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A B S T R A C T

Thin film lubrication problems frequently involve the use of lubricants with non-Newtonian characteristics,
and a relatively simple viscosity model that can describe several non-Newtonian fluids is the Herschel–Bulkley
relation. This relation can model solid-like properties of a lubricant at low shear stress using a yield stress,
while at higher shear stress values shear-thinning or thickening can be included. In literature, this viscosity
model has been combined with various governing equations to solve the non-Newtonian thin film problem,
resulting in models that range from full 3D CFD simulations, to 1D Reynolds equation based methods. However,
something that all of these approaches have in common is that they are either computationally expensive, can
only be used for 1D geometries, or use non-exact, regularised versions of the Herschel–Bulkley model for
reasons of numerical stability. This paper therefore introduces a method for solving a thin film problem with
a non-regularised Herschel–Bulkley lubricant using the 2D generalised Reynolds equation, and this approach
is shown to be fast without compromising on accuracy. The increased speed will allow the model to be used
more efficiently in complex simulations or design optimisation scenarios.
1. Introduction

The increasing demands placed on bearing systems, such as stern
tube bearings found in ships, require hydrodynamic bearings that can
function at higher loads and with lower friction, for both lower and
higher speeds. For these increasingly stringent goals to be met, fast and
accurate numerical models that can for example be used in design opti-
misation studies, are essential. One aspect of a good model is a proper
understanding of the behaviour of the lubricant, which is frequently
assumed to be Newtonian. However, even more traditional oils and
greases can display non-Newtonian behaviour [1,2], and these non-
Newtonian effects are even more important when considering newer
‘smart’ lubricants, such as magnetorheological fluids [3]. It is clear that
Newtonian models do not suffice in these cases, and non-Newtonian
effects will have to be taken into account to obtain an accurate model.

In order to include the non-Newtonian effects of the lubricant, a
viscosity model is needed which describes the relation between the
shear stress and the shear rate of the lubricant. Many different empirical
viscosity models for non-Newtonian fluids can be found in literature.
Three of the simpler models, all with only 2 or 3 parameters, are the
Bingham plastic model, the Ostwald–de Waele model or power law
model, and the Herschel–Bulkley model. A Bingham plastic is a fluid
with a yield stress, which means that the fluid is considered a solid
when the internal stress is below the yield stress, and that the fluid

∗ Corresponding author.
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behaves like a Newtonian fluid otherwise. The part of the fluid flow
domain that behaves like a solid is also called the plug or the core.
This Bingham plastic model is quite popular due to its simplicity, and
has for example been used to model grease-lubricated bearings [4,5], as
well as magneto- and electro-rheological lubricants [6,7]. An overview
containing a large number of other applications from various fields has
been created by Bird et al. [8]. In contrast to the Bingham plastic, a
power law fluid does not have a yield stress, but is one of the simpler
models that includes the effects of a shear-dependent viscosity. It has
frequently been applied to model a wide variety of shear-thinning
(pseudoplastic) and shear-thickening (dilatant) lubricants [9,10]. Fi-
nally, the Herschel–Bulkley model combines the Bingham plastic and
power law characteristics and can therefore represent a fluid with
both a yield stress and a shear-dependent viscosity. Depending on
the lubricant, using this more general model can lead to a better
match between simulations and experiments, but it will results in more
complex numerical models that are less likely to converge [11–13].

Next to the viscosity model itself, a modelling approach is needed
to combine the viscosity model with either the Reynolds equation or
the Navier–Stokes equations. A number of different approaches can be
found in literature to do this for bearing systems.

One approach is to derive modified Reynolds equations for the dif-
ferent cases of core formation of a Bingham plastic (i.e. a core sticking
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List of Symbols
𝑐𝐴𝐷 Variable used for artificial diffusion
𝑐𝑓 Cavitation transformation constant
𝐷 Shaft diameter
𝑓 Shear stress factor
𝐹𝑛 Flow factor 𝑛
𝑓𝑛 Component of flow factor n
𝑔𝑛 Flow factor integral n
ℎ Film thickness
ℎ𝑒 Mesh size
𝐾 Consistency index
𝑘𝐴𝐷 Artificial diffusion coefficient
𝐿 Bearing length
𝑚 Flow index
𝑛 Flow factor index (𝑛 = 0, 1, 2)
𝑝 Film pressure
𝑝𝑐 𝑎𝑣 Cavitation pressure
𝑞 Flow rate
𝑅 Shaft radius
𝑇𝜏 Dimensionless shear stress
𝑢 Fluid speed
𝑢𝐴𝐷 Convection coefficient used for artificial

diffusion
𝑊 Load capacity
𝑥 streamline direction
𝑦 crosswind direction
𝑧 thickness direction
𝑧𝑚 z-coordinate of minimum shear
∇⃗ Gradient operator

[

𝜕
𝜕 𝑥 ,

𝜕
𝜕 𝑦
]

Greek symbols
𝜀 Eccentricity
𝜂 Apparent viscosity
𝜉 Variable combining 𝑝 and 𝜓
𝜏 Shear stress
𝜏𝑐 Constant part of shear stress
𝜏𝑚 Minimum shear stress
𝜏𝑝 Lower bound of flow factor integrals
𝜏𝑦𝑙 𝑑 Yield stress
𝜙 Attitude angle
𝜓 Lubricant fraction
𝜔 Radial velocity
Subscripts

𝑣0 Reference value for variable v
𝑣𝑎 Variable v on the lower surface (𝑧 = 0)
𝑣𝑏 Variable v on the upper surface (𝑧 = 1)
𝑣𝑥 The 𝑥 component of vector 𝑣
Superscripts

�̄� Indicates a variable with dimensions
𝑣 Indicates a vector with 𝑥 and 𝑦 components

to one of the bearing surfaces, a floating core, or no core formation
t all). This was first done by Wada et al. who derived implicit 2D

Reynolds equations for a Bingham plastic, that they applied to a step
bearing and a journal bearing [14–16]. Later on, Tichy managed to
erive explicit Reynolds equations for the different core cases of a 1D
ingham plastic flow [17]. The disadvantage of these methods is that
2 
Appell F1 function
𝛼 1st argument
𝛽 2nd argument
𝛽′ 3rd argument
𝛾 4th argument
𝑥′ 5th argument
𝑦′ 6th argument
𝑤 Integration variable

it can be difficult to find explicit Reynolds equations for all cases of
core formation, especially in 2D flows. The advantage is that once the
equations have been found, convergence is fast.

Another approach that is commonly used is based on the generalised
Reynolds equation introduced by Dowson [18]. Because this more
general variant of the standard Reynolds equation allows for viscosity
variations over the height of the lubricant film, it can be used to
properly account for non-Newtonian effects. An oft-cited paper that
implements this method in 2D for a Bingham plastic was published by
Dorier and Tichy [19]. By using the generalised Reynolds equation they
did not have to define separate equations for the different core cases,
however, they did have to implement a regularisation of the Bingham
plastic model to prevent convergence issues due to the discontinuity in
the viscosity caused by the yield stress. Many similar publications, also
ones using power law models and regularised variants of the Herschel–
Bulkley relation, can be found in literature [11,20–24]. It should be
noted that while this approach does not require multiple equations for
the different core cases, a (slightly) modified version of the original
problem is being solved in case a yield stress is used, because of the
regularisation that has to be applied to those viscosity models. It is also
known that regularisation of yield stress viscosity models can lead to
incorrect predictions for the location of the core [25]. Furthermore, the
solution process is computationally expensive for this approach, due
to several integral terms in the generalised Reynolds equation that are
evaluated numerically in most papers. Lampaert and van Ostayen found
analytical solutions for these integrals in the case of a Bingham plastic,
drastically reducing the required computation time [26]. By tracking
the location of the core they also managed to circumvent the need for
regularisation, while still only having one equation for all cases of core
ormation.

A final approach of including non-Newtonian effects in lubrication
problems is to use CFD, solving the full 3D Navier–Stokes equations.

his has been done by several researchers for various viscosity models,
nd generally gives good results [27–29]. The obvious disadvantage is

that this method requires solving the Navier–Stokes equations, which
is very computationally expensive.

In summary, there is quite a large body of research on the inclusion
of non-Newtonian effects in the modelling of lubricating films. How-
ver, as far as the authors have been able to find, there is a lack of fast,

2D Reynolds equation based implementations using non-regularised
viscosity models (other than Bingham plastic). The goal of this paper is
therefore to show that it is possible to speed up the solution process
of the generalised Reynolds equation in combination with an exact,
non-regularised Herschel–Bulkley viscosity model, following a method
similar to the one employed by Lampaert and van Ostayen [26].
To make the resulting model more relevant to real world (journal)
earings, mass-conserving cavitation will be taken into account as well.

2. Method

In this paper, the generalised Reynolds equation introduced by
Dowson [18] is used as the basis for modelling a laminar thin film
flow of a Herschel–Bulkley fluid. The method section will first introduce
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Fig. 1. Schematic overview of the problem geometry, in this case for a journal bearing.
The two surfaces are marked as A and B.

the characteristics of these specific non-Newtonian fluids, followed by a
derivation of the generalised Reynolds equation. Next, a more efficient
way of solving this equation in combination with a Herschel–Bulkley
fluid is derived. Finally, the numerical implementation in COMSOL
Multiphysics® [30] will be discussed and validated.

The bearing geometry that will be analysed in this paper is shown
in Fig. 1.

2.1. Herschel–Bulkley viscosity model

The governing equations and boundary conditions in this paper are
made dimensionless using the groups below. The quantities with a bar
(e.g. �̄�) have dimensions, the quantities without bar are dimensionless.
Note that similar notation is used for 2D vectors with an 𝑥 and 𝑦
component, which are indicated with an arrow (e.g. 𝜏).

𝑥 = �̄�
�̄�
, 𝑦 = �̄�

�̄�
, 𝑧 = �̄�

ℎℎ̄0
, ℎ = ℎ̄

ℎ̄0
, 𝜂 = �̄�

�̄�0
, 𝑢 = �̄�

�̄�0
,

𝑝 =
ℎ̄20

�̄�0�̄�0�̄�
�̄�, 𝜏 = ℎ̄0

�̄�0�̄�0
𝜏 = 𝑇𝜏𝜏 , 𝑞 = 1

ℎ̄0�̄�0
𝑞

Here 𝑥 and 𝑦 denote the in-plane coordinates, 𝑧 the coordinate
normal to the lubrication film, ℎ the local film height, 𝜂 the viscosity,
𝑢 the fluid velocity, 𝑝 the pressure, 𝜏 the shear stress, and 𝑞 the flow
rate. The 𝑧-coordinate is defined to be between 0 (for lower surface 𝑎)
and 1 (for upper surface 𝑏). These quantities were made dimensionless
using several constants, where �̄� is the shaft radius, ℎ̄0 the nominal
film thickness, and �̄�0 and �̄�0 are reference values for the viscosity and
velocity respectively.

The Herschel–Bulkley model is a non-Newtonian viscosity model
that describes a fluid that has a yield stress and is either shear-thinning
or shear-thickening for shear stresses above this critical yield stress.
For this model the relation between the shear stress ⃗̄𝜏 and the velocity
gradient (the shear rate) 𝜕⃗̄𝑢∕𝜕 ̄𝑧 is described by Eq. (1), with the three
parameters being the yield stress 𝜏𝑦𝑙 𝑑 , the consistency index �̄�, and
the flow index 𝑚. When the shear stress is lower than the yield stress
(| ⃗̄𝜏| < 𝜏𝑦𝑙 𝑑 ) the fluid is considered to be solid, and shear stress larger
than the yield stress leads to viscous flow. The type of viscous flow
is determined by the flow index, with the fluid showing pseudoplastic
(shear-thinning) behaviour for 𝑚 < 1, and dilatant (shear-thickening)
behaviour for 𝑚 > 1.

For 𝜏𝑦𝑙 𝑑 ≠ 0 and 𝑚 = 1 the Herschel–Bulkley model reduces to the
Bingham plastic model. For 𝜏𝑦𝑙 𝑑 = 0 and 𝑚 ≠ 0 the model reduces to
a power law model. Finally, when both 𝜏𝑦𝑙 𝑑 = 0 and 𝑚 = 1, the model
reduces to the Newtonian model.

|
⃗̄𝜏| = 𝜏𝑦𝑙 𝑑 + �̄�

|

|

|

|

|

𝜕⃗̄𝑢
𝜕 ̄𝑧

|

|

|

|

|

𝑚

(1)

The Herschel–Bulkley model can be rewritten using Eq. (2), where both
the shear stress factor 𝑓 (Eq. (3)) and the apparent viscosity 𝜂 (Eq. (4))
will be given as functions of the shear stress magnitude. This will prove
3 
useful later on in the derivation. The equations are made dimensionless
at the same time.

𝑓 ⃗𝜏 = 𝜂
ℎ
𝜕 ⃗𝑢
𝜕 𝑧 (2)

𝑓 =
(

1 − 𝜏𝑦𝑙 𝑑
|𝜏|

)
1
𝑚
𝑓 ∗(

|𝜏|
)

𝑓 ∗(
|𝜏|

)

=

{

1 if |𝜏| ≥ 𝜏𝑦𝑙 𝑑
0 if |𝜏| < 𝜏𝑦𝑙 𝑑

(3)

𝜂 = �̄�
1
𝑚

�̄�0

|

|

|

|

𝜏
𝑇𝜏

|

|

|

|

1− 1
𝑚

(4)

2.2. Generalised Reynolds equation

This section presents the derivation of a generalised Reynolds equa-
tion that can be used to solve non-Newtonian lubrication problems. Fol-
lowing the derivation of Dowson [18], the linear momentum equation
for a laminar thin film flow with negligible body and inertial forces is
given by Eq. (5). In this equation 𝑝 is the pressure, 𝜏 is the shear stress,
and ∇⃗ = [𝜕∕𝜕 𝑥, 𝜕∕𝜕 𝑦] is the gradient operator. Note that the dimension-
less film thickness ℎ appears only due to the non-dimensionalisation
chosen in this paper.

∇⃗𝑝 = 1
ℎ
𝜕 ⃗𝜏
𝜕 𝑧 (5)

Integrating once over the film thickness coordinate 𝑧 leads to an
expression for the shear stress 𝜏 (Eq. (6)), with 𝜏𝑐 the as of yet unknown
integration constant.

𝜏 = 𝑧ℎ∇⃗𝑝 + 𝜏𝑐 (6)

The next step is to substitute for 𝜏 in this equation using Eq. (2), and
to integrate over 𝑧 again. Combined with the standard no-slip boundary
conditions for the flow velocity (𝑢 = 𝑢𝑎 at 𝑧 = 0 and 𝑢 = 𝑢𝑏 at 𝑧 = 1),
this leads to Eqs. (7) and (8) which represent the flow velocity 𝑢 and
the constant part of the shear stress 𝜏𝑐 respectively (𝜏𝑐 is also the shear
stress at 𝑧 = 0). Note that it should also be possible to include slip
boundary conditions without fundamentally changing the derivation
that follows. For this, the reader is referred to [31], where Navier slip
is added to the generalised Reynolds equation.

⃗ = ℎ2∇⃗𝑝∫

𝑧

0

𝑓
𝜂
𝑧d𝑧 + ℎ ⃗𝜏𝑐 ∫

𝑧

0

𝑓
𝜂
d𝑧 + 𝑢𝑎 (7)

𝜏𝑐 =
𝑢𝑏 − 𝑢𝑎
ℎ𝐹0

− ℎ
𝐹1
𝐹0

∇⃗𝑝 (8)

The flow factor integrals 𝐹0 and 𝐹1 that appear in Eq. (8) are defined
by Eq. (9), where 𝑛 can be either 0, 1 for 𝐹0 and 𝐹1, or 2 for 𝐹2 which
is used in the relations that follow.

𝐹𝑛 = ∫

1

0

𝑓
𝜂
𝑧𝑛d𝑧 (9)

The flow rate through a cross-section of the film 𝑞 can be obtained
by integrating the flow velocity 𝑢 over the channel height. Using
integration by parts and substituting for 𝜏𝑐 results in Eq. (10).

𝑞 = − ℎ3
(

𝐹2 −
𝐹 2
1
𝐹0

)

∇⃗𝑝 + ℎ
(

1 − 𝐹1
𝐹0

)

𝑢𝑏 + ℎ
𝐹1
𝐹0
𝑢𝑎 (10)

Finally, substituting for 𝑞 in the mass balance equation (Eq. (11))
will result in the generalised Reynolds equation. Here 𝜓 is the lubricant
fraction that is used to take cavitation into account.

∇⃗
(

𝜓 ⃗𝑞) = 0 (11)
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Fig. 2. A schematic representation of the shear stress magnitude |𝜏| over the film
height. The minimum shear stress |𝜏𝑚| and the 𝑧-coordinate of the minimum shear
stress 𝑧𝑚 are indicated. The red part of |𝜏| (above 𝑧 = 𝑧𝑚) corresponds to the positive
solutions of Eq. (20), the blue part (below 𝑧 = 𝑧𝑚) corresponds to the negative solutions.

2.2.1. Cavitation algorithm
In this paper, cavitation is modelled using the mass-conservative

JFO boundary conditions [32]. These boundary conditions are imple-
mented with a variable transformation that is used to replace both 𝑝 and
𝜓 with functions of a new variable 𝜉 (Eqs. (12) & (13)). By assuming
that at any point in the fluid film, the lubricant is either in a full film
region (𝑝 > 0, 𝜓 = 1) or in a cavitated region (𝑝 = 0, 0 ≤ 𝜓 < 1), the
Reynolds equation can be solved for a single variable 𝜉 that represents
either the pressure or the lubricant fraction, depending on its sign.

𝑝 = (𝜉 ≥ 0)𝜉 (12)

𝜓 = 1 + (𝜉 < 0)𝑐𝑓 𝜉 (13)

A numerical stabilisation technique is required to properly solve
the generalised Reynolds equation in combination with this cavitation
algorithm. For that reason artificial diffusion will be used in both the
streamline and crosswind directions (𝑥 and 𝑦). The amount of cavitation
can be controlled with the transformation constant 𝑐𝑓 . The Appendix
discusses the implementation of the numerical stabilisation algorithm,
as well as an optimal value for 𝑐𝑓 , resulting in Eq. (14) when assuming
isotropic diffusion.

∇⃗
(

−ℎ3
(

𝐹2 −
𝐹 2
1
𝐹0

)

∇⃗𝜉 + 𝜓 ℎ
(

1 − 𝐹1
𝐹0

)

𝑢𝑏 + 𝜓 ℎ𝐹1
𝐹0
𝑢𝑎

)

= 0 (14)

2.3. Analytical evaluation of flow factors integrals

The generalised Reynolds equation (Eq. (11)) is sufficient to de-
termine the pressure profile for a thin film flow of a non-Newtonian
lubricant. This equation has to be solved together with the flow factor
integrals (Eq. (9)), since these integrals depend on the shear stress
and therefore on the pressure gradient. As was discussed in the in-
troduction, this calculation has been performed previously for various
viscosity models, both with and without cavitation. However, in almost
all of these papers the calculation of the flow factor integrals seems to
be performed using numerical integration, and an analytical solution
has only been found for Bingham fluids [26]. Since these integrals
have to be evaluated at every single point in the domain, for every
iteration of the solver, this is a fairly computationally expensive part of
the calculation. In this section it will be shown that it is also possible
to analytically evaluate the three flow factor integrals 𝐹0, 𝐹1 and 𝐹2
for a Herschel–Bulkley fluid, removing the need for slow numerical
integration.

In order to analytically evaluate the flow factor integrals, they have
to be written to a different form. Currently these integrals, as given
by Eq. (9), are integrated over the film thickness coordinate 𝑧. For
the analytical evaluation it is necessary to rewrite them such that
4 
the integration is performed over the shear stress |𝜏|. This is done
in Eq. (15), where |𝜏𝑏| and |𝜏𝑎| are the shear stress magnitudes on the
upper and lower surfaces respectively.

𝐹𝑛 = ∫
|𝜏𝑏|

|𝜏𝑎|

𝑓
𝜂
𝑧𝑛 𝜕 𝑧
𝜕|𝜏|

d|𝜏| (15)

Evaluating Eq. (15) requires 𝑧 as a function of |

|

𝜏|
|

, as well as
the partial derivative 𝜕 𝑧∕𝜕 𝜏. To find these quantities, the shear stress
magnitude should be determined first. This can be done using Eq. (6),
and results in Eq. (16).
|

|

𝜏|
|

2 = 𝑧2ℎ2|∇⃗𝑝|
2
+ 2𝑧ℎ(∇⃗𝑝 ⋅ 𝜏𝑐 ) + |

|

𝜏𝑐 ||
2 (16)

With the (square of the) shear stress magnitude known, the 𝑧-
coordinate of the minimum shear stress 𝑧𝑚 can be determined
(Eq. (17)), as well as the minimum shear stress magnitude |𝜏𝑚|
(Eq. (18)). See Fig. 2 for a visual representation of the shear stress
magnitude and the minimum shear stress. Note that this transformation
is ill-defined when |∇⃗𝑝| → 0, which is the case (most notably) in the
cavitation region. This case will be treated at the end of this section.

𝑧𝑚 = − ∇⃗𝑝 ⋅ 𝜏𝑐

ℎ|∇⃗𝑝|
2

(17)

|

|

𝜏𝑚||
2 = |

|

𝜏𝑐 ||
2 −

(∇⃗𝑝 ⋅ 𝜏𝑐 )2

|∇⃗𝑝|
2

(18)

Eq. (16) for the shear stress magnitude can now be rewritten using
Eqs. (17) and (18), resulting in Eq. (19).
|

|

𝜏|
|

2 = |

|

𝜏𝑚||
2 + ℎ2(𝑧 − 𝑧𝑚)2|∇⃗𝑝|

2
(19)

Rewriting Eq. (19) then leads to 𝑧 as a function of |

|

𝜏|
|

, which can
be used to calculate the partial derivative 𝜕 𝑧∕𝜕|𝜏| (Eqs. (20) and (21)
respectively). Because the shear stress magnitude is symmetric around
the minimum shear stress, both equations have two solutions.

𝑧 = 𝑧𝑚 ± 1
ℎ|∇⃗𝑝|

(

|

|

𝜏|
|

2 − |

|

𝜏𝑚||
2
)1∕2

(20)

𝜕 𝑧
𝜕|𝜏|

= ± 1
ℎ|∇⃗𝑝|

|

|

𝜏|
|

(

|

|

𝜏|
|

2 − |

|

𝜏𝑚||
2
)1∕2

(21)

Eqs. (20) and (21) can now be substituted into the flow factor
integrals (Eq. (15)). However, 𝑧 and its derivative are both multivalued
functions of |𝜏|, which means that these functions have two solutions
for every value of |𝜏|. As a results, the bounds of the integral in Eq. (15)
are not uniquely defined and the integral cannot be evaluated directly.
The following paragraphs describe how to modify the integral such that
it can be evaluated.

Since the shear stress magnitude has a minimum (Eqs. (16) through
(19)), it is known that |𝜏𝑚| ≤ |𝜏| < ∞. Therefore, instead of integrating
directly from |𝜏𝑎| to |𝜏𝑏| as in Eq. (15), it is better to split the integral
at |𝜏𝑚|, resulting in Eq. (22).

𝐹𝑛 = ∫
|𝜏𝑏|

|𝜏𝑚|

𝑓
𝜂
𝑧𝑛 𝜕 𝑧
𝜕|𝜏|

d|𝜏| − ∫
|𝜏𝑎|

|𝜏𝑚|

𝑓
𝜂
𝑧𝑛 𝜕 𝑧
𝜕|𝜏|

d|𝜏| (22)

Looking at Eq. (20) with the knowledge that |𝜏𝑚| ≤ |𝜏| < ∞, it is
clear that the positive solutions corresponds to 𝑧𝑚 ≤ 𝑧 < ∞, and the
negative solutions to −∞ < 𝑧 ≤ 𝑧𝑚. This means that for the integrals
in Eq. (22), the sign of 𝑧 and 𝜕 𝑧∕𝜕|𝜏| depends only on the 𝑧-coordinate
of the surface represented by the upper bound of the integrals. Taking
the situation in Fig. 2 as an example, here upper surface 𝑏 lies above 𝑧𝑚,
meaning that the first integral in Eq. (22) requires the positive solutions
of 𝑧 and 𝜕 𝑧∕𝜕|𝜏|. Meanwhile, the second integral requires the negative
solutions, since lower surface 𝑎 lies below 𝑧𝑚.

For this reason, Eq. (22) can be rewritten to Eqs. (23) through
(27). Eq. (26) shows that the ± signs from Eqs. (20) and (21) have
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been replaced with the 𝚜𝚐𝚗 function, which is equal to 1 for a positive
rgument, and −1 for a negative argument.

𝐹0= 𝑓0 (23)

1= 𝑓1 + 𝑧𝑚𝑓0 (24)

2= 𝑓2 + 2𝑧𝑚𝑓1 + 𝑧2𝑚𝑓0 (25)

𝑓𝑛 =
⎛

⎜

⎜

⎝

1
ℎ ||
|

∇⃗𝑝||
|

⎞

⎟

⎟

⎠

𝑛+1
(

sgn(1 − 𝑧𝑚)𝑛+1𝑔𝑛
(

|

|

𝜏𝑏||
)

− sgn(0 − 𝑧𝑚)𝑛+1𝑔𝑛
(

|

|

𝜏𝑎||
)

)

(26)

𝑔𝑛(𝜏) = ∫

𝜏

|𝜏𝑚|

𝑓
𝜂
|

|

𝜏|
|

(

|

|

𝜏|
|

2 − |

|

𝜏𝑚||
2
)
𝑛−1
2 d|𝜏| (27)

One final step that is necessary for the analytical evaluation of the
flow factor integrals given by Eq. (27) concerns the lower bound of the
ntegrals, |𝜏𝑚|. Since a Herschel–Bulkley fluid has a yield stress, it is
ossible for the minimum shear stress to be lower than the yield stress
|𝜏𝑚| < 𝜏𝑦𝑙 𝑑). However, for the analytical evaluation to be possible, the
ssumption has to be made that both bounds of the integral are larger
han 𝜏𝑦𝑙 𝑑 . To ensure this, and knowing that 𝑓 = 0 for any |𝜏| < 𝜏𝑦𝑙 𝑑
Eq. (3)), the lower bound of Eq. (27) will be replaced by |𝜏𝑝| which is

defined by Eq. (28).

|

|

|

𝜏𝑝
|

|

|

=

{

|

|

𝜏𝑚|| if |𝜏𝑚| ≥ 𝜏𝑦𝑙 𝑑
𝜏𝑦𝑙 𝑑 if |𝜏𝑚| < 𝜏𝑦𝑙 𝑑

(28)

Using Eq. (28) and substituting for 𝑓 and 𝜂 (from Eqs. (3) and (4)
espectively), Eqs. (26) and (27) can now be changed to Eqs. (29) and
30).

𝑓𝑛 =
𝑇𝜏 �̄�0

(�̄� 𝑇𝜏 )
1
𝑚

(

1
ℎ|∇⃗𝑝|

) 𝑛+1 (

sgn(1 − 𝑧𝑚)𝑛+1𝑔𝑛
(

|

|

𝜏𝑏||
)

− sgn(−𝑧𝑚)𝑛+1𝑔𝑛
(

|

|

𝜏𝑎||
)

)

(29)

𝑔𝑛(𝜏) = ∫

𝜏

|

|

|

𝜏𝑝
|

|

|

(

|

|

𝜏|
|

− 𝜏𝑦𝑙 𝑑
)

1
𝑚
(

|

|

𝜏|
|

2 − |

|

𝜏𝑚||
2
)
𝑛−1
2 𝑓 ∗(𝜏) d|𝜏| (30)

Note that Eq. (30) contains the 𝑓 ∗ term from Eq. (3). As a results, if
either |𝜏𝑎| or |𝜏𝑏| is smaller than the yield stress 𝜏𝑦𝑙 𝑑 , the corresponding
ntegral 𝑔𝑛(𝜏) will be equal to zero. In a real bearing this would be the
ituation where the solid part of the fluid adheres to the surface where
he shear stress is lowest.

The integral given by Eq. (30) has been integrated analytically using
 software package for symbolic mathematical computation [33]. The
ndefinite variant of Eq. (29) was evaluated for 𝑛 = 0, 1 and 2, resulting

in Eqs. (31), (32) and (33) respectively.

𝑔0(𝜏) =

[

(

|𝜏|−𝜏𝑦𝑙 𝑑)1+
1
𝑚

1+ 1
𝑚

(

1
𝜏2𝑦𝑙 𝑑−|𝜏𝑚|2

)
1
2

AppellF1
(

1 + 1
𝑚 ,

1
2 ,

1
2 , 2 +

1
𝑚 , 𝑥′, 𝑦′

)

]

|

|

|

|

|

𝜏

|𝜏𝑝|

(31)

𝑔1(𝜏) =

(

|

|

𝜏|
|

− 𝜏𝑦𝑙 𝑑
)1+ 1

𝑚

1 + 1
𝑚

|

|

|

|

|

𝜏

|𝜏𝑝|
(32)

𝑔2(𝜏) =

[

(

|𝜏|−𝜏𝑦𝑙 𝑑)1+
1
𝑚

1+ 1
𝑚

(

1
𝜏2𝑦𝑙 𝑑−|𝜏𝑚|2

)− 1
2

AppellF1
(

1 + 1
𝑚 ,−

1
2 ,−

1
2 , 2 +

1
𝑚 , 𝑥′, 𝑦′

)

]

|

|

|

|

𝜏 (33)
|
|𝜏𝑝|

t

5 
𝑥′ =
− |

|

𝜏|
|

+ 𝜏𝑦𝑙 𝑑
|

|

𝜏𝑚|| + 𝜏𝑦𝑙 𝑑
𝑦′ =

|

|

𝜏|
|

− 𝜏𝑦𝑙 𝑑
|

|

𝜏𝑚|| − 𝜏𝑦𝑙 𝑑

(34)

These analytical evaluations of the integrals are valid considering
he following assumptions:

1. 𝜏𝑦𝑙 𝑑 ≥ 0
2. |

|

𝜏𝑚|| ≥ 0
3. |

|

𝜏|
|

≥ 𝜏𝑦𝑙 𝑑
4. |

|

𝜏|
|

≥ |

|

𝜏𝑚||

Finally, before continuing with the analysis of the resulting equa-
tions, it should be noted that the analytical evaluation of the flow factor
integrals is not possible in the limit where |∇⃗𝑝| → 0. However, it is not
necessary either, since in this case the shear stress is constant (|𝜏| = |𝜏𝑐 |,
see Eq. (16)), which means 𝑓 and 𝜂 are constant as well and can be

oved outside of the integral in Eq. (9). The integral then becomes
trivial to solve, resulting in Eq. (35), which can be used to calculate
the flow factors in the cavitation region.

𝐹𝑛 =
1
𝑛
𝑓 (|𝜏𝑐 |)
𝜂(|𝜏𝑐 |)

if |∇⃗𝑝| = 0 (35)

2.3.1. Appell F1 function
It turns out that while the analytical evaluation for 𝑔1 is triv-

ial, the evaluations for 𝑔0 and 𝑔2 are more complicated. These de-
pend on the Appell hypergeometric function of the first kind, AppellF1
(𝛼 , 𝛽 , 𝛽′, 𝛾 , x′, y′), which is well-defined by an infinite series [34]. In
literature, Appell functions have for example been found in the solution
of integrals appearing in Feynman diagrams from quantum mechan-
ics [35], and in the Watson integrals that characterise lattice random
walks in biology [36].

Implementing the Appell F1 function using the infinite series is a
complex procedure, since the series is only convergent for |𝑥′| < 1
and |𝑦′| < 1. Additional mathematical analysis is required to evaluate
this series for other values of 𝑥′ and 𝑦′, and only one example of such
an implementation could be found in literature [37]. An alternative
method has been used in this paper, which solves a simple integral
epresentation [38,39] of the Appell function (36). In this equation 𝛤

is the standard gamma function.
AppellF1(𝛼 , 𝛽 , 𝛽′, 𝛾 , 𝑥′, 𝑦′) =

𝛤 (𝛾)
𝛤 (𝛼)𝛤 (𝛾 − 𝛼) ∫

1

0
𝑤𝛼−1𝑤𝛾−𝛼−1(1 −𝑤𝑥′)−𝛽 (1 −𝑤𝑦′)−𝛽′d𝑤

(36)

This integral is valid as long as the conditions below are satisfied,
which is the case for all positive values of the flow index 𝑚 (see
qs. (31) and (33)).

1. ℜ(𝛼) > 0
2. ℜ(𝛾 − 𝛼) > 0

A disadvantage of the integral representation is that numerical
integration will be required to solve the Appell function. The analytical
evaluation of the flow factor integrals is therefore no longer fully ana-
lytical, seemingly defeating its purpose. However, the Appell function
is a known and well-defined mathematical function (in contrast to the
flow factor integrals themselves). The use of the integral representa-
tion and numerical integration to calculate it, is therefore purely a
limitation imposed by the poor availability of faster Appell function
implementations based on the infinite series.

In order to show the potential of the analytical evaluation of the
low factor integrals in combination with a fast Appell function, lookup
able approximations of the function were created. Two Appell function



G.H.G. van der Meer and R.A.J. van Ostayen

a

T

t
−
c

a
t
f

i
(

i
i
E

I

f
w
f
c
s
d
m
ℎ
c
s

c
L
e

t

r
v
w

s
c

c
e

t
o

r
w
t

r

Tribology International 204 (2025) 110460 
lookup tables are required, one for Eq. (31) where 𝛽 = 𝛽′ = 0.5,
nd one for Eq. (33) where 𝛽 = 𝛽′ = −0.5. For the creation of these

lookup tables, the flow index 𝑚 was assumed to be constant (different
values of 𝑚 will therefore require the lookup tables to be recalculated).

he remaining arguments, 𝑥′ and 𝑦′, can vary between −∞ < 𝑥′ ≤ 1
and −∞ < 𝑦′ < ∞ respectively (see Eq. (34)). For the lookup tables
he range of these variables will be limited to −1e−4 < 𝑥′ ≤ 1 and
1e−4 < 𝑦′ < 1e−4, which was found to be sufficient for the simulations
arried out in this paper (Eq. (36) will be solved numerically at runtime

for values of 𝑥′ and 𝑦′ outside of this range). The tables contain 240 by
480 values (for 𝑥′ and 𝑦′ respectively), which logarithmically approach
the singular point (1,1) to within 1e−6. Cubic spline interpolation is
used to find values that are not contained in the table. Finally, this
results in two 2D lookup tables of 𝑥′ and 𝑦′ which are both valid for
 single value of 𝑚. Accessing these tables takes a fraction of the time
hat is required for numerical integration, and will therefore allow for
ast solutions to the generalised Reynolds equation.

2.4. Software implementation

The system of equations that describe a Herschel–Bulkley lubri-
cation film are solved using the commercial FEM software package
COMSOL Multiphysics® 6.1 [30]. Two variants of this model are solved
n this paper. Both variants solve the generalised Reynolds equation
Eq. (14)) for the pressure 𝑝, this equation is implemented in COMSOL

using a General Form PDE. In addition, the first variant, the numerical
variant, solves Eq. (9) for the flow factor integrals 𝐹0, 𝐹1 and 𝐹2. The
ntegrals are evaluated using COMSOL’s numerical integration routine
ntegrate. The second variant, the analytical variant, instead solves
q. (9) together with Eqs. (23) through (25) for 𝐹0, 𝐹1 and 𝐹2. In

this case the integral is evaluated analytically, and the resulting Appell
functions are evaluated using lookup tables (see Section 2.3.1). In both
cases Dirichlet boundary conditions are used to set the pressure on the
outer edges of the computational domain to zero. Furthermore, the
symmetry of the bearing along the midline (𝑦 = 0.5) is used to find
the pressure for only one half of the bearing.

The same solver strategy with two steps is used for both variants.
n both cases, Eq. (14) is solved in step 1 for a Newtonian fluid, with
𝐹0 = 1, 𝐹1 = 1∕2 and 𝐹2 = 1∕3. This Newtonian solution is then used
as an initial guess for the Herschel–Bulkley solver in step 2, which
solves for both the generalised Reynolds equation and the flow factor
integrals at the same time. The flow factor integral derivatives are not
included in the Jacobian matrix,1 which was found to result in much
better convergence. The solver therefore simply uses the flow factor
unction values from the previous step. A Newton–Raphson solver
ith under-relaxation is used for both steps, in step 1 the relaxation

actor is determined automatically by COMSOL, in step 2 it is kept
onstant at a value of 0.2. Convergence is assumed when the relative
olution and residual errors are smaller than 1e−3. The computational
omain is discretised with a structured quadrilateral mesh, and unless
entioned otherwise the edge length of the elements is set equal to
𝑒 = 0.01 (100 × 50 elements), which was found to be sufficient in mesh
onvergence checks using decreasing element size. Quadratic Lagrange
hape functions are used.

The Appell function that is required for the analytical variant is
alculated by solving Eq. (36) using the integral function of MAT-
AB [40]. The script that performs this calculation is based on an
xisting user-submitted implementation [41], and can be found at [42].

The lookup tables of the Appell function are made using the gridded-
Interpolant function in MATLAB. The resulting tables are created
separately, before the model is solved, and are saved as .mat files.
When the model is solved with COMSOL, the ’LiveLink for MATLAB’
functionality can be used to call a MATLAB script that loads the lookup
ables and returns the requested values of the Appell function.

1 In COMSOL this can be achieved with the nojac operator.
6 
Table 1
Overview of the two sets of operating conditions used for the validation of the model,
as well as the conditions for the test case used to compare the numerical and analytical
variants of the model.

Fig. 3 Fig. 4 Test case Unit

�̄� 100 50 50 mm
𝐿∕𝐷 4/3 1 1 –
ℎ̄0 145.5 235 100 μm
�̄�& �̄�0 0.0127 – 0.1 Pa s
𝜏𝑦𝑙 𝑑 0 0.8 0.25 –
𝑚 1 1 1.2 –
�̄� 48.1 – 26.2 r ad∕s
𝜖 0.61 0.31 - 0.71 0.3 - 0.7 –
𝜙 0 0 𝜋∕4 –
�̄�𝑐 𝑎𝑣 72 139.79 – 101 325 Pa

2.5. Model validation

To validate the correct implementation of the equations, the nu-
merical variant of the model will be compared with results found in
literature for hydrodynamic journal bearings. No papers discussing the
use of the isothermal Reynolds equation with a Herschel–Bulkley fluid
model have been found, neither with nor without cavitation. For that
eason the cavitation and non-Newtonian aspects of the model will be
alidated separately. In both cases the dimensionless film thickness ℎ
ill be given by Eq. (37), where 𝜖 is the eccentricity of the shaft and 𝜙

the attitude angle.

ℎ = 1 + 𝜖 cos (𝑥 − 𝜙) (37)

Fig. 3 shows the pressure profile near the centreline of a journal bearing
lubricated with a Newtonian lubricant, the operating conditions are
shown in Table 1. The model result is compared with the numerical
result of Brewe [43] (who modelled cavitation using Elrod’s algo-
rithm [44]) and the experimental result of Jakobssen and Floberg [45].
The pressure profile determined by the numerical variant of the model
hows good agreement with both results, and was found to be mesh
onvergent.

The second validation was performed for a journal bearing lubri-
cated with a Bingham fluid, which is identical to a Herschel–Bulkley
fluid with the flow index 𝑚 equal to 1. The pressure profiles calculated
by the numerical variant of the model for several eccentricities are
shown in Fig. 4, the operating conditions can be found in Table 1. For
omparison, the numerical results obtained by Wada et al. and Gertzos
t al. are shown [14,28]. They implemented cavitation using the half-

Sommerfeld condition, for that reason the cavitation implementation
of the model was disabled and the pressure profiles are only shown for
the full film region of the bearing (0 ≤ 𝑥 ≤ 0.5). Agreement between
he model and the results from literature is good, and the model was
nce again found to be mesh convergent.

3. Results and discussion

To show that the analytical variant of the model gives the same
esults as the numerical variant, but does so much faster, both models
ill be applied to the same test case. The operating conditions for this

est case can be found in Table 1, the test case describes a journal
bearing at several different eccentricities lubricated with a Herschel–
Bulkley fluid. The film thickness is once again given by Eq. (37). Fig. 5
shows the resulting pressure profiles at the midline of the bearing for
five different eccentricity values, and Fig. 6 shows the full 2D pressure
profile for one of these eccentricities. The differences between the
results of the numerical and analytical variants of the model are very
small, and cannot be distinguished using Fig. 5. For that reason the
figure shows only the pressure profiles of one model variant, and the
elative differences between the two variants are shown in Table 2 for

the peak pressure and load capacity, with the load capacity 𝑊 being
determined using Eq. (38).
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Fig. 3. The pressure profile in a journal bearing lubricated with a Newtonian fluid and
with cavitation taken into account. The operating conditions are shown in Table 1. To
match the dimensionless groups used in the figures from the references, the pressure
is scaled with the cavitation pressure, �̄�𝑐 𝑎𝑣.

Fig. 4. The pressure profiles for several eccentricities in a journal bearing lubricated
with a Bingham fluid with cavitation implemented with the half-Sommerfeld boundary
condition. The operating conditions are shown in Table 1.

𝑊 =

(

(

∬𝑆
𝑝 cos (𝑥)d𝐴

)2
+

(

∬𝑆
𝑝 sin (𝑥)d𝐴

)2
) 1

2
(38)

The values in the table confirm that the differences between the
variants are indeed small, though they are not zero. This can be
explained by the limited accuracy of both the lookup tables, and
of the numerical integration routine used in the numerical variant
of the model. The accuracy of both could be increased to reduce
these differences, but this would result in increasing storage sizes
for the lookup tables, and increasingly long calculation times for the
integration routine.

All results shown up to this point were calculated for a mesh size
of ℎ𝑒 = 0.01, as was mentioned in Section 2.4. To check if the results
produced with this mesh size are accurate, it is necessary to establish
whether the models are mesh-convergent. This is done using the load
capacity, by comparing the FEM results of both model variants with
a good estimate of the exact result. This estimate is obtained with
Aitken’s extrapolation method (also known as Aitken’s 𝛿2-process),
which uses three successive values in a converging series to calculate
an improved estimate of the first value [46]. With this method, the
relative error between the FEM-calculated load capacity and the Aitken
estimate can be determined as a function of the mesh size. This error
7 
Fig. 5. The pressure profiles for several eccentricities in a journal bearing lubricated
with a Herschel–Bulkley fluid with cavitation taken into account. The operating
conditions are shown in Table 1.

Fig. 6. The 2D pressure profile for an eccentricity of 0.7, as calculated for a journal
bearing lubricated with a Herschel–Bulkley fluid with cavitation taken into account.
The operating conditions are shown in Table 1.

can be found in Fig. 7, proving that the models are indeed mesh-
convergent, and that the results are sufficiently accurate with a mesh
size of 0.01.

The previous results have shown that the analytical and numerical
variants produce effectively identical pressure profiles. The only com-
parison left is therefore to check whether the analytical variant is faster,
as was claimed at the start of this paper. The required computational
times for both variants can be found in Fig. 8 as a function of the
mesh size and the number of degrees of freedom. This figure shows the
time required to solve the test case from Table 1 for the five different
eccentricity values from Table 2. It is easily seen that the analytical
variant of the model is indeed faster than the numerical variant, with
the computational time being reduced by about a factor 2, independent
of mesh size.

This demonstrates that the approach used in this paper, where the
flow factor integrals appearing in Dowson’s generalised Reynolds equa-
tion were evaluated analytically for a Herschel–Bulkley fluid model, is
an effective way of reducing the required computational time without
losing any accuracy.

4. Conclusion

This paper presents a method for efficiently solving the pressure
profile in a thin film flow of a non-Newtonian lubricant. Specifically,
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Table 2
The relative differences in peak pressure and load capacity between the numerical and analytical variants of the model.

Eccentricity 𝜀 0.3 0.4 0.5 0.6 0.7

Relative difference in peak pressures 1.55e−5 0.675e−5 0.118e−5 0.313e−5 0.113e−5
Relative difference in load capacity 3.268e−7 4.088e−7 1.200e−7 0.623e−7 1.290e−6
d

b
r
a
w
e

𝑥

Fig. 7. The relative error between the FEM-calculated load capacity and an estimate
f the exact load capacity, as a function of the mesh size for an eccentricity of 𝜖 = 0.7.
nly the line for the analytical variant of the model is shown.

Fig. 8. The computational time required to solve the analytical and numerical variants
of the model for five different eccentricities. The 𝑥-axis indicates the number of degrees
of freedom, as well as the corresponding mesh size.

the 2D generalised Reynolds equation has been used to include shear-
dependent viscosity effects, which were modelled with the Herschel–
Bulkley model, allowing for both a yield stress as well as shear-thinning
or shear-thickening effects. Similar studies exist in literature, however,
those studies generally use computationally expensive numerical inte-
gration to evaluate several viscosity-dependent integrals that appear in
the generalised Reynolds equation. Furthermore, the Herschel–Bulkley
model is frequently regularised, to prevent convergence issues due to
the discontinuity in the viscosity caused by the yield stress. It has
been shown in this paper that these integrals can also be evaluated
analytically, and without the use of regularisation. The resulting ex-
pressions depend on the so-called Appell F1 function, a well-defined
but relatively obscure mathematical function. Due to a lack of fast
and robust implementations of this function, pre-calculated lookup
tables were used instead, which only have to be recalculated when the
fluid properties are changed. The results produced by the final model
(which includes mass-conserving cavitation) agree with literature, and
show that the model produces effectively identical pressure profiles

or both the numerically and analytically evaluated integrals without v

8 
regularisation. The only difference being that the analytical variant
oes so about twice as fast, independent of mesh size. This decrease in

computation time means that the model can be used more efficiently
than the existing models, for example in design optimisation studies.
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Appendix. Derivation of the generalised Reynolds equation with
cavitation

The cavitation algorithm used in this paper requires numerical sta-
ilisation, otherwise the convection-dominated nature of the cavitated
egion will result in oscillations in the pressure solution. A simple
nd effective stabilisation technique is artificial diffusion (AD), which
as used by Alakhramsing et al. to stabilise the standard Reynolds
quation [32]. This paper follows their derivation, but applies it to the

generalised Reynolds equation instead. Furthermore, isotropic diffusion
will be used, with the diffusion coefficient for the 𝑥-direction (stream-
line) being applied to the 𝑦-direction (crosswind direction) as well. The
amount of diffusion added to the crosswind direction will therefore be
larger than necessary, but while the effect on the pressure solution was
found to be minimal, convergence of the solver was much improved.

As was mentioned in the main text, a new variable 𝜉 is used to model
both the pressure 𝑝 and the lubricant fraction 𝜓 . The equations defining
these relationships are repeated below.

𝑝 = (𝜉 ≥ 0)𝜉 (A.1)

𝜓 = 1 + (𝜉 < 0)𝑐𝑓 𝜉 (A.2)

Using Eq. (A.1) to substitute for the pressure in the generalised
Reynolds equation (Eqs. (10) and (11)) results in Eq. (A.3) in the
-direction. Here 𝑢𝑥,𝑎 and 𝑢𝑥,𝑏 are the 𝑥 components of 𝑢𝑎 and 𝑢𝑏 re-

spectively, and an artificial diffusion term 𝑘𝐴𝐷 is added to the cavitated
region where 𝜉 < 0.

𝜕
𝜕 𝑥

(

−
(

ℎ3
(

𝐹2−
𝐹 2
1
𝐹0

)

(𝜉 ≥ 0) + 𝑘𝐴𝐷(𝜉 < 0)
)

𝜕 𝜉
𝜕 𝑥

+ 𝜓 ℎ
(

1 − 𝐹1
𝐹0

)

𝑢𝑥,𝑏 + 𝜓 ℎ𝐹1
𝐹0
𝑢𝑥,𝑎

)

= 0
(A.3)

The remainder of this derivation will focus on finding an optimal
alue for 𝑘 such that all oscillations are suppressed, without the
𝐴𝐷
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introduction of excessive damping. The coefficient 𝑘𝐴𝐷 will be defined
by Eq. (A.4).

𝑘𝐴𝐷 = ℎ𝑒𝑢𝐴𝐷 (A.4)

Here ℎ𝑒 is the typical size of the mesh elements, and 𝑢𝐴𝐷 the convection
oefficient from Eq. (A.3). This term is defined by Eq. (A.5), where 𝑐𝑓

is a transformation constant and 𝑐𝐴𝐷 is given by Eq. (A.6).

𝑢𝐴𝐷 = ℎ𝑐𝐴𝐷 (𝜉 < 0) 𝑐𝑓 (A.5)

𝑐𝐴𝐷 =
(

1 − 𝐹1
𝐹0

)

𝑢𝑥,𝑏 +
𝐹1
𝐹0
𝑢𝑥,𝑎 (A.6)

Eq. (A.3) could now be solved by tweaking the amount of cavitation
using 𝑐𝑓 . However, it is known that the oscillations in the pressure
olution will be the largest in the cavitated region near the reformation
oundary. The minimal value for 𝑐𝑓 should therefore be determined on
his boundary. One way of doing this is to equate the flow rates at the
eformation boundary as calculated in both the cavitated and full film
egions (𝑞𝑥,𝑐 𝑎𝑣 and 𝑞𝑥,𝑓 𝑢𝑙 𝑙 respectively, see Eq. (A.7)). Substituting for
𝑞𝑥,𝑐 𝑎𝑣 and 𝑞𝑥,𝑓 𝑢𝑙 𝑙 results in Eq. (A.8), where it should be noted that 𝜉 ≥ 0
and 𝜓 = 1 in the full film region.

𝑞𝑥,𝑐 𝑎𝑣 = 𝑞𝑥,𝑓 𝑢𝑙 𝑙 (A.7)

ℎ𝑐𝐴𝐷𝜓 = −ℎ3
(

𝐹2 −
𝐹 2
1
𝐹0

)

𝜕 𝜉
𝜕 𝑥 + ℎ𝑐𝐴𝐷 (A.8)

One method for solving this equation is to expand the derivatives
sing numerical differences, as shown in Eq. (A.9). Here 𝜉𝑟 is defined at

point 𝑟 in the cavitated region close to the reformation boundary, and
𝜉𝑟+1 is defined at the neighbouring downstream point 𝑟 + 1 which lies
in the full film region close to the boundary.
ℎ𝑐𝐴𝐷(1 + 𝑐𝑓 𝜉𝑟)

= −ℎ3
(

𝐹2 −
𝐹 2
1
𝐹0

)

𝜉𝑟+1 − 𝜉𝑟
ℎ𝑒

+ ℎ𝑐𝐴𝐷
(A.9)

Solving Eq. (A.9) for 𝑐𝑓 results in Eq. (A.10). Since 𝜉𝑟+1 ≥ 0 in the
ull film region and 𝜉𝑟 < 0 in the cavitated region, the minimum value
f 𝑐𝑓 that is required for numerical stability is given by Eq. (A.11).

𝑐𝑓 =
(

𝐹2 −
𝐹 2
1
𝐹0

)ℎ2
(

1 − 𝜉𝑟+1
𝜉𝑟

)

ℎ𝑒𝑐𝐴𝐷
(A.10)

𝑐𝑓 ≥
(

𝐹2 −
𝐹 2
1
𝐹0

)

ℎ2

ℎ𝑒𝑐𝐴𝐷
(A.11)

This minimum value for 𝑐𝑓 can now be applied to Eq. (A.3), using
Eqs. (A.4) and (A.5). Finally, repeating this process for the 𝑦-direction
(crosswind direction) will results in Eq. (14). Note that the boolean
terms that were still present in Eq. (A.3) have dropped out due to this
choice of 𝑐𝑓 .

Data availability

Data will be made available on request.
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