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We present an exhaustive theoretical analysis of a double-loop Josephson proximity interferometer, such as the
one recently realized by Strambini et al. for control of the Andreev spectrum via an external magnetic field. This
system, called ω-SQUIPT, consists of a T-shaped diffusive normal metal (N ) attached to three superconductors
(S) forming a double-loop configuration. By using the quasiclassical Green-function formalism, we calculate the
local normalized density of states, the Josephson currents through the device, and the dependence of the former
on the length of the junction arms, the applied magnetic field, and the S/N interface transparencies. We show
that by tuning the fluxes through the double loop, the system undergoes transitions from a gapped to a gapless
state. We also evaluate the Josephson currents flowing in the different arms as a function of magnetic fluxes, and
we explore the quasiparticle transport by considering a metallic probe tunnel-coupled to the Josephson junction
and calculating its I -V characteristics. Finally, we study the performances of the ω-SQUIPT and its potential
applications by investigating its electrical and magnetometric properties.

DOI: 10.1103/PhysRevB.95.054504

I. INTRODUCTION

The superconducting quantum interference proximity tran-
sistor (SQUIPT) [1] is a new concept of a superconducting
interferometer based on the proximity effect [2,3] in a normal
(N ) metallic nanowire embedded in a superconducting (S)
loop. The phase-controlled density of states (DOS) of the
proximized nanowire makes the SQUIPT an ideal building
block for the realization of heat nanovalves [4] or very sensitive
and ultra-low-power dissipation magnetometers [5–8] able
to succeed the state-of-the-art SQUID technologies, with
particular interest in single-spin detection [9].

The ω-SQUIPT is the natural evolution of standard two-
terminal geometry, enriched by a third terminal in the metallic
Josephson junction, as sketched in Fig. 1. It is composed of a
T-shaped N nanowire proximized by two S loops, encircling
two independent magnetic fluxes. The ω-SQUIPT represent
a useful tool to explore the nontrivial physics accessible in
multiterminal Josephson junctions (JJs), in which the Andreev
bound states can cross the Fermi level (zero-energy) [10] to
tailor exotic quantum states [11–15], to simulate topological
materials able to support Majorana bound states in the case
of quasiballistic junctions with strong spin-orbit coupling
[12,16], or to implement different kinds of Q-bits [17] or
switchers [18]. The first ω-SQUIPT was realized [19] very
recently with a diffusive three-terminal JJ. The experiment,
in agreement with theoretical expectations, demonstrates that
a superconducting-like gapped state is induced in the weak
link and nontrivially controlled by an external magnetic field.
Moreover, this state can be topologically classified by the
winding numbers of the two S loops.

The aim of this work is to address the role of the main
experimental parameters of the ω-SQUIPT on the spectral and
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transport properties. For this purpose, the effects of junction
length, the transparency of the SN interfaces, and inelastic
scattering are discussed. In addition to the analysis of the
quasiparticle density of states, a study of the supercurrent
flowing in the different arms of the device is reported. Such
coherent transport properties in the ω-SQUIPT can be a mark
of topological transitions [11,12].

The paper is organized as follows. The model based on the
solution of the Usadel equation [3,20] for the quasiclassical
Green-functions formalism is described in Sec. II. The analysis
of the local normalized DOS is presented in Sec. III, where
we discuss the effect of the length of the proximized metallic
junction, of the inelastic scattering, and the transparency of the
contact interface. The Josephson and the quasiparticle currents
are calculated in Secs. IV and V, respectively. In Sec. VI, we
summarize our main findings.

II. MODEL AND GENERAL SETTINGS

The ω-SQUIPT is made of a T-shaped N weak link formed
by three diffusive quasi-one-dimensional arms of lengths Li

(i = L,C,R), as sketched in Fig. 1. Each of the arms is
connected to a superconducting lead Si with phase ϕi and
gap �0. The three superconducting phases are linked by the
two magnetic fluxes �L and �R piercing the double loop of
the interferometer (see Fig. 1). The properties of the device
can be described by using the isotropic quasiclassical retarded
Green functions ĝi , which are 2 × 2 matrices in the Nambu
space [21]. In a stationary case, these functions satisfy the
Usadel equations in each arm (i) of the ω-SQUIPT [3,20],

∂x(ĝi∂x ĝi) + i
(E + i�N )

Ei

[τ̂3,ĝi] = 0, (1)

where τ̂3 is the third Pauli matrix in the Nambu space and x is
the normalized spatial coordinate mapping the T-shaped weak
link from the center (x = 0) to the S/N interface (x = 1).
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FIG. 1. Scheme of the ω-SQUIPT in a current-biased setup. I

is the current flowing through the circuit, and V is the voltage drop
across the device. �L and �R represent the magnetic fluxes piercing
the left and right loop, respectively. LL, LC , and LR refer to the
left, center, and right arms length of the T-shaped normal metal,
respectively. Finally, SL, SC , and SR refer to the left, center, and right
superconducting leads.

Ei ≡ h̄D/L2
i is the (reduced) Thouless energy associated with

each arm of the link, and �N is a parameter that takes into
account the inelastic processes in the N region. Equation (1)
is complemented by the normalization condition

ĝ2
i = 1̂, (2)

and boundary conditions at the three S/N interfaces and in the
middle of the T-shaped junction.

At the S/N interfaces, the Green function has to satisfy the
boundary conditions for arbitrary transparency [22,23],

ri ĝi ∂xĝi = 2 [ĝi ,Ĝi]

4 + τ ({ĝi ,Ĝi} − 2)
, (3)

where τ is the transmission coefficient, the opacity coefficient
ri = GNi

/GBi
is the ratio between the conductance of each

arm GNi
and the barrier conductance GBi

, and

Ĝi = 1√
(ER)2 − �2

0

(
ER �0e

iϕi

−�0e
−iϕi −ER

)
(4)

is the BCS Green function of the Si lead [24], �0e
iϕi is

the superconducting order parameter, and ER ≡ E + i�S ,
where �S is the Dynes parameter [25,26]. Neglecting the
inductance of the superconducting loops, we can link the
two superconducting phase differences to the two magnetic
fluxes: ϕL − ϕC = 2π�L/�0 and ϕR − ϕC = −2π�R/�0,
with �0 = h/2e the flux quantum (hereafter e indicates the
modulus of the electron charge). Notice that for the sake of
simplicity in Eq. (3) we have assumed that all the conduction
channels at all the interfaces have the same transmission τ

and therefore GBi
= G0Niτ , where G0 is the quantum of

conductance and Ni is the number of conducting channels
at the ith interface.

In the middle of the T-shaped junction, x = 0, we impose
the continuity of ĝi :

ĝL(x = 0) = ĝC(x = 0) = ĝR(x = 0), (5)

and the matrix current conservation∑
i=R,C,L

GNi
ĝi ∂x ĝi |x=0 = 0. (6)

To solve Eqs. (1)–(6), we introduce the Riccati parametriza-
tion that parametrizes ĝi in term of two auxiliary functions
γi(x,E) and γ̃i(x,E). Therefore, Eqs. (1) and (2) become a
system of six coupled differential equations:

∂2
x γi − 2γ̃i

1 + γi γ̃i

(∂xγi)
2 + 2i

(
E + i�N

Ei

)
γi = 0,

∂2
x γ̃i − 2γi

1 + γi γ̃i

(∂xγ̃i)
2 + 2i

(
E + i�N

Ei

)
γ̃i = 0, (7)

with boundary conditions at x = 0 [see Eqs. (5) and (6)] (here
i,k ∈ R,C,L),

γi = γk,

γ̃i = γ̃k,

∑
i

GNi

∂xγi + (γi)2∂xγ̃i

1 + γi γ̃i

= 0,

∑
i

GNi

∂xγ̃i + (γ̃i)2∂xγi

1 + γi γ̃i

= 0. (8)

At the S/N interfaces (x = 1), the boundary condition in
Eq. (3) reads

ri

∂xγi + γ 2
i ∂x γ̃i

(1 + γi γ̃i)2

= (1 − γi γ̃i)γ S
i − (

1 − γ S
i γ̃ S

i

)
γi

(1 + γi γ̃i)
(
1 + γ S

i γ̃ S
i

) − τ
(
γ S

i − γi

)(
γ̃ S

i − γ̃i

) , (9)

and an analogous equation after substituting γi by γ̃i . The func-
tions γ S

i = γ0e
−iφi , γ̃ S

i = −γ0e
iφi are the auxiliary functions

parametrizing the BCS bulk Green functions, with

γ0 = −�0

E + i�S + i
√

(�0)2 − (E + i�S)2
. (10)

By solving these equations numerically, we obtain the
functions γi , which determine the DOS, the supercurrent,
and the quasiparticle current in the ω-SQUIPT. All these
observables are discussed in the next sections.

In the following calculations, we assume a fully symmet-
ric structure, i.e., LL = LC = LR ≡ L and GNL

= GNC
=

GNR
≡ GN ; thus, we define a single Thouless energy for

the whole junction, ETh ≡ h̄D/(2L)2 = Ei/4, to adopt the
same energy scale defined in two-terminal geometry. When
not explicitly indicated, we will assume ideal interfaces and
hence impose the continuity of γ at the S/N interfaces. Only
when analyzing the role of the S/N interface resistances will
we make use of boundary condition (9).
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III. THE DENSITY OF STATES IN THE N REGION

In this section, we investigate the DOS in the T-shaped
normal region and its dependence on various parameters.
The local normalized DOS in the ith arm of the proximized
nanowire is given by

Ni(x,E,�L,�R) = 1

2
Re Tr{τ̂3ĝi} = Re

{
1 − γi γ̃i

1 + γi γ̃i

}
. (11)

We start by analyzing the local DOS at the Fermi level in
the middle of the T-shaped N wire, NF (�L,�R) ≡ Ni(x = 0,

E = 0,�L,�R), as a function of the two fluxes �L and �R

through the two loops. Figure 2 shows a typical result for
this dependence. We clearly identify gapped (in blue) regions
separated by gapless ones (in red). From the top panel to the
bottom one, we can notice the effects of the finite quasiparticle
lifetime in the superconductor leads (left column) and inelastic
scattering in the normal metal (right column), described,
respectively, by the parameters �S/�0 and �N/ETh.

It is instructive to note that the density of states precisely
at the Fermi energy does not depend on the size of the

FIG. 2. Evolution of the DOS at the Fermi energy NF (�L,�R)
for increasing pair-breaking scattering both in the S leads, �S (left
column), and in the N weak link, �N (right column). The values
of �N/ETh and �S/�0 are reported in each panel. The weak link is
of an intermediate length ETh/�0 = 0.5 and the S/N interfaces are
transparent.

FIG. 3. DOS in the center of the three-terminal junction (x = 0)
calculated at zero fluxes, �L = �R = 0. (a) Dependence of the
DOS on �S/�0 (fixed ETh/�0 = 0.5 and �N/ETh = 10−3). (b)
Dependence of the DOS on �N/ETh (fixed ETh/�0 = 0.5 and
�S/�0 = 10−3). (c) Dependence of the DOS on the Thouless energy
ETh/�0 (fixed �S = �N = 10−3�0).

normal region, unless we assume a significant rate of inelastic
scattering �N . In the latter case, the size enters the equations
through the ratio �N/ETh.

The white dashed line tracks the case of equal fluxes
in the two loops, �L = �R ≡ �, experimentally realizable
placing a symmetric ω-SQUIPT in a homogeneous magnetic
field. Figure 2 suggests that the gap closes at � ≈ �0/3, as
confirmed by recent measurements [19]. Interestingly enough,
to each gapped region it can be assigned a topological index
defined by the pair of numbers obtained by the integration of
the superconducting phase gradient over the left and right loop
[19]. We note that our results agree well with the recent findings
of Ref. [27], where an analytical approach for a multiterminal
geometry at the Fermi level has been investigated.

We consider now the DOS at equal fluxes for all energies.
In Fig. 3, we compare the detrimental role played by �S ,
�N , and ETh in the DOS calculated at � = 0 for which the
proximity effect is maximized. The main common feature
is the appearance of an induced minigap �w. As expected,
increasing �N or �S causes the smearing of the gapped feature,
as one can see in panels (a) and (b) of Fig. 3. The dependence
on Thouless energy (then on junction size) is showed in panel
(c) of Fig. 3. Similarly to two-terminal geometry, the induced
minigap �w decreases with decreasing Thouless energy [28].
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FIG. 4. DOS calculated in the middle of the three-terminal
junction (x = 0) for equal fluxes �L = �R ≡ � with �S = �N =
10−3�0. Each panel corresponds to a different Thouless energy:
(a) ETh/�0 = 5; (b) ETh/�0 = 1; (c) ETh/�0 = 0.5; and (d)
ETh/�0 = 0.1.

In Fig. 4, we illustrate the dependence of the DOS on
equal magnetic fluxes � = �R = �L. Each panel corresponds
to a different length. From top to bottom, we explore the
behavior of the DOS from short to long junctions, with
ETh/�0 = 5, 1, 0.5, and 0.1, respectively. In the short-junction
limit [Fig. 4(a)], our results are in good agreement with those
of Ref. [10], obtained within the circuit theory. This limit is
achievable for conventional metals in use in nanofabrication at
L � 100 nm. Above this limit, the minigap rescales in energy
[as observed also in Fig. 3(c)] while the behavior in � is
practically unaffected. In fact, for all the lengths explored,
the induced minigap is modulated by the magnetic flux and
disappear in an extended flux interval 1/3 < �/�0 < 2/3,
repeated with �0 periodicity. This continuous gapless region
is the main hallmark of multiterminal JJs (recently observed
experimentally in Ref. [19]), and it is a consequence of the
crossing of the Andreev bound states at zero energy.

We now discuss the spatial dependence of the DOS along
the N region. This point is very relevant for two main reasons.

From a practical point of view, in order to simulate realistically
the differential conductance of a tunnel contact between the
weak link and the probe, the DOS needs to be averaged over
the contact area (see Sec. V below). From a more fundamental
aspect, it is important to understand whether the gapped
regions in Fig. 2 are a nonlocal property of the junction, as
already proved experimentally for the minigap in two-terminal
SNS junctions [29].

Figure 5 shows the dependence of the DOS on x in the
left arm, i.e., NL. Due to the continuity imposed at the S/N

interfaces (x = 1), the DOS is equal here to its BCS value
and there is no modulation with the magnetic flux. Inside the
N region, the DOS evolves with a well-defined minigap �w,
which is constant in the whole T-shape region. Whereas the
minigap is a nonlocal property that can be modulated by the
magnetic fluxes, the shape of the DOS for energies larger
than the minigap changes along the junction. Notice that for
a single flux (�R = 0) the DOS shows two additional peaks
at the minigap of the nanowire at energy ±�w similar to the
edge peaks expected in two-terminal SNS junctions [30].

We finally concentrate on the role of the S/N interface
resistances in the energy spectrum of the DOS. These resis-
tances are encoded in the three opacity parameters ri defined
in Eq. (3). The increasing of the opacity of all the interfaces
weakens the proximity effect in the JJ, which in turn is reflected
in an effective reduction of the minigap [28]. In Fig. 6 we
show NF (�L,�R) for different values of rC and rR , and
by keeping rL = 1. In the symmetric case, rR = rC = 1, we
obtain the symmetric “butterfly” shape observed in Fig. 2 for
ideal interfaces. Asymmetries in the interface transparencies
lead to an asymmetric configuration of the gapped states in
the two-flux space. This asymmetry can be understood by
considering three limiting cases: (i) When the right terminal is
almost disconnected to the system, rR � (rC,rL) (bottom-right
plot), �R does not drive the state of the JJ. The latter effectively
behaves as a two-terminal junction in which the gapless state
is punctual in the flux �L that controls the proximity effect
in the junction. (ii) Similarly, when rC � (rR,rL) (top left
plot), the central terminal is disconnected and the proximity
effect in this two-terminal JJ is controlled by the total flux in
the interferometer �L + �R . (iii) When both the interfaces
are opaque, rR = rC � rL (top right panel), both �L and
�R do not drive the proximity effect. In the weak link, a
nonmodulated gapped state is induced by the contact with the
left S/N interface.

Finally, in Fig. 7 we show how asymmetries affect the
evolution of the full energy spectrum of the DOS, in the equal
fluxes configuration �R = �L ≡ �.

This evolution is crucial to clarify the experimental ob-
servations reported in Ref. [19] in which the quasiparticle
DOSs have been probed by tunneling spectroscopy (see Sec. V
for details). One of the main signatures of the three-terminal
configuration, with respect to conventional two-terminal JJ, is
the conducting gapless state observed for symmetric devices
(e.g., at rC = rR = 1) in a large range of fluxes �0/3 < � <

2�0/3. In the same range, this conducting state evolves in
two additional gapped states by increasing the asymmetries of
the interface resistances (e.g., at rC = 102,rR = 10) as also
observed in the measurements of asymmetric ω-SQUIPTs
[19]. As shown in Fig. 7, these two behaviors are very robust
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FIG. 5. Spatial dependence of the DOS evaluated at different
fluxes, with ETh/�0 = 0.5 and �S = �N = 10−3�0. Each central box
indicates the value of the flux �L associated with the near plots; the
top plots show the case of equal fluxes �R = �L and the bottom plots
show the single flux case with �R = 0. (a) �L = 0; (b) �L = 0.25�0;
(c) �L = 0.33�0; and (d) �L = 0.5�0.

and only weakly sensitive to the sample-specific microscopic
details of the S/N interface resistances that experimentally can
vary also by one order of magnitude. Similar considerations

FIG. 6. Evolution of the DOS at the Fermi energy NF (�L,�R)
for different values of S/N interface opacities rR and rC reported
in the x and y axis, respectively. Here rL = 1, ETh/�0 = 0.5, and
�S = �N = 10−3�0.

FIG. 7. Energy spectrum of the DOS as a function of equal fluxes
�L = �R ≡ � and calculated for different values of S/N interface
opacity rR and rC reported in the x and y axis, respectively. Here
rL = 1, ETh/�0 = 0.5, and �N = �S = 10−3�0.
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can be drawn also for the fluctuations of the arm lengths affect-
ing only weakly the main features of the DOS (shown in Fig. 6).
These show, for example, a closure of the minigap at �0/3 as
universal characteristic of the three-terminal geometry.

IV. JOSEPHSON CURRENT

The presence of finite magnetic fluxes �L and �R leads to
supercurrents flowing in the proximized metallic nanowire.
These supercurrents have a variety of physical behaviors
depending on the junction characteristics [31,32]. Within the
quasiclassical theory, the supercurrent flowing in the ith arm
of the ω-SQUIPT can be written as

Ii =
∫ +∞

−∞
tanh

(
E

2kBT

)
Si(E)dE, (12)

where T is the temperature, kB is the Boltzmann constant, and
Si(E) is the outgoing spectral supercurrent density in the i arm,

Si(E) = −GNi

4e
Re{Tr{τ̂3ĝi∂x ĝi}}

= GNi

e
Re

{
γ̃i∂xγi − γi∂xγ̃i

(1 + γi γ̃i)2

}
. (13)

In this section, we investigate the outgoing supercurrent
flowing through the different arms of the device and its
dependence on the magnetic fluxes �R and �L for transparent
S/N interfaces. At first, we consider the simple case of equal
magnetic fluxes �R = �L ≡ �. In this case, for symmetry
reasons, there is no supercurrent flowing through the central
arm IC = 0, and thus due to current conservation one has
IL = −IR . Physically, this means that there is a supercurrent
that flows from the right arm to the left one. We analyze this
quantity in Fig. 8, showing the supercurrent IL and its spectral
density SL(E) for the left arm, at a fixed temperature T =
0.02Tc. The supercurrent spectral density SL(E), present in
Fig. 8(a), strongly resembles the quasiparticle DOS, specifying
the distribution on energy of Andreev-bound states that carry
the supercurrent. In Fig. 8(a), where we plot a representative
example with ETh/�0 = 5, one can see that most of the
distribution takes place below the superconducting gap �0.
Above it there is an evanescent contribution that brings a
counterflowing current, which results in a reduction of the
critical current. We note that, for shorter junctions, which
correspond to larger values of ETh/�0, the number of states
below the superconducting gap increases, giving a greater
contribution to supercurrent.

Looking at the color plot in Fig. 8(a) and the energy cuts
in Fig. 8(b), a change of sign at all energies is evident for
�/�0 = 1/3. This particular value of the flux corresponds
exactly to the one in which there is a transition from a gapped
to a gapless state in the DOS; see Fig. 4. As for the DOS, this
feature does not depend on the junction length. Importantly,
this suggests that the supercurrent can be an alternative
hallmark of a topological transition in the three-terminal JJ.
This characteristic at �/�0 = 1/3 is indeed reflected in the
supercurrent IS , as shown in Fig. 8(c).

To better understand the behavior of IS , we can consider
the simple case in which the Usadel equations (7) can be
linearized. Although this is fully justified in the case of a weak

FIG. 8. Outgoing supercurrent of the left arm in the case of
equal fluxes �R = �L = �. (a) Supercurrent spectral density SL(E)
in the case of ETh/�0 = 5 and with �S = �N = 10−3�0. Related
cuts at different fluxes �/�0 are reported in (b). Panel (c) shows
the supercurrent IL at a fixed temperature T = 0.02TC . IL has a
periodic behavior as a function of �, with nodes due to the three-
terminal junction at �/�0 = 0, 1/3, 1/2, and 2/3; see also the cuts
present in (b).

proximity effect, with very opaque S/N interfaces (τ � 1
and Ri � 1), it allows for an analytic solution of the system
of differential equations (7). As we now discuss, this approach
can reproduce most of the qualitative features present in
Fig. 8(c). In particular, for equal interfaces and arm lengths,
one obtains

IL = I0

[
sin

(
2π

2�

�0

)
+ sin

(
2π

�

�0

)]
, (14)

where I0 represents the critical current, whose precise value
can be calculated using the linearized Usadel equation [28].
Equation (14) is a periodic function of � with period �0,
and it presents nodes at �/�0 = 0, 1/3, 1/2, and 2/3. This
corresponds to the behavior of the supercurrent shown in Fig. 8,
where IL is evaluated with a full numerical solution of the
Usadel equation (without any weak-proximity assumption).
The fact that a linear approach well reproduces most of
the qualitative features present in the general case is tightly
connected to the three-terminal geometry and to its topological
properties. In particular, it indicates that these phase features
on the Josephson currents are robust against imperfections
and possible microscopic details. It is interesting to notice
that, even if in the equal fluxes case there is a supercurrent
flow in the side arms and no supercurrent in the central arm,
the behavior is not analogous to a two-terminal JJ linked to
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a loop with a total flux 2�. This can be inferred from the
additional node present at �/�0 = 1/3. To underline this, we
can consider the Josephson energy of the junction UJ . In full
analogy with the two-terminal expression, it reads

UJ = �0

2π

∫
ILd(φL − φR) = 2

∫
ILd�. (15)

This quantity is reported in the inset of Fig. 8(c) for ETh/

�0 = 5. The Josephson energy UJ has two minima at �/�0 =
0 and 1/2; the global minimum is �/�0 = 0 as in the two-
terminal case. The presence of additional local minima is a
peculiar feature of the three-terminal JJ and is not present
in a two-terminal one. A junction with such a behavior is
sometimes called in the literature a 0′ junction [33,34], due to
the presence of metastable states related to the local minima at
�/�0 = 1/2. The maximum at �/�0 = 1/3 determines the
node present in the supercurrent. The presence of this local
minima is a direct consequence of the nontrivial topological
configuration, which can be achieved with the ω-SQUIPT and
is associated with the presence of the central arm in this three-
terminal configuration.

Let us now discuss the case of different fluxes �L and
�R and their influence on the ith arm supercurrent. The
outgoing supercurrents IL, IC , and IR are reported in
the three panels of Fig. 9 for transparent S/N interfaces
and for fixed parameters ETh/�0 = 5, �N = �S = 10−3�0,
and temperature T = 0.02Tc. The dashed line in panel (a)
corresponds to the panel (c) in Fig. 8. We immediately note
that, in the general case with �L 	= �R , a finite supercurrent
is flowing out of the central arm. As one would expect, the
three quantities are not independent, but they are related by
current conservation, i.e.,

∑
i=L,C,R Ii = 0. As before, the

qualitative behavior and the main features present in Fig. 9
can be understood inspecting the solution of the linearized
Usadel equations. In this case, the supercurrent in each arm is
the superposition of the circulating supercurrent in each loop,
which gives

IL = I0

[
sin

(
2π

�L + �R

�0

)
+ sin

(
2π

�L

�0

)]
,

IC = I0

[
sin

(
2π

�R

�0

)
− sin

(
2π

�L

�0

)]
,

IR = −I0

[
sin

(
2π

�L + �R

�0

)
+ sin

(
2π

�R

�0

)]
. (16)

Again, these simple analytical expressions well reproduce the
periodic behavior and the shape of the supercurrents shown in
Fig. 9. The full numerical solution extends beyond the linear
approximation, which is not able to capture the correct value of
the critical current and other details. However, the periodicity
and the presence of nodes at precise values of �L,R/�0

are well reproduced by Eq. (16). This fact corroborates the
idea that these features are robust in a topological sense and
connected to the nontrivial geometry of the three-terminal JJ.

V. MAGNETOMETRIC CHARACTERISTICS
OF THE ω-SQUIPT

As shown in Sec. III, the DOS in the junction is modulated
by the magnetic fluxes piercing the superconducting loops of

FIG. 9. Color plot of the supercurrents in each arm for different
magnetic fluxes �R and �L. Here we have fixed ETh/�0 = 5 and
γS = γN = 10−3�0, and T = 0.02Tc. The supercurrents flowing out
of the left, central, and right arm are plotted in (a), (b), and (c),
respectively.

the ω-SQUIPT. The transport properties of the quasiparticle in
the junction can be tuned from metallic-like (in a gapless state)
to insulating-like (in a gapped state). As a consequence, the
electrical conduction through the tunnel barrier between the
junction and the probe (Fig. 1) is altered [35,36]. This effect
allows us to perform magnetometric measurement. In two-
terminal SQUIPTs, high sensitivities have been demonstrated
[1,5]. In the following, we evaluate the sensitivity of the
ω-SQUIPT.

Considering a tunnel probe placed in the middle of the
T-shaped N region and covering each arm by a length li ,
the electrical characteristics depend on the spatial average of
the local DOS Ni(x,E,�L,�R) over the contact area, given
by [36]

N̄ (E,�L,�R) ≡
∑

i=R,C,L

1

wi

∫ wi

0
Ni(x,E,�L,�R)dx, (17)

where wi = li/Li . By applying a voltage V between the tunnel
probe and the junction, a finite tunneling current flows through
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the contact, whose expression reads

I = 1

eRt

∫
NP (E − eV )N̄ (E)[fF (E) − fF (E − eV )]dE,

(18)

where Rt is the resistance of the tunnel contact, fF (E) indicates
the equilibrium Fermi-Dirac distribution, and NP (E) is the
probe DOS. Like in the usual SQUIPT [1,6], the metallic probe
can be made of a normal or superconducting material. These
two cases are denoted in the following as normal probe (NP)
or superconducting probe (SCP), whose normalized DOSs are,
respectively, given by NP (E) = 1 and

NP (E) =
∣∣∣∣ Re

E + i�2√
(E + i�2)2 − �2(T )2

∣∣∣∣. (19)

Here �2 and �2 indicate the Dynes parameter and the gap of the
superconducting probe. In general, �2 and �2 parameters can
be different from those of the ω-SQUIPT described so far. For
the sake of simplicity, we assume that �2 = �S = 10−4�0 and
�2 = �0 and choose T = 0.02Tc. We consider two symmetric
ω-SQUIPTs: one with ETh = 0.5�0 and wi = 0.2, and a
second one with ETh = 5�0 and wi = 0.68 for i = L,R,C.
For an Al-Cu–based device, these parameters correspond to
Li ≈ 90 nm and Li ≈ 30 nm, respectively, and a contact length
in each arm li ≈ 20 nm. All these values are achievable with
state-of-the-art nanofabrication techniques [5,37].

Figure 10 shows the current-voltage (I -V ) characteristic in
linear and logarithmic scale for fluxes �. Panels (a) and (b)
refer to the NP case, while panels (c) and (d) refer to SCP.
The main modulation in the I -V characteristic happens in the
flux interval �/�0 = [0,1/3], for which the weak link is in the
gapped state. The main differences between the NP and SCP is
the presence in the latter of a permanent voltage gap and peaks
due to the superconducting probe. The Y-logarithmic plots
on the right column give a clearer insight on the modulation
properties. The I -V characteristics are modulated in a voltage
range of �w/e corresponding to a swing in current of a few
orders of magnitude that can further increase by lowering �.

Considering an electrical setup where the ω-SQUIPT is
biased with a proper current Ib, the voltage drop depends on
flux, giving the flux to voltage characteristics V (�) (see Fig. 1).
The optimal voltage-gap swing �w/e can be approached
at low current bias, making the ω-SQUIPT a low power
dissipation magnetometer. In Fig. 11 on the left side, the flux to
voltage characteristics V (�) is plotted for two representative
devices with ETh/�0 = 0.5 and 5 in the case of both NP and
SCP. The main modulation interval is �/�0 = [−1/3,1/3]
(with �0 periodicity); on the contrary, the interval �/�0 =
[2/3,4/3] has a flat trend. The performance of the device as a
magnetometer can be estimated by the flux to voltage transfer
function

F(�) = ∂VI

∂�
. (20)

The F function is reported in Fig. 11 on the right side.
The performance in terms of magnetometry of the ω-
SQUIPT is 3.8�0/e�0 for ETh/�0 = 0.5 and 4.3�0/e�0 for
ETh/�0 = 5.

FIG. 10. I -V characteristics of the tunnel contact between the
probe and the ω-SQUIPT junction at different values of flux �, with
ideal S/N interfaces. Here, �S = �N = 10−4�0. This quantity is
reported both in linear (left column) and Log y (right column) scale.
Panels (a) and (b) refer to the ω-SQUIPT with a normal metallic probe
NP and ETh/�0 = 0.5 and 5, respectively. Panels (c) and (d) refer to
the ω-SQUIPT with a superconducting probe SCP and ETh/�0 = 0.5
and 5, respectively.

We note that these performances are lower than those of
a conventional SQUIPT. Indeed, for the sake of comparison,
it is sufficient to consider the total flux on the device. The
total flux interval of the main modulation is from zero to the
closure of the induced minigap. In the SQUIPT, the minigap
closes at �0/2; in a ω-SQUIPT, the gap closes at total flux
2�0/3, which is greater than the SQUIPT case. This means
that a certain swing in the output signal requires a greater flux
variation in the ω-SQUIPT, thus lowering its sensitivity.

Nevertheless, the ω-SQUIPT has also interesting gradio-
metric properties. Let us consider the region around the
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FIG. 11. Left column: Flux to voltage characteristic VI (�) of the
ω-SQUIPT. Right column: Transfer function F associated with the
flux voltage characteristics. Here, the S/N interfaces are transparent
and �S = �N = 10−4�0. Parts (a) and (b) correspond to the case
of ω-SQUIPT with a normal probe NP and ETh/�0 = 0.5 and
5, respectively. Parts (c) and (d) refer to the ω-SQUIPT with a
superconducting probe SCP and ETh/�0 = 0.5 and 5, respectively.

fluxes point (�L/�0,�R/�0) = (1/2,1/2) in the NF plot for
full symmetric ω-SQUIPT (Fig. 2). Along the diagonal line,
�L = �R , the modulation is smaller with respect to other
directions. In particular, it reaches the maximum value for
�L = −�R . Hence, the sensitivity is greater for magnetic
fields with a spatial gradient. Gradiometric properties are
exploited for magnetic measurement protected from noise
caused by a far source [38].

Finally, we comment on a different possible application of
the ω-SQUIPT as a magnetometer. Basically, this possibility
relies on the shape of the DOS at Fermi energy of the three-
terminal JJ. Consider, for example, an ω-SQUIPT whose S/N

FIG. 12. Working principle of the ω-SQUIPT as a magnetometer.
Here the interfaces are asymmetric, with rR = rC = 0.1 and rL = 5.
Panel (a) presents the DOS at Fermi energy NF as a function of �L

and �R . Panel (b) shows the DOS of the ω-SQUIPT at Fermi energy
NF in the case of equal fluxes �L = �R = � (orange solid line).
For the sake of comparison, we plot also the result in the case of a
conventional two-terminal device (dark red dashed curve) with equal
contact resistances r = 0.1.

resistances are asymmetric with rR = rC = 0.1 and rL = 5, as
in Fig. 12. In this case, the shape of the DOS at Fermi energy
NF is skewed (Fig. 12). A symmetric flux that goes from � = 0
to � = �0 [Fig. 12, white line in panel (a)] crosses the red
conductive region in three different points. In these crossing
points, the DOS at Fermi energy shows peaks depending on
the flux �. The strong modulation of NF can be exploited for
magnetometry. Notice that here, the experimental setup should
be different from the current biased setup discussed above. For
example, a lock-in configuration that measures the differential
conductance at zero voltage can be used. Panel (b) of Fig. 12
shows the cuts of the DOS at the Fermi energy for equal
fluxes in the asymmetric configuration with rR = rC = 0.1
and rL = 5 (orange solid line). For the sake of comparison,
we have also plotted the analogous quantity for a conventional
SQUIPT [6] with opacities r = 0.1 (dark red dashed curve). As
one can argue from the figure, also the two-terminal device can
be used as a magnetometer, since it presents a peaked structure
around � = �0/2 [6]. The inset depicts a magnification in the
region near � = �0/2, showing that the peak is sharper in the
case of a conventional SQUIPT. Nevertheless, the ω-SQUIPT
has also other intervals of modulation in � = (0.34 ± 0.03)�0

and � = (0.66 ± 0.03)�0, demonstrating that it has a larger
region of working points as a magnetometer.
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VI. CONCLUSIONS

In summary, the paper reports an exhaustive theoretical
investigation of different coherent transport properties of a
three-terminal hybrid device, the so-called ω-SQUIPT. By
means of a full numerical solution of the Usadel equation,
extended to the case of three S leads, we have studied the
effects on the proximized metallic nanowire of the length,
the inelastic scattering, and the quality of the S/N interfaces.
We have shown that the spectral properties are a useful tool
to identify transitions between gapless and gapped states
in this three-terminal setup. The induced supercurrents in
the different arms of the device are discussed in detail,
showing that these can be an alternative hallmark of nontrivial
topological properties. The quasiparticle transport properties
through a metallic probe tunnel-coupled to the Josephson
junction are presented both in the case of a metallic and a
superconducting probe. Since the ω-SQUIPT is sensitive to
magnetic fluxes, we have inspected its magnetometric features,

finding that this device can have potential applications as a
gradiometer or magnetometer. Finally, we emphasize that the
theoretical results reported here can serve as a starting point
for a better fundamental understanding of multiterminal JJs,
which recently have drawn great interest due to their exotic
properties and potential applications in quantum computing.

ACKNOWLEDGMENTS

F.V. and F.G. acknowledge the European Research Coun-
cil under the European Union’s Seventh Framework Pro-
gram (FP7/2007-2013)/ERC Grant Agreement No. 615187-
COMANCHE and MIUR-FIRB2013—Project Coca (Grant
No. RBFR1379UX) for partial financial support. The work
of E.S. was funded by a Marie Curie Individual Fellowship
(MSCA-IFEF-ST No. 660532-SuperMag). The work of F.S.B.
was supported by Spanish Ministerio de Economia y Compet-
itividad (MINECO) through Project No. FIS2014-55987-P.

[1] F. Giazotto, J. T. Peltonen, M. Meschke, and J. P. Pekola,
Nat. Phys. 6, 254 (2010).

[2] W. L. McMillan, Phys. Rev. 175, 537 (1968).
[3] K. D. Usadel, Phys. Rev. Lett. 25, 507 (1970).
[4] E. Strambini, F. S. Bergeret, and F. Giazotto, Appl. Phys. Lett.

105, 082601 (2014).
[5] A. Ronzani, C. Altimiras, and F. Giazotto, Phys. Rev. Appl. 2,

024005 (2014).
[6] S. D’Ambrosio, M. Meissner, C. Blanc, A. Ronzani, and F.

Giazotto, Appl. Phys. Lett. 107, 113110 (2015).
[7] M. Meschke, J. T. Peltonen, J. P. Pekola, and F. Giazotto,

Phys. Rev. B 84, 214514 (2011).
[8] P. Virtanen, A. Ronzani, and F. Giazotto, Phys. Rev. Appl. 6,

054002 (2016).
[9] F. Giazotto and F. Taddei, Phys. Rev. B 84, 214502 (2011).

[10] C. Padurariu, T. Jonckheere, J. Rech, R. Mélin, D. Feinberg, T.
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