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Abstract— Cortical responses to continuous stimuli as 
recorded using either magneto- or electroencephalography 
(EEG) have shown power at harmonics of the stimulated 
frequency, indicating nonlinear behavior. Even though the 
selection of analysis techniques depends on the linearity of the 
system under study, the importance of nonlinear contributions to 
cortical responses has not been formally addressed. The goal of 
this paper is to quantify the nonlinear contributions to the 
cortical response obtained from continuous sensory stimulation. 
EEG was used to record the cortical response evoked by 
continuous movement of the wrist joint of healthy subjects 
applied with a robotic manipulator. Multisine stimulus signals 
(i.e. the sum of several sinusoids) elicit a periodic cortical 
response and allow to assess the nonlinear contributions to the 
response. Wrist dynamics (relation between joint angle and 
torque) were successfully linearized, explaining 99% of the 
response. In contrast, the cortical response revealed a highly 
nonlinear relation; where most power (~80%) occurred at non-
stimulated frequencies. Moreover, only 10% of the response 
could be explained using a nonparametric linear model. These 
results indicate that the recorded evoked cortical responses are 
governed by nonlinearities and that linear methods do not suffice 
when describing the relation between mechanical stimulus and 
cortical response. 

Index Terms— EEG, EMG, nonlinear, neuromuscular control, 
system identification 

I. INTRODUCTION

ENSORY feedback is crucial for effective motion control 
and allows compensating for internal and external 

disturbances. For example, proprioceptors in the human body, 
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such as muscle spindles and Golgi tendon organs, provide 
sensory feedback on the state of limbs (i.e., position, velocity, 
and force). Reflexive control action can originate from spinal 
level (short latency) and from supra-spinal level (long latency) 
[1]. Disturbed sensory function or sensorimotor integration is 
often implicated in movement disorders [2]. The functioning 
of the somatosensory system can be assessed by applying 
sensory stimuli and studying muscle or brain response [3-5].  

Sensory stimuli are commonly presented as transients; such 
as when investigating the patellar stretch reflex. The response 
of a muscle to such a stretch can be recorded using 
electromyography (EMG)[6]. The dynamic cortical response 
to a transient sensory stimulus can be noninvasively recorded 
using magnetoencephalography or electroencephalography 
(EEG) and is referred to as the event related field or event 
related potential (ERP). Investigating the sensorimotor system 
with intermittent short lasting stimuli only reveals the transient 
response of the system. As an alternative, continuous stimuli, 
such as sinusoidal, square wave or noise-like signals, are 
capable of continuously engaging the system in the processing 
of information; therefore revealing both transient and steady-
state behavior [7]. While transient responses depend on initial 
conditions, steady-state responses present the system behavior 
accommodated to the stimulation and regardless of the initial 
state.  

Several studies used continuous mechanical stimuli to 
investigate intrinsic and reflexive limb dynamics by recording 
the mechanical and muscle response during postural control 
tasks [8-10]. The role of the cortical structures in reflexive 
feedback control is yet still not fully understood [1]. Cortical 
sensory processing of continuous mechanical stimulation has 
been investigated, for example using vibrotactile stimulation 
to the fingers, hand and foot [11-13]. 

Increased insight in normal and pathological sensorimotor 
function can be obtained by modelling the relation between 
stimulus and response. To work towards developing these 
models it is essential to determine which model classes are 
appropriate. Studies using continuous vibrotactile stimulation 
report responses at frequencies other than the frequencies 
present in the stimulus, illustrating a nonlinear relationship 
between the stimulus and the cortical response measured by 
EEG [14-17]. Mechanical (i.e. joint angle and torque) and 
EMG recordings obtained from continuous mechanical 
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stimulation also show a small response at non-stimulated 
frequencies [18-20]. Nonlinear responses in the sensorimotor 
system could result from sensors (e.g. unidirectional 
sensitivity), muscles (e.g. unidirectional force generation and a 
nonlinear force-length relationship) and other parts of the 
sensorimotor system including the central nervous system.  

Although many studies acknowledge the nonlinear 
properties of the cortical response to sensory stimuli, it 
remains unclear to which degree the nonlinearities govern the 
response. Systems with weak nonlinear behavior can be 
studied in a specific operating range, facilitating linear 
analysis. Linear system identification techniques are matured, 
computationally undemanding, require little a priori 
knowledge and can reveal many characteristics of the system 
under study, including time delays. Linear techniques are 
useful if the system under study can be properly linearized, 
which should be checked during analysis. If the linear 
approximation only describes a small portion of the behavior 
of the system, any conclusions based on the linearized system 
will most likely not be applicable to the actual system under 
study. The well-established and accessible linear system 
identification framework should in this case be exchanged for 
a nonlinear system identification approach. Applying system 
identification to systems with strong nonlinear behavior 
requires techniques which are computationally more 
demanding and often require a priori selection of a model 
structure or order.  

To determine which analysis tools are appropriate to study 
the cortical response to sensory stimuli, it is imperative to 
study the contributions in the cortical response to sensory 
stimuli due to nonlinearities in the system, which have never 
been systematically quantified.  

Using multisine stimulation signals, which are designed by 
summing a specific set of sinusoidal signals [21], we can 
detect nonlinearities in the cortical response at frequencies 
which are not present in the stimulation signal. The goal of 
this paper is to quantify the nonlinear contributions to the 
cortical response obtained from continuous sensory 
stimulation. To the best of our knowledge, the cortical 
response obtained from continuous joint manipulation has 
only been investigated in one previous study by Campfens, et 
al. [18], however they analyzed the response only at the 
excited frequencies. 

A robotic manipulator was used to apply continuous 
mechanical manipulation of the wrist joint and the response of 
the sensorimotor system was analyzed at three levels: 
mechanical response (joint angle and torque), muscle activity 
(electromyogram, EMG), and cortical activity (EEG). The 
nonlinear contributions are quantified in passive and active 
tasks, where the active tasks are performed to evoke and 
analyze EMG responses. 

II. MATERIALS AND METHODS  

A. Subjects 
Eleven right-handed healthy volunteers (5 men, 6 women; 

age 22-25 years) with no self-reported history of neurological 

disorders participated in this study. Subjects were all right 
handed (laterality index greater or equal to 80 according to the 
Edinburg Handedness Inventory [22]). The study was 
approved by the local research ethics committee. All subjects 
gave written informed consent prior to participation. Subjects 
were well rested and refrained from alcohol and drug intake 
12 hours before the experiment. 
 

B. Experimental setup 
A one degree-of-freedom robotic wrist manipulator 

(Wristalyzer by MOOG Inc, Nieuw-Vennep, The Netherlands) 
applied the stimulation as angular or torque perturbations to 
the right wrist of the subjects (see Fig. 1A). The handle was 
adjusted so that the axis of rotation of the wrist was aligned 
with the axis of rotation of the manipulator (see Fig. 1C). The 
neutral angle was defined as the angle of the wrist when fully 
relaxed, resulting in a slight flexion posture. A screen placed 
at 1.5 m from the subject presented a target and task relevant 
feedback (see Fig. 1A&B). The subjects were instructed to 
gaze at the center of the screen throughout the experiment to 
minimize head and eye movements. All recordings were 
performed in a slightly dimmed soundproof cabin. 

Fig. 1D illustrates the closed-loop configuration of the 
robotic manipulator and the human, and indicates the recorded 
signals. All signals were sampled at 2048 Hz (136 channel 
Refa by TMSi, Oldenzaal, The Netherlands), ensuring 
synchronicity between all signals. Scalp potentials were 
measured using a cap with 126 Ag/AgCl electrodes 
(WaveGuard by ANT, Enschede, The Netherlands). The 
electrodes were arranged according to the 10-5 system [23]. 

 
Fig. 1.  Experimental setup. A) The right forearm of the subject is strapped 
into an armrest and the right hand is strapped to the handle, requiring no 
hand force to hold the handle. B) Visual feedback (the target (red circle) is 
static and always visible during a task, the blue circle is only visible during 
the active task and indicates the position of the handle and the task is to keep 
the blue circle in the red circle). C) Close up of the hand in the robotic 
manipulator. D) Block scheme depicting the robotic manipulator and the 
human. The perturbation signal (angle or torque) is applied to the human by 
the robotic manipulator, which will present the human with a certain angle 
(φ). In case of the torque perturbation the torque on the handle (T) is fed 
back to the robotic manipulator (dashed line). The robotic manipulator 
ensures the angle is set such that the torque on the handle (T) matches the 
perturbation signal. 
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The mastoid electrodes on the cap were left unconnected. The 
subject ground electrode was connected to the left mastoid 
(Ag/AgCl electrode, Blue Sensor N by Ambu, Ballerup, 
Denmark). Muscle activity was measured from the flexor carpi 
radialis (EMGF) and extensor carpi radialis (EMGE) using 
electrode pairs (Blue Sensor N by Ambu) attached to the skin 
and placed over the muscle belly with an electrode distance of 
10 mm. Handle angle and applied torque were measured from 
analog output signals of the wrist manipulator and were 
galvanic isolated from the amplifier using optical isolation 
amplifiers (TMSi, Oldenzaal, The Netherlands). 

 

C. Tasks 
Each subject performed two tasks: an active task and a 

passive task. In the passive task the subject was instructed to 
relax and to ignore the angular perturbations imposed by the 
manipulator. During the passive task the screen only presented 
the target and no feedback was given. The intensity of the 
angular perturbation was set such that the rotation of the 
handle had a root mean square (rms) of 0.02 rad (≈1.1 deg). 
Previous studies on the wrist joint applied perturbations in a 
similar range [18, 24].In the active task the subject was 
instructed to put effort in maintaining the wrist in the neutral 
angle while the manipulator imposed torque perturbations. 
During the active task the feedback screen presented the angle 
of the handle (see Fig. 1B), which was low-pass filtered online 
(0.5 Hz, 2nd order Butterworth) to avoid rapid eye movements 
and to prevent the frequencies in the perturbation signal from 
stimulating the visual system. The intensity of the torque 
perturbations during the active task was iteratively set such 
that the rotation of the handle had an rms of around 0.02 rad. 
By studying the system for both tasks around the same 
operating point and applying small rotations allows for 
comparison between the tasks and facilitate linearization. Prior 
to the experiment subjects were required to practice the tasks. 

 

D. Perturbation signal selection 
The type of signal used to provide continuous manipulation 

of the wrist was a random phase multisine signal, which is a 
periodic signal consisting of several sinusoids summed 
together [21] as in: 

( ) ( )0
1

cos 2
N

k k
k

r t A f ktπ f
=

= +∑ , (1) 

where: 
• k is the frequency line (integer number), which 

corresponds to the Fourier coefficients (k=0 is the DC 
coefficient and is omitted to obtain a zero-mean signal) 

• Ak is the amplitude at frequency line k which can be 
zero or nonzero. Frequencies where the amplitude is 
nonzero compose the set of excited (i.e. stimulated) 
frequencies { }exf  

• f0 is the frequency resolution in hertz, defined by period 
length T in seconds ( )0 1f T=  

• kφ  is the random phase at frequency line k which is 
taken from a uniform distribution 

• N is the number of samples in T which is defined by the 
sampling frequency 

• t is the time vector 
Multisine signals allow for broadband excitation and system 
identification over a desired frequency range, and have several 
advantages in system identification over random perturbation 
signals such as (white) noise. Firstly, multisine signals allow 
concentrating signal power in a limited number of frequencies, 
which increases the input signal-to-noise ratio (SNR) at those 
frequencies while maintaining the same stimulation amplitude. 
Secondly, the noise levels can be quantified and reduced by 
recording multiple periods. Thirdly, multisine signals allow 
for leakage-free analysis due to their periodicity. Finally, by 
proper signal and experiment design a multisine perturbation 
signal allows for the detection and quantification of nonlinear 
distortions. 

There exists a large class of nonlinear systems which, when 
excited with a periodic input signal, will generate a periodic 
response with the same period as the input. This class includes 
polynomials, saturations and rectifiers amongst many other 
systems. When repeatedly perturbing such a system with a 
multisine signal, the system will be excited in the same way 
and will therefore generate the same output [21]. The presence 
of nonlinear distortions generated by these systems can be 
revealed by using different realizations of a multisine signal, 
that have different phases but the same excited frequencies 
and amplitudes per frequency. As for a nonlinear system the 
superposition principle does not hold, perturbing the system 
using a different multisine realization (i.e. different time 
course) will excite the nonlinear system in a different way. 
This property will be exploited in the analysis by calculating 
to what extent a nonparametric linear model will be able to 
describe the input-output relation regarding all different 
realizations, which should be high for a linear system. 

When using a multisine signal where only odd frequency 

 
Fig. 2.  Perturbation signals. Top graphs: power spectral density of the 
perturbation signals. Bottom graphs: a time domain representation of two out 
of seven realizations (thin black and thick gray) for both types of 
perturbation signal. The two realizations have identical frequency content 
and power however the phases are randomly distributed for each of the 
realizations resulting in different time courses of the signals (maximum 
correlation for any time shift for the two shown angular perturbation signals 
was 0.61 and for the torque perturbation signals 0.57). 
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lines are excited (e.g. k=1,3,5) we can, besides quantifying the 
nonlinear contributions, also further describe the type of 
nonlinear behavior which will be helpful in a subsequent 
(non)parametric nonlinear modelling step. A linear system 
will show a response only at the excited frequencies. 
Nonlinear systems will show a response at unexcited 
frequencies, which can be harmonics of the excited 
frequencies (e.g. 

1
2 exf ) or intermodulation products (e.g. 

1 2ex exf f+ ). Nonlinear systems can have an odd or even 

behavior, or show both behaviors at the same time. When an 
odd nonlinear system (i.e. ( ) ( )= − −y u y u ) is excited at an 
odd frequency line, the response will only contain power at 
harmonic odd frequency lines. When an even nonlinear 
function (i.e. ( ) ( )y u y u= − ) is excited at an odd frequency 
line, the response will only contain power at harmonic even 
frequency lines. More generally, when perturbing a system 
with a signal containing only odd frequency lines, any power 
that is present in the (noise free) output signal at the even 
frequency lines must be due to nonlinear distortions generated 
by an even or even and odd nonlinear function. Additionally, 
exciting only odd frequency lines ensures there is no 
disturbing effect of even nonlinear distortions on the excited 
frequency lines. This characteristic allows for differentiation 
between even and odd nonlinear distortions, while maintaining 
the ability to perform system identification over the chosen 
(odd) frequency range of interest. 

 

E. Perturbation signal design 
Multisine perturbation signals with a period of 1 s were 

designed, resulting in a frequency resolution of 1 Hz. The 
excited odd frequency lines are 1, 3, 5, 7, 9, 11, 13, 15, 19, 23 
Hz, resulting in a total of 10 excited frequencies. As 
mentioned above, leaving the even frequency lines unexcited 
allows for the detection of even nonlinear distortions. Some 
odd frequency lines (17, 21, 25 Hz and higher) are not excited 
to allow for detection of odd nonlinear distortions. The 
selected excited frequency lines are a trade-off between 
frequency resolution and the ability to detect odd nonlinear 
distortions. The dynamics of the wrist are observable within 
this frequency range [25]. Seven different realizations of a 
random phase multisine were applied, as at least seven 
realization are needed to preserve the properties of the 
maximum likelihood estimator (such as consistency) in 
possible future parametric modelling steps [26]. 

All perturbation signals were generated offline and the same 
set of signals was used for all subjects (see Fig. 2). The 
angular perturbation signal was designed to have equal power 
on the first three excited frequencies and a decreasing power 
for the higher frequencies (-20dB/decade slope), which is a 
tradeoff between reduced predictability of the signal (to 
prevent anticipation) and capabilities of the robotic 
manipulator. The torque perturbation signal was designed to 
have equal power on all excited frequencies. For each 
perturbation signal seven realizations of a random phase 

multisine were generated. To ensure these realizations are 
actually different and therefor excite the (non)linear system in 
a different way, the correlation amongst these seven signals 
was controlled. This was achieved by generating 25000 
random-phase multisine signals and removing 10% of the 
signals having the highest peak-to-rms ratio (crest factor) and 
another 10% having the least normal distribution (chi-square 
test). Out of the remaining 20000 signals, seven realizations 
were obtained with a correlation coefficient of less than 0.65 
amongst each other for any time shift, which was found to be 
the lowest achievable number with the used signal properties. 

 

F. Experimental protocol 
To prevent fatigue the experiment was partitioned in trials 

of 36 s. There was a break between trials of at least 10 s or 
longer if requested by the subject. The active and passive trials 
were alternately presented to the subject. To avoid habituation 
to the signals each trial consisted of three randomly selected 
multisine realizations, which were repeated several times and 
smoothly merged. A smooth transition from one multisine 
realization to another was achieved by shifting all seven 
multisine realizations to have an amplitude and velocity close 
to zero at the beginning (and therefore also end) of its period. 
The transition between two concatenated realizations was 
further smoothed by interpolating between the last sample of 
the first realization up to the 50th sample (~25 ms) of the 
second realization using piecewise cubic spline interpolation. 
Periods containing the transition between two realizations 
were removed. Additionally, the first four periods of each trial 
were removed from the analysis to account for transient 
effects, resulting in a total of ten useful periods for each of the 
three multisine realizations in the trial (see Fig. 3). A total of 
49 trials (i.e. 1470 useful periods) was recorded per task, 
consisting of 210 periods (P=210) for each of the seven 
realizations (M=7). Including mandatory breaks, this protocol 
resulted in a minimal recording time of 76 minutes for each 
subject. 

 

G. Pre-processing 
Data processing was performed using FieldTrip [27] and 

MATLAB 8.1 (The Mathworks, Inc., Natick, MA, USA). Line 
noise (50Hz and its harmonics) was removed using the 
discrete Fourier transform as implemented in FieldTrip. The 
EMG signals were high-pass filtered in two directions (25 Hz, 
4th order Butterworth) to remove motion artifacts introduced 

 Fig. 3.  Schematic representation of composition of one 36s trial. Each lobe 
represents one 1s period of the perturbation signal and the three different 
colors represent different multisine realizations. Highlighted periods are 
excluded from analysis, leaving ten periods per realization in each trial for 
analysis. 
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by the robotic manipulator, and were subsequently rectified. 
The mean of the rectified EMG signal was removed as we are 
interested in the response of the muscle to the perturbation 
(i.e. reflexive contributions) and less in tonic activation and 
the generated torque [8]. The EEG signals were referenced to 
the common average and high-pass filtered in two directions 
(1 Hz, 4th order Butterworth). No artifact rejection was 
applied.  

 

H. Data analysis 
Since periodic perturbation signals were used, all recorded 

signals were organized in P periods of M realizations (
[ ] ( ),m px t ). Consequently any part of the response that is not 

periodic with the same period as the perturbation signal will 
be regarded as noise. 
1) Quantifying the relative power of the nonlinear distortions 

The frequency domain representation of the recorded 
signals was obtained by applying the Fourier transform, 

resulting in [ ] ( ),m pX f . An estimate of the total power in each 
signal was obtained by averaging over periods (P) and thereby 
reducing the noise, calculating the power, averaging over 
realizations (M) and summing over all frequencies (F): 

 

[ ] ( )
2

,
,

1 1 1

1 1ˆ F M P m p
X total

f m p
E X f

M P= = =
= ∑ ∑ ∑ . (2) 

The power in the excited ( ),
ˆ

X exE , unexcited odd 

( ), ,
ˆ

X unex oddE , and unexcited even ( ), ,
ˆ

X unex evenE  frequencies can 

be determined by summing over a specific set of frequencies 
in (2), where:  

 

, , , , , ,
ˆ ˆ ˆ ˆ

X total X ex X unex odd X unex evenE E E E= + + . (3) 

The relative power in these frequencies can be estimated by 
dividing the power in excited, unexcited odd, or unexcited 
even frequencies by the total power. 
2) Noise-to-signal ratio 

An estimate of the noise level in the recorded signals was 
made by calculating the variance over periods (P), averaging 
this variance over all realizations (M), and summing over all 
frequencies (F): 

[ ] ( ) [ ] ( )
2

, ,2

1 1 1 1

1 1 1ˆ
1= = = =

= −∑ ∑ ∑ ∑
−

F M P Pm p m p
X

f m p p
X f X f

M P P
σ . (4) 

The noise-to-signal ratio (NSR) for each recorded signal 
was obtained by dividing the estimate of the noise level by the 
estimate of the power in the signal, and is used to select the 
electrode showing the strongest response relative to the noise 
level: 

2

,

ˆ
ˆ

X

X total

NSR
E

σ
= . (5) 

The sample noise level on the averaged data (i.e. standard 
error of the mean) compared to the sample mean is referred to 
as the NSRscaled, and is an estimate of the amount of noise still 
present in the averaged data: 

scaled
NSRNSR

P
= . (6) 

For each subject the EEG signal at the electrodes with the 
lowest NSR in the passive and active task were used for 
subsequent analysis and were named EEGP and EEGA 
respectively. 
3) Determining the best linear approximation 

System identification was used to determine how much of 
the recorded signals can be described by a nonparametric 
linear model. We obtained such a linear model by non-
parametric estimation of the frequency response function 
(FRF). . In agreement with the system depicted in Fig. 1D, an 
FRF of the human was estimated with the perturbation signal 
as external reference signal (R), angle φ as input (U) and the 
torque, EMG and EEG signals as output signal (Y). The input-
output relations are given by the measured FRFs ϕTG , 

FEMGG ϕ

, 
EEMGG ϕ  and 

AEEGG ϕ . 

Each FRF ( )G f  consists of three parts [21]: 

( ) ( ) ( ) ( )= + +BLA SNL noiseG f G f G f G f . (7) 

Here GBLA is the best linear approximation (BLA) of the 
(non)linear system under study, GSNL represents the stochastic 
nonlinear distortions, and Gnoise the errors due to the presence 
of noise. Gnoise is assumed to be uncorrelated with the 
reference signal and to have zero mean. In case of a random 
reference signal GSNL will appear as uncorrelated zero-mean 
noise, however not in case of a periodic deterministic 
reference signal such as the used multisine signals. This 
implicates that Gnoise will be different for each period in each 
realization whereas GSNL will be the same in each period in a 
realization, but will differ over realizations. GBLA was 
estimated for each of the four FRFs using a closed loop 
estimator:  

( ) ( )
( )

ˆ

ˆ

ˆ
ˆ

ˆ= exYR
BLA ex

exUR

S f
G f

S f
. (8) 

Here ( )Ŝ f  is the estimated cross-spectral density, 
averaged over periods and realizations, which reduces the 
contributions of noise and stochastic nonlinear distortions in 
the final estimate. The cross-spectral density was calculated 
between the perturbation signal R and input U (φ) and output 
Y (torque, EMG and EEG) at the excited frequencies. A 
detailed overview of the equations used to obtain an estimate 
of BLAG and its noise variance can be found in appendix A. 

To quantify how well the nonparametric transfer function

BLAG  describes the measured data, we used the variance 
accounted for (VAF). The model output Ymod was determined 
using: 



TNSRE-2015-00235 

[ ] ( ) [ ] ( ) ( ),
mod

1

1 ˆ
=

= ∑
P m pm

ex ex BLA ex
p

Y f U f G f
P

, (9) 

and converted to the time domain, using the inverse Fourier 
transform: 

[ ] ( ) [ ] ( )( )1
mod mod
m m

exy t Y f−=   (10) 

The model output [ ]
mod,
m

cy  and the average recorded output 
[ ]ˆ my  of the seven different realizations were concatenated into 

mod,cy  and ĉy  respectively. The VAF for each recorded 
output signal (torque, EMGF, EMGE and EEGP or EEGA) was 
obtained using: 

( )
( )

mod,ˆvar
1 100%

ˆvar
c c

c

y y
VAF

y

 −
 = − ⋅
 
 

 (11) 

III. RESULTS 
This section presents the averaged NSR, power distribution 

over frequency groups and VAFs as well as individual results 
of a representative subject. In both the passive and active task 
we were able to quantify the nonlinear contributions to the 
mechanical and EEG data. Additionally, the active task also 
allowed us to study the nonlinear contributions to the EMG 
data. One out of the eleven subjects was not included in the 
analysis for not being able to successfully complete the active 
task. In one other subject one electrode (FT9) was removed 
from the analysis because it was accidentally disconnected 
during the experiment due to the improper placement of 
glasses. 

 

A. Noise-to-signal ratio 
Fig. 4 illustrates the averaged NSR in the passive and active 

tasks. The lowest NSR for both tasks appears around the 
contralateral sensorimotor areas. An decreased NSR indicates 
there is a periodic response in the brain due to the external 
perturbation signal, which is reproducible over trials. 

For all subjects the electrode which had the lowest NSR 
was found on the contralateral hemisphere, close to the 

sensorimotor areas in the passive (EEGP: 3x FCC3h, 2x CP3, 
2x FCC1h, 1x C3, 1x CCP3h and 1x FC1) and active task 
(EEGA: 4x CP3, 2x FC1, 2x FCC1h, 1x CCP3h and 1x 
FCC3h). 

The first two columns in Table I show the NSR and noise 
levels in the recorded signals (angle, torque, EMG and EEG) 
averaged across persons. The NSR of the recorded angle ( φ ) 
is lower for the passive task because the robotic manipulator 
directly controls the angle, while the angle in the active task is 
the result of the human responding to torque perturbations. 

The noise level in the EMG signals for the passive task 
indicates there is not a consistent EMG response to the 
perturbations, as expected. The noise levels in the EMG 
signals for the active task and the EEGP and EEGA signals 
indicate that there is still some noise present after averaging 
over 210 periods, thereby limiting the maximal attainable 
VAF. However, these numbers also indicate that over 80% of 
the recorded physiological data can be described when a 
proper model is used.  

B. Power of nonlinear distortions 
Fig. 5 shows the power distribution over frequencies for 

EEGP for one realization of a representative subject. We can 
observe that most power is in the unexcited even frequencies, 
while the power in the excited and unexcited odd frequencies 
is much lower. The noise level clearly shows two peaks 
around 10 and 20 Hz; most likely representing the intrinsic 
alpha and beta band rhythms. It can also be seen that close to 
100 Hz the power becomes small and the NSR increases. The 
effect of the line noise filter is clearly visible at 50 Hz and 100 
Hz. The averaged power distribution, NSR, and noise levels 
for the signals of interest can be found in Table I. The power 
distribution for the EMG signals in the passive task is not 
shown, due to the inherently high NSR. Fig. 5 as well as Table 
I indicate that most of the power in the EEG signal is in the 
unexcited even frequencies. 

 
Fig. 4.  NSR per electrode for passive task (left) and active task (right) 
averaged over all subjects. Dots indicate electrode locations. The lowest NSR 
is found over the contralateral sensorimotor areas.  

 
Fig. 5.  Power distribution in EEGP (CP3) over frequencies for one 
realization of the passive task for a representative subject. Results are 
averaged over P=210 periods. Black dots represent the excited frequencies, 
red triangles represent the unexcited odd frequencies and the blue squares 
represent the unexcited even frequencies. The (scaled) noise level is 
indicated by the green line. 
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C. Frequency response functions 
The four FRFs for a representative subject are shown in Fig. 

6. The mechanical admittance (GφT) behaves like a second 
order system for both tasks, which was previously established 
[28]. As expected, the mechanical admittance is higher for the 
passive task compared to the active task, where the instruction 
was to maintain the angle by resisting the perturbation, i.e., to 
lower the admittance. This increased stiffness can be 
generated by co-contracted muscles as well as reflexive 
activity (primarily from the spinal reflex loop). Due to the 
increased stiffness in the active task the natural frequency of 
the wrist also increases from approximately 3 Hz to 5 Hz, 
which can be observed in the shifted resonance peak in the 
gain plot. The high frequency response, which is governed by 
the inertia of the wrist, is similar in both tasks. This result was 
expected as the inertia does not vary over tasks.  

The reflexive impedance (GEMGφ) for the passive task is 
much lower than for the active task and is of the same order of 
magnitude as the noise level, also indicating a high NSR. The 
reflexive activity was minimal in the passive task as compared 
to the active task. The reflexive impedance for the active task 
shows similar behavior between flexor and extensor muscles, 
except for the phase being 180 degrees shifted. This 
corresponds to the unidirectional nature of the muscles, which 
are only able to actively contract. The increasing phase lag at 
the higher frequencies is caused by the neural time delay in the 
reflex loop.  

The FRF for GEEGφ indicates that the linear transfer function 
is of the same order of magnitude as the noise level. Together 
with the non-smooth and erratic behavior of both gain and 
phase, this indicates a low quality nonparametric linear model. 

 

D. Fitting the best nonparametric linear model 
We used the best linear approximation as a nonparametric 

model and obtained the VAF for each of the four input-output 
relations (see Table II). For the passive task the VAF for the 
relation between the angle φ and the EMG signals is not 
calculated, since there is no consistent EMG response to the 
perturbation in this task. An example of the model fit in the 
time domain for the active task for one representative subject 

can be found in Fig. 7. 
The average VAF for GφT (i.e. mechanical admittance) is 

around 99% for both the passive task and the active task, 
indicating the relation between angle and torque is well 
described by a nonparametric linear model. Due to the high 
number of recorded periods and subsequent low noise level in 
this study, the VAF was high compared to other studies were 
the mechanical admittance was modelled from much less 
recorded periods. In previous studies on the wrist and other 
joints [8, 19, 25, 29] a VAF between 80% and 95% was 
obtained when using a parametric linear model to describe the 
relation between angle and torque. The averaged VAF 
obtained when modelling the EMG signal was around 70% for 
both muscles, which is slightly higher than the same studies 
mentioned before where a VAF of 40% to 60% was common 
when modelling the EMG signals with a parametric linear 
model. Besides the low noise level, the high flexibility of the 
nonparametric models used in this study compared to 
parametric models resulted in a higher VAF. Noteworthy, the 
relation between the wrist angle and the measured EEG signal 
is poorly captured by the nonparametric linear model. The 
averaged VAF is around 10% for both the passive task and 
active task, thus a linear system description is not appropriate 
to describe the response in the EEG evoked by mechanical 
manipulation of the wrist. 

IV. DISCUSSION 
Mechanical manipulation of the wrist using multisine 

signals elicits a periodic response in the EEG, which is shown 
to be highly nonlinear. Linear system identification techniques 
were employed and indicate that the wrist torque and EMG 
response to small changes in wrist angle can be explained for 
99% and 70% respectively using a nonparametric linear 
model. Following the same approach, the response in the EEG 
could only be explained for 10% with linear methods. 
Moreover, the power in the cortical response at the unexcited 
frequencies (i.e. due to nonlinear behavior) is over 80%. 
Similar results were obtained for all subjects. Thus, we 
conclude that a linear description of the relation between 
stimulus and response in the EEG is inappropriate and a 
nonlinear description is required.  

 
Fig. 6.  Frequency response functions (gain and phase) for a representative subject. The units for GφT are [rad/Nm] and for the other FRF’s [μV/rad]. Black lines 
with markers indicate the FRF at the excited frequencies and gray lines the scaled noise level (see Appendix A for equations). Solid and dashed lines represent 
the active task and passive task respectively. The transfer function GφT is presented as an admittance to correspond to existing literature (GφT = GTφ

-1). 
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A. Quantification of the nonlinear contributions 
The use of multisine perturbation signals with power 

concentrated in a limited number of odd frequency lines, 
allowed assessment of any power transferred from excited to 
unexcited frequency lines, which is caused by nonlinear 
behavior. The used method can detect nonlinear distortions 
which are periodic with the same period as the perturbation 
signal (e.g., polynomials, saturations and rectifiers). Nonlinear 
distortions generated by nonlinearities such as chaos and 
bifurcations, as well as distortions due to time-variant 
behavior, can therefore not be detected and will increase the 
noise level. In a previous study using a similar setup, we 
demonstrated there was no substantial time-variant behavior in 
the EEG signals evoked by wrist manipulation [30]. 

The power in the excited frequencies should not be regarded 
as ‘the linear part of the response’ [14] because odd nonlinear 
functions can very well affect the signal at the odd excited 
frequencies. Therefore analyzing the response only at the 
fundamental (excited) frequencies must be differentiated from 
studying the linear part of the response. By estimating a 

(linear) FRF at the excited frequencies and by calculating the 
VAF, we can assess how well such a linear nonparametric 
model can describe the input-output relations.  

Our results show that for small excursions around an 
operating point as used in this study the wrist dynamics are 
mainly linear, as almost 100% of the power in the recorded 
angle and torque signals is present in the excited frequencies 
and the VAF when using a nonparametric linear model is over 
99%.  

For the EMG recordings in the active task the power in the 
excited frequencies is around 76%. There is clear evidence of 
nonlinear distortions in the EMG signals, which are possibly 
introduced by the unidirectional nature of a muscle and stretch 
reflex. Previous studies on reflex dynamics indeed showed the 
muscle spindle and reflex loop behaving as a half-wave 
rectifier [31]. A linear model can still describe the EMG 
response for approximately 70%. Even though the reflexive 
impedance is nonlinear, paradoxically the mechanical 
admittance behaves linear. The relation between joint angle 
and muscle EMG is nonlinear, however the flexor and 
extensor muscles act as two opposing half-wave rectifiers, 
therewith linearizing the net reflexive behavior. Here, 
linearization is facilitated by the small amplitude of the 
perturbations and the neutral wrist angle, which allows for 
similar contribution from flexor and extensor muscles. 

In contrast to the mechanical and EMG signals, the excited 
frequencies for the EEG signal account for only 17% of the 
total signal power, indicating the EEG signal is dominated by 
nonlinear contributions. The relation between input and output 
therefore cannot be described by an FRF at the excited 
frequencies, since it only takes a small portion of the output 
into account and therefore results in a low VAF (~10%). Most 
power in the EEG signal, over 75% for both the passive and 
active task, is in the even frequency lines, indicating the 
presence of a dominant even nonlinear function. Examples of 
an even nonlinear function are y(u)=u2, y(u)=u4 and 
y(u)=abs(u). Seiss et al. [32] and Campfens, et al. [33] showed 
that a stretch of respectively the finger and wrist resulted in a 
similar ERP for both flexion and extension direction, which 
also indicates an even nonlinear relation. 

  

B. Origin of nonlinear contributions 
The nonlinear behavior of the muscle spindles [34-36] is 

likely to add to the nonlinear contributions in the EMG 

TABLE I 
AVERAGE NOISE-TO-SIGNAL RATIO AND 

RELATIVE POWER DISTRIBUTION OVER FREQUENCY GROUPS  

  
NSR 
[dB] 

NSRscaled  
[%] 

Eex  
[%] 

Eunex-odd  

[%] 
Eunex-even  

[%] 
Passive task mean (sd) 

φ -30.9 0.0 (0.0) 100 (0.0) 0.0 (0.0) 0.0 (0.0) 

T -18.8 0.0 (0.0) 99.6 (0.2) 0.2 (0.1) 0.2 (0.1) 
EMGF 20.0 58.9 (24.4) - - - 
EMGE 19.9 55.9 (24.8) - - - 
EEGP 14.8 17.1 (7.2) 18.6 (5.7) 6.0 (2.1) 75.4 (5.6) 

Active task mean (sd) 
φ -8.9 0.1 (0.0) 99.6 (0.2) 0.0 (0.0) 0.4 (0.2) 
T -19.6 0.0 (0.0) 99.4 (0.3) 0.1 (0.0) 0.5 (0.3) 

EMGF 10.8 7.4 (3.9) 77.5 (4.9) 5.6 (1.6) 16.8 (4.3) 
EMGE 12.0 10.7 (7.8) 76.4 (7.4) 8.8 (3.4) 14.8 (4.8) 

EEGA 14.2 13.2 (3.6) 16.8 (3.3) 2.6 (0.9) 80.7 (4.1) 

 

TABLE II 
VAF FOR THE FOUR NONPARAMETRIC LINEAR MODELS 

  
Passive task 

[%] 
Active task 

[%] 

TG ϕ  99.5 (0.2) 99.0 (0.3) 

ϕFEMGG
 

- 70.0 (6.4) 

EEMGG ϕ

 

- 68.0 (8.1) 

EEGG ϕ  10.0 (4.0) 10.3 (2.3) 

 

 
Fig. 7.  Time domain fit of nonparametric linear model (dashed red line) on 
top of the averaged recorded output (blue line, light blue area represents the 
averaged response ± the noise level) for one realization of the active task for 
a representative subject. 
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response. Their unidirectional sensitivity to velocity changes, 
together with their position in antagonistic muscles, could 
result in a similar neural signal for both flexion and extension. 
When using EEG to record these neural signals from the 
cortex, the distance between processing sites might be too 
small to be distinguishable, resulting in a lumped response of 
flexor and extensor muscle spindles. This response would, due 
to the similar signal for flexion and extension, result in an 
even nonlinear relation between stimulus and recorded EEG. 

 

C. Passive and active task 
Similar results for the EEG response are obtained for the 

passive and active task: the NSR as well as the distribution of 
power over frequency groups are of the same order of 
magnitude in both tasks. The NSR is slightly lower in the 
active task and low NSR is found in a larger region compared 
to the passive task. There are several possible explanations for 
these small changes. In the active task the muscles are 
generating force due to both co-contraction and reflexive 
activity, resulting in increased wrist torque. Compared to the 
passive task, this will result in changed muscle spindle 
sensitivity [37] and an increase in output of the Golgi tendon 
organ [38]. Changes in EEG could also be due to the 
involvement of additional brain regions in voluntary co-
contraction during the active task (e.g., supplementary motor 
area, pre-motor cortex, posterior parietal cortex) [39].  

 

D. Implications 
When applying a mechanical (multi)sine stimulus signal to 

a linear system, the response will occur only at the exited 
frequencies. In a nonlinear system, the frequency domain 
analysis of the response must consider excited frequencies and 
their harmonics and intermodulation products. Taking all these 
components into account will elucidate which nonlinear model 
could appropriately describe the relationship. In this study we 
have shown that the larger part of the EEG response to small 
mechanical perturbations, and therefore most information, is 
found in the unexcited frequencies, indicating nonlinear 
behavior. 

When applying transient sensory stimuli, the resulting 
average response is called the event-related potential (ERP). 
Information about the sensory system is derived from the 
timing of certain components in the ERP, for example the 
negative deflection 20 ms after electrical stimulation (N20) 
(see [40] for more details on somatosensory evoked 
potentials). Although the ERP technique is widely used, it 
often overlooks that neurophysiological systems exhibit 
nonlinear behavior. In a linear system the response scales 
proportionally with the stimulus amplitude and the shape of 
the response remains the same (e.g. doubling the input 
amplitude results in a doubled output amplitude), whereas in a 
nonlinear system both the shape and amplitude of the response 
will vary with applied stimulus amplitude. Several studies on 
mechanically somatosensory responses show that the shape of 
the ERP changes with the amplitude of the mechanical 

stimulus [41-44]. Due to this nonlinear behavior of the system 
(also shown in our results) the shape of the response and 
subsequently the timing of characteristic peaks will change 
with a change in amplitude of the sensory stimulus. Due to the 
nonlinear behavior of the system its characteristics cannot be 
fully captured by responses to a transient stimulus (ERP) or by 
responses to a continuous stimulus at only the excited 
frequency [e.g. 45, 46, 47]. 

Our results have shown that the relation between 
mechanical manipulation of the wrist joint and the response in 
the EEG cannot be described by a nonparametric linear model 
(VAF: ~10%), demonstrating nonlinear behavior. 
Consequently, a linear model or method will not be able to 
capture the relation between stimulus and response. An 
example is found in directed corticomuscular (linear) 
coherence, where poor linearization might contribute to 
inconsistently estimated time delays between cortex and 
muscle (e.g. [48]). 

The observed nonlinear behavior is periodic with the same 
period as the perturbation signal. Even though there is still 
substantial noise left in the EEG signals after averaging, a 
perfect model should be able to describe over 80% of the 
relation between wrist movement and recorded EEG. By using 
nonlinear modelling techniques we should be able to provide a 
better description of the input-output relationship. There exists 
an infinite amount of nonlinear operators and nonlinear model 
structures and this study provides essential information on the 
nature of the nonlinearity in the system. The next step in this 
research will be to obtain a nonlinear model relating the 
imposed wrist movement to the recorded EEG signals, 
therewith improving the understanding of the human sensory 
system and ultimately providing insight in movement 
disorders. 

Both ERP’s and cortical responses to continuous 
stimulation have been obtained using other types of stimuli 
such as visual, auditory and electrical nerve stimulation. The 
cortical responses to these types of stimuli also shows higher 
harmonics of the stimulation frequency [49]. The nonlinear 
contributions to the response, when these stimuli are applied, 
can be quantified using the techniques described in this study. 

V. CONCLUSIONS 
• Multisine perturbation signals applied to the wrist elicit a 

periodic cortical response and allow assessment of 
nonlinear contributions to the response. 

• When studied in a small range, wrist dynamics can be 
successfully linearized. 

• The relationship between mechanical stimulus and 
cortical response is highly nonlinear. Over 80% of the 
cortical response is caused by nonlinear behavior of the 
system. We showed that a nonparametric linear model 
only explains 10% of the cortical response to mechanical 
joint manipulation. 

• Event related potentials are insufficient to fully 
characterize the highly nonlinear relationship between 
mechanical stimulus and EEG response. 
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Appendix A 
The following equations allow for estimation of the sample 

mean and sample (co)variance for each recorded signal or 
signal combination [21]. X(f) and Z(f) refer to Fourier 
transformed recorded signals, which can be the same or 
different signals. 

First the phase in the recorded signal is turned back by the 
phase in the perturbation signal (R) (12), which allows for 
averaging over the different realizations (14): 
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The sample (co)variance for each recorded signal or signal 
combination is estimated in (15) and averaged over 
realizations in (16): 
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The FRF and its noise variance at the excited frequencies 
are obtained by inserting the recorded input and output signals 
of interest into equation A1-A5 and subsequently inserting the 
result in (17) and (18): 
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