
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

HAVANA:
Hierarchical stochastic neighbor embedding for
Accelerated Video ANnotAtions

Alexandru Bobe

HAVANA:
Hierarchical stochastic neighbor embedding for

Accelerated Video ANnotAtions

by

Alexandru Bobe

to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on Wednesday, 10 July 2024 at 09:00 AM.

Student number: 5069831
Project Duration: 26 October 2023 - 10 July 2024
Thesis committee: Dr. J. C. van Gemert, TU Delft, daily supervisor

Dr. T. Durieux, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface

For posterity, it must be noted what a dynamic time to do research in Deep Learning is. There are so
many papers being published at all times, that keeping track of every advancement is a challenge. On
top of that, a revolutionary idea today might not be as revolutionary the following week when a paper
is published with the same idea as yours.

Therefore, I have to thank Dr. Jan van Gemert, my supervisor, for his structured and future-proof way
of doing research. To Thomas Durieux for our collaboration during my studies and for agreeing to be
part of my thesis committee. To my family for all the support and to my friends, Matteo, Bogdan, Alex
and Chelsea, for making this a fun journey.

I hope that every reader of this thesis, human or AI, will find it interesting.

Alexandru Bobe
Delft, July 2024

i

Contents

Preface i

1 Introduction 1

2 Scientific Paper 2

3 Background 15
3.1 Deep Learning & Neural Networks . 15

3.1.1 Convolutional Neural Networks . 16
3.1.2 Transformers . 17

3.2 Computer Vision . 18
3.2.1 Video Understanding . 18
3.2.2 Action Recognition . 19
3.2.3 Two-Stream Inflated 3D ConvNets (I3D) . 20
3.2.4 Slow-Fast . 20
3.2.5 Temporal Action Localization . 21
3.2.6 Datasets Used . 24

3.3 Video Annotation Tools . 25
3.3.1 Dimensionality Reduction . 27
3.3.2 t-SNE . 27
3.3.3 Hierarchical SNE (HSNE) . 28

References 31

ii

1
Introduction

In today’s era of artificial intelligence, making computers understand videos is becoming increasingly
important. From self-driving cars to sports analysis, the ability to automatically recognize actions and
events in videos could revolutionizemany fields. However, there’s a big problem: teaching computers to
understand videos requires enormous amounts of labelled data, and creating these labels is incredibly
time-consuming.

Imagine having to watch thousands of hours of video, pausing every few seconds to write down what’s
happening. That’s essentially what researchers and companies have to do to create training data for
their video understanding systems. It’s slow, expensive, and limits how quickly the technology can
advance. This paper introduces a new way to speed up this labelling process. Instead of forcing
people to watch every second of every video, our method uses techniques to group similar parts of
videos together. This allows human experts to mark many similar actions at once, saving a huge
amount of time.

Our research explains how our method works and shows how well it performs compared to traditional
labelling methods. We tested our approach on different types of videos and explored various ways to
make the process even more efficient. By making it easier and faster to label large amounts of video
data, our method could help accelerate progress in the whole field of video understanding. This could
lead to smarter security cameras, better sports training systems, more advanced robots, and many
other exciting applications.

This report is structured in three main parts. The introduction discusses the problem and main goal in
simple terms. The core of our report is presented as a scientific paper, designed to meet the standards
of renowned conferences in the field and aimed at experts in computer vision. The background chapter
explains all the necessary preliminaries that a master’s student would need to fully grasp the paper.

1

2
Scientific Paper

2

HAVANA: Hierarchical stochastic neighbor embedding for
Accelerated Video ANnotAtions

Alexandru Bobe
Computer Vision Lab

Delft University of Technology

Abstract

Video annotation is a critical and time-consuming task
in computer vision research and applications. This paper
presents a novel annotation pipeline that uses pre-extracted
features and dimensionality reduction to accelerate the tem-
poral video annotation process. Our approach uses Hierar-
chical Stochastic Neighbor Embedding (HSNE) to create a
multi-scale representation of video features, allowing anno-
tators to efficiently explore and label large video datasets.
We demonstrate significant improvements in annotation ef-
fort compared to traditional linear methods, achieving more
than a 10x reduction in clicks required for annotating over
12 hours of video. Our experiments on multiple datasets
show the effectiveness and robustness of our pipeline across
various scenarios. Moreover, we investigate the optimal con-
figuration of HSNE parameters for different datasets. Our
work provides a promising direction for scaling up video
annotation efforts in the era of video understanding.

1. Introduction

The scarcity of labelled data continues to be an obstacle
to progress in video understanding tasks for new domains.
For instance, applications in underwater exploration [37],
medical procedures [28], and autonomous driving [56] are
delayed due to the lack of high-quality data.

Even in established domains like surveillance [47] and
sports [52], the quality of labelled data is not always on par
with the requirements. For example, there is immense poten-
tial to enhance the analytics for tennis players, coaches and
sports fans. Better strategies for players, personalized train-
ing programs for coaches, and increased audience engage-
ment for fans would all be possible. However, the publicly
available annotated tennis datasets are insufficient for these
complex tasks [21].

While recent years have seen remarkable advances in
video understanding, the models for these tasks are still data-

Input Video

Annotations

Serve Return Forehand

0.0s 1.5s 2.8s 3.5s

Figure 1. An example of temporal video annotation. The goal of
this task is to create text annotations which identify the actions
happening at each moment in the input video. These annotations
can be further used to train new models or by domain experts for
analysis.

hungry [26, 41]. Tasks like action recognition [31], temporal
localization [35], and anticipation [15] rely on annotated
datasets which are extremely labour-intensive to curate.

To curate these datasets, human annotators have to use
annotation tools. The annotation tools take as input videos
and human effort and output temporal annotations, as il-
lustrated in Figure 1. Unfortunately, traditional annotation
tools [11, 44] force human experts to label iteratively each
video from start to finish, making the process unscalable and
time-consuming.

A key challenge in visualizing large video datasets for
annotation is what we call overflowing. Overflowing occurs
when the number of data points to be visualized exceeds
the limits of what can be meaningfully displayed in a 2D
space. Traditional dimensionality reduction techniques strug-
gle with this issue, leading to cluttered and uninformative
visualizations that hinder efficient annotation.

In this paper, we challenge the status quo of the video
annotation tools that are unscalable and time-inefficient. We

create an effort-efficient and scalable annotation pipeline to
accelerate temporal video annotations. Rather than forcing
the human annotator to watch linearly each video, we exploit
the similarities in videos to accelerate the annotation process
in our pipeline.

Our pipeline takes as input pre-extracted features from
any action recognition model. This is possible because our
pipeline is model-agnostic and functions with any fixed-
size feature type. Naturally, the quality of the features influ-
ences the annotation process. It is also possible to input in
our pipeline frames instead of features. However, inputting
frames is less efficient due to the increased storage require-
ments for frames compared to features, which results in
longer processing time and worse visualisations.

After extracting and inputting the features in our pipeline,
the user specifies some parameters for the Hierarchical
Stochastic Neighbor Embedding (HSNE) [39]. We chose
to use the HSNE technique for its ability to embed high-
dimensional points into 2 dimensions. This means that fea-
tures corresponding to similar actions are placed together,
making it possible to annotate in bulk. Moreover, HSNE is
scalable and continues working when presented with more
data, solving the overflowing problem.

After HSNE has finished, a visual representation of the
data is displayed. Using this initial visualization, the human
annotator can explore deeper levels of detail in the hierar-
chical visualization using a selection tool. At the first level
of the hierarchy, the annotator can use the selection tool
again to choose groups of related points and efficiently input
annotations for the entire selection.

Our contributions are as follows. We propose a novel, scal-
able annotation pipeline that uses the similarities between
video frames to accelerate the annotation process. We com-
pare our pipeline to the conventional approaches and quantify
the improvement or explain why the other method cannot
handle such large amounts of data. We use our pipeline in
multiple scenarios, including popular datasets, to find the
best approaches and observe the reliability and usability of
the pipeline.

2. Related Work
Video Understanding. The expected outcomes of video un-
derstanding changed over time [23, 32, 48]. Originally, the
video understanding domain focused on foundational tasks
like determining if an event has occurred and extracting an
event summary [32]. Later, the field evolved into more intri-
cate tasks, including captioning videos with descriptions [1],
answering questions about videos [53] and anticipating the
progression of the videos [13, 48]. The field advancement
in the complexity of tasks brought the need for more ex-
pressive models with increased levels of video interpretation
[6, 57] and sufficiently large datasets [46]. However, these
large datasets take a long time to be manually curated. Given

the advancements in action recognition and temporal action
localization, we believe the curation of the datasets can be
sped up.
Action Recognition. Action recognition is a task that fo-
cuses on identifying and categorizing human activities or
interactions within videos. Recent action recognition models
incorporate 3D convolutional networks [25], such as I3D [8],
C3D [49], and Slow-Fast [12]. In addition, attention-based
architectures emerged as noteworthy alternatives, demon-
strating competitive efficacy in action recognition tasks. No-
table examples encompass ViViT [3], TimeSformer [5], and
Video Swin Transformer [36, 46]. These models work great
on trimmed videos with mostly a single action class per
video. Usually, the videos used come only from a small set
of commonly used datasets, like Kinetics [27], Something-
Something [16], and ActivityNet [7]. However, real-world
videos are not neatly trimmed and typically involve multi-
ple sub-actions. Therefore, deep learning researchers started
exploring untrimmed videos and temporally localizing the
actions in videos.
Temporal Action Localization. Temporal Action Localiza-
tion (TAL) is a video understanding task that aims at split-
ting and categorizing the temporal intervals in untrimmed
videos. Afterwards, it outputs each action’s start and end
time and the action category [10, 22, 54]. The most popular
deep-learning techniques for TAL can be classified depend-
ing on the design method into anchor-based methods [43],
boundary-based methods [34], and query-based methods
[22, 35]. Query-based methods are the most recent and natu-
rally perform best when trained with large enough datasets
[54, 59]. However, large annotated datasets are not available
for some real-world specific actions, like tennis videos [20]
or network data [17].
Temporal Video Annotations. Temporal video annotation,
also called event annotation [44], is the process of marking
temporal regions of interest in a video. The conventional
method for tackling this task involves employing dataset-
specific software entirely controlled by a human oracle
[9, 24]. Moreover, the annotation of videos is linear as the
human oracle has to annotate one video at a time. Imagine a
person tasked with annotating numerous hours of video con-
tent. Each video must be watched entirely to create accurate
annotations, requiring significant time and attention.

There exists general software for this task [4, 11, 18,
29, 55]. For example, VIA [11] is an open-source platform
where users can annotate videos in multiple ways, including
temporal annotations. The learning curve for the platforms is
steep and the annotation process remains linear at best [40].

The progress in video understanding offers the opportu-
nity for automating parts of the video annotation process.
NOVA [19] brings semi-automation and explainability to the
annotation process. However, the method does not solve the
cold-start problem. The cold-start problem means that even

the most efficient TAL models need huge amounts of data to
perform satisfactorily. The performance is not presented in
the paper [19] and we expect the gain in annotation speed to
be neglectable for most tasks. FEVA [44] tries to solve the
steep learning curve of annotation software for human ora-
cles. Nevertheless, FEVA is still linear in terms of annotation
time. t-EVA [40] introduces the possibility of better-than-
linear annotation speed while keeping satisfactory accuracy.
t-EVA uses a lasso tool on pre-extracted features embedded
in a 2D space. While this approach offers several advantages,
it still suffers from certain drawbacks. One of the drawbacks
is the speed of creating the embedding [39]. Another draw-
back is the impossibility of visualizing a growing amount
of features in the 2D space. Essentially, you’re constrained
by the size of your canvas, represented by the dimensions
of your monitor. In our paper, the problems of time and di-
mension are solved by using pre-extracted features and a
hierarchical dimensionality reduction technique.
Feature Extraction. Query-based methods for temporal
action localization use features extracted using techniques
from action recognition. For example, ActionFormer [59]
uses different visual features extracted with various back-
bones depending on the dataset. For the ActivityNet 1.3
dataset, [14] ActionFormer uses visual features from the
R(2+1)D-34 model [50]. Moreover, for the EPIC Kitchens
100 dataset [9] ActionFormer uses visual features from Slow-
Fast. It becomes evident that an effective annotation solution
is agnostic to the underlying model and leverages various
types of visual features.
Dimensionality Reduction. Dimensionality reduction tech-
niques can be classified into two categories: linear and non-
linear methods [42]. Two of the most popular linear methods
are PCA [2] and LDA [58]. Linear methods are widely used
for their simplicity and efficiency. The main idea of these
methods is to retain the most critical information from the
original dataset.

As deep learning advances, the significance of image
and video datasets has become paramount. Linear relations
are not enough to deal with this complex data. Non-linear
methods make it possible to reveal patterns in the data. t-
Distributed Stochastic Neighbor Embedding (t-SNE) [51]
is a non-linear dimensionality reduction technique that pre-
serves pairwise similarities between data points in the high
and low-dimensional spaces. While t-SNE is versatile and
applies to many use cases, it has significant limitations for
our application.

A major drawback of t-SNE for video annotation is its
difficulty in visualizing large datasets in a fixed 2D space. As
the number of data points increases, the 2D visualization be-
comes cluttered and less informative, making it challenging
for annotators to distinguish between different actions. This
issue, which we call overflowing, occurs when the number
of data points to be visualized exceeds the limits of what can

Input:
Pre-extracted
features

Create HSNE
Dig into the
Hierarchy &
Annotate

Output:
Temporal
Action
Annotations

Figure 2. The figure depicts an overview of our annotation pipeline.
(1) The model-agnostic pre-extracted features are used as input
in the analysis. (2) The HSNE (Hierarchical Stochastic Neighbor
Embedding) analysis is created. (3) Human-in-the-loop approach
for digging into the hierarchy and annotating at the deepest scale.
(4) Temporal Action Annotations are outputted in JSON format.

be meaningfully displayed in a 2D space.
Moreover, the performance of t-SNE degrades quickly in

terms of speed and visualization quality with larger datasets
[39]. Given our motivation to improve annotation speed and
handle large video datasets, this performance degradation is
a significant drawback for our use case.

UMAP, another non-linear dimensionality reduction tech-
nique, promises to solve these issues. However, it was demon-
strated that UMAP suffers from the same problems as the
best-performing variants of t-SNE [30].

A technique called Hierarchical Stochastic Neighbor Em-
bedding (HSNE) [39] addresses both the time performance
issues and the overflowing problem. On the MNIST dataset
[33], HSNE performs more than ten times faster than t-SNE
alone [39]. Additionally, HSNE, being a hierarchical tech-
nique, effectively tackles the 2D space limitations for dis-
playing embeddings, thus solving the overflowing problem.
These properties make HSNE suitable for our goal of creat-
ing a fast and scalable video annotation pipeline.

3. The Annotation Pipeline

Here, we present and motivate the components of our anno-
tation pipeline. Figure 2 gives an overview of the pipeline.
The pipeline, which follows a human-in-the-loop approach,
takes as input extracted features and outputs temporal ac-
tion annotations, ready to be visualised and further refined
in open-source software like VIA [11]. In addition, our ap-
proach can handle features from trimmed and untrimmed
videos, making it suitable for real-world applications.

3.1. Feature Extraction

To get the best performance of our tool, pre-processing the
videos for feature extraction has to be done. Video frames
are also accepted as input, but the speed and accuracy de-
crease considerably. The main reasons for preferring features
over frames are the size and the accuracy. Extracted features
convey several frames’ information in a single feature vec-
tor, usually of size 2048, making it easier to process. On

the other hand, a single RGB frame of size 320x180 takes
approximately 172 800 values. The increased data size when
using plain frames impacts the performance of the dimen-
sionality reduction algorithm and constrains the number of
videos that can be processed simultaneously.

Our pipeline is feature-agnostic. This means that any
video features can be used, as long as they have a fixed
length. Usually, the features come from pre-trained action
recognition models, like two-stream I3D [8], R(2+1)D [50]
and SlowFast [12]. Naturally, the features’ quality and the
dataset influence the dimensionality reduction algorithm, and
implicitly the pipeline performance.

3.2. t-distributed Stochastic Neighbor Embedding
(t-SNE)

t-distributed Stochastic Neighbor Embedding (t-SNE) is a
non-linear dimensionality reduction technique for visualising
high-dimensional data in a lower-dimensional space [51]. In
our annotation pipeline, we use t-SNE to visualise the high-
dimensional features on the 2-dimensional screen. More
specifically, any time the user wants to visualise a subset of
the points, t-SNE creates a 2d embedding. Here, we give an
overview of how t-SNE creates this embedding. For a more
detailed explanation of the original method, we refer to the
original work [51], whereas for how t-SNE works in detail
inside HSNE, we refer to this paper [39]. The main steps of
t-SNE are:
1. Compute pairwise similarities between all high-

dimensional points using a Gaussian kernel.
2. Transform pairwise similarities into joint probabilities by

normalizing the similarities for each data point.
3. Define a similar set of joint probabilities in the low-

dimensional space and optimize the positions of low-
dimensional points.

4. Visualize the data by plotting the low-dimensional em-
bedding.
t-SNE is a powerful and versatile technique, however, it

cannot handle the overflowing problem alone. More specif-
ically, t-SNE cannot embed large datasets with too many
points. Therefore, we employ Hierarchical Stochastic Neigh-
bor Embedding to solve this problem.

3.3. Hierarchical Stochastic Neighbor Embedding
(HSNE)

Hierarchical Stochastic Neighbor Embedding (HSNE) is a
dimensionality reduction technique. It is an SNE technique
and solves the problem of speed and space required to vi-
sualize large datasets. Here, we give an overview of how
the method works. For a more in-depth explanation, we re-
fer to the original work which introduces the technique and
provides an implementation [39].

The core concept of HSNE involves operating across mul-
tiple scales or levels, denoted by the user-specified parameter

Scale 1
(dataset)

Landmarks
L1

Landmarks
LS

Scale S
(displayed first)

S-2
 Scales

Figure 3. A visualisation of how the landmarks and scales work in
HSNE. The area of influence of the landmarks in Scale S can be
seen in Scale 1. The number of intermediate scales varies depending
on the user-specified S parameter.

S, rather than embedding all high-dimensional data points
into a single 2-dimensional scale. The algorithm identifies
landmarks at each scale and utilizes t-SNE to project them
into a 2D space for visualization. Figure 3 describes the
intuition behind how scales and landmarks work in HSNE.

Intuitively, the main steps of the HSNE method are:
1. The Euclidean distances between the high-dimensional

data points are computed. The distances are used to cal-
culate each point’s k-nearest neighbourhood (KNN) and
create a KNN graph.

2. The KNN graph is used to select the landmarks or points
in the next scale.

3. For each landmark, an area of influence over the points
in the previous scale is computed.

4. Overlaps in the areas of influence are used to create simi-
larities between the points at the new scale. Steps 3 and 4
are repeated to create landmarks for each scale.

5. Similarities are used on request to create an embedding
using t-SNE. The embedding is used for annotating when
HSNE is integrated into the annotation platform.

3.4. Annotation Platform

The annotation platform is built on top of the Python wrap-
per of the HSNE implementation [39]. As in the original
implementation, the user can select the number of scales and
iterations for each t-SNE analysis and optionally input text
labels to improve the visualisation.

The implementation was modified to visualize frames
while hovering over points in the HSNE analysis. For each

feature vector, a representative frame is pre-extracted from
the video. This does not influence the HSNE algorithm but
facilitates the annotation process. Moreover, keyboard short-
cuts were added to enable the annotation process, using a
lasso tool and a pop-up window for text input.

4. Experiments
Our video annotation pipeline leverages pre-extracted fea-
tures and dimensionality reduction to accelerate and en-
hance the process of creating temporal action annotations.
Through experiments, we aim to empirically demonstrate
the pipeline’s effectiveness on real-world video data, inves-
tigate the impact of the advanced dimensionality reduction
technique and compare the pipeline’s performance against
existing linear annotation tools. Specifically, we seek to an-
swer the following questions:
1. Annotation Effort Improvement. How much improve-

ment in annotation effort can be achieved compared to
traditional annotation methods?

2. Pipeline Performance and Feature Quality. What is
the best achievable performance using our pipeline, and
how much does the quality of input features influence the
annotation process?

3. Impact of Landmark Selection. Does the landmarks se-
lection of Hierarchical Stochastic Neighbour Embedding
(HSNE) impact the pipeline, and how does it compare to
simpler approaches?

4. Optimal Number of Scales. What is the optimal number
of scales to use in HSNE for balancing annotation effort
and purity in a specific dataset?

5. Impact of Displayed Points. How does the number of
points displayed on the screen affect the annotation ex-
perience, and what is the recommended setting for two
specific datasets?

We conducted experiments using features extracted with
various techniques from different datasets to evaluate the
pipeline’s performance across multiple scenarios.

4.1. Datasets & Features Used

We used features extracted from three datasets throughout the
experiments: a synthetically generated dataset, Thumos14
[24] and Epic-Kitchens-100 [9].
Synthetic Features. The synthetic dataset was created to
investigate the pipeline’s performance under ideal condi-
tions with perfect features. We created the synthetic data to
match the class distribution of the THUMOS14 test set. This
process led to the ratio between Background and Actions
in Figure 7a. To design the features, we created a one-hot
encoding for the 21 classes present in THUMOS14. The
one-hot encodings mimicked the ground truth label of the
features extracted from the THUMOS14 test set. Afterwards,
we added Gaussian noise to the features. Gaussian noise was

THUMOS14 EPIC-KITCHENS-100
Datasets

0

20

40

60

80

100

Pe
rc

en
ta

ge

Percentages of Background and Actions
Background
Action

Figure 4. The ratios between Background and Actions in the videos
from THUMOS14 and EPIC-KITCHENS-100. EPIC-KITCHENS-
100 is more action-dense than THUMOS14.

created by sampling 21 times for each feature vector from
a Gaussian distribution with the mean at 0 and a standard
deviation of 1.
THUMOS14 Features. THUMOS14 is a large-scale dataset
for temporal action localization in untrimmed videos, with
multilabel videos from 20 sport action classes. We used the
features included in the ActionFormer paper [59], extracted
from the THUMOS14 test set. The features were extracted
from two-stream I3D models [8] pre-trained on Kinetics [8],
utilizing 16-frame clips at 30 fps and a stride of 4 frames.
This configuration gave a single feature vector every 0.1333
seconds. The total amount of videos used for extraction
was 213, which amounted to roughly 12 hours of videos.
The ratio between Background and Actions in the videos
corresponding to the features can be seen in Figure 7a.
Epic-Kitchens-100 Features. EPIC-Kitchens-100 is a chal-
lenging egocentric video dataset captured from wearable
cameras in kitchen environments, containing 97 verb classes.
We used the features from the ActionFormer paper [59],
extracted from the EPIC-Kitchens-100 validation set. We
chose to use the validation set, as the test set’s labels were
unavailable. The features were extracted using the Slow-
Fast model pre-trained on the training set of EPIC Kitchens
100 for action classification. This process involved utilizing
32-frame clips at a frame rate of 30 fps with a stride of 16
frames. Therefore, the process yielded a singular feature vec-
tor approximately for every 0.5333 seconds of videos. The
total amount of videos used for extraction was 138, which
amounted to more than 13 hours of videos. The ratio be-
tween Background and Actions in the videos corresponding
to the features can be seen in Figure 7b. The ratio shows how
action-dense the dataset is compared to THUMOS14.

Tennis
Points

Forehands Backhands Serves

Top-Spin
Forehands

Sliced
Forehands

Flat
Forehands

1

2 4

5
6

3

Scale 3

Scale 2

Scale 1

Figure 5. Exp 1: A visualisation of how DFS drilling in HSNE for
a tennis dataset would look. The numbers represent the order in
which DFS traverses the tree.

4.2. Exp 1: Annotation Effort Improvement

Temporal video annotations are time-consuming and require
a lot of human effort. In this experiment, we investigate how
much effort users can save using our pipeline compared to
traditional annotation methods. How much improvement in
annotation effort can be achieved compared to conventional
annotation methods? To answer this question, we estimated
the effort needed to annotate videos using our pipeline and a
conventional method, the VIA tool [11].

To estimate the effort needed for annotating with VIA we
used the ground truth labels of the videos from the THU-
MOS14 test set. We assumed that for every action segment
we wanted to annotate a button had to be clicked once. This
is a lower bound, as we have seen in our experience that
the VIA tool requires multiple clicks to adjust the anno-
tated segment in the desired way. Moreover, VIA is a linear
method. The linearity of VIA means that each video has to
be annotated separately and no speed-up can be achieved.

To estimate the effort needed for annotating with our tool
we used the ground truth labels of the features from the
THUMOS14 test set. The interaction with the system had to
be automated. To automate the drilling part of our pipeline,
we used the Agglomerative Clustering algorithm with the
Single linkage criterion [45] from the Scikit-Learn library
[38].

The Single linkage criterion defines the distance between
two clusters as the minimum of the distances between all
pairs of elements. We chose this technique for its ability
to create uneven cluster sizes, suitable for our imbalanced
classes in the dataset. In this experiment, the Background
pseudo-class played a role in unbalancing the clusters’ sizes.

Moreover, Agglomerative Clustering - Single linkage
works well on non-globular data, which is the case for us.
We used the expected number of distinct labels present to
choose the number of clusters. To mimic the drilling process
of a human in the HSNE analysis, we had to choose a tree
traversal algorithm. We went with the Depth-First Search
(DFS), assuming that is how a human would use the system.
An example of how drilling in a tennis dataset would look
can be seen in Figure 5.

100 101 102 103

Effort (clicks)

0

20

40

60

80

100

To
ta

l p
er

ce
nt

ag
e

an
no

ta
te

d

Estimated Effort Required for Annotating THUMOS14
Our pipeline
Traditional Method (Linear)

Figure 6. Exp 1: Estimated effort in clicks needed to annotate the
test set of THUMOS14 using our pipeline and a traditional linear
method. The results show a more than 10 times improvement when
using our method.

Results in Figure 6 show a significant improvement in
estimated effort when using our pipeline compared to a tra-
ditional linear method. The figure shows an estimate of how
many clicks are needed to annotate the test set of THU-
MOS14 with both methods. The Total Percentage Annotated
represents the mean percentage of each class annotated.

The jump in our method at around 100 clicks is attributed
to the uneven cluster sizes created by the Agglomerative
Clustering and uneven class distribution in the test set. This
claim was verified by manually annotating a subset of the
data. We conclude that our method shows more than a 10x
improvement in effort when annotating more than 12 hours
of videos.

4.3. Exp 2: Pipeline Performance & Feature Quality

As the pipeline takes features as input, the quality of these
features inherently influences the pipeline’s performance. In
this experiment, we observe how the pipeline would work
with perfect synthetic features. This way, we can answer the
question: What is the best achievable performance using our
pipeline, and how does the quality of input features influence
the annotation process?

An example of the difference between perfect features
and the test set features can be seen in Figure 7. The fig-
ure presents the last scale in a 3-scale HSNE analysis. We
observe when using the perfect features how the different
classes and the background are perfectly separated. In the
case of THUMOS14 features, the different classes are mostly
separated, however, the Actions and Background are not yet
separated at this scale. Since these classes are not separated
from the last scale, the human annotator must do more work

(a) Synthetic Features. (b) THUMOS14 Features.

Figure 7. Exp 2: Last scale in a 3-Scale HSNE analysis. With synthetic features, the different classes and the Background (brown) are
perfectly separated. With THUMOS14 features, the different classes are mostly separated, however, the Background (brown) is not separated
from the actions.

0 20 40 60 80 100 120 140 160
Effort (clicks)

0

20

40

60

80

100

To
ta

l p
er

ce
nt

ag
e

an
no

ta
te

d

Estimated Effort Required for Annotating
Perfect Features
THUMOS14 Features

Figure 8. Exp 2: An estimation of effort required to annotate the
test set of THUMOS14. Perfect features represent the synthetic
features, created as explained in 4.1. The THUMOS14 features
correspond to the test set features of the THUMOS14 dataset. The
plot shows a 50% possible improvement in terms of effort achieved
by increasing the feature quality.

throughout the scales to annotate.

Figure 8 shows an upper bound in the pipeline’s perfor-
mance. This performance could be achieved just by improv-
ing the features’ quality in terms of distinguishing between
different action classes and between background and action
in the videos. We estimate a 50% reduction of effort when
using perfect features compared to the features we used for
the THUMOS14 test set. In summary, higher-quality input
features that can effectively separate different action classes
and backgrounds from actions have the potential to signifi-
cantly improve the performance of the annotation pipeline
and reduce the effort of the human annotator.

4.4. Exp 3: Impact of Landmark Selection

A significant part of the HSNE analysis is selecting meaning-
ful landmarks at each scale. In this experiment, we explain
how the landmark selection process works in our pipeline.
Moreover, we answer the question: does the landmarks se-
lection of Hierarchical Stochastic Neighbour Embedding
(HSNE) impact the pipeline, and how does it compare to
simpler approaches?

In HSNE, the landmarks are the subset of data points
selected and displayed at each scale of the hierarchical em-
bedding. These points have to be representative of the global
structure and density patterns of the high-dimensional data.
HSNE identifies landmark points as those that have a high
number of neighbours with other points. This allows HSNE
to select landmarks that are central to dense data clusters and
to avoid choosing outliers as landmarks.

Uniform sampling. To assess how the selection method
used by HSNE affects our pipeline, we replace this selec-
tion procedure with a baseline, uniform sampling. Then, we
compare the effort estimations when annotating the THU-
MOS14 test set. The uniform sampling strategy follows the
hierarchical structure of HSNE. In a 3-scale analysis with
uniform sampling, the ratio of landmarks is 1:25:125. This
means that each landmark at Scale 3 maps to 25 landmarks
at Scale 2 and to 125 landmarks at Scale 1.

Figure 9 presents an effort estimation of annotating the
THUMOS14 test set. In this estimation, the only variable
that changed was the landmark selection strategy. The plot
shows that the landmark selection strategy used by HSNE
brought a 13% improvement in effort compared to the uni-
form sampling strategy on the THUMOS14 test set. More-
over, HSNE’s landmark selection strategy helps the human
annotator understand the data better by displaying informa-
tive landmarks at each scale. Therefore, the effort required
from the human annotator would be smaller thanks to HSNE.

0 25 50 75 100 125 150 175
Effort (clicks)

0

20

40

60

80

100

To
ta

l p
er

ce
nt

ag
e

an
no

ta
te

d

Estimated Effort Required for Annotating THUMOS14 Test Set
Uniform Sampling
HSNE

Figure 9. Exp 3: The estimated effort required to annotate the
THUMOS14 test set using extracted features. Uniform sampling
represents the baseline landmark selection strategy, where each
point at Scale 3 maps to 125 points at Scale 1. The plot shows
a 13% improvement when using the HSNE landmark selection
strategy.

4.5. Exp 4: Optimal Number of Scales

When inputting the features in the pipeline, the user has to
choose how many scales the HSNE analysis is going to have.
This number must be chosen depending on multiple factors,
including the dataset, the input features and the granularity
desired for annotation. For example, imagine you want to
annotate a tennis dataset. You will need more scales if you
want to annotate all the different shots compared to only
annotating when a ball is hit.

In this experiment, we want to find the optimal number
of scales needed when annotating using the THUMOS14
features, described in subsection 4.1. This way, we want to
answer the following question: What is the optimal number
of scales to use in HSNE for balancing annotation effort and
purity in a specific dataset?

In this experiment, we calculate purity per scale when
using THUMOS14 features. The purity per scale was calcu-
lated using the formula

Purityscale =
1

E

E∑
e = 1

(
1

Ne

ke∑
i=1

maxj |ci ∩ tj |

)
where:
• E is the number of embeddings at this scale;
• Ne is the number of points in this embedding;
• ke is the number of clusters in this embedding;
• ci is a cluster in this embedding;
• tj is the ground truth label of this cluster.
The drilling was done using the Agglomerative Clustering -
Single Linkage algorithm.

Sca
le

2

Sca
le

1

Sca
le

3

Sca
le

2

Sca
le

1

Sca
le

4

Sca
le

3

Sca
le

2

Sca
le

1
0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Sc
al

e
Pu

rit
y

Grouped Purities per Analysis for THUMOS14
2-Scale Analysis
3-Scale Analysis
4-Scale Analysis

Figure 10. Exp 4: The average scale purity for scales in 2-Scale,
3-Scale and 4-Scale analyses with THUMOS14 features. The plot
shows that 3 Scales is the perfect balance between purity and effort
when annotating the THUMOS14 test set.

Figure 10 presents the average purity per scale when us-
ing THUMOS14 features for the HSNE analysis. The plot
bar plot presents 3 types of analyses: 2-Scale, 3-Scale and
4-Scale analysis. We see the 4-Scale analysis can reach the
highest purity per scale in Scale 1. However, the improve-
ment compared to the 3-Scale analysis is not significant
enough to justify the added effort required for the human to
drill through the analysis. Then, the 2-Scale cannot achieve
the same level of purity, as the scales have to deal with
more points on average. Therefore, we find that when using
THUMOS14 features, the best choice is a 3-Scale analysis.

4.6. Exp 5: Impact of Displayed Points

After the drilling in the hierarchy has been done, the final step
in the annotation pipeline is to annotate the landmarks in the
first scale. To do this, the human annotator has to draw using
a lasso tool. Intuitively, the difficulty of this process depends
on multiple factors, including the dataset, the number of
landmarks displayed and the level of granularity expected for
the annotations. Out of these factors, the only factor we can
influence is the number of displayed points by our pipeline.
Naturally, we want to answer the following questions: How
does the number of points displayed on the screen affect the
annotation experience, and what is the recommended setting
for two specific datasets?

The number of displayed landmarks on the first scale is
based on the total number of points and how the drilling
was performed. Separating clusters while drilling results in
fewer points displayed at once at the first scale. However, the
drilling process also takes cognitive effort from the human
annotator. Therefore, if we can find a desirable range for

0 5 10 15 20 25
Effort (clicks)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

To
ta

l p
er

ce
nt

ag
e

an
no

ta
te

d

Effort required for annotating - THUMOS14
3 scales - Test features - Automatic Drilling - Average 50000 points on screen
3 scales - Test features - Automatic Drilling - Average 25000 points on screen
3 scales - Test features - Manual Drilling

Figure 11. Exp 5: The total percentage we could annotate with 25
clicks when using manual and automatic drilling on THUMOS14.
It is visible that automatic drilling can save effort.

the amount of landmarks displayed, we can automate the
drilling process and save effort.

We start this experiment by manually drilling and anno-
tating 25 times. We then try to empirically find the right
amount of points to be displayed for the THUMOS14 and
Epic-Kitchens-100 datasets using automatic drilling.

The automatic automatic drilling was performed using
KMeans clustering, from the Scikit-Learn library [38]. We
chose this method for its ability to create regular clusters,
mimicking a basic approach taken by a human annotator.
KMeans takes the number of clusters to find as a parameter.
We vary this number based on how many displayed points
we want to have at the first scale on average.

Figure 11 shows how much percentage we were able to
annotate in 25 steps using THUMOS14. We found that on
average 25000 to 50000 landmarks was the right amount of
displayed points for this dataset. We also tried more than
50000 landmarks displayed on average and the annotation
process became infeasible. Moreover, we found that drilling
can be done automatically, without affecting the annotation
process. This way we could save effort and annotate more
with the same amount of clicks.

To verify that the automatic drilling works, we annotated
again for 25 clicks on Epic-Kitchens-100. We found the
range of displayed points for this case to be between 10000
and 15000. The results are presented in figure 12. We cannot
compare the results between Epic-Kitchens-100 and THU-
MOS14 as the datasets’ difficulty and the features’ quality
are completely different. Nevertheless, we can conclude that
automatic drilling works on both datasets and can save effort
without impacting the annotation process.

5. Conclusion
Our proposed video annotation pipeline demonstrates signif-
icant potential for accelerating temporal action annotations.

0 5 10 15 20 25
Effort (clicks)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

To
ta

l p
er

ce
nt

ag
e

an
no

ta
te

d

Effort required for annotating - Epic-Kitchens-100
3 scales - Manual Drilling
3 scales - Automatic Drilling - 15000 points on screen
3 scales - Automatic Drilling - 10000 points on screen

Figure 12. Exp 5: The total percentage we could annotate with 25
clicks when using manual and automatic drilling on Epic-Kitchens-
100. It is visible that automatic drilling can save effort.

By using pre-extracted features and hierarchical dimension-
ality reduction, we achieve more than 10 times improvement
in annotation effort compared to traditional annotation meth-
ods. Our experiments across multiple datasets highlight the
effectiveness of our approach when used on datasets with
multiple similar videos and provide insights into optimizing
the pipeline for different scenarios.

One limitation of our annotation pipeline is the depen-
dency on the quality of pre-extracted features. Additionally,
the need for manual tuning of pipeline parameters for op-
timal results in different scenarios can be time-consuming
and may require expert knowledge. Furthermore, our current
evaluation is based on the number of clicks, as an approxi-
mation of the cognitive effort necessary for the annotator to
complete the task.

Future work directions should include conducting a user
study to evaluate the usability of the annotation pipeline and
quantify the improvement in terms of annotation quality and
cognitive effort compared to traditional annotation methods.
Afterwards, the annotation pipeline can be used to create new
datasets and eventually automatically adapt the pipeline’s
parameters based on scenario characteristics.

To conclude, our work provides a promising foundation
for addressing the challenge of efficiently annotating large-
scale video datasets. As video understanding tasks continue
to evolve and demand larger, more diverse datasets, scal-
able annotation methods like ours will play a crucial role in
advancing the field and its real-world applications.

References
[1] Moloud Abdar, Meenakshi Kollati, Swaraja Kura-

parthi, Farhad Pourpanah, Daniel McDuff, Mohammad
Ghavamzadeh, Shuicheng Yan, Abduallah Mohamed, Abbas
Khosravi, Erik Cambria, and Fatih Porikli. A review of deep
learning for video captioning, 2023. 2

[2] Hervé Abdi and Lynne J Williams. Principal component anal-
ysis. Wiley interdisciplinary reviews: computational statistics,
2(4):433–459, 2010. 3

[3] Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun,
Mario Lučić, and Cordelia Schmid. Vivit: A video vision
transformer. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 6836–6846, 2021. 2

[4] Olivier Aubert, Yannick Prié, and Daniel Schmitt. Advene
as a tailorable hypervideo authoring tool: a case study. In
Proceedings of the 2012 ACM symposium on Document engi-
neering, pages 79–82, 2012. 2

[5] Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is
space-time attention all you need for video understanding? In
ICML, page 4, 2021. 2

[6] Paulo Vinicius Koerich Borges, Nicola Conci, and Andrea
Cavallaro. Video-based human behavior understanding: A
survey. IEEE transactions on circuits and systems for video
technology, 23(11):1993–2008, 2013. 2

[7] Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem, and
Juan Carlos Niebles. Activitynet: A large-scale video bench-
mark for human activity understanding. In Proceedings of the
ieee conference on computer vision and pattern recognition,
pages 961–970, 2015. 2

[8] Joao Carreira and Andrew Zisserman. Quo vadis, action
recognition? a new model and the kinetics dataset. In pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 6299–6308, 2017. 2, 4, 5

[9] Dima Damen, Hazel Doughty, Giovanni Maria Farinella, An-
tonino Furnari, Evangelos Kazakos, Jian Ma, Davide Molti-
santi, Jonathan Munro, Toby Perrett, Will Price, et al. Rescal-
ing egocentric vision: Collection, pipeline and challenges for
epic-kitchens-100. International Journal of Computer Vision,
pages 1–23, 2022. 2, 3, 5

[10] Guodong Ding, Fadime Sener, and Angela Yao. Temporal
action segmentation: An analysis of modern techniques. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
2023. 2

[11] Abhishek Dutta and Andrew Zisserman. The via annotation
software for images, audio and video. In Proceedings of
the 27th ACM international conference on multimedia, pages
2276–2279, 2019. 1, 2, 3, 6

[12] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and
Kaiming He. Slowfast networks for video recognition. In
Proceedings of the IEEE/CVF international conference on
computer vision, pages 6202–6211, 2019. 2, 4

[13] Antonino Furnari and Giovanni Maria Farinella. Rolling-
unrolling lstms for action anticipation from first-person video.
IEEE transactions on pattern analysis and machine intelli-
gence, 43(11):4021–4036, 2020. 2

[14] Bernard Ghanem, Juan Carlos Niebles, Cees Snoek,
Fabian Caba Heilbron, Humam Alwassel, Victor Escorcia,
Ranjay Krishna, Shyamal Buch, and Cuong Duc Dao. The
activitynet large-scale activity recognition challenge 2018
summary. arXiv preprint arXiv:1808.03766, 2018. 3

[15] Rohit Girdhar and Kristen Grauman. Anticipative video trans-
former. In Proceedings of the IEEE/CVF international con-
ference on computer vision, pages 13505–13515, 2021. 1

[16] Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michalski,
Joanna Materzynska, Susanne Westphal, Heuna Kim, Valentin
Haenel, Ingo Fruend, Peter Yianilos, Moritz Mueller-Freitag,
et al. The” something something” video database for learning
and evaluating visual common sense. In Proceedings of the
IEEE international conference on computer vision, pages
5842–5850, 2017. 2

[17] Jorge Luis Guerra, Carlos Catania, and Eduardo Veas.
Datasets are not enough: Challenges in labeling network traf-
fic. Computers & Security, 120:102810, 2022. 2

[18] Gaudenz Halter, Rafael Ballester-Ripoll, Barbara Flueckiger,
and Renato Pajarola. Vian: A visual annotation tool for film
analysis. In Computer Graphics Forum, pages 119–129. Wi-
ley Online Library, 2019. 2

[19] Alexander Heimerl, Tobias Baur, Florian Lingenfelser, Jo-
hannes Wagner, and Elisabeth André. Nova-a tool for explain-
able cooperative machine learning. In 2019 8th International
Conference on Affective Computing and Intelligent Interac-
tion (ACII), pages 109–115. IEEE, 2019. 2, 3

[20] Kristina Host and Marina Ivašić-Kos. An overview of hu-
man action recognition in sports based on computer vision.
Heliyon, 8(6), 2022. 2

[21] Emil Hovad, Therese Hougaard-Jensen, and Line Ka-
trine Harder Clemmensen. Classification of tennis actions
using deep learning. arXiv preprint arXiv:2402.02545, 2024.
1

[22] Kai Hu, Chaowen Shen, Tianyan Wang, Keer Xu, Qingfeng
Xia, Min Xia, and Chengxue Cai. Overview of temporal
action detection based on deep learning. Artificial Intelligence
Review, 57(2):26, 2024. 2

[23] De-An Huang, Vignesh Ramanathan, Dhruv Mahajan,
Lorenzo Torresani, Manohar Paluri, Li Fei-Fei, and Juan Car-
los Niebles. What makes a video a video: Analyzing temporal
information in video understanding models and datasets. In
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 7366–7375, 2018. 2

[24] Haroon Idrees, Amir R Zamir, Yu-Gang Jiang, Alex Gorban,
Ivan Laptev, Rahul Sukthankar, and Mubarak Shah. The
thumos challenge on action recognition for videos “in the
wild”. Computer Vision and Image Understanding, 155:1–23,
2017. 2, 5

[25] Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 3d convolu-
tional neural networks for human action recognition. IEEE
transactions on pattern analysis and machine intelligence, 35
(1):221–231, 2012. 2

[26] Vishal Kaushal, Rishabh Iyer, Suraj Kothawade, Rohan Ma-
hadev, Khoshrav Doctor, and Ganesh Ramakrishnan. Learn-
ing from less data: A unified data subset selection and active
learning framework for computer vision. In 2019 IEEE Win-
ter Conference on Applications of Computer Vision (WACV),
pages 1289–1299. IEEE, 2019. 1

[27] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,
Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,
Tim Green, Trevor Back, Paul Natsev, et al. The kinetics hu-
man action video dataset. arXiv preprint arXiv:1705.06950,
2017. 2

[28] Shuja Khalid, Mitchell Goldenberg, Teodor Grantcharov,
Babak Taati, and Frank Rudzicz. Evaluation of deep learning

models for identifying surgical actions and measuring perfor-
mance. JAMA network open, 3(3):e201664–e201664, 2020.
1

[29] Michael Kipp. Anvil: A universal video research tool. Hand-
book of corpus phonology, pages 420–436, 2014. 2

[30] Dmitry Kobak and George C Linderman. Umap does not
preserve global structure any better than t-sne when using the
same initialization. BioRxiv, pages 2019–12, 2019. 3

[31] Yu Kong and Yun Fu. Human action recognition and predic-
tion: A survey. International Journal of Computer Vision, 130
(5):1366–1401, 2022. 1

[32] Gal Lavee, Ehud Rivlin, and Michael Rudzsky. Understanding
video events: A survey of methods for automatic interpretation
of semantic occurrences in video. IEEE Transactions on
Systems, Man, and Cybernetics, Part C (Applications and
Reviews), 39(5):489–504, 2009. 2

[33] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.
3

[34] Tianwei Lin, Xiao Liu, Xin Li, Errui Ding, and Shilei Wen.
Bmn: Boundary-matching network for temporal action pro-
posal generation. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pages 3889–3898,
2019. 2

[35] Xiaolong Liu, Qimeng Wang, Yao Hu, Xu Tang, Shiwei
Zhang, Song Bai, and Xiang Bai. End-to-end temporal ac-
tion detection with transformer. IEEE Transactions on Image
Processing, 31:5427–5441, 2022. 1, 2

[36] Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie,
Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, et al.
Swin transformer v2: Scaling up capacity and resolution. In
Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 12009–12019, 2022. 2

[37] Md Moniruzzaman, Syed Mohammed Shamsul Islam, Mo-
hammed Bennamoun, and Paul Lavery. Deep learning on
underwater marine object detection: A survey. In Advanced
Concepts for Intelligent Vision Systems: 18th International
Conference, ACIVS 2017, Antwerp, Belgium, September 18-
21, 2017, Proceedings 18, pages 150–160. Springer, 2017.
1

[38] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B.
Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M.
Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011. 6, 9

[39] Nicola Pezzotti, Thomas Höllt, B Lelieveldt, Elmar Eisemann,
and Anna Vilanova. Hierarchical stochastic neighbor embed-
ding. In Computer Graphics Forum, pages 21–30. Wiley
Online Library, 2016. 2, 3, 4

[40] Soroosh Poorgholi, Osman Semih Kayhan, and Jan C van
Gemert. t-eva: Time-efficient t-sne video annotation. In Pat-
tern Recognition. ICPR International Workshops and Chal-
lenges: Virtual Event, January 10–15, 2021, Proceedings,
Part IV, pages 153–169. Springer, 2021. 2, 3

[41] Keerthana Rangasamy, Muhammad Amir As’ari, Nur Azmina
Rahmad, Nurul Fathiah Ghazali, and Saharudin Ismail. Deep

learning in sport video analysis: a review. TELKOMNIKA
(Telecommunication Computing Electronics and Control), 18
(4):1926–1933, 2020. 1

[42] G Thippa Reddy, M Praveen Kumar Reddy, Kuruva Laksh-
manna, Rajesh Kaluri, Dharmendra Singh Rajput, Gautam
Srivastava, and Thar Baker. Analysis of dimensionality re-
duction techniques on big data. Ieee Access, 8:54776–54788,
2020. 3

[43] Zheng Shou, Dongang Wang, and Shih-Fu Chang. Temporal
action localization in untrimmed videos via multi-stage cnns.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 1049–1058, 2016. 2

[44] Snehesh Shrestha, William Sentosatio, Huiashu Peng, Cor-
nelia Fermuller, and Yiannis Aloimonos. Feva: Fast event
video annotation tool. arXiv preprint arXiv:2301.00482, 2023.
1, 2, 3

[45] Robin Sibson. Slink: an optimally efficient algorithm for
the single-link cluster method. The computer journal, 16(1):
30–34, 1973. 6

[46] Ombretta Strafforello, Klamer Schutte, and Jan Van Gemert.
Are current long-term video understanding datasets long-
term? In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 2967–2976, 2023. 2

[47] Badri Narayan Subudhi, Deepak Kumar Rout, and Ashish
Ghosh. Big data analytics for video surveillance. Multimedia
Tools and Applications, 78(18):26129–26162, 2019. 1

[48] Yunlong Tang, Jing Bi, Siting Xu, Luchuan Song, Susan
Liang, Teng Wang, Daoan Zhang, Jie An, Jingyang Lin,
Rongyi Zhu, et al. Video understanding with large language
models: A survey. arXiv preprint arXiv:2312.17432, 2023. 2

[49] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani,
and Manohar Paluri. Learning spatiotemporal features with
3d convolutional networks. In Proceedings of the IEEE inter-
national conference on computer vision, pages 4489–4497,
2015. 2

[50] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann
LeCun, and Manohar Paluri. A closer look at spatiotemporal
convolutions for action recognition. In Proceedings of the
IEEE conference on Computer Vision and Pattern Recogni-
tion, pages 6450–6459, 2018. 3, 4

[51] Laurens Van der Maaten and Geoffrey Hinton. Visualizing
data using t-sne. Journal of machine learning research, 9(11),
2008. 3, 4

[52] Silvia Vinyes Mora and William J Knottenbelt. Deep learning
for domain-specific action recognition in tennis. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition workshops, pages 114–122, 2017. 1

[53] Junke Wang, Dongdong Chen, Chong Luo, Xiyang Dai, Lu
Yuan, Zuxuan Wu, and Yu-Gang Jiang. Chatvideo: A tracklet-
centric multimodal and versatile video understanding system.
arXiv preprint arXiv:2304.14407, 2023. 2

[54] Jan Warchocki, Teodor Oprescu, Yunhan Wang, Alexan-
dru Dămăcuş, Paul Misterka, Robert-Jan Bruintjes, Attila
Lengyel, Ombretta Strafforello, and Jan van Gemert. Bench-
marking data efficiency and computational efficiency of tem-
poral action localization models. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 3008–3016, 2023. 2

[55] Peter Wittenburg, Hennie Brugman, Albert Russel, Alex
Klassmann, and Han Sloetjes. Elan: A professional frame-
work for multimodality research. In 5th international con-
ference on language resources and evaluation (LREC 2006),
pages 1556–1559, 2006. 2

[56] Kelvin Wong, Yanlei Gu, and Shunsuke Kamijo. Mapping
for autonomous driving: Opportunities and challenges. IEEE
Intelligent Transportation Systems Magazine, 13(1):91–106,
2020. 1

[57] Chao-Yuan Wu and Philipp Krahenbuhl. Towards long-form
video understanding. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
1884–1894, 2021. 2

[58] Jieping Ye, Ravi Janardan, and Qi Li. Two-dimensional lin-
ear discriminant analysis. Advances in neural information
processing systems, 17, 2004. 3

[59] Chen-Lin Zhang, Jianxin Wu, and Yin Li. Actionformer: Lo-
calizing moments of actions with transformers. In European
Conference on Computer Vision, pages 492–510. Springer,
2022. 2, 3, 5

3
Background

In this chapter, we lay the foundation for understanding the technical contributions presented in Chapter
2. We begin by introducing Deep Learning [19] and Neural Networks, the driving forces behind many
recent breakthroughs in Artificial Intelligence (AI). Then, we narrow our focus to Computer Vision [52],
specifically video understanding [25].

Within video understanding, we discuss two tasks: action recognition [27] and temporal action local-
ization [63]. These tasks are applied to applications ranging from surveillance systems [50] and au-
tonomous vehicles [31] to human-computer interaction [38] and video retrieval [45]. Moreover, action
recognition and temporal action localization are fundamental tasks to our contributions.

To complete the relevant techniques necessary for understanding our technical contribution, we explain
feature extraction and dimensionality reduction. These techniques are not proprietary to Computer
Vision and have been applied in various domains, ranging from Bioinformatics [57] to Natural Language
Processing (NLP) [60] and signal processing [3].

Finally, we discuss the annotation process with different data types, focusing on video data. Moreover,
we look into the most popular annotation tools, while specifying the ones which can also be applied to
our task, temporal video annotation.

3.1. Deep Learning & Neural Networks
Deep Learning is a subset of Machine Learning that focuses on neural networks inspired by the struc-
ture and function of the human brain [33]. Neural networks have improved the state-of-the-art in multiple
domains including computer vision [30], natural language processing [14], speech recognition [39], and
game playing [46].

The fundamental unit of a neural network is the neuron, a simplified model of its biological counterpart.
A neuron receives inputs x1, x2, . . . , xn, each associated with a weight w1, w2, . . . , wn, as seen in Figure
3.1. The neuron computes a weighted sum of its inputs and applies an activation function f to produce
an output y:

y = f

(
n∑

i=1

wixi + b

)
(3.1)

Here, b is a bias term that allows the neuron to adjust its output independently of its inputs. The
activation function f introduces non-linearity, enabling the network to learn complex patterns. Common
activation functions include:

15

3.1. Deep Learning & Neural Networks 16

Figure 3.1: A neural network with an input layer, a hidden layer and an output layer. [1]

• Sigmoid: f(x) = 1
1+e−x

• Hyperbolic Tangent (tanh): f(x) = ex−e−x

ex+e−x

• Rectified Linear Unit (ReLU): f(x) = max(0, x)

The layers in Figure 3.1 are fully connected or dense layers, where each neuron connects to every
neuron in adjacent layers. This architecture requires input data to be in vector form. For images, this
means flattening the 2D grid of pixels into a 1D vector. However, this flattening process disrupts the
spatial relationships among pixels, causing a loss of valuable information about local patterns and
object layouts. This limitation of fully connected layers for image data motivated the development of
architectures like Convolutional Neural Networks (CNNs) that preserve spatial context.

3.1.1. Convolutional Neural Networks
Convolutional Neural Networks (CNNs) are a class of deep learning models particularly effective for
processing data with grid-like topology, such as images or time series. Unlike fully connected networks,
CNNs leverage three key ideas: local receptive fields, shared weights, and pooling [65]. A model
architecture can be seen in Figure 3.2.

Figure 3.2: A model CNN architecture. [43]

3.1. Deep Learning & Neural Networks 17

The core building block of a CNN is the convolutional layer. Instead of connecting every input to every
neuron, each neuron in a convolutional layer connects to a small, local region of the input, called the
receptive field. The neuron applies a set of learnable weights, called a kernel, to this region. Pooling
layers, typically inserted between convolutional layers, downsample feature maps. They apply a fixed
operation, like max or average, over local neighbourhoods, reducing spatial dimensions. An example
of convolution and max-pooling can be seen in Figure 3.3.

Figure 3.3: Convolution and max-pooling example. [43]

Despite the remarkable success of CNNs in computer vision, they have inherent limitations. CNNs ex-
cel at capturing local spatial patterns through their fixed-size convolutional kernels, but they struggle to
model long-range dependencies efficiently. In images, this means difficulty understanding relationships
between distant parts of the image. In videos, the challenge is even more pronounced: CNNs, even
with 3D convolutions, find it hard to capture complex temporal dependencies across frames, especially
in long sequences. Therefore, the researchers introduced a new architecture, called transformers.

3.1.2. Transformers
Transformers are an architecture that first emerged in NLP. They performed well and were introduced
to Computer Vision as Vision Transformers (ViT) [15, 37, 58]. The key innovation in ViTs is treating an
image as a sequence of patches, analogous to words in a sentence, as described in Figure 3.4. ViTs
can directly apply the Transformer encoder to image data by linearly projecting these patches into a
lower-dimensional embedding space.

What makes Transformers so special is attention [58]. Self-attention is the core mechanism of Trans-
formers. Unlike CNNs and other models which have a fixed capture radius, self-attention allows the
model to dynamically look to relevant parts of the input sequence, regardless of the position. This
enables capturing long-range dependencies, which is crucial for understanding high-dimensional data,
like natural language, images and videos.

However, Transformers cannot solve all our problems. Transformers can become quickly too compu-
tationally expensive for longer sequences. Moreover, Transformers struggle with fine-grained tasks.
Therefore, they are not a one-size-fits-all solution.

3.2. Computer Vision 18

Figure 3.4: Vision Transformer visualisation. [15]

3.2. Computer Vision
Developing the latest architectures in Deep Learning pushed the boundaries of Computer Vision [59].
Initially, Computer Vision focused on fundamental tasks like image classification, object detection, and
semantic segmentation, where algorithms processed Red, Green, and Blue (RGB) and Gray-scale
images [9, 22, 64]. As the field progressed, researchers tackled increasingly complex and specialized
tasks, such as instance segmentation [21], pose estimation [68] and image captioning [51].

These tasks evolved from operating on images to processing richer data modalities. 3D data, such as
point clouds [5] or volumetric representations from LiDAR [11] and medical imaging, introduced new
challenges in processing irregular, sparse data. With the advancements in hardware and computational
power, video understanding emerged as a task [32]. Video data contains not only spatial information
like images but also temporal information that captures the evolution of events.

3.2.1. Video Understanding
Video understanding is an umbrella term which includes multiple tasks using video data, like object de-
tection and segmentation in Figure 3.5, action recognition in Figure 3.6 and temporal action localization
in Figure 3.7. In essence, video understanding describes the automated interpretation of videos.

Figure 3.5: Object Detection and Segmentation example [2]

3.2. Computer Vision 19

Figure 3.6: Action Recognition example. [67]

Figure 3.7: Temporal Action Localization. [48]

3.2.2. Action Recognition
Action recognition is one of the main tasks of Video Understanding and Computer Vision. Action Recog-
nition aims to classify videos based on their main action. The action classes can vary in specificity
depending on the dataset, ranging from general actions like walking, running, and jumping to specific
actions like chopping, cooking, and stirring. Usually, the videos come only from a small set of commonly
used datasets, like Kinetics [28], ActivityNet [6] and Something-Something [20].

Multiple approaches and architectures have been created over the years to deal with action recognition
in video data. Most of them can be placed in two categories, CNN-based and attention-based.

Approaches such as I3D [7], C3D [54], and Slow-Fast [17] incorporate 3D convolutional networks.
3D convolutional networks extend the traditional 2D convolutions to the temporal dimension, enabling
the simultaneous learning of spatial and temporal features from video data. These networks use 3D
convolutional kernels spanning multiple adjacent frames, capturing spatial and temporal patterns from
video sequences.

In our paper, we used the I3D and Slow-Fast models. Here, we go into more detail explaining how they
work:

3.2. Computer Vision 20

3.2.3. Two-Stream Inflated 3D ConvNets (I3D)
Two-Stream Inflated 3D ConvNets (I3D) [7] is a model architecture for video action recognition. I3D
works by inflating 2D ConvNet models pre-trained on ImageNet [13] into 3D, transforming kernels from
2D to 3D by repeating weights along the time dimension. This inflation allows the model to use Ima-
geNet architectures and their learned representations for action recognition. The I3D architecture is
based on the Inception-v1 model [26], with all convolutional and pooling layers inflated to 3D, resulting
in two streams: an RGB stream that takes raw video frames as input, and an optical flow stream that
captures motion information. The architecture of I3D can be seen in Figure 3.8.

Figure 3.8: Two-Stream Inflated 3D ConvNets (I3D) architecture. [7]

3.2.4. Slow-Fast
Slow-Fast is a model architecture designed for action recognition [17]. The core idea behind Slow-Fast
is to utilize two parallel convolutional streams: a Slow pathway that captures spatial semantics at a
low frame rate, and a Fast pathway that processes the video at a higher frame rate to capture motion
information effectively. By operating at different temporal resolutions, the two pathways can focus
on complementary aspects of the video data. The Slow-Fast demonstrated significant performance
improvements over previous state-of-the-art models on various action recognition benchmarks. The
Slow-Fast architecture can be seen in Figure 3.9.

3.2. Computer Vision 21

Figure 3.9: Slow-Fast Architecture [17].

Even thoughmultiple action recognition models achieve satisfactory performance, action recognition as
a task is usually not the best choice for real-world data. Action recognition works with trimmed videos,
so each video contains only one main action. Moreover, action recognition does not identify when the
action is happening in the video, making the task unrealistic for most real-world scenarios. Therefore,
the temporal action localization task emerged.

3.2.5. Temporal Action Localization
Temporal Action Localization is a more challenging and practical task than action recognition, as it aims
to detect and localize action instances in untrimmed, long videos. This task involves not only classifying
the action category but also predicting the start and end times of each action instance within the video
sequence [48, 63].

Unlike action recognition, where the videos are trimmed to contain only a single action, temporal action
localization models must handle untrimmed videos. These videos can contain multiple action instances
with background activities, making it harder for the models to accurately distinguish between actions
and non-actions and identify the precise temporal boundaries of each action instance.

Researchers have proposed various approaches for temporal action localization, that build upon the
success of action recognition models. A common strategy is to leverage the spatial-temporal features
learned by pre-trained action recognition models, such as I3D or SlowFast, as the backbone for feature
extraction. These features are then fed into temporal action localization models designed to learn to
identify action boundaries and classify actions within the context of untrimmed videos. Temporal action
localization models can be classified based on the level of supervision and their design method.

In terms of supervision, the models are classified into fully supervised, weakly supervised and unsu-
pervised [24]. A visual intuition of each category can be seen in Figure 3.10. Fully supervised models
require complete annotation of the action, including the label and the start and end times of the action.
Weakly supervised models require only the action label, while unsupervised models do not require any
label. The need for weakly supervised and unsupervised models arose because obtaining detailed an-
notations is time-consuming and labour-intensive, limiting the availability of large-scale fully annotated
datasets. However, their performance is not yet high enough to be used in practice [24].

3.2. Computer Vision 22

Figure 3.10: Supervision levels of temporal action localization models. [24]

In terms of the design method, the temporal action localization models can be classified into anchor-
based, boundary-based and query-based [24], as shown in Figure 3.11.

Figure 3.11: Types of Temporal action localization models based on the design. [24, 55]

Anchor-based methods are inspired by the success of object detection models in the image domain.
These approaches generate a set of anchor boxes or temporal proposals spanning different start and
end times, as in Figure 3.12. The model then classifies each anchor as either containing an action
instance or not and refines the temporal boundaries if an action is detected [34, 40, 62].

Figure 3.12: Anchor-based architecture. [18]

3.2. Computer Vision 23

Boundary-based methods focus on directly predicting the start and end boundaries of action instances.
These models use temporal convolutional architectures to capture the temporal dependencies within
the video, as in Figure 3.13. By learning to predict the boundary points, boundary-based methods can
localize action instances without needing pre-defined anchors or proposals [10, 23, 44].

Figure 3.13: Boundary-based architecture. [35]

Query-based methods are a more recent approach, inspired by the success of transformer-based archi-
tectures. Thesemodels treat action localization as a set prediction problem, where themodel generates
a set of query vectors that correspond to potential action instances, as in Figure 3.14. Each query vec-
tor is then decoded into the action class, start time and end time predictions. Query-based methods
can handle a variable number of action instances and can model long-range dependencies effectively
[36, 53, 66].

Figure 3.14: Query-based architecture. [66]

3.2. Computer Vision 24

3.2.6. Datasets Used
Choosing what dataset to use for training your model depends on the task. Datasets designed for action
recognition, such as Kinetics [28], are usually simpler because the videos are trimmed and contain only
one main action per video.

Figure 3.15: Kinetics, a dataset of high-quality annotated videos of human actions. The videos were extracted from YouTube
and covered hundreds of human actions, depending on the version. In this dataset, videos last around 10 seconds and are

labelled with a single action class. [28]

On the other hand, datasets for temporal action localization are more practical. These datasets contain
untrimmed, longer videos, with multiple actions in a video. Moreover, some datasets for the same
task are more complex than others, meaning that actions might be shorter, more subtle and require
a deeper understanding of the video. This makes the task harder for the model. For example, the
EPIC-KITCHENS-100 [12] dataset, Figure 3.16, is more complex than THUMOS14 for temporal action
localization [61], Figure 3.17.

Figure 3.16: EPIC-KITCHENS-100 is a first-person (egocentric) dataset of videos capturing all daily activities in the kitchen. It
contains multiple actions per video from 97 verb and 300 noun classes. [12]

3.3. Video Annotation Tools 25

Figure 3.17: THUMOS14 is an action recognition dataset in temporally untrimmed videos. The dataset is used for both action
recognition and temporal action localization. It is a simpler temporal action localization dataset with 20 action classes. [61]

3.3. Video Annotation Tools
Even though unsupervised and few-shot learning have progressed in the deep learning community,
most state-of-the-art approaches are still fully supervised. So, enough labelled or annotated data must
be provided for training and evaluating a neural network model. Annotation tools are designed to
facilitate this process of creating labelled datasets for various tasks, such as image classification, object
detection, semantic segmentation, and video annotation. These tools provide user-friendly interfaces
and functionalities that speed up the annotation process, making it more efficient and accurate.

Video annotation tools allow users to annotate objects and actions across frames and time segments.
In our paper, we care about annotating actions across time segments. This section presents two types
of video annotation tools, linear and non-linear. Moreover, we explain two significant dimensionality
reduction techniques, t-SNE and HSNE, necessary for understanding how some annotation tools work.

Most popular open-source video annotation tools are characterized by their robustness and versatility.
These tools are primarily designed to provide a reliable and consistent annotation experience across
various types of video data, sometimes in a collaborative environment, rather than focusing on acceler-
ating the annotation process itself. One of the most widely used open-source video annotation tools is
VIA (VGG Image Annotator) [16], developed by the Visual Geometry Group at the University of Oxford.

VIA is a standalone, web-based application that supports annotations for images, audio, and video files.
VIA’s strength lies in its flexibility, allowing users to define and customize their annotation attributes and
metadata fields. This versatility makes VIA suitable for various annotation tasks across domains, such
as object detection, instance segmentation and event annotations. VIA’s interface can be seen in Figure
3.18.

Figure 3.18: VIA annotation tool. [16]

3.3. Video Annotation Tools 26

Another popular open-source annotation tool is CVAT (Computer Vision Annotation Tool) [47], devel-
oped by Intel. While CVAT is versatile and supports various annotation formats for images, videos, and
point clouds, it was not primarily designed for event annotation tasks. Therefore, annotating events
with temporal boundaries is not supported in their tool.

NOVA (the NOVA tool) [4] introduces semi-automation and explainability to the annotation process.
This tool aims to reduce the manual effort required by providing automated suggestions and explana-
tions for the annotations, by implementing the pipeline from Figure 3.19. However, this approach does
not solve the ”cold-start” problem, which refers to the need for large amounts of labelled data for models
to begin performing well. The performance of NOVA is not reported in the paper [4], and we expect the
gain in annotation speed to be negligible for most tasks.

Figure 3.19: The NOVA tool’s pipeline. [4]

Another tool, FEVA [49], attempts to address the steep learning curve associated with annotation soft-
ware by providing a more user-friendly interface for human annotators. While this approach may im-
prove the usability of the annotation process, it still follows a linear annotation workflow, where the
time required for annotation scales linearly with the video length. This means that as the video dura-
tion increases, the annotation time grows proportionally, limiting the overall efficiency of the annotation
process.

To solve the linearity of the annotation process, t-EVA [42] uses t-SNE (t-Distributed Stochastic Neigh-
bor Embedding) to project high-dimensional video features into a 2D embedding space. This allows
annotators to visualize and interact with the video content intuitively, enabling efficient selection and
labelling of relevant segments. However, t-EVA suffers from the overflow problem, which arises when
the number of data points (video features) exceeds the available space within the 2D embedding. As
more features are projected onto the limited 2D canvas, the visualization becomes cluttered and dense,
making it increasingly difficult for annotators to distinguish and select specific regions accurately. This
overflow problem can severely impact the effectiveness and usability of the annotation process, espe-
cially when dealing with large-scale video datasets or long video sequences with numerous events or
actions to annotate, as illustrated in Figure 3.20.

3.3. Video Annotation Tools 27

Figure 3.20: Illustration of the t-EVA pipeline. [42]

3.3.1. Dimensionality Reduction
Dimensionality reduction techniques are used in many applications, including video annotation tools.
t-SNE is a nonlinear dimensionality reduction technique for high-dimensional data visualisation and
exploration. t-SNE works by preserving local relationships between data points, making it useful for
exploring similarities and differences in large datasets like those found in genomics [29], image pro-
cessing [56], or natural language processing [8]. However, t-SNE also has limitations. It can fail when
dealing with large datasets due to its computational complexity, and it may produce misleading visual-
izations if hyperparameters are not tuned. The full explanation of how t-SNE works can be found in the
original paper [56].

3.3.2. t-SNE
The main steps of t-SNE are:

1. Compute pairwise similarities between all high-dimensional points using a Gaussian kernel.

pj|i =
exp(−∥xi − xj∥2/(2σ2

i))∑
k ̸=i exp(−∥xi − xk∥2/(2σ2

i))
(3.2)

Where:

• pj|i is the conditional probability that xi would pick xj as its neighbor
• xi and xj are high-dimensional data points
• σi is the variance of the Gaussian centred on point i
• ∥xi − xj∥2 is the squared Euclidean distance between xi and xj

2. Transform pairwise similarities into joint probabilities by normalizing the similarities for each data
point.

pij =
pj|i + pi|j

2n
(3.3)

Where:

• pij is the symmetrized joint probability
• n is the total number of data points

3. Define a similar set of joint probabilities in the low-dimensional space and optimize the positions
of low-dimensional points.

qij =
(1 + ∥yi − yj∥2)−1∑
k ̸=l(1 + ∥yk − yl∥2)−1

(3.4)

Where:

• qij is the joint probability in the low-dimensional space

3.3. Video Annotation Tools 28

• yi and yj are low-dimensional representations of xi and xj

Optimize by minimizing the Kullback-Leibler divergence:

C =
∑
i

∑
j

pij log

(
pij
qij

)
(3.5)

Where:

• C is the cost function to be minimized

Update low-dimensional points using gradient descent:

y
(t+1)
i = y

(t)
i − η

∂C

∂yi
(3.6)

Where:

• y
(t)
i is the position of point i at iteration t

• η is the learning rate
• ∂C

∂yi
is the gradient of the cost function with respect to yi

4. Visualize the data by plotting the low-dimensional embedding. This step involves plotting the final
values of yi for all points, typically in a 2D or 3D space, as in Figure 3.21.

Figure 3.21: t-SNE Example with data from the ActivityNet dataset. [42]

3.3.3. Hierarchical SNE (HSNE)
HSNE has been successfully applied in various domains, including cell analysis in biology [57] and
large-scale image collections [41], demonstrating its effectiveness in handling and visualizing massive
high-dimensional datasets. The main steps of HSNE are:

1. The Euclidean distances between the high-dimensional data points are computed. The distances
are used to calculate each point’s k-nearest neighbourhood (KNN) and create a KNN graph.

3.3. Video Annotation Tools 29

2. The KNN graph is used to select the landmarks or points in the next scale.
3. For each landmark, an area of influence over the points in the previous scale is computed.
4. Overlaps in the areas of influence are used to create similarities between the points at the new

scale; Steps 3 and 4 are repeated to create landmarks for each scale, as illustrated in Figure
3.22.

Figure 3.22: The HSNE pipeline. [41]

HSNE offers several advantages over t-SNE:

• Scalability: HSNE can handle much larger datasets than t-SNE, as it does not need to process
all data points simultaneously.

• Multi-scale visualization: The hierarchical structure allows data exploration at multiple scales.

However, HSNE also has some limitations:

• Increased complexity: The hierarchical structure adds complexity to the algorithm and its imple-
mentation.

• Potential loss of fine-grained detail: using landmark points may result in some loss of detail at
higher levels of the hierarchy.

Figure 3.23 shows an example of HSNE applied to a large dataset, illustrating its multi-scale nature.

3.3. Video Annotation Tools 30

Figure 3.23: Example of HSNE analysis. [41]

References

[1] Mahamad Alam. “Codes in MATLAB for training artificial neural network using particle swarm
optimization”. In: Research Gate (2016), pp. 1–16.

[2] Yali Amit, Pedro Felzenszwalb, and Ross Girshick. “Object detection”. In: Computer Vision: A
Reference Guide. Springer, 2021, pp. 875–883.

[3] Sören Anderson. “On optimal dimension reduction for sensor array signal processing”. In: Signal
Processing 30.2 (1993), pp. 245–256.

[4] Tobias Baur et al. “eXplainable cooperative machine learning with NOVA”. In: KI-Künstliche Intel-
ligenz 34 (2020), pp. 143–164.

[5] Saifullahi Aminu Bello et al. “Deep learning on 3D point clouds”. In:Remote Sensing 12.11 (2020),
p. 1729.

[6] Fabian Caba Heilbron et al. “Activitynet: A large-scale video benchmark for human activity un-
derstanding”. In: Proceedings of the ieee conference on computer vision and pattern recognition.
2015, pp. 961–970.

[7] Joao Carreira and Andrew Zisserman. “Quo vadis, action recognition? a new model and the ki-
netics dataset”. In: proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition. 2017, pp. 6299–6308.

[8] David M Chan et al. “t-SNE-CUDA: GPU-Accelerated t-SNE and its Applications to Modern Data”.
In: 2018 30th International Symposium on Computer Architecture and High Performance Com-
puting (SBAC-PAD). IEEE. 2018, pp. 330–338.

[9] Leiyu Chen et al. “Review of image classification algorithms based on convolutional neural net-
works”. In: Remote Sensing 13.22 (2021), p. 4712.

[10] Yaosen Chen et al. “Boundary graph convolutional network for temporal action detection”. In:
Image and Vision Computing 109 (2021), p. 104144.

[11] Philip A Chou, Maxim Koroteev, and Maja Krivokuća. “A volumetric approach to point cloud
compression—Part I: Attribute compression”. In: IEEE Transactions on Image Processing 29
(2019), pp. 2203–2216.

[12] Dima Damen et al. “Rescaling egocentric vision: Collection, pipeline and challenges for epic-
kitchens-100”. In: International Journal of Computer Vision (2022), pp. 1–23.

[13] Jia Deng et al. “Imagenet: A large-scale hierarchical image database”. In: 2009 IEEE conference
on computer vision and pattern recognition. Ieee. 2009, pp. 248–255.

[14] Jacob Devlin et al. “Bert: Pre-training of deep bidirectional transformers for language understand-
ing”. In: arXiv preprint arXiv:1810.04805 (2018).

[15] Alexey Dosovitskiy et al. “An image is worth 16x16 words: Transformers for image recognition at
scale”. In: arXiv preprint arXiv:2010.11929 (2020).

[16] Abhishek Dutta and Andrew Zisserman. “The VIA annotation software for images, audio and
video”. In: Proceedings of the 27th ACM international conference on multimedia. 2019, pp. 2276–
2279.

[17] Christoph Feichtenhofer et al. “Slowfast networks for video recognition”. In: Proceedings of the
IEEE/CVF international conference on computer vision. 2019, pp. 6202–6211.

[18] Jiyang Gao et al. “Turn tap: Temporal unit regression network for temporal action proposals”. In:
Proceedings of the IEEE international conference on computer vision. 2017, pp. 3628–3636.

[19] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

31

References 32

[20] Raghav Goyal et al. “The” something something” video database for learning and evaluating
visual common sense”. In: Proceedings of the IEEE international conference on computer vision.
2017, pp. 5842–5850.

[21] Abdul Mueed Hafiz and Ghulam Mohiuddin Bhat. “A survey on instance segmentation: state of
the art”. In: International journal of multimedia information retrieval 9.3 (2020), pp. 171–189.

[22] Shijie Hao, Yuan Zhou, and Yanrong Guo. “A brief survey on semantic segmentation with deep
learning”. In: Neurocomputing 406 (2020), pp. 302–321.

[23] He-Yen Hsieh, Ding-Jie Chen, and Tyng-Luh Liu. “Contextual proposal network for action local-
ization”. In: Proceedings of the IEEE/CVF winter conference on applications of computer vision.
2022, pp. 2129–2138.

[24] Kai Hu et al. “Overview of temporal action detection based on deep learning”. In: Artificial Intelli-
gence Review 57.2 (2024), p. 26.

[25] De-An Huang et al. “What makes a video a video: Analyzing temporal information in video un-
derstanding models and datasets”. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 2018, pp. 7366–7375.

[26] Sergey Ioffe and Christian Szegedy. “Batch normalization: Accelerating deep network training by
reducing internal covariate shift”. In: International conference on machine learning. pmlr. 2015,
pp. 448–456.

[27] Hueihan Jhuang et al. “Towards understanding action recognition”. In: Proceedings of the IEEE
international conference on computer vision. 2013, pp. 3192–3199.

[28] Will Kay et al. “The kinetics human action video dataset”. In: arXiv preprint arXiv:1705.06950
(2017).

[29] Dmitry Kobak and Philipp Berens. “The art of using t-SNE for single-cell transcriptomics”. In:
Nature communications 10.1 (2019), p. 5416.

[30] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification with deep con-
volutional neural networks”. In: Advances in neural information processing systems 25 (2012).

[31] Sampo Kuutti et al. “A survey of deep learning applications to autonomous vehicle control”. In:
IEEE Transactions on Intelligent Transportation Systems 22.2 (2020), pp. 712–733.

[32] Gal Lavee, Ehud Rivlin, andMichael Rudzsky. “Understanding video events: A survey of methods
for automatic interpretation of semantic occurrences in video”. In: IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews) 39.5 (2009), pp. 489–504.

[33] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: nature 521.7553 (2015),
pp. 436–444.

[34] Chuming Lin et al. “Learning salient boundary feature for anchor-free temporal action localization”.
In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021,
pp. 3320–3329.

[35] Tianwei Lin et al. “Bmn: Boundary-matching network for temporal action proposal generation”.
In: Proceedings of the IEEE/CVF international conference on computer vision. 2019, pp. 3889–
3898.

[36] Xiaolong Liu et al. “End-to-end temporal action detection with transformer”. In: IEEE Transactions
on Image Processing 31 (2022), pp. 5427–5441.

[37] Ze Liu et al. “Swin transformer: Hierarchical vision transformer using shifted windows”. In: Pro-
ceedings of the IEEE/CVF international conference on computer vision. 2021, pp. 10012–10022.

[38] Zhihan Lv et al. “Deep learning for intelligent human–computer interaction”. In: Applied Sciences
12.22 (2022), p. 11457.

[39] Mishaim Malik et al. “Automatic speech recognition: a survey”. In: Multimedia Tools and Applica-
tions 80 (2021), pp. 9411–9457.

[40] Ranyu Ning, Can Zhang, and Yuexian Zou. “Srf-net: Selective receptive field network for anchor-
free temporal action detection”. In: ICASSP 2021-2021 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). IEEE. 2021, pp. 2460–2464.

References 33

[41] Nicola Pezzotti et al. “Hierarchical stochastic neighbor embedding”. In: Computer Graphics Fo-
rum. Vol. 35. 3. Wiley Online Library. 2016, pp. 21–30.

[42] Soroosh Poorgholi, Osman Semih Kayhan, and Jan C van Gemert. “t-eva: Time-efficient t-sne
video annotation”. In:Pattern Recognition. ICPR InternationalWorkshops and Challenges: Virtual
Event, January 10–15, 2021, Proceedings, Part IV. Springer. 2021, pp. 153–169.

[43] Zhuwei Qin et al. “How convolutional neural network see the world-A survey of convolutional
neural network visualization methods”. In: arXiv preprint arXiv:1804.11191 (2018).

[44] ZhiwuQing et al. “Temporal context aggregation network for temporal action proposal refinement”.
In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021,
pp. 485–494.

[45] Luca Rossetto et al. “Interactive video retrieval in the age of deep learning–detailed evaluation
of VBS 2019”. In: IEEE Transactions on Multimedia 23 (2020), pp. 243–256.

[46] Julian Schrittwieser et al. “Mastering atari, go, chess and shogi by planning with a learned model”.
In: Nature 588.7839 (2020), pp. 604–609.

[47] Boris Sekachev et al. opencv/cvat: v1.1.0. Version v1.1.0. Aug. 2020. DOI: 10.5281/zenodo.
4009388. URL: https://doi.org/10.5281/zenodo.4009388.

[48] Zheng Shou, Dongang Wang, and Shih-Fu Chang. “Temporal action localization in untrimmed
videos via multi-stage cnns”. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2016, pp. 1049–1058.

[49] Snehesh Shrestha et al. “FEVA: Fast Event Video Annotation Tool”. In: arXiv preprint (2023).
[50] GSDMASreenu and SaleemDurai. “Intelligent video surveillance: a review through deep learning

techniques for crowd analysis”. In: Journal of Big Data 6.1 (2019), pp. 1–27.
[51] Matteo Stefanini et al. “From show to tell: A survey on deep learning-based image captioning”.

In: IEEE transactions on pattern analysis and machine intelligence 45.1 (2022), pp. 539–559.
[52] Richard Szeliski. Computer vision: algorithms and applications. Springer Nature, 2022.
[53] Jing Tan et al. “Relaxed transformer decoders for direct action proposal generation”. In: Proceed-

ings of the IEEE/CVF international conference on computer vision. 2021, pp. 13526–13535.
[54] Du Tran et al. “Learning spatiotemporal features with 3d convolutional networks”. In: Proceedings

of the IEEE international conference on computer vision. 2015, pp. 4489–4497.
[55] Elahe Vahdani and Yingli Tian. “Deep learning-based action detection in untrimmed videos: A sur-

vey”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 45.4 (2022), pp. 4302–
4320.

[56] Laurens Van der Maaten and Geoffrey Hinton. “Visualizing data using t-SNE.” In: Journal of ma-
chine learning research 9.11 (2008).

[57] Vincent Van Unen et al. “Visual analysis of mass cytometry data by hierarchical stochastic neigh-
bour embedding reveals rare cell types”. In: Nature communications 8.1 (2017), p. 1740.

[58] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural information processing
systems 30 (2017).

[59] Athanasios Voulodimos et al. “Deep learning for computer vision: A brief review”. In: Computa-
tional intelligence and neuroscience 2018.1 (2018), p. 7068349.

[60] Dongyang Wang, Junli Su, and Hongbin Yu. “Feature extraction and analysis of natural language
processing for deep learning English language”. In: IEEE Access 8 (2020), pp. 46335–46345.

[61] Limin Wang, Yu Qiao, Xiaoou Tang, et al. “Action recognition and detection by combining motion
and appearance features”. In: THUMOS14 Action Recognition Challenge 1.2 (2014), p. 2.

[62] Qiang Wang et al. “Rcl: Recurrent continuous localization for temporal action detection”. In:
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022,
pp. 13566–13575.

[63] Huifen Xia and Yongzhao Zhan. “A survey on temporal action localization”. In: IEEE Access 8
(2020), pp. 70477–70487.

https://doi.org/10.5281/zenodo.4009388
https://doi.org/10.5281/zenodo.4009388
https://doi.org/10.5281/zenodo.4009388

References 34

[64] Youzi Xiao et al. “A review of object detection based on deep learning”. In: Multimedia Tools and
Applications 79 (2020), pp. 23729–23791.

[65] Rikiya Yamashita et al. “Convolutional neural networks: an overview and application in radiology”.
In: Insights into imaging 9 (2018), pp. 611–629.

[66] Chen-Lin Zhang, Jianxin Wu, and Yin Li. “Actionformer: Localizing moments of actions with trans-
formers”. In: European Conference on Computer Vision. Springer. 2022, pp. 492–510.

[67] Jianguang Zhang et al. “Semi-supervised image-to-video adaptation for video action recognition”.
In: IEEE transactions on cybernetics 47.4 (2016), pp. 960–973.

[68] Ce Zheng et al. “Deep learning-based human pose estimation: A survey”. In: ACM Computing
Surveys 56.1 (2023), pp. 1–37.

	Preface
	Introduction
	Scientific Paper
	Background
	Deep Learning & Neural Networks
	Convolutional Neural Networks
	Transformers

	Computer Vision
	Video Understanding
	Action Recognition
	Two-Stream Inflated 3D ConvNets (I3D)
	Slow-Fast
	Temporal Action Localization
	Datasets Used

	Video Annotation Tools
	Dimensionality Reduction
	t-SNE
	Hierarchical SNE (HSNE)

	References

