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Abstract
Rankings play a crucial role in various contexts but
often exhibit incompleteness, top-weightedness,
and indefiniteness. Comparing rankings can reveal
underlying similarities, yet traditional correlation
coefficients like Kendall’s tau do not adequately
address these complexities. Rank-Biased Over-
lap (RBO) addresses these challenges by accom-
modating differences in rank length, appropriately
weighting ranks, and minimizing data assumptions.
This paper investigates the average Rank-Biased
Overlap (RBO) between independent rankings, ad-
dressing the need for clearly indicated reference
values similar to those of correlation coefficients.
Our study explores how the expected RBO changes
with varying p-parameters, prefix lengths, and de-
grees of conjointness between domains. To facil-
itate this analysis, an algorithm is developed that
performs extensive simulations across different val-
ues of p, list and domain sizes. By analyzing the
simulation results, trends are provided in the av-
erage RBO between independent rankings based
on these varying parameters and establish relevant
reference values. This study focuses on scenarios
where prefixes are of the same length and there are
no ties in the rankings.

1 Introduction
Rankings are pervasive in our daily lives, from sports and fi-
nancial markets to academic publications and search engine
results. These rankings are often incomplete, since they do
not cover all elements from their origin domain. Further-
more, they have a top-weighted nature, where the head of
the list has more weight than the tail. For example, the dif-
ference between the first and the second result returned by
a search engine query matters substantially more than any
other positioned elements further down in depth. In addi-
tion, these rankings are also indefinite. Usually only prefixes
are taken into account, where one covers a small ratio of the
whole ranking. The size of this prefix can be random, since
listing more items offers diminishing returns compared to the
increasing cost.

Comparing rankings is common practice, aiming to infer
similarities between the underlying processes which produce
them. For instance, when two different search engines pro-
duce results for the same query, finding the similarity between
the two lists might tell us how different those engines are.

Existing rank similarity measures primarily address
(non)conjoint and (un)weighted rankings. Such examples are
Bar-Ilan’s ρ [1] and Buckley’s AnchorMAP [2]. Kendal’s τ
[3] requires that two rankings both come from fully-conjoint
domains, meaning that elements from both domains are the
same. The measure is also unweighted, since a misalignment
of elements at some depth contributes equally as another mis-
alignment positioned deeper in the list. Yilmaz et al.[5] later
improved it by introducing τAP , which is top-weighted.

Those measures however do not tackle the indefinite nature
of rankings. A new similarity measure has been proposed by

Webber et al. [4], called Rank-Biased Overlap. It has proven
to accommodate differences in length, while also assigning
proper weight to ranks, and minimizing assumptions about
the data.

When using Rank-Biased Overlap to measure data, we of-
ten face uncertainty about what the results truly signify due to
the absence of the concept of a reference value in literature,
with regards to RBO itself. For instance, if we compute RBO
between two rankings that represent the favourite sport teams
of two friends, then it is challenging to draw meaningful con-
clusions from that result. Without a reference value, we can-
not determine if the measured overlap indicates a significant
similarity in their preferences or if it is merely coincidental.

In order to build the intuition behind this reference value,
we have to start with what factors influence one RBO eval-
uation. These factors include the p− parameter that is used,
length of the rankings, domains and their degree of conjoint-
ness. By examining them, we can conceptualize the reference
value as the expected RBO between independent rankings,
given these specific properties. This average value is essen-
tial for assessing the significance of any observed scores with
real data. Without such a benchmark, it is difficult to discern
whether the measured overlap indicates true similarity or ran-
dom coincidence.

In contrast, for Kendall’s τ [3], which is a correlation co-
efficient, the reference value is clearly defined as 0, indi-
cating no correlation. This established benchmark allows
for straightforward interpretation of the correlation measure-
ment. Similarly, establishing a reference value for RBO is
crucial for providing context and meaning to its measure-
ments, thus enhancing their utility in various applications.

The question that this research strives to answer is What is
the average Rank-Biased Overlap between independent rank-
ings? In order to answer this, the following sub-questions
have to be answered:

• What is the expected RBO between independent rank-
ings when the p-parameter changes?

• What is the expected RBO between independent rank-
ings when their prefix length changes?

• What is the expected RBO between independent rank-
ings when their degree of conjointness changes?

In more detail, the behavior of the expected RBO between
independent rankings will be investigated as a function of
these variables. Subsequently, insights will be derived to de-
termine, or at least approximate, a reference value based on
the observed patterns across different variable configurations.
This work only focuses on the assumption that two rankings
are of equal size, and that they do not contain any ties.

Section 2 gives some background for RBO and tries to
built some fundamental knowledge, so that the rest of the pa-
per can be followed. Section 3 gives detailed insights about
how a dataset is build, based on different configurations when
evaluating two rankings, such as the chosen p parameter, the
lengths of the lists, the sizes of the domains, and their degree
of conjointness. Section 4 analyses the generated dataset, and
explores the trend of the expected RBO, based on the differ-
ent settings, which mainly represent the three sub-questions.



Section 5 is about Responsible Research, and how the algo-
rithm and dataset can be used in follow-up studies. Section
6 summarizes the results of the alanisys from Section 4, and
the last Section describes future work.

2 Background
This section delves into an in-depth examination of Rank-
Biased Overlap and its further derived formulas. More-
over, this chapter includes an analysis of other correlation
measures, elucidating their distinct properties and limitations
within the context of ranking evaluation. Specifically, it will
be how these measures establish a benchmark or a reference
value that provides context and meaning to their evaluations,
contrasting this with the challenge faced by RBO in lacking a
similar standardized interpretation.

2.1 Kendall’s τ
Kendall’s τ [3] provides an intuitive method to compare two
rankings by counting concordant, P , and discordant, Q, pairs
among their items. A concordant pair of items is one where
the two elements have the same order in both rankings. The
formula

τ =
P −Q

P +Q
(1)

quantifies the degree of similarity between rankings, ranging
from -1 (complete inverse order) to 1 (identical order), with 0
indicating equal likelihood of concordance and discordance.
This measure has a probabilistic interpretation, where τ re-
flects the correlation between rankings, and can be used for
inference on population similarity through methods like con-
fidence intervals and hypothesis testing.

Correlation concepts are inadequate for incomplete rank-
ings where only the top portion is visible, as random and neg-
atively correlated rankings appear similar without common
elements in the observed top. Valid similarity measures for
incomplete rankings must assume strong correlation, particu-
larly at the top ranks.

2.2 Rank-Biased Overlap
Let S and T be two infinite lists. For any i ∈ N, Si and Ti

represent the elements at position i. Webbet et al. [4] gives
the concept of an overlap:

XS,T,d = |S:d ∩ T:d| (2)

which is the size of the intersection of the first d elements
between S and T . Their agreement is then

AS,T,d =
XS,T,d

d
(3)

and represents the proportion of the active items up to depth
d. For example, let S = {b, c, a, e, f} and T = {a, c, d, z, x}.
Their agreement at depth 3 is AS,T,3 = 2/3.

Finally, Rank-Biased Overlap between S and T is defined
as the infinite and weighted sum of the agreements at all
depths:

RBO(S, T, p) = (1− p)

∞∑
d=1

pd−1Ad (4)

The parameter p, termed as persistence, governs the rate
of weight decay in rankings: smaller values assign signif-
icantly higher weights to top-ranked elements relative to
lower-ranked ones, whereas larger p values attenuate this de-
cay, resulting in more uniform weighting across ranks. For
detailed treatments of ties and uneven lists, refer to [4].

2.3 Weight of a prefix
In this section, we derive the weight assigned to each rank.
Every agreement up to depth d has a weight. It also

WRBO(d) =
1− p

p

∞∑
i=d

pi

i
(5)

The weight of a prefix of size d, WRBP is then the sum of the
weights of the ranks to that depth

WRBO(1 : d) =

d∑
j=1

WRBO(d) =
1− p

p

d∑
j=1

∞∑
i=j

pi

i
(6)

After some rearangement, and by using this equality to con-
vert the infinite sum to a finite form:

∞∑
i=1

pi

i
= ln

1

1− p
, 0 < p < 1 (7)

, we get:

WRBO(1 : d) = 1−pd−1+
1− p

p
×d× (ln

1

1− p
−

d−1∑
i=1

pi

i
)

(8)
Generally it can be noted that for a fixed prefix size, its

weight, WRBO(1 : d), is decreasing when p increases. This
comes natural, since as p approaches arbitrarily close to 1,
the weights of the elements become arbitrarily flat, and the
evaluation becomes arbitrarily deep [4]. As p increases, the
elements contained only in the prefix will have a decreasingly
smaller importance, compared to the elements that are posi-
tioned after the truncated depth. Since the weight of the latter
elements, WRBO(d+1 :∞), is defined as 1−WRBO(1 : d),
the weight of the tail is therefore increasing.

This can be shown by Figure 1. It plots a contour map of
1 − WRBO(1 : d) for a different values of p and d (depth
or also prefix size). For example, for a prefix of size 15 and
p = 0.8, the tail would have a weight of∼ 0.01. It jumps to∼
0.07, when p = 0.9. For p = 0.95, the same weight increases
to∼ 0.22. Finally, for p = 0.99 and 0.999, 1−WRBO(1 : d)
is equal to ∼ 0.64 and ∼ 0.93 respectively.

Weights of prefixes, based on their sizes, and also different
p values chosen for evaluation, are provided in Appendix A.

2.4 Extrapolated RBO
The original RBO equation can be used when we want to
evaluate the known similarity between two rankings, up un-
til the depth equal to the size of those rankings. However,
this score depends on the length and sets lower bound on
the full evaluation. Webber et. al [4] define RBOMIN and
RBORES , the tight lower bound and residual uncertainty,



Figure 1: A contour map of different weights of prefixes based on N
and P

which is the range between the tight lower and tight upper
bound. For more details, refer to [4].

Webber et al.[4] define a formulation for a single RBO
score, where the seen agreement in the rankings is assumed
to continue on indefinitely. That is, for all d′ > d, AS,T,d′ =
XS,T,d/d. By assigning it the appropriate weight, and addint
it to the base RBO@k score, we get:

RBOEXT (S, T, p, k) =
Xk

k
×pk+ 1− p

p

k∑
d=1

Xd

d
×pd (9)

It must be noted that Extrapolated RBO depends on the
evaluation depth and can either increase or decrease when the
prefix gets larger, i.e. it is not monotonic. However, larger
agreements lead to an increase, and smaller agreements will
lead to a decrease in RBOEXT respectively.

3 Dataset
This section describes the algorithm, that is used to run a lot
of simulations for different configurations, such as prefix size,
p parameter, degree of conjointness between two domains,
and their respective sizes.

A single simulation between two independent rankings can
be described in the following algorithm. The procedure takes
5 parameters: p, size of the prefix n, desired degree of con-
jointness between their domains, and their sizes.

To begin with, a concept of a step variable must be dis-
cussed. The two domains, from which elements will be sam-
pled, have to be constructed in such a way, that their cojnoint-
ness matches a required conjointness, passed in the method.
The term conjointness gives a value that shows how similar
two lists are. If they are fully conjoint, i.e. they have the same
elements, cojnoitness = 1. When conjointness = 0, the
two lists have nothing in common.

A good index that can be used to measure the conjointness
between two lists is the Jaccard similarity coefficient, given
by:

J(A,B) =
A ∩B

A ∪B
(10)

Let’s take two domains S = {1, 2, ..., p} and T = {p+1, p+
2, ..., q}, for some numbers p, q ∈ N, such that 1 < p < q.
Right now, they are disjoint, so their degree of conjointness
is 0. We can shift the elements of the second domain to the
left by some number. We can call this number step. Now, the
second domain is T ′ = {x ∈ T | x − step}. We can fur-
ther model their conjointness by using Eq. 10, and by using
appropriate substitutions, we get the following:

J(S, T ′) =
step

q − step
(11)

After some rearengement, and expessing eq. 11 in terms of
step, we get:

step =
J(S, T ′)× q

J(S, T ′) + 1
(12)

By using this formula, one can discover the desired step given
some conjointness and two domain sizes. With that, two do-
mains can be constructed, which reflect their similarity prop-
erly.

This algorithm is then calculated for different values of p,
n, conjointness, size1 and size2. Every simulation is ex-
ecuted 10, 000 in order to provide a good approximation for
E[RBO].

Algorithm 1 Average RBOExt

Require: p, n, c, s1, s2
Ensure: Average RBO value

1: function AVERAGE(p, n, c, s1, s2)
2: step← getStep(c, s1, s2)
3: Db = 1 + s1− step
4: De = s1 + s2− step
5: S← {}
6: for i← 1 to s1 do
7: S← S ∪ {i}
8: end for
9: T← {}

10: for i← Db to De do
11: T← T ∪ {i}
12: end for
13: sum← 0
14: for i← 1 to 10000 do
15: s← sample(S, n)
16: t← sample(T, n)
17: sum← sum+RBOEXT (s, t, p, n)
18: end for
19: return sum

10000
20: end function

4 Experimental Setup and Results
Section 3 gives the methodology for obtaining the expected
RBOEXT , based on different variables, namely p-parameter,
prefix size, conjointness and domain size. This section ana-
lyzes the obtained results and tries to answer each of the in-
dividual subquestions independently.



4.1 Expected RBO when p-parameter changes
In order to answer this question, the dataset has to be ana-
lyzed in such a way, that one can observe the behavior of the
average RBO, with respect to p.

First, let’s take for example a single simulation, where
two independent rankings of size 10 are continuously sam-
pled from a domain of size 500. The parameter of choice
is p = 0.8. Over 10,000 iterations, 10 random elements
are sampled, and their RBOEXT is computed. The final
outcome is the average over all iterations, and the result
E[RBO] ∼ 0.0091 is produced.

The number of iterations is big enough to produce a some-
what accurate number, however, it still gives room for some
variance, if executed multiple times. In order to examine this
variance, this simulation is independently ran over 500 addi-
tional times. A mean of 0.0089 and a standard deviation of
000.31 are produced. The coefficient of variation, i.e. the rel-
ative amount of sampling error associated with the estimate,
is 3.5%. Figure 2 provides the results of this simulation. In-
deed, the histogram resembles a normal distribution.

Figure 2: Different values for E[RBO]. p = 0.8, N = 10, D1 =
D2 = 500.

Now we have to see how the expected RBO changes when
p is varied. Table 1 provides this insight. For more expresive-
ness, the table includes also simulations for prefix sizes of 5,
15 and 20. The domains that they are sampled from have a
fixed size of D1 = D2 = 500. For the sake of consistency,
the degree of conjointness is fixed at 1.0, which leads to the
fact that the two rankings are sampled from the same domain.
And again, each produced average is tested 500 times, in or-
der for us to analyze the standard deviation and the coefficient
of variance.

It can be observed, in fact, that for any configuration,
10,000 iterations are enough to produce a result, which has
a relative error of 5% or less. There is no reason this to be
different for the rest of the simulations from the dataset, since
they only compute E[RBO] based on different settings, but
if tested also for relative error, the latter would be around the
same magnitude.

It is important to note that the results in Table 1 are put
there to provide well-approximated reference values, how-
ever some of them should not be looked at in practise. This
is due to the relationship between the size of the prefix and

P N Conj D1 D2 E[RBO]
mean sd cv

0.8

5

1 500 500

0.006721 0.00034 0.051
10 0.008944 0.00031 0.035
15 0.009643 0.00032 0.033
20 0.009878 0.0003 0.0304

0.9

5

1 500 500

0.008169 0.00037 0.0455
10 0.013023 0.00034 0.0268
15 0.015864 0.00032 0.0204
20 0.01758 0.0003 0.0173

0.95

5

1 500 500

0.009058 0.00041 0.0454
10 0.016047 0.00036 0.0225
15 0.021479 0.00033 0.0153
20 0.025669 0.00031 0.0122

0.99

5

1 500 500

0.009814 0.00044 0.045
10 0.019064 0.00041 0.0214
15 0.028016 0.0004 0.0143
20 0.036455 0.00038 0.0103

Table 1: E[RBO] for varying p.

p, which can be examined through the weight of the prefix,
defined in Section 2.3.

For instance, if a researcher wants to evaluate some data
with p = 0.99 and decided to truncate it to 10 elements for
each list, the weight of those 10 elements is only 17%. This
is substantially small for a prefix in order to use it for calcu-
lating RBOEXT , and thus lower values for p should be used.
Specifically for p = 0.99, a prefix should be at least 150 in
depth to have 90% weight. When p = 0.95 or p = 0.9, a
good enough size is 30 and 15 respectively.

Now the trend of E[RBO] can be examined. Figure 3 dis-
plays the growth of E[RBO] for p = [0.8, 0.9, 0.95, 0.99].
The size of the prefixes is again 10, and the domain contains
500 elements.

Figure 3: Growth of E[RBO] when p is increasing. N = 10, D1 =
D2 = 500.

Typically, as p approaches 1, the weights become arbitrar-
ily flat, and the evaluation extends deeper into the rankings.
An increase in p leads to higher RBO scores due to the in-
creased emphasis on overlap at lower ranks.

This can be explained by the following. RBOEXT is com-
posed of two parts - the base score at depth k plus weighted



agreement of the tail. The former is shown to decrease rapidly
with increasing p in Figure 4. However, the latter increases
with increasing p, shown in Figure 5.

Figure 4: RBO@k when p increases. N = 10, D1 = D2 = 500.

Figure 5: Weighted agreement of tail when p increases. N =
10, D1 = D2 = 500.

As p increases, the assumption, that the agreement seen
up to a certain rank continues indefinitely, has a more pro-
nounced effect. This is because the contribution of the top-
ranked elements, which might differ significantly due to ran-
domness, is diminished, thereby decreasing the influence of
differences in the top ranks. In other words, high p values
reduce the influence of discrepancies in the top ranks; what-
ever the differences between the top ranks of the lists are,
these differences are down-weighted with higher p, leading
to higher overall RBO scores.

The behavior of E[RBO] can be examined when domain
sizes tend to infinity. For the following simulations, two rank-
ings of size 15 are sampled. Figure 6 provides an overview
of the average RBO for four different domains. The blue line
is bound the a configuration, where the domains are equal to
500. The orange one shows that when the domains are equal
to 1000, the growth is similar, but more steady, and the range

of values now is decrease by some factor. The green and red
lines are based on a domain sizes of 1500 and 2000 respec-
tively, and again provide the insight that as the domain gets
even larger, the growth becomes slower, and also for some
fixed p, E[RBO] is lower.

Figure 6: Growth of E[RBO] when p is increasing. N = 15, D1 =
D2 = [500, 1000, 1500, 2000].

Figure 7 provides the same insight, but now the domain
sizes are D1 = D2 = [5000, 10000, 50000, 100000], for
blue, orange, green and red respectively.

Figure 7: Growth of E[RBO] when p is increasing. N = 15, D1 =
D2 = [500, 1000, 1500, 2000].

This is expected, since when a fixed amount of elements
are sampled from larger domains, less elements will overlap
on average. Thus, it can be confidently said that as D −→ ∞,
E[RBO] −→ 0.

4.2 Expected RBO when prefix size changes
This section analyzes the trend of E[RBO] when the size
of the prefixes change. Figure 8 provides results about four
simulations for different prefix sizes, sampled from a domain
of 1000. Every simulation is bound to a different p value.

When p = 0.8, E[RBO] starts growing rapidly when
N = [1, 2, ..., 15]. Around N = 20, the average value starts
converging to some number, with some variances present.



Figure 8: Four different plots for p = [0.8, 0.9, 0.95, 0.99], when
prefix size changes. D1 = D2 = 1000.

This is due to the fact that a prefix of size has 0.998 weight,
and this weight will only increase when N increases.

When p = 0.9, the trend becomes a bit more stable.
Around N = 25, the weight of the prefix is already at 99%,
which again will only increase with positive changes in p.
Convergence is observed when N >= 30.

When p = 0.95, the average value is seen to slow down,
when N is around 50. This size has a weight of 98%. Only
when N >= 60, the weight is at least 99%, so E[RBO] will
start converging around that size.

And finally, when p = 0.99, the trend looks almost linear.
Now it can be said that it grows more steadily. No conver-
gence is observed, because the weight of the prefix of size
N = 50 is only 67%. This weight will climb to 99% when
N = 304. Thus, if p = 0.99, for a practical evaluation, where
it has been decided to cut the ranking at depth of less than
50, further deeper evaluation will only increase the value of
RBOEXT , and no convergence will be observed at all until
depth of somewhere around 304.

It is interesting to observe that in all cases, E[RBO] grows
up. When more elements are sampled randomly from the
same domain, the overlap and thus RBO will increase on av-
erage. The level of p determines the slope of that growth. The
lower the p, the faster a convergence is observed, if any. This
is relative to the maximum cut-off depth chosen for an evalu-
ation. Convergence is always observed though, but this hap-
pens for larger sizes, when p is large. More concretely, the
magnitude of a prefix size that first reaches some threshold
value of weight, for example, 99%, represents the boundary
of when RBO will start converging. This comes natural from
the properties of RBO, since when p tends to 1, the weights
become arbitrarily flat, and the weight overlap seen in the top
ranks decreases.

It is important to note that for a fixed p and increasing n,
at some point the weight of the prefix reaches 100%, which
renders testing for larger n unnecessary. One should have
an informed decision on what weight their lists would have,

P N Conj D1 D2 E[RBO]
mean sd cv

0.8

5

1 1000

0.003364 7.968e-05 0.0237
10 0.004455 7.375e-05 0.0166
15 0.00482 7.013e-05 0.0145
20 0.00495 6.506e-05 0.0131

30 0.005030 0.00022 0.044

0.9

5

1 1000

0.004155 0.00026 0.064
15 0.007969 0.00025 0.0314
20 0.008782 0.00019 0.0226
40 0.009839 0.00019 0.0198

100 0.010006 0.00019 0.0198

0.95

10

1 1000

0.008025 0.00026 0.0327
20 0.012823 0.00020 0.0162
40 0.017427 0.00017 0.0102

100 0.019876 0.00021 0.0106

0.99

10

1 1000

0.009533 0.00029 0.0306
20 0.018280 0.00027 0.0151
40 0.033102 0.00023 0.0072
50 0.039467 0.00023 0.0058

100 0.063377 0.0002 0.0031
200 0.086579 0.0002 0.0023
350 0.097012 0.00017 0.0018

Table 2: Different E[RBO] when p changes. At some point, it con-
verges around a value, when N is large enough.

based on the value of p that is chosen. This can be calculated
by WRBO, defined in Section 2.3.

Table 2 gives some example reference values for lists that
are sampled from a domain of 1000, and different values for p
are used for the evaluation. It can be observed that, with p =
0.8, large prefix sizes converge to a value of 0.005, around
when N = 20. For p = [0.9, 0.95, 0.99], E[RBO] converges
at 0.01, 0.02, 0.1, at around N = [50, 60, 500] respectively.

4.3 Expected RBO when degree of conjointness
changes

This section analyzes the trend of the RBO when the de-
gree of conjointness between the domains, where elements
are sampled from, is varied. It also examines configurations
for simulations, where the domains’ sizes differ.

Figure 9 presents different values for E[RBO] when the
degree of conjointness varies. It this example, p = 0.8, the
rankings are each of length 15, and the domains are equal to
500. It is noticeable that as the conjointness grows, E[RBO]
grows slower. An observation was made in Section 4.2 that
when p tends to 1, E[RBO] converges for larger prefixes.

The same growth is observed when p is increased to 0.95,
and when the prefixes get to larger sizes, in Figure 10. From
table [insert table in appendix of different weights of prefixes
for n and p], one can see that the weights of the four prefixes
are 0.85, 0.93, 0.96 and 0.98.

The analysis of the trend of E[RBO] of rankings, sampled
from larger domains, is illustrated in Figure 11. As the do-
main sizes increases, the magnitude of all point estimates de-
creases and tends to zero. The overall rate of growth remains
consistent, and decelerates as the degree of conjointness gets



Figure 9: Growth of E[RBO] for different values of degree of con-
jointness. p = 0.8, N = 15, D1 = D2 = 500.

Figure 10: Trend of E[RBO] for different degrees of conjointness.
p = 0.95, N = [20, 30, 40, 50], D1 = D2 = 500.

closer to 1. However, Figure 11 does not clearly depict the
precise approximation of growth, when D >= 2, 000, 000.
This ambiguity is expected due to the margin of error inher-
ent in the simulations, which utilize only 10, 000 iterations.
The substantial variance in individual results is significant
compared to the miniscule magnitude of the actual results.
A simulation employing 1, 000, 000 iterations, for the same
configuraion, is provided in Appendix B for further evidence
of a more well-approximated growth.

The impact of differing domain sizes should be closely an-
alyzed. Figure 12 illustrates the growth of E[RBO], when
the larger domain size is fixed at 10, 000, and the other one
approaches it. When D1 = 1000, E[RBO] initially starts
low, when conjointness is 0.1. As conjointness increases be-
yond 0.1, E[RBO] jumps and then fluctuates until the do-
mains are fully conjoint. This variance is attributed to the
margin error of the simulations, however this is considered
as convergence. It is important to note that with these do-
main sizes, the maximum degree of conjointness cannot ex-
ceed 0.1, since only 1000 elements will overlap in the worst

Figure 11: Trend of E[RBO] for different degrees of conjointness.
p = 0.99, N = 100.

case.
In the upper-right plot, E[RBO] increases until the degree

of conjointness reaches 0.2. In the lower-left graph, with
D1 = 5000, the maximum actual conjointness is 0.5, after
which convergence is observed. Finally, the lower-right plot,
where both domain sizes are 10, 000, visualizes the expected
growth previously discussed.

This indicates that the average RBO increases only when
the conjointness grows to min(D1,D2)

max(D1,D2) . Therefore, it is not
worthwhile to consider simulations where the conjointness is
set higher than the ratio of the two domains.

Figure 12: Trend of E[RBO] for different degrees of conjointness.
p = 0.99, N = 100.

A further simulation is executed for 1, 000, 000
iterations. There, p = 0.9, conjointness is
fixed at 1, D2 = 10, 000 and D1 ranges over
[100, 200, 500, 1, 000, 2, 000, 5, 000, 7, 500, 10, 000]. All the



values calculated sit around 0.000985, which shows that for
a fixed conjointness, the larger domain matters more.

5 Responsible Research
It is essential to explicitly state that all findings and conclu-
sions drawn in this work are based on strict assumptions. The
reference values derived and discussed in this paper might
not be applicable or useful for some real-world data, where
Rank-Biased Overlap is the desired measure to use.

For example, a lot of rankings might not exhibit the same
properties as those used for conducting this study. Specif-
ically, our simulations and dataset constructions are predi-
cated on certain characteristics such as evenness (i.e., rank-
ings having exactly the same size), uniform list and domain
sizes, and the absence of ties. These controlled conditions are
critical for the theoretical framework and experiments pre-
sented herein, but they might not reflect the variability and
complexity found in real-world data.

For instance, the rankings can differ in size, contain ties,
and lack clearly defined domains and therefore conjointness.
Consequently, the applicability of our reference values and
assumptions to such data is limited. It is crucial to acknowl-
edge that the newly-proposed assumptions, while useful for
theoretical exploration and controlled experiments, might not
hold in diverse and unpredictable real-world contexts. There-
fore, these assumptions should not be used indiscriminately
without careful consideration of their relevance to the specific
data at hand.

Before applying the new RBO formulations and insights
derived from this research, readers must critically evaluate
the assumptions underlying our approach. It is important to
assess whether these assumptions are applicable to their spe-
cific use-case and data characteristics. The approach taken in
this paper for understanding and drawing insights about RBO
is contingent upon the controlled conditions and properties
defined in our simulations. Therefore, researchers and prac-
titioners need to ensure that their data and research questions
align with these conditions before adopting the new RBO for-
mulations. This careful consideration will help maintain the
integrity and relevance of the research, ensuring that the ap-
plication of these methods is both responsible and appropriate
for the intended context.

The dataset and the algorithms utilized for its generation
are available in a publicly accessible Github 1 repository. The
dataset is stored in a CSV format, and all code is written in
Python. This initiative ensures that researchers have full ac-
cess to the data, enabling them to replicate and extend the
simulations with inputs that closely match their own data.
Moreover, the algorithms can be modified and employed in
subsequent studies, facilitating the evaluation of RBO under
varying assumptions and expanding the scope of the research.

6 Discussion
This paper empirically examines the trend of E[RBO] and
establishes reference values as initial benchmarks for expedi-
ent orientation. It is shown that it depends on all factors, used

1https://github.com/mark200/expected-rbo

for one evaluation, such as prefix size, chosen p, degree of
conjointness between domains, and their respective sizes. A
simulation of 10, 000 iterations produces a value with small
enough margin of error of 5% or less.

When the size of the prefix increases, the average value
also increases. However, for big enough N , the value con-
verges, due to the relationship between N and p, the latter of
which determines the weight of the first N elements. With an
increase of p, RBO@k, or base RBO, defined in Section 2.2,
decreases. The differences of the top ranks are more down-
weighted. When p is low, E[RBO] converges faster, relative
to a same-sized prefix. Furthermore, when N increases, and
prefixes of size N are sampled from larger sizes, the growth
remains similar, but all of the values get closer to zero.

When the degree of conjointness varies, a similar growth
is observed for different combinations of N and P . It decel-
erates when conjointness tends to 1. Even more, it has been
shown that the difference between domain sizes is important
only when conjointness changes, but when the latter is fixed,
only the bigger domain determines the outcome.

7 Future Work
This study restricts its analysis to equal-sized prefixes, a
scenario uncommon in practical applications. Additionally,
it assumes the absence of ties in rankings, a condition
contingent on the source generating the data. Future research
endeavors may address these limitations by empirically
examining diverse scenarios or developing more compre-
hensive mathematical frameworks to accommodate varying
prefix sizes and the presence of ties in rankings.



A Weights of prefixes

Figure 13: Weights of prefixes for different sizes and different p,
chosen for evaluation.

B Plot of average RBO when domain is large

Figure 14: Trend of E[RBO] for different degrees of conjointness.
p = 0.99, N = 100, D1 = D2 = 5, 000, 000.
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