
 
 

Delft University of Technology

Zero-Downtime SQL Database Schema Evolution for Continuous Deployment

 de Jong, Michael; Deursen, Arie van; Cleve, Anthony

DOI
10.1109/ICSE-SEIP.2017.5
Publication date
2017
Document Version
Accepted author manuscript
Published in
Proceedings of the 39th International Conference on Software Engineering (ICSE)

Citation (APA)
de Jong, M., Deursen, A. V., & Cleve, A. (2017). Zero-Downtime SQL Database Schema Evolution for
Continuous Deployment. In Proceedings of the 39th International Conference on Software Engineering
(ICSE): Software Engineering in Practice (SEIP) Track (pp. 143-152). IEEE. https://doi.org/10.1109/ICSE-
SEIP.2017.5
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ICSE-SEIP.2017.5
https://doi.org/10.1109/ICSE-SEIP.2017.5
https://doi.org/10.1109/ICSE-SEIP.2017.5


Delft University of Technology
Software Engineering Research Group

Technical Report Series

Zero-Downtime SQL Database Schema
Evolution for Continuous Deployment

Michael de Jong, Arie van Deursen, and Anthony Cleve

Report TUD-SERG-2017-005

SERG



TUD-SERG-2017-005

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

Note: Accepted for publication at Software Engineering in Practice (SEIP) track of the ACM/IEEE Inter-
national Conference on Software Engineering (ICSE), held in Buenos Aires, May 2017.

c© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works.



Zero-Downtime SQL Database Schema Evolution
for Continuous Deployment

Michael de Jong1, Arie van Deursen2, Anthony Cleve3

1Magnet.me, The Netherlands
2Delft University of Technology, The Netherlands

3University of Namur, Belgium

Abstract—When a web service or application evolves, its
database schema — tables, constraints, and indices — often need
to evolve along with it. Depending on the database, some of
these changes require a full table lock, preventing the service
from accessing the tables under change. To deal with this, web
services are typically taken offline momentarily to modify the
database schema. However with the introduction of concepts
like Continuous Deployment, web services are deployed into
their production environments every time the source code is
modified. Having to take the service offline — potentially several
times a day — to perform schema changes is undesirable.
In this paper we introduce QuantumDB— a tool-supported
approach that abstracts this evolution process away from the web
service without locking tables. This allows us to redeploy a web
service without needing to take it offline even when a database
schema change is necessary. In addition QuantumDB puts no
restrictions on the method of deployment, supports schema
changes to multiple tables using changesets, and does not subvert
foreign key constraints during the evolution process. We evaluate
QuantumDB by applying 19 synthetic and 95 industrial evolution
scenarios to our open source implementation of QuantumDB.
These experiments demonstrate that QuantumDB realizes zero-
downtime migrations at the cost of acceptable overhead, and is
applicable in industrial continuous deployment contexts.

I. INTRODUCTION

Continuous deployment is becoming an increasingly popu-
lar technique to roll out new features as fast as possible [2],
[9], [12]. Advantages of continuous deployment include rapid
feedback, fast bug fixing, as well as increased business value
thanks to the earlier avaiability of functionality. For organiza-
tions adopting continuous deployment, it is not uncommon to
have multiple releases per day or even per hour.

For web services and applications with 24/7 uptime de-
mands, continuous deployment typically uses load balancers
and rolling upgrades to incrementally roll out features over
servers without loss of availability [8], [9].

Such zero-downtime deployments, however, are substan-
tially harder when structural changes to the application’s
database need to be made – as also indicated by Claps et
al. [2]. Database schema changes, such as adding a column or
changing its type may, depending on the database management
server (DBMS), lock the entire table in order to adjust all rows
– which depending on the size of the table, and activity can
take minutes if not hours. This means that any application
or web service attempting to query a table under change will
either block, appear unresponsive, or even (partially) fail.

To date, this problem is addressed in practice in one of
two ways. The first is to accept downtime, and conduct the
deployment in a low traffic time window (e.g. midnight or
weekend). The second is to adopt the Expand-Contract pattern
[9], and conduct a series of deployments that first extend the
database, and later reduce it again. During these deployments,
the system effectively works with multiple database schemas
(a so-called mixed-state), for which the software engineers
need to provide programmatic support. This method is fur-
ther complicated when schema revisions encompass multiple
schema change operations(as they often do [13]), which would
require even more coordinated deployments.

Neither of these solutions is in the spirit of continuous
deployment: they introduce extra downtime or significantly
more effort from developers and system administrators, thus
slowing down the deployment of new features. Since we can
confidently state that schema changes are common based on
both previous literature [13], [3], as well as our case study, we
can also state that this is a serious impediment to the adoption
of continuous deployment.

To remedy this, we propose an approach to support fully au-
tomatic schema evolution with zero-downtime. Our approach
provides mixed-state for every schema changeset, by carefully
maintaining a set of synchronized “ghost tables”. The mixed-
state is entirely transparent to the software engineer, who only
needs to specify the required schema changes. Our approach
is resilient against crashes, and safeguards referential integrity
by taking foreign key constraints into account. An open
source implementation of our approach called QuantumDB is
available for download.

We evaluate the proposed approach by means of 19 syn-
thetic schema changes that we apply to a database under
load, as well as to a set of around 95 schema changes from
a commercial application. Our evaluation demonstrates that
the approach can handle real life change scenarios without
downtime for medium-sized databases (hundreds of columns,
millions of records).

We start our paper by providing the required background
in continuous deployment (Section II). We then formulate
seven requirements a solution to the problem of zero-downtime
schema evolution should adhere to (Section III). As a prelude
to our solution, we then empirically assess the blocking
nature of schema evolution operators in two common DBMSs,
PostgreSQL and MySQL (Section IV). Equipped with that

SERG Zero-Downtime SQL Database Schema Evolution for Continuous Deployment

TUD-SERG-2017-005 1



knowledge, we describe in detail how to use ghost tables to
offer mixed-state in a transparent manner (Section V). We then
provide our evaluation, a discussion, a summary of related
work, and our conclusions in Sections VI–IX.

Some initial ideas in this paper have been presented at the
Release Engineering workshop held during ICSE 2015 [7].
The present paper provides a full description of the approach,
a quantitative evaluation, and an industrial evaluation.

II. BACKGROUND

In Continuous Deployment the web service must remain
online and available to its clients while being replaced with a
newer version. Thus, during a redeployment:

• The service must be available at all times;
• Clients using the service must be atomically switched

from the old to the new version;
• Once switched, a client should not be able anymore to

interact with the old version of the web service, unless
an explicit rollback has been performed.

The atomic switch is typically conducted using load bal-
ancers, redirecting incoming requests to a specific server.
Requests can be redirected based on the workload of each
server, some property of the request, or some application-
specific rules.

There are two important approaches for redeploying a web
service without downtime using a load balancer [1]. With the
Rolling Upgrade method it is assumed that there are several
servers, each running an instance of the web service, and a
load balancer distributing incoming user requests over these
web service instances. Each web service instance is upgraded,
one at a time, using the following steps:

1) Instruct the load balancer that the server is unavailable.
No new requests will be sent to it.

2) Stop the web service instance running on that server.
3) Upgrade the web service instance to the new version.
4) Start the new version of the web service instance.
5) Instruct the load balancer that the instance is once again

available and may receive user requests again.

A consequence of this method is that the full system will be
in a Mixed-State, in which both the old and the new version of
the web service are processing user requests at the same time.
Thus, the web service instances and other external systems
need to be able to handle such a Mixed-State.

The alternative method is Big-Flip. As opposed to a Rolling
upgrade, Big-Flip attempts to make the atomic switch all at
once. In this case there are two separate server pools of equal
size, all running web service instances. Both pools must have
enough capacity and resources to handle all the incoming
requests expected during the redeployment period. Of these
two pools only one is actively handling requests while the
other pool is idle. When the web service is redeployed, the
following steps are performed:

1) Update the web service instances in the idle pool.
2) Start the web service instances in idle pool.

3) Instruct the load balancer to switch the roles of the two
server pools. The idle pool becomes the active pool and
starts handling new client requests, while the active pool
becomes the inactive pool and stops handling requests.

As with the previous approach, there is a short period of
time where the system is put in a Mixed-State. From the
moment when the initial idle pool starts up new versions of the
web service until the moment when the initially active pool
shuts down the older web service instances, both versions are
running side-by-side. Thus, also with Big-Flip, all web service
dependencies must be able to deal with this Mixed-State.

For the deployment of evolving database schemas specifi-
cally, Humble et al [9] describe two techniques: Blue-Green
Deployments and Expand-Contract. Blue-Green Deployments
are essentially the Big-Flip approach applied to the database
server and schema where the application switches from using
one database server to another.

With Expand-Contract the database schema is modified
through incremental steps using non-blocking DDL statements,
while maintaining compatibility with both older and newer
versions of the web service in order to support a Mixed-State.

III. PROBLEM STATEMENT

We distinguish three key challenges when using SQL
databases in a Continuous Deployment environment.

The first challenge is that some schema change operations
(DDL statements) are blocking in nature. Depending on the
SQL database platform, a DDL statement may block other
queries from being executed through the use of a table lock,
preventing the web service from accessing and manipulating
the data stored in the table under change. The scope of this
problem will be further studied in Section IV.

The second challenge relates to the concept of Mixed-State.
When deploying a new version of a web service, two different
versions of the same web service may have to be active at the
same time. In that case, the older version will still expect the
database to be at one version of the schema, while the newer
version will expect the database to be at a different version of
the schema. Although the schema is explicitly defined in SQL
databases, many web services assume that the database is of a
certain structure. If this assumed schema changes at runtime,
there are typically no provisions in web services to deal with
these changes. This places limitations on how much you can
change and which deployment methods can be used.

The final challenge consists in preserving foreign key con-
straints during schema evolution. Such constraints are widely
used, and any schema evolution tool should also preserve for-
eign key constraints. Existing approaches and tools (discussed
in Section VIII) either have no support, or insufficient support
for these constraints. In the latter case, foreign key constraints
are temporarily disabled, or dropped and recreated later on,
meaning that in the meantime client applications are free to
violate referential integrity.

Given these challenges we formulate the following require-
ments for a solution to zero-downtime schema evolution:

Zero-Downtime SQL Database Schema Evolution for Continuous Deployment SERG

2 TUD-SERG-2017-005



(a) PostgreSQL 9.4: Add a non-nullable column

(b) MySQL 5.5: Add a non-nullable column

(c) PostgreSQL 9.4: Create an index

Fig. 1: Blocking behavior before (left) and after (right, grayed)
executing DDL statements.

R1: Non-Blocking Schema Changes. Changing the schema
should not block queries issued by any database client.

R2: Schema Changesets. It should be possible to make several
non-trivial changes to the database schema in one go. This
prevents software engineers from having to develop and deploy
intermediate versions of the web service.

R3: Concurrently Active Schemas. Multiple database schemas
should be able to be “active” at the same time, to ensure that
different versions of the web service can access the data stored
in the database according to their own chosen schema. This
avoids putting restrictions on the method of deployment when
upgrading the web service.

R4: Referential Integrity. The solution must support both the
migration and evolution of foreign key constraints during both
normal use and while evolving the database schema. These
constraints should be enforced at all times.

R5: Schema Isolation. Any changes made to the database
schema should be isolated from the database clients. In other
words, any client should not see any other database schema
other than the version it relies on.

R6: Non-Invasiveness. Any integration with the application
should require as little change to the source code as possible.

R7: Resilience. The solution must ensure that the data stored
in the database always remains in a consistent state. In other
words, when the migration fails, it must be possible to rollback
the changes and return to a consistent state without affecting
the database clients.

IV. MEASURING THE BLOCKING BEHAVIOR
OF SCHEMA CHANGES

A prerequisite to solving the problem of zero-downtime
schema evolution is a thorough understanding of the blocking
behavior of DDL operators (our requirement R1).

Some DDL operators, such as modifying the type of a
column, may involve modifications to all rows, for example to
convert a string value into an equivalent integer value. Some
DBMS implementations acquire a read or write lock during
this operation. With potentially millions of rows, such DDL
operations may take substantial time to complete.

The precise locking behavior, however, not only differs per
DBMS (e.g., PostgreSQL and MySQL have adopted different
locking strategies), but also per version of the DBMS1.

Therefore, in this section we propose an approach allowing
the empirical analysis of the blocking behavior of DDL
schema evolution operators, use this approach to establish
the blocking behavior of the three most recent versions of
MySQL2 and PostgreSQL3, and finally (Section VI) use the
same approach to evaluate the non-blocking behavior of our
solution for zero-downtime schema evolution.

A. Experimental Setup

To conduct our experiments, we simulate an application
which continuously queries a SQL database, while performing
various DDL statements used for schema evolution:

1) Prepare a “users” table with 50 million random records.
2) Simulate an application operating on the database by

spawning a number of threads each performing INSERT,
SELECT, UPDATE, and DELETE queries to the “users”
table. For each query, the start and end times are logged.
We used 6 threads – 2 for SELECT, 2 for UPDATE, 1
for INSERT and 1 for DELETE.

3) Perform one of the DDL statements, and log when it
started and finished.

4) When this statement completes, restore the database to
its original database schema, and proceed to test the next
schema operation using steps 2 through 4.

By having a sizeable dataset in the table under change, and
stressing the database by continuously querying the table using
multiple threads, the schema evolution process is slowed down.
By recording the start time and end time of each query and
then graphing this, we can visualize if altering the table blocks
the queries issued by the simulated application. This allows us
to determine which DDL statements are blocking, and if so for
how long, and which type of DML queries they block.

The actual DDL statements come from a set of 19 typical
schema evolution scenarios, composed of common DDL op-
erations that we expected to be possibly blocking (based on
our experience with these systems).

We run our experiments on the three most recent versions
of both MySQL and PostgreSQL, giving six result sets in
total. For each database/scenario combination we first run the
queries for one minute, and then apply the scenario. Depending
on the scenario and database, some scenarios may take just a
few seconds, while others may take hours to complete.

1http://www.postgresql.org/docs/9.5/static/release-9-5.html
2https://www.mysql.com/
3http://www.postgresql.org/

SERG Zero-Downtime SQL Database Schema Evolution for Continuous Deployment

TUD-SERG-2017-005 3



MySQL PostgreSQL
5.5 5.6 5.7 9.3 9.4 9.5

Non-blocking 3 11 13 14 13 14
Read only 11 4 3 0 0 2
Blocking 1 0 0 5 6 3
Not applicable 4 4 3 0 0 0

TABLE I: Blocking Scenarios in different databases.

We ran all series of experiments on a hosted Virtual Machine
featuring 8 CPU cores at 2.40GHz, 16 GB memory, and a 160
GB SSD for storage.

To present our results, we use graphs as shown in Figure 1.
Each vertical spike represents a DML query. The height of
each spike represents the duration of the query, and its position
on the horizontal axis represents its starting time. The black
spike in the center of the graph is the start of the DDL
statement, followed by the grey area marking the duration
of the statement. To permit easy comparison of these plots,
the plots just show the 7 seconds before and 7 seconds after
executing the DDL statement.

B. Results

Conducting all experiments took a total of approximately 4
days of compute time. We discuss three typical scenarios in
more detail, after which we present our overall findings.

Figure 1a shows the scenario of adding a new column to the
“users” table with a NOT NULL constraint. We can clearly
see that in the case for PostgreSQL 9.4 this statement blocks
all queries issued by the simulated application.

When repeating the same scenario for MySQL 5.5, we see
slightly different results (Figure 1b). While the DDL statement
is being executed, all the queries issued by the simulated
application are blocked (as in the previous case), with the
exception of (yellow) SELECT statements. In other words,
this particular table is put in a read-only state. When we
examine the results for creating an index on an existing column
(Figure 1c), we see that none of the queries issued by the
simulated application are blocked by this DDL statement.

The overall outcomes for all scenarios are shown in Table I.
Observe that in PostgreSQL one of the operators that used
to be non-blocking (rename an index in 9.3) changed into a
blocking operator in 9.4. In 9.5 this was reversed again.

Overall, we conclude that blocking behavior differs sub-
stantially both per DBMS and per version of the DBMS.
Furthermore, we observed in one case that behavior that used
to be non-blocking becomes blocking in a later release.

V. TRANSPARENT SCHEMA EVOLUTION WITH GHOST
TABLES

In this section, we propose an approach, dubbed Quan-
tumDB, to evolve a database schema without downtime,
meeting all requirements R1-R7 formulated in Section III.
Our approach provides developers with non-blocking schema
changes, despite the presence of blocking DDL statements
identified in Section IV. Furthermore, the approach provides
Mixed-State in a way that is transparent to the developer. This
permits the adoption of Rolling Upgrades (see Section II), as

changelog.addChangeSet(”Michael de Jong”,
”Add referral column to customers table”,
.addColumn(”customers”, ”referred by”, int()),
.addForeignKey(”customers”, ”referred by”)

.referencing(”customers”, ”id”));

Fig. 2: Change set adding a new “referred by” column with
a foreign key to “customers” table.

Fig. 3: Representation of the change set of Figure 2.

well as the seamless deployment of multiple versions of a
service with different database schemas.

The approach relies on the temporary use of several active
schema versions. This entails creating ghost tables for those
tables directly or indirectly affected by each schema change.

In this section, we explain when and how to construct ghost
tables; how to keep ghost tables and their originals in sync;
and how to drop the original tables once the transition to the
new schema is completed. We also explain how the approach
is resistant to system crashes, and transparent to the developer.

A. Schema Versioning

To reason about schema changes and their effects, we rep-
resent these changes as a logical sequence of basic operations
which alter the database schema sequentially. As an example,
Figure 2 shows a changeset which adds a new “referred by”
column with a foreign key constraint to an already existing
“customers” table.

Each changeset is a series of schema changes which are
applied to a certain database schema (Figure 3). Each version
of the database schema is labeled with a unique ID, which
allows us later to identify a particular version of the schema.

B. Mixed-State with Ghost Tables

Our approach embraces Mixed-State by construction (re-
quirement R3). This means that the database may contain
several active database schemas at any time, yet this Mixed-
State is abstracted away from database clients.

To illustrate how we achieve Mixed-State we execute the
changeset from Figure 2 on a simple database schema con-
taining three tables as shown in Figure 4a.

1) Creating Ghost Tables: Given a changeset, the first step
is to create new ghost tables for the tables affected by the
schema modifications. In our example, the customers table is
the table directly under change, so we create a new ghost table
from that table.

To support foreign key constraints (requirement R4), we
also mirror tables that depend, directly or indirectly, on any
of the tables subject to change. Thus, besides the customers

Zero-Downtime SQL Database Schema Evolution for Continuous Deployment SERG

4 TUD-SERG-2017-005



(a) Database schema at version 82fba53.

(b) Mixed-State of versions 82fba53 and 80bfa11.

Fig. 4: Before and after achiving Mixed-State

table, we mirror the rentals table, as it has a dependency on
the customers table through a foreign key constraint.

Figure 4b shows the end result for our example schema after
applying the changeset from Figure 2. Note that the tables that
are not affected, e.g., the movies table, are not mirrored.

Since we cannot use the same table name twice, we assign
unique names to every ghost table created. Furthermore, for
every ghost table, we keep track of the mapping between the
original tables and columns and the created ghost tables and
columns. This mapping allows us to create ghost tables from
a sequence of changesets, according to requirement R2.

2) Constructing Forward Triggers: Having achieved
Mixed-State structurally, we fill the ghost tables with data
from the original tables. Since we can determine that table
table 73f6ae2b is based on table customers and that ta-
ble aa42fc1e is based on table rentals, we can copy the data
from the source tables to their respective ghost tables.

During this copying the database is still in use, as we want
to avoid locking (requirement R1). Thus, the records in these
source tables might change while the data are being copied
from a source to a ghost table. To address this, we adopt a
forward database trigger on each source table so that whenever
a database client inserts, modifies, or deletes records in the
source table, these changes are propagated to the ghost table.

Thus, for our running example, if a new record is inserted
into the original customers table, that same data will be
inserted into table 73f6ae2b by the trigger. Since this ghost
table differs structurally from its source table, the trigger must
account for this. Through the column and table mappings we
maintain, we can determine that one must insert the values of

the id and name columns from the new record into the ghost
table. The new referred by column may assume the NULL
value since it is a nullable column with no default value.

If an existing record in the customers table is updated,
the database trigger needs to update the corresponding record
in table 73f6ae2b. We copy the values of the id and name
column of the updated record to the ghost table using an upsert
— an operation which ensures that either an existing record
is updated if a record with the same primary key is already
present in the table, or a new record is inserted if no record
with the specified primary key exists yet. We have to use an
upsert because whenever a process updates a record in the
source table, we may or may not yet have copied the record
from the source table to the ghost table.

If an existing record in the customer table is deleted, we
also need to delete the corresponding record from the ghost
table. For this we can have the database trigger issue a
simple DELETE statement which deletes the record with same
specific primary key. If the record has not yet been copied, no
record will be deleted. We repeat this process for every ghost
table that was constructed. In our example, we also create a
database trigger which ensures that the corresponding record
is inserted into, updated, or deleted from the table aa42fc1e
table, whenever a record is inserted into, updated, or deleted
from the rentals table.

3) Migrating Data: With the forward database triggers in
place, we can copy data from the original source tables to
the ghost tables. In doing so, we must account for structural
differences between source and ghost tables.

In addition, some tables may contain large numbers of
records. Therefore, we copy these records in small batches
to avoid negatively affecting disk IO. Otherwise, we might
need to access the disk continuously for a significant period
of time, thereby reducing the performance of the database, and
hence of the database clients.

We use an upsert to copy records from the source tables to
their associated ghost tables. This, combined with the database
triggers, ensures that all records in the source table have a
matching and up-to-date record in the ghost tables.

4) Constructing Backward Triggers: Besides copying the
data from the original tables to the ghost tables, we need to
install backward database triggers on the ghost tables. These
triggers have the same functionality as the forward triggers,
but do the exact reverse. Whenever a record is inserted into,
modified, or deleted from the ghost tables, the corresponding
records are inserted into, modified, or deleted from the source
tables. In our example the structural difference between the
customer and table 73f6ae2b tables means that the value of
the “referred by” column is not copied to the source table.

5) Intercepting and Rewriting Database Queries: Once all
data has been copied and the forward and backward triggers
are in place, the database is in a Mixed-State. It can be used in
either the original or the modified (ghost) schema. It contains
the same data represented in two database schemas in the same
database. Any change made to the contents of the source tables
will be reflected in the associated ghost tables, and vice-versa.

SERG Zero-Downtime SQL Database Schema Evolution for Continuous Deployment

TUD-SERG-2017-005 5



Version Table name Table alias
82fba53 customers customers
82fba53 rentals rentals
82fba53 movies movies
80bfa11 customers table 73f6ae2b
80bfa11 rentals table aa42fc1e
80bfa11 movies movies

Fig. 5: Table name mapping for the Mixed-State of versions
82fba53 and 80bfa11

SELECT ∗ FROM rentals
WHERE customer id = 2372

AND return date < NOW()
AND returned = false;

(a) Example query sent from
the web service.

SELECT ∗ FROM table aa42fc1e
WHERE customer id = 2372

AND return date < NOW()
AND returned = false;

(b) Rewritten query sent to the
database.

Fig. 6: Query transformation example

However, we want this (temporary) Mixed-State nature of
the database to be fully transparent to the software engineers
and the source code (requirement R5). Therefore, we introduce
an additional layer between the application source code and the
actual database driver. Like other approaches to intercept SQL
queries executed by client web services [4], our approach relies
on an abstraction layer positioned between the web service and
the SQL database. In this way, the software engineer uses the
normal table names, and our wrapper transforms the queries
before they are sent to the database.

The wrapper uses the mapping from table names to ghost
table names (shown in Figure 5) to rewrite subsequent SQL
queries issued by the web service. Each query is parsed and the
table names specified in the query are replaced with the table
aliases applying for this database schema version. An example
of rewritten query can be found in Figure 6b. The rewritten
query is then sent to the SQL database, which will operate
on the mirror tables instead of the original source tables. The
query result is then relayed back to the web service, which is
not aware that the query has been rewritten.

All the developer then needs to do is specify once which
version of the database schema should be used. In our Java
implementation of this approach, the software engineer can
specify to which version the web service should connect in
the JDBC connection url, as shown in Figure 7. This abstracts
away the Mixed-State from the web service, and limits the
invasiveness of the solution (requirement R6).

C. Transitioning out of Mixed-State

Once we have successfully moved the SQL database into
a Mixed-State we can effectively run two different versions

Connection connection = DriverManager.getConnection(
”jdbc:quantumdb:postgresql://localhost:5432/db name?version=80bfa11”,
”username”, ”password”);

Fig. 7: Creating a database connection with QuantumDB.

of the same web service side-by-side. This allows us to
deploy a new version of the web service, with any method
of deployment. However, this state adds some complexity,
requires more storage for storing all the additional ghost tables,
and reduces performance since every change in a record in
either a source or ghost table triggers an equivalent change to
the corresponding records in other source or ghost tables. It
is therefore important to be able to deprecate and ultimately
drop tables and triggers associated with a particular version of
the database schema that is no longer in use after completing
the deployment of a new version of the web service.

1) Tracking Connected Clients: We need to know which
versions of the database schema are still being used. Different
approaches can be followed to achieve this. We propose to
store meta-data for every connection that is created through
the abstraction layer. This allows us to determine which
connection operates on which specific version of the schema.

When we want to drop a certain version v of the database
schema, we check whether there are active connections to
the SQL database still using v or not. If this is the case, we
terminate and return an error stating that we cannot drop this
schema version since there are still some database clients that
are using it. If this is not the case we can safely assume that
it is no longer in use, and we can proceed with the next step.

2) Dropping a Database Schema: Once determined that it
is safe to drop a particular version of the database schema, we
must first identify which tables should be dropped. We do this
by using the table name mapping (Figure 5). Assuming we
want to drop version 82fba53, we need to drop all the tables
used by version 82fba53 that are not used by any other version.
In our example this means we want to drop the customers and
rentals tables, since they are both used in version 82fba53 but
not in version 80bfa11. We first drop all the database triggers
which copy records to and from these tables, after which we
can safely drop the two tables. From that point onwards the
database is no longer in a Mixed-State.

3) Fault Tolerance: Should any part of this process be
interrupted by the user or aborted because of a fault before
the process has completed, the changes made so far with this
approach will leave the newly created ghost tables and their
respective database triggers and foreign keys behind in the
database. Since it is impractical to make all changes in a
single database transaction and rolling that transaction back,
we need to have a slightly more elaborate way of rolling back
from the failed Mixed-State back to the Single-State where
only the original database schema is active. We can do this by
dropping all ghost tables, foreign keys and database triggers
which were created during this process. This is the exact same
process as dropping a completed database schema which we
described in the previous paragraph, and yields a database
containing only the original active database schema. Since we
never modify the schema of any of the original tables when
attempting to achieve Mixed-State, we can simply drop newly
created ghost tables, foreign keys, and database triggers when
a fault occurs, providing the ability to rollback the changes
when needed (requirement R7).

Zero-Downtime SQL Database Schema Evolution for Continuous Deployment SERG

6 TUD-SERG-2017-005



Fig. 8: QuantumDB running on PostgreSQL 9.4: Add a non-
nullable column

D. Implementation: QuantumDB

We implemented the approach in an open source tool
called QuantumDB4, released under the Apache license. It
provides a fluent API for representing changesets, an example
of which is shown in Figure 9. QuantumDB presently supports
PostgreSQL, yet has been designed to be easily extensible
to alternative backends. QuantumDB presently supports 11
schema operations, such as adding, altering, and dropping
columns, adding and dropping foreign keys, adding and drop-
ping indices, and copying, adding, renaming and dropping
tables. QuantumDB uses database triggers for keeping ghost
and original tables in sync. Furthermore, QuantumDB provides
a query wrapper, intercepting DML queries and transforming
them in accordance with the table mappings of the selected
schema version.

QuantumDB has been implemented in Java, and comes with
over 300 unit and integration tests.

VI. EVALUATION

We evaluate our approach by assessing the non-blocking
behavior, relevance, applicability, and performance of our
QuantumDB implementation. To that end we first re-do the
experiments described in Section IV to assess the blocking
nature of our solution. Subsequently, we apply QuantumDB
to a collection of changesets obtained from industry.

A. Non-Blocking Schema Evolution

To verify that our approach does not block any DML queries
(requirement R1), we re-ran the suite of 19 schema evolution
scenarios from Section IV-A on PostgreSQL 9.4. We re-used
Nemesis and instructed it to use QuantumDB to intercept and
rewrite the DML queries issued by the application running
inside Nemesis. In addition, instead of issuing DDL statements
directly on the table under change, Nemesis was instructed to
apply these schema changes using the QuantumDB API.

The measurements confirm that QuantumDB is non-
blocking for all scenarios. For instance, Figure 8 shows the
graph for the first scenario (Figure 1a) with PostgreSQL.
Unlike Figure 1a, Figure 8 shows no difference between the
DML spikes before and after the DDL statements execution.

B. Schema History from Industry

To verify that QuantumDB can handle real life changesets
and databases, we applied it to a series of historical changesets
and backup data from industry.

4https://github.com/quantumdb/quantumdb

changelog.addChangeSet(”Alex Nederlof”,
”Adding support for email−based invites”,
createTable(”email opt out”)

.with(”email”, varchar(250), NOT NULL, IDENTITY)

.with(”created”, timestamp(true), ”NOW()”, NOT NULL),
createTable(”invites”)

.with(”id”, uuid(), NOT NULL, IDENTITY)

.with(”email”, varchar(250), NOT NULL)

.with(”created”, timestamp(true), ”NOW()”, NOT NULL)

.with(”invited by”, bigint())

.with(”viewed landing page”, timestamp(true))

.with(”joined”, timestamp(true)),
addForeignKey(”invites”, ”invited by”)

.named(”invited by user”)

.onDelete(SET NULL)

.referencing(”users”, ”id”),
createIndex(”invites”, false, ”email”));

Fig. 9: Example of a changeset in the Magnet.me changelog
described in the API of QuantumDB.

The dataset we used comes from startup Magnet.me5, a
rapidly growing online platform for connecting students with
(future) employers, jobs, and internships with presently over
60,000 registered students. From their Git history we obtained
all the schema changes performed during a 11-month period
(Sept. 2014 – Aug. 2015). By combining them with backups
of production data, we could execute schema changes on
populated databases.

To manage database schema changes, Magnet.me had al-
ready been using Liquibase. Therefore, recreating the change
sets using the QuantumDB API was easy to do. An example
Magnet.me changeset is given in Figure 9, which applies 4
schema operations to 2 different tables.

The Magnet.me changelog for this period consists of 95
changesets, containing 532 schema operations in total. On
avereage, each changeset contains 5.6 schema operations,
which it applies to 3.05 unique tables. These 95 changesets
span a period of 46 weeks, which amounts to roughly two
deployable schema changes per week.

The earliest historical backup starts with 77 tables, 499
columns, 111 foreign key constraints, 42 sequences, and 28
indices not related to identity columns. This backup contains
over 3.8 million records with the biggest table containing over
1.4 million records. In this changelog, 22 tables are created,
13 tables are dropped, 42 new foreign key constraints are
introduced, and 37 foreign key constraints are dropped and
recreated using different properties.

C. Replaying Schema History

We can simulate the transition from each changeset to the
next as if redeploying a new version of a web service. This is
done by first seeding the database with a backup of production
data. We then proceed by “forking” the existing database
schema by applying one changeset to it using QuantumDB.

After achieving Mixed-State with QuantumDB the older
database schema is discarded by dropping tables which only
exist in that particular version of the database schema (using
QuantumDB’s “drop” feature described in Section V-C).

5https://magnet.me

SERG Zero-Downtime SQL Database Schema Evolution for Continuous Deployment

TUD-SERG-2017-005 7



D. Relevance: Avoiding Blocking DDL

From our analysis of PostgreSQL in Section IV-B, we
know which DDL operators are blocking. Analyzing the 95
changesets from Magnet.me, we find that 35 out of these rely
on blocking DDL operators. These operators modify already
in-use tables, and thus would incur down time.

In summary, schema changes are blocking in about one third
of the Magnet.me changesets, but QuantumDB allows these
changesets to be deployed without downtime.

E. Applicability

To verify that QuantumDB can be successfully applied to
the 95 industrial changesets, we replay the full Magnet.me
schema history, and inspect the outcomes of the application.

QuantumDB could be successfully applied immediately to
about two third of the changesets (61 out of 95). These change-
sets fit within the implementation constraints of QuantumDB,
they made use only of the 11 schema operators currently sup-
ported. For many of the remaining 34 cases, the changeset not
only modified the structure, but also required DML statements
to subsquently provide additional modifications to the data
(such as creating a new table and populating it). Mixing such
DML statements into changesets is presently not implemented
by QuantumDB, but would increase its applicability. We are
currently adding support for this. 24 out of these 34 could be
partially executed, i.e., QuantumDB could handle the schema
manipulations, but the DML queries in between were executed
by hand once QuantumDB had achieved Mixed-State. The
remaining 10 were discarded due to current implementation
limitations of QuantumDB. For example, support for VIEWs
or custom FUNCTIONs is not yet provided.

In summary, QuantumDB can be applied to two thirds of
all changesets; Providing support for mixing DML statements
in changesets would add 25% to that number.

F. QuantumDB Performance

To assess QuantumDB’s performance, we apply the 95 −
10 = 85 changesets, and measure the duration of the forking
operation when applying one changeset.

Note that we do not measure while the database is under
load from any database client. The present experiment is
primarily intended to verify that QuantumDB is able to execute
changesets of an industrial level. Analysis of QuantumDB
under load conditions was provided in Section VI-A.

We ran our experiments on a machine with 4 CPU cores, 8
GB memory, and a 256 GB SSD. The PostgreSQL database
was running in a Virtual Machine assigned 2 CPU cores, 2
GB of memory, and 8 GB of storage. This VM was supplied
by Magnet.me and is used internally by developers.

It took a combined total of 2 hours, 25 minutes, and 16
seconds to execute the 85 changesets which QuantumDB either
fully, or partially supported. Not counting any records which
had to be inserted, deleted, or updated manually, or schema
operations which were not yet supported by QuantumDB. This
means that on average, each changeset could be executed
within 1.7 minutes. Note that to avoid negatively impacting
the web service performance when using the database, we can

limit the rate at which data is being copied from the original
tables to the ghost tables.

VII. DISCUSSION

Rolling Upgrades The Magnet.me web service uses Liquibase
to manage database schema changes. While it only takes it 7
minutes and 57 seconds to execute all 95 changesets using
production data, Liquibase issues blocking DDL statements in
35 of the 95 changesets. This means that 35 changesets will
block the web service’s access to certain tables, thereby be-
coming unresponsive. Liquibase does not expose the database
as multiple schemas, meaning that only Big-Flip and Expand-
Contract methods can be used.

Although Magnet.me practices Continuous Deployment,
when a database schema change is required, the automated
deployment process halts. When this happens, a software
engineer has to do a manual deployment, taking all web
services offline, apply the schema changes with Liquibase, and
then deploy and restarts the new version of the web service.

By adopting QuantumDB Magnet.me would no longer need
an engineer to manually deploy database schema changes.
Instead the new schema could be created during the day
automatically because it wouldn’t affect the active web service
instances. After achieving Mixed-State, the new version of the
web service could be automatically deployed into production,
and the switch over could be done with either the Big-Flip or
Rolling Upgrade method.

Continuous Deployment We have tested QuantumDB with
Nemesis in order to examine the performance of each sup-
ported schema operation under simulated load. We have also
tested QuantumDB using the Magnet.me changelog to see if
it could handle more complex changesets commonly found in
practice. The next step is to test QuantumDB in production,
where it is subjected to these complex changesets under real-
life load. We plan to roll QuantumDB out at Magnet.me, and
evaluate how it performs under these conditions.

QuantumDB now supports up to two concurrently active
database schemas. This allows us to use either the Rolling
Upgrade or Big-Flip deployment method. If we could increase
this limit we could support additional techniques such as
Canary Releases, where one or more experimental branches
could each operate on their own schema version, running side-
by-side the “master” version of the web service and database
schema. This can be interesting for testing different schemas
to see which one performs better.

Scalability We tested QuantumDB with databases of 50
millions records in a single table, and upwards from 3.8
million using backups from Magnet.me. Although there are
undoubtedly much bigger databases in practice, we expect that
the performance scales in a linear fashion: double the database
size, double the time it takes to achieve Mixed-State.

We also discovered that the database server load is an
important factor in achieving Mixed-State. The busier the
database system the slower the copying process becomes. In
addition QuantumDB (like other tools mentioned in Section

Zero-Downtime SQL Database Schema Evolution for Continuous Deployment SERG

8 TUD-SERG-2017-005



VIII), installs database triggers to ensure that writes, updates,
and deletes are applied to two tables when in Mixed-State.
These triggers add a small overhead, making the queries issued
by database clients slower. For certain use-cases, applications,
and companies this overhead introduced by QuantumDB and
other tools, might be entirely acceptable if downtime can be
avoided with it, but for others this might not be an acceptable
trade-off.

More research is required to examine the exact overhead of
using QuantumDB in write-intensive circumstances.

Data Loss QuantumDB is designed in such a way that failures
do not cause loss of data. Should QuantumDB crash for
any reason, we can revert a mid-failed schema evolution
by dropping the new database schemas. QuantumDB never
modifies the data inside the original tables. It does manipulate
data in the ghost tables, but only before installing the backward
triggers which update the original tables whenever the ghost
tables are manipulated.

This approach is safe to use in a production environment. It
allows users to deal with failures or abort the schema evolution
process.

Implementation Limitations At the time of writing Quan-
tumDB is implemented for PostgreSQL and JVM-based lan-
guages. In the near future, we plan to support other popular
relational database management systems such as Oracle and
MySQL. Since those systems may differ in terms of supported
features we might need to employ other implementation strate-
gies for some of the QuantumDB mechanisms.

Another limitation is that QuantumDB does not support
DML statements as part of the schema evolution process. This
means that we cannot version both the structure and the data
of a database with the current version of QuantumDB. Since,
as seen in Section VI, such statements are used in practice.
Work is already underway to support them.

Foreign Keys Chains The duration of the “forking” process
to achieve Mixed-State can vary greatly. It depends on the
number of ghost tables that must be created and filled, which
in turn depends on which tables are under change. The more
a table under change is referenced to by foreign keys (directly
or transitively), the more ghost tables need to be constructed.
In the Magnet.me database we observed that the “users” table
is such a pivotal table that changing it requires the creation of
ghost tables for the majority of tables in the database.

Conversely, we observed that changing a link table —
having a primary key composed of multiple columns, referring
to other tables —, or changing a relatively new table, requires
the creation of less ghost tables.

External Validity QuantumDB currently only supports Post-
greSQL, and uses a number of features provided by this
database in order to achieve Mixed-State. Should other
databases not provide the same features, and if no alterna-
tive strategy can be found to achieve Mixed-State using this
approach, then QuantumDB might not be the general solution
for schema evolution we believe it to be.

We tested QuantumDB on the database backups and change-
sets from Magnet.me. Although they span the entire lifetime
of the product’s latest reincarnation — making them represen-
tative for Magnet.me — they may not be representative of the
database size and schema changes for the rest of the industry.

Replication The source code of both Nemesis and Quan-
tumDB are available for download at: http://github.com/
quantumdb. A full replication package, including the data
as well as the software infrastructure required to conduct
the Nemesis measurements is available from our web site6.
The results of the Nemesis experiments are due to their size
not available for download, but are available upon request.
The Magnet.me schema modifications and database backups
are confidential but may be made available upon request for
research purposes.

VIII. RELATED WORK

Database schema evolution has been widely investigated by
the scientific community [14]. For co-evolution of schemas
and client applications, tool-supported approaches rely on
transformational and generative techniques. Several authors
attempt to contain the ripple effect of changes to the database
schema, e.g., by generating wrappers that provide backward
compatibility [17]. Bidirectional transformations [16] can also
be used to decouple the evolution of the database schema from
the evolution of the queries.

PRISM [6] provides integrated support to relational schema
evolution. This tool suite includes (1) a language for the
specification of Schema Modification Operators (SMOs) for
relational schemas, (2) impact analysis tools that evaluate the
effects of such operators, (3) automatic data migration support,
and (4) translation of old queries to work on the new schema.
Query adaptation derives from the SMOs and combines SQL
view generation and query rewriting techniques.

The above-mentioned approaches support joint evolution of
schemas, data and queries offline. Thus, they require a system
shutdown before it can be automatically adapted, recompiled
and redeployed. In contrast, QuantumDB supports this process
at runtime, avoiding downtime of client applications.

There have been various attempts in industry to create tools
which could deal with database schema evolution at runtime,
thereby limiting downtime. Notable mentions are OpenArk
Kit7, Percona8, TableMigrator9, and Large Hadron Migrator10.
These all follow a similar strategy where a structural copy of
the table under change is created. The schema operation is then
applied to this ghost table. Data is copied from the original to
the ghost table and kept synchronized using database triggers.
When the copy phase has completed, the original table and the
ghost table atomically switch names, and the original table is
dropped.

6https://github.com/quantumdb/nemesis
7http://code.openark.org/forge/openark-kit
8http://www.percona.com/software/percona-toolkit
9https://github.com/freels/table migrator
10https://github.com/soundcloud/lhm

SERG Zero-Downtime SQL Database Schema Evolution for Continuous Deployment

TUD-SERG-2017-005 9



Facebook’s OSC11 takes a similar approach, but uses the
triggers to store the data changes in a separate table, to
replay them asynchronously on the ghost table. Github’s gh-
ost12 takes an alternate approach: It reads the binlog of
the database, and replicates data changes to the ghost table
asynchronously. These asynchronous approaches trade trans-
actional consistency (changes to both tables being done in the
same transaction) for performance, and the ability to pause
data migration. These tools all require a hard cut-over, where
either the old table, or the new table can be used, as opposed
to QuantumDB which has a soft cut-over phase where both
tables can be used concurrently.

Researchers have suggested to modify the source code
of existing relational databases [11], using column-oriented
databases [10], or creating entirely new databases specifically
tailored for more modern requirements like Google’s F1 [15]
and Spanner [5].

All the above tools and approaches are limited to making
changes to one table at a time. By contrast, QuantumDB
supports modifying multiple tables in a single set of schema
changes. Furthermore, unlike the tools surveyed above, Quan-
tumDB embraces Mixed-State. This allows developers to freely
choose the continuous deployment method, while existing
approaches require Big-Flip. Last but not least, QuantumDB
offers full support for referential integrity preservation. All the
techniques and tools we have surveyed either have no support
or unsafe support for foreign key constraints.

IX. CONCLUSION

The goal of this research is to identify and evaluate an
approach which allows us to evolve the schema of a SQL
database in a Continuous Deployment setting. To that end we
identified a set of requirements (R1-R7) which should be met
by an approach to successfully solve this problem. We then
verified that blocking behavior is indeed exhibited by several
schema operations in popular SQL databases, through an in-
frastucture (Nemesis) which measures this blocking behavior.
Based on the requirements, and existing tools and approaches,
we developed a novel approach, and implemented a prototype
(QuantumDB). We subjected this prototype to Nemesis to
verify that this does indeed no longer exhibit a blocking
behavior when evolving the database schema. We then also
verified that QuantumDB can deal with the complexity of
changesets produced in practice, and we suggested future
directions.

The key contributions of this paper are:
• QuantumDB: A tool-supported approach to deploy multi-

ple concurrently active schemas and migrate data between
those schemas in a way that is transparent to the developer
and incurs zero-downtime.

• Empirical evidence that QuantumDB effectively sup-
ports changesets as used in industry for medium-sized
databases (hundreds of columns, millions of records).

11https://www.facebook.com/note.php?note id=430801045932
12http://githubengineering.com/gh-ost-github-s-online-migration-tool-for-mysql/

QuantumDB advances the state of the art through its sup-
port for Mixed-State and foreign key constraints preservation.
The QuantumDB tool is available from GitHub. Development
teams can use it to support the continuous deployment of
features, and to experiment with multiple features in an
A/B testing setting, even if those features require database
schema changes affecting millions of records. Furthermore,
researchers can use the open source QuantumDB and Nemesis
infrastructure to experiment with refined solutions for zero-
downtime schema evolution.

Acknowledgments This work was partially supported by the
EU Project STAMP ICT-16-10 No.731529.

REFERENCES

[1] E. A. Brewer. Lessons from giant-scale services. IEEE Internet
Computing, 5(4):46–55, July 2001.

[2] G. G. Claps, R. B. Svensson, and A. Aurum. On the journey to
continuous deployment: Technical and social challenges along the way.
Information and Software Technology, 57:21 – 31, 2015.

[3] A. Cleve, M. Gobert, L. Meurice, J. Maes, and J. Weber. Understanding
database schema evolution: A case study. Science of Computer Pro-
gramming, 97:113–121, 2015.

[4] A. Cleve, N. Noughi, and J.-L. Hainaut. Dynamic program analysis for
database reverse engineering. In GTTSE, volume 7680 of LNCS, pages
297–321. Springer, 2013.

[5] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh, S. Kan-
thak, E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura, D. Nagle,
S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor,
R. Wang, and D. Woodford. Spanner: Google’s globally distributed
database. ACM Trans. Comput. Syst., 31(3):8:1–8:22, Aug. 2013.

[6] C. A. Curino, H. J. Moon, A. Deutsch, and C. Zaniolo. Update rewriting
and integrity constraint maintenance in a schema evolution support
system: PRISM++. Proc. VLDB Endowment, 4(2):117–128, Nov. 2010.

[7] M. de Jong and A. van Deursen. Continuous deployment and schema
evolution in SQL databases. In Proc. of 3rd International Workshop on
Release Engineering (RELENG), pages 16–19. IEEE, 2015.

[8] T. Dumitraş and P. Narasimhan. Why do upgrades fail and what can we
do about it? Toward dependable, online upgrades in enterprise system.
In Proc. of Middleware ’09, pages 18:1–18:20. Springer-Verlag, 2009.

[9] J. Humble and D. Farley. Continuous Delivery: Reliable Software
Releases Through Build, Test, and Deployment Automation. Addison-
Wesley Professional, 2010.

[10] Z. Liu, B. He, H.-I. Hsiao, and Y. Chen. Efficient and scalable data
evolution with column-oriented databases. In Proc. of EDBT/ICDT ’11,
pages 105–116, New York, NY, USA, 2011. ACM.

[11] I. Neamtiu, J. Bardin, M. R. Uddin, D.-Y. Lin, and P. Bhattacharya.
Improving cloud availability with on-the-fly schema updates. In Proc.
of COMAD ’13. ACM, 2013.

[12] H. H. Olsson, H. Alahyari, and J. Bosch. Climbing the” stairway to
heaven”–a mulitiple-case study exploring barriers in the transition from
agile development towards continuous deployment of software. In Proc.
of SEAA ’12, pages 392–399. IEEE, 2012.

[13] D. Qiu, B. Li, and Z. Su. An empirical analysis of the co-evolution of
schema and code in database applications. In Proc. of ESEC/FSE 2013,
pages 125–135, New York, NY, USA, 2013. ACM.

[14] E. Rahm and P. A. Bernstein. An online bibliography on schema
evolution. SIGMOD Rec., 35(4):30–31, Dec. 2006.

[15] J. Shute, R. Vingralek, B. Samwel, B. Handy, C. Whipkey, E. Rollins,
M. Oancea, K. Littlefield, D. Menestrina, S. Ellner, J. Cieslewicz, I. Rae,
T. Stancescu, and H. Apte. F1: A distributed SQL database that scales.
Proc. VLDB Endowment, 6(11):1068–1079, Aug. 2013.

[16] J. Terwilliger, A. Cleve, and C. Curino. How clean is your sandbox?
: Towards a unified theoretical framework for incremental bidirectional
transformations. In Proc. of ICMT 2012, volume 7307 of LNCS, pages
1–23. Springer, 2012.

[17] P. Thiran, J.-L. Hainaut, G.-J. Houben, and D. Benslimane. Wrapper-
based evolution of legacy information systems. ACM Trans. Softw. Eng.
Methodol., 15(4):329–359, 2006.

Zero-Downtime SQL Database Schema Evolution for Continuous Deployment SERG

10 TUD-SERG-2017-005





TUD-SERG-2017-005
ISSN 1872-5392 SERG


