC(n) :=

∫ n

0
dηe−η

2
sin(Cη + ϕ) (74)

EϕC(n) :=

∫ n

0
dηe−η

2
cos(Cη + ϕ) (75)

Corollary C.1 (Interpolation).

OϕC(n) = cos(ϕ)

√
πe−C

2/4

4i
(erf(n− iC/2)− erf(n+ iC/2) + 2erf(iC/2))

+ sin(ϕ)

√
πe−C

2/4

4
(erf(n− iC/2) + erf(n− iC/2))

And

EϕC(n) = O
ϕ+π/2
C (n)

Proof. This follows from sin(Cη + ϕ) = cos(ϕ) sin(Cη) + sin(ϕ) cos(Cη).

39

	Introduction
	Motivation
	Brownian motion
	Rouse model
	Rouse modes
	Statistical quantifiers
	The model of Vandebroek-Vanderzande

	Semiflexible chain model
	Motivation
	Energy relation
	Force relation
	Simulations
	Time integration-scheme

	Stability of the simulations
	Difficulties of the simulations
	Speeding up Matlab code

	Simulations results

	Adomian decomposition
	Motivation
	Introduction
	Finding inverse of linear operators using Fourier transform
	Applied to our model

	Conclusion
	Appendices
	Derivation forces from potentials
	Derivation of the Rouse Modes
	Gaussian integral with complex argument

