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Abstract

Introduction
Congenital diaphragmatic hernia (CDH) is a rare developmental defect of the diaphragm characterised by her-
niation of abdominal organs into the thoracic cavity during prenatal development. This herniation is usually
accompanied by pulmonary hypertension (PH) and cardiac dysfunction (CD). Although several parameters are
known to predict the clinical outcomes in CDH, most of these parameters do not monitor the degree of PH and CD
and cannot be continuously measured. This retrospective observational trial aimed to monitor the degree of PH
and CD in CDH using the oxygen saturation index (OSI), peripheral oxygen saturation (SpO2), heart rate (HR),
heart rate variability (HRV), arterial blood pressure (ABP) and derivatives of these parameters.

Methods
The study population consisted of neonates admitted to the paediatric intensive care unit between 2019 and 2022
for treatment of CDH. The degree of PH and CD was determined for each cardiac ultrasound (CUS) performed.
A 15-minute window of vital parameters, mechanical ventilator, and electrocardiogram data before each CUS was
extracted to calculate the predictors. After preprocessing the data and meeting the statistical assumptions, both
univariable and multivariable logistic mixed effects models were fitted and validated.

Results
In total, 136 CUS of 57 patients were included in the study. Of the univariable linear mixed-effects models, the
median values of HR, pulse pressure (PP), preductal SpO2, dSpO2, OSI and the interquartile range (IQR) of HR
were statistically significant predictors of PH. For the prediction of CD, this was the case for the power of HRV in
the very low frequency band (HRV-VLF) and for the median values of HR, mean arterial pressure (MAP) and OSI.
The multivariable model for the prediction of PH contained the median values of of dSpO2, HR, PP and OSI and
the standard deviation of the normal-to-normal beat intervals (SDNN). The multivariable model for the prediction
of CD included the median of dSpO2, HRV-VLF, SDNN and the IQR of SAP as predictors.

Conclusions
The most promising predictors are the median values of preductal SpO2, dSpO2 and OSI for the prediction of
PH. For the prediction of CD, HRV-VLF and the median values of HR, OSI and dSpO2 were the most promising
predictors. Despite limited predictive performance of the regression models, this study contributes to the improve-
ment of monitoring of patients with CDH, which can lead to more timely interventions and eventually improved
outcomes within this patient population.
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1 Introduction

1.1 Congenital diaphragmatic hernia
Congenital diaphragmatic hernia (CDH) is a rare developmental defect of the diaphragm characterised by her-
niation of the abdominal organs into the thoracic cavity during prenatal development. The prevalence of CDH
is estimated to vary between 1.7 and 5.7 per 10.000 births, depending on the study population and geographi-
cal region. [1–3] Most patients (85%) present with a left-sided defect, and in 50%-70% of cases, CDH occurs
as an isolated defect. [4] The remaining 30%-50% of cases, nonisolated or complex CDH, are associated with
chromosomal disorders, single-gene disorders, or structural anomalies of the cardiovascular, central nervous or
musculoskeletal systems. [4, 5]

The herniation of abdominal organs is accompanied by pulmonary hypoplasia and abnormal pulmonary vascula-
ture, leading to pulmonary hypertension (PH). [5–7] Patients typically present with hypoxemic respiratory failure
and shock. Hypoxemia occurs mainly due to intrapulmonary shunting and extrapulmonary right-to-left shunting
across the foramen ovale and ductus arteriosus. [8] In patients with severe PH, the right-to-left shunting across the
ductus arteriosus results in significant differences between preductal and postductal arterial blood gas measure-
ments. [9] In most patients, PH resolves within the first weeks of life, although persistent PH predicts morbidity
and mortality. [10, 11]

In addition to pulmonary abnormalities, cardiac dysfunction (CD) of either or both ventricles is also frequently
seen in CDH and is associated with mortality. [7, 12–17] Primary dysfunction of the left ventricle in CDH is
often a combination of left ventricular hypoplasia with an increase in left ventricular afterload after birth and a
reduced preload of the left ventricle due to a lower pulmonary blood flow. [7] Right ventricular hypertrophy is
also a common finding in CDH and is caused by an elevated afterload of the right ventricle due to PH. Right
ventricular hypertrophy and displacement of the interventricular septum may cause a secondary dysfunction of
the left ventricle due to the interdependence of the two ventricles. [7]

With PH and CD being two of the key pathophysiologies of CDH, the treatment is primarily focused on treatment
of PH and management of ventilation and haemodynamics. [2, 5, 18] The survival of CDH is reported to be around
60%-90% and is generally lower in low- and middle-income countries and in patients who require extracorporeal
membrane oxygenation (ECMO). [2, 3, 6, 19]

1.2 Predictors of clinical outcome
Different parameters have been shown to be predictive of outcomes in CDH. In the prenatal period, a low observed-
to-expected lung-to-head ratio (O/E LHR), low estimated lung volumes measured during MRI, and herniation of
the liver into the thoracic cavity are associated with poorer outcomes. [2, 5, 6, 20–23] Mortality and the need
for ECMO are associated with postnatal patient characteristics such as gestational age and birth weight, and
with parameters such as right ventricular systolic pressure, preductal SpO2 and the partial pressure of oxygen in
postductal arterial blood (PaO2). [11, 20, 23–26] A model developed by the Congenital Diaphramatic Hernia
Study Group uses, among others, birth weight and the Apgar score at 5 minutes of life to calculate the probability
of survival. [27] Another parameter predictive of outcomes in CDH is the oxygenation index (OI), calculated as

OI =
FiO2 · P̄aw

PaO2
, (1)

with P̄aw the mean airway pressure in cmH2O, FiO2 the fraction of inspired oxygen as a percentage and PaO2 in
kPa. [20] It has been shown that OI in the first hours and days of life is predictive of both ECMO and mortality in
patients with CDH. [20, 25, 28, 29]

The downside of most of the aforementioned predictors of outcomes in CDH is that they cannot be continuously
monitored and often require invasive measurement techniques. Next, most of these parameters are prognostic of
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outcomes and cannot be used for monitoring. Although monitoring of the degree of PH and CD as two of the
key pathophysiologies in CDH is possible, it is usually done using cardiac ultrasound (CUS), which is stressful
for these critically ill patients and lacks the possibility of continuous monitoring. [10, 12] Continuous and non-
invasive monitoring of relevant parameters indicative of the degree of PH and CD would provide significant
added value in clinical practice. Early detection of changes in the patient’s condition will lead to more timely
interventions and consequently to improvements in overall outcomes. This led to the question of which parameters
can be used for continuous monitoring of PH and CD in CDH.

1.3 Study objectives
This retrospective observational trial aimed to determine which continuously measured parameters can be used to
monitor the degree of PH and CD in neonates with CDH. This main goal has been divided into five objectives:

1. providing a background on the parameters that will be used in this study, based on the literature and practical
considerations (Section 2);

2. processing and calculating potential predictors of PH and CD using continuously measured data from an
existing population of neonates with CDH (Section 3.2);

3. classifying the degree of both PH and CD within those same patients according to the CUS performed
during their PICU stay (Section 3.3 and 5);

4. determining which predictors are most promising for monitoring the degree of PH and CD of patients with
CDH in clinical practice (Section 4);

5. interpreting the results found and their potential clinical use in light of the literature (Section 6).

2



2 Background

2.1 Preliminary research
Prior to this study, a literature review was conducted aimed at identifying parameters that have the potential to
continuously monitor the cardiac and pulmonary function of neonates with CDH. [30] Of the parameters identified,
the premature ventricular complex (PVC) rate was not considered useful as PVCs are not common in CDH.
The respiratory rate was also not considered a relevant parameter because all CDH patients are mechanically
ventilated for the majority of the PICU stay. Furthermore, cardiac index and central venous pressure (CVP) are
not measured in our PICU. The remaining identified parameters were oxygen saturation index (OSI), peripheral
oxygen saturation (SpO2), heart rate (HR), heart rate variability (HRV), and arterial blood pressure (ABP).

Using additional supporting literature, this section will present an overview of the rationale behind the use of each
of these parameters and will elaborate on which specific aspects of these parameters will be used for analysis.

2.2 Peripheral oxygen saturation
In a retrospective trial on CDH patients from 2000 to 2010, the highest preductal SpO2 in the first 24 hours of life
was associated with mortality, the use of ECMO therapy and the length of hospital stay. [26] Although predictive
of outcomes, the preductal SpO2 alone is probably only an indirect indication of the degree of PH. With a higher
degree of PH and therefore a higher pulmonary arterial pressure (PAP), right-to-left shunting can occur. This
shunting will be either intrapulmonary and through the foramen ovale (preductal shunting) or ductus arteriosus
(postductal shunt), leading to a decrease in preductal and postductal SpO2, respectively. [8] Additionally, a lower
preductal SpO2 can also be caused by an pulmonary problem such as lung hypoplasia. This makes it difficult
to differentiate between PH and an oxygenation problem in the case of low preductal SpO2. The difference
between the preductal and postductal SpO2 (dSpO2) might therefore be more indicative of the degree of PH as
that difference will be caused by right-to-left shunting through the ductus arteriosus alone. Within this study, the
preductal SpO2 and dSpO2 will be used as well as the postductal SpO2.

2.3 Oxygen saturation index
OSI is a marker of respiratory failure similar to OI with the difference being that SpO2 is used instead of PaO2. [31,
32] PaO2 is measured in arterial blood samples, which cannot be done continuously. By using the continuously
measured SpO2 instead of PaO2, continuous monitoring becomes possible. The OSI is thus defined as

OSI =
P̄aw ·FiO2

SpO2
. (2)

OSI correlates strongly with OI and has comparable predictive values for adverse outcomes in CDH. [31] OSI
values of CDH patients in the first 24 hours after PICU admission have already been shown to predict PH, the
need for ECMO therapy, and mortality. [31, 33]

2.4 Heart rate
HR corrected for age was shown to be a statistically significant predictor of impending cardiac arrest in neonates
and infants with cardiac disease. [34] HR was also predictive of survival in adults with cardiogenic shock and
acute respiratory distress syndrome. [35, 36] Although no other studies in neonates with pulmonary or cardiac
dysfunction have been found on the association between HR and clinical outcomes, the parameter is commonly
used as a general indicator of clinical status and therefore used here.
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2.5 Heart rate variability
Much research has been conducted on the significance and clinical use of HRV in neonates [37]. HRV refers to
alterations in beat-to-beat intervals over time, which results from the balance of inputs from the parasympathic
and sympathic nervous system. [37, 38] The most common HRV measures can be divided into time and frequency
domain measures.

2.5.1 Frequency domain measures
Based on the different systems that modulate HR at different frequencies, the power spectrum of HRV can be
divided into four frequency bands: the ultra-low (ULF; ≤ 0.0033 Hz), very low (VLF; 0.0033 - 0.04 Hz), low
(LF; 0.04-0.15 Hz), and high (HF; 0.15-0.4 Hz) frequency band. [39] The ULF band is related to low-frequency
processes, such as circadian rhythms, but can only be assessed in recordings of at least 24 hours. [39] The VLF
band may be regulated by the sympathetic nervous system, physical activity and thermoregulatory and endothelial
influences of the heart. [40] Although much is still not known about the VLF rhythm, several studies have shown
that it is associated with arrythmic death and inflammation and that it might be intrinsically generated by the heart.
[40, 41] The LF band is reflective of sympathic activity and baroreflex activity at rest, and the HF band is reflective
of parasympathic activity and corresponds to HR variations caused by respiratory effects. [39, 40]

In a case series of four patients with CDH, the logarithmic transformed power content of HRV in the frequency
band of 0.04 to 1.8 Hz was greater than 2 for the two survivors, while the two non-survivors had power values
below 2. [42] In addition, a study on neonates and infants with cardiac disease showed that the relative power of
HRV in the LF and HF bands (HRV-LF and HRV-HF, respectively) and the log10 ratio of LF to HF (LF/HF) was
predictive for impending cardiac arrest. [34] The idea behind HRV-LF/HF is that it is a measure for sympathovagal
balance [38, 39], although this idea is controversial as HRV-LF does not represent sympathic activity alone and the
values are dependent on the measurement conditions. [40] Furthermore, the fact that there is evidence pointing
toward a relationship between intrinsic cardiac function and VLF rhythm makes the total spectral power in the
VLF band (HRV-VLF) also an interesting parameter to use here for the prediction of CD. HRV-VLF, HRV-LF and
HRV-HF will be used here. HRV-LF and HRV-HF were also normalised (HRV-LFn and HRV-HFn, respectively),
to assess their contribution relative to the total power of HRV and to make comparisons between patients and other
studies easier. [39]

2.5.2 Time domain measures
The most well-known and most often researched HRV parameter in the time domain is the standard deviation of
the normal-to-normal beat interval (SDNN). [37] Normal beats are defined as QRS-complexes following sinus-
node depolarisation, excluding technological artefacts and ectopic beats. [38–40] The SDNN reflects all cyclic
components related to variability and is the simplest HRV measure in the time domain. [38] The SDNN is also
considered the gold standard for estimating cardiac risk. [40]

2.6 Arterial blood pressure
In the preliminary literature review, no studies on the use of ABP in patients with cardiac dysfunction included
paediatric patients. [30] Only mean arterial pressure (MAP) and lowest diastolic arterial pressure (DAP) were
associated with mortality in three studies in adult patients, but equally often no association was found. [35, 43–
45]. In another study, only pulse pressure (PP, defined as the difference between systolic arterial pressure (SAP)
and DAP) and SAP were shown to be statistically significant predictors of low left ventricular output in premature
born neonates. [46] Because ABP is related to cardiac functioning and is measured in all CDH patients admitted
to the PICU, DAP, MAP, SAP, and PP will be calculated and included in the analyses.
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3 Data acquisition and processing

3.1 Patients
The study population consisted of neonates admitted to the PICU of the Erasmus MC Sophia Children’s Hospital
(Rotterdam, The Netherlands) between 1st of January 2019 and 31th of December 2022 for treatment of CDH.
Data on demographics, survival, surgery, and ECMO therapy were collected from the electronic health record
(EHR) of each included patient.

3.2 Continuous data
All parameters described in Section 2, with the exception of the HRV measures, are acquired from vital parameter
data. For the calculation of OSI, mechanical ventilator data was also needed. HRV measures were calculated
using electrocardiogram (ECG) data. In Figure 1, the steps taken in the acquisition and processing of these
continuous data and the subsequent calculation of predictors are visualised. These steps will be explained in the
next paragraphs. A more detailed description of the artefact detection and removal can be found in Appendix A.

Vital parameters

Mechanical ventilator data

ECG recordings

W
indow

extraction

Artefact detection

OSI calculation

ECG preprocessing
& quality assessment

Median and IQR

HRV measures

Data acquisition Data processing Calculation of predictors

Figure 1: Flowchart of the acquisition and processing of continuous data and the calculation of predictors. ECG = electrocar-
diogram; OSI = oxygen saturation index; IQR = interquartile range; HRV = heart rate variability

3.2.1 Window extraction
From all data, a 15 minute window prior to each CUS was extracted in order to assess the patient’s status at
the time of CUS. The use of data measured during or after the CUS was not possible due to noise interference,
disconnection of the ECG electrodes from the monitor, and because the CUS can be a stressful experience for
patients. A 15-minute buffer was maintained between the window and the CUS to avoid artefacts caused by
preparations for the CUS. Consequently, raw data from 30 to 15 minutes before each CUS were extracted from
the relevant files.

3.2.2 Vital parameters
All vital parameters measured during the PICU stay were stored on a secure server with a sample frequency of 1
Hz. If measured, the parameters extracted from the secure server were HR measured using ECG electrodes, heart
rate measured using pulse oximetry (PLS), preductal and postductal SpO2, DAP, MAP and SAP. Unfortunately,
the preductal and postductal oximetry cuffs were not consistently connected to the same channels on the monitor,
resulting in variable and often incorrect data labels in the data files. Because it is not possible for the postductal
SpO2 to be higher than the preductal SpO2, it was assumed that the parameter with the highest median value was
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Figure 2: Recording with a rapid increase in arterial blood pressure
(ABP). The artefact lasted for around 30 seconds before returning to
baseline. This artefact is probably caused by either withdrawal of
blood from the arterial line or flushing of the arterial line. SAP, MAP,
DAP = systolic, median and diastolic arterial pressure, respectively;
PP = pulse pressure.

Figure 3: Recording showing an abrupt but brief increase of high mag-
nitude in arterial blood pressure (ABP). Due to the abruptness, high
magnitude and short duration, this is probably an artefact which could
be caused by (accidental) manipulation of the measurement system.
SAP, MAP, DAP = systolic, median and diastolic arterial pressure, re-
spectively; PP = pulse pressure.

the preductal SpO2 if both measurements were present in the data. When only one SpO2 measurement was present
in a data file, that was also assumed to be the preductal SpO2 measurement.

The vital parameter data were processed by first removing all invalid data. After that, all data points and abrupt
changes outside the range that were not considered physiologically possible (e.g. the artefacts in Figures 2 and
3) were also removed. These types of artefacts can be due to (accidental) manipulation of measurement systems,
the administration of drugs, the withdrawal of blood, or zeroing of the arterial line. Other important sources of
artefacts specifically in the ABP data are resonance, underdamping, and overdamping. [47, 48] It is assumed that
resonance and underdamping artefacts are largely avoided by using catheters and tubing of appropriate length and
stiffness or are removed otherwise by producing values outside the defined physiological limits (see Table 8). In
order to detect periods of overdamping, a modified version of the algorithm of Cao et al. was used. [49] Around
all detected artefacts, a margin of 5 seconds on each side was also removed to account for possible disturbances
causing the artefact or actions taken to remove the cause of the artefact.

3.2.3 Mechanical ventilator data
In order to calculate OSI, the FiO2 and P̃aw are also needed in addition to the preductal SpO2 (see Equation 2).
FiO2 is a set value on the mechanical ventilator and the P̃aw is calculated by the mechanical ventilator based on
the applied pressure over time. These values are stored in the patient’s EHR with a variable sample frequency of
around 1 sample per minute and extracted for the purpose of this study. With these values, the OSI was calculated
according to Equation 2.

3.2.4 ECG recordings
One-lead ECG recordings (lead I or II), stored at a sample frequency of 200 Hz, were made continuously through-
out the PICU stay of each patient. After extracting the 15-minute data window from the ECG data, the quality of
the signal was assessed using an algorithm based on the method described by Zhao and Zhang. [50] Signals that
were classified as unacceptable in quality were excluded from analysis. The R peaks were then detected using the
Pan-Tompkins algorithm. [51] All ECG processing steps and the subsequent calculation of HRV measures were
performed using the Python package NeuroKit21. [52]

3.2.5 Calculation of predictors
Because normal distributions were not assumed, the median and interquartile range (IQR) were calculated for each
15-minute window to be used as predictors. This was only done if the window contained more than 80% valid

1For documentation of the NeuroKit2 package, see https://neuropsychology.github.io/NeuroKit/
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data points after processing. The only exception was when the amount of valid HR data within the window was
below 80%, but the window contained 80% or more valid PLS data. In that case, PLS was used instead of HR.
The median and IQR were not calculated for the HRV measures, as those predictors were already calculated over
the complete 15-minute window.

3.3 Outcome variables
3.3.1 Cardiac ultrasounds
All patients underwent CUS within 24 hours after birth. During the PICU stay, additional CUS were performed
upon indication or if required under participation in a clinical trial. All CUS were performed by trained paediatric
cardiologists. Before the 2nd of March, 2021, the GE Vivid S6 (GE Healthcare, Chicago, IL, USA) was used to
perform the CUS. After that date, the GE Vivid S60 was used. No specific study protocol was followed unless the
patient was enroled in another study. The start of the CUS was defined by the timestamp of the CUS report. All
timestamps of continuous data were synchronised on UTC by correcting for daylight saving time and for possible
time differences between the CUS machine and the secure server containing the data.

Furthermore, because ECMO therapy has a significant influence on several cardiovascular and respiratory param-
eters, only CUS during which the patient did not receive ECMO therapy were used. Moreover, CUS performed
more than 720 hours (30 days) after admission were also excluded from this study. This was because the neonatal
period, defined as the first four weeks (28 days) of life, was of most interest here. The additional two days were
included to prevent the exclusion of CUS just after 28 days which were performed a relatively long time after the
preceding CUS.

3.3.2 Classification
Based on the CUS reports, a trained paediatric intensivist determined the degree of PH and CD according to the
criteria in Table 1. If there was doubt as to which class to assign, a trained paediatric cardiologists was consulted.
The classification of PH was based on the PAP in relation to systemic pressure. PAP is estimated using the
pressure gradient over the tricuspid valve, the direction of the shunt over the ductus arteriosus (if still open), and
the presence of dilation of the right ventricle and/or flattening of the IVS. Factors used for CD classification were
fractional shortening, ventricle diameter, and reported professional evaluation by the paediatric cardiologist. The
classes of PH and CD defined here are equal to the classification used in earlier studies. [10, 12] If no classification
of PH and/or CD was possible due to insufficient measurements reported, that CUS was excluded.

Pulmonary Hypertension Cardiac Dysfunction
Criteria Class Criteria Class
PAP ≤ 2

3 of systemic pressure 0 No dysfunction 0
PAP > 2

3 of systemic pressure 1 Right ventricle dysfunction 1
and PAP < systemic pressure Left ventricle dysfunction 2
Suprasystemic PAP 2 Right and left ventricle dysfunction 3

Table 1: Criteria used for classification of pulmonary hypertension and cardiac dysfunction. Classification hap-
pened based on reports from cardiac ultrasounds. PAP = pulmonary artery pressure.

3.4 Ethics
This study was approved by the medical ethics committee of the Erasmus MC (MEC-2021-0937) under an over-
arching study protocol regarding the collection, storage, processing and analysis of data from the PICU of the
Erasmus MC Sophia Children’s Hospital.
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4 Statistical analyses

4.1 Dichotomisation of outcome variables
The proportions of patients in the CD classes 1 to 3 are known to be relatively low compared to the group without
cardiac dysfunction (CD class 0). [7] Together with the fact that regression analyses with more than two outcome
variables are more complex to perform and interpret, the PH and CD scores were dichotomise. The PH scores
were divided into a group with no to moderate PH (class 0-1) and severe PH (class 2). For the CD scores, a group
without CD (class 0) and a group with CD (classes 1-3) was used.

4.2 Data exploration and variable selection
Before analysis, the data were explored following a protocol published by Zuur et al. where applicable. [53] All
data exploration and variable selection were performed using the R programming language (version 4.2.3) in the
RStudio environment (version 2023.03.0) [54, 55]. An overview of the steps described in this section, including
the model fitting and validation described in Sections 4.3 and 4.4, can be found in Figure 4.

First, Cleveland dot plots were made for all predictors in order to identify and exclude extreme outliers. [53]
This was also done of the time from admission to each CUS. Furthermore, because the statistical model (see
Section 4.3) groups the CUS per patient and expects each group to be equal in size, the difference in the number of
CUS for each patient needed to be limited to reduce the relative number of data the model would have considered
missing. The maximum number of CUS for each patient was set to be five. If a patient had more than five CUS, the
CUS with the least number of calculated predictors was excluded, as those CUS would probably have contributed
the least to the prediction of outcomes.

After removing outliers, the assumption of non-collinearity was tested, meaning that there should be no linear
relationship between predictors. [56] In order to test for this assumption, the Pearson correlation coefficient
was calculated for each pair of predictors. Two predictors were considered collinear if the absolute value of the
correlation coefficient was 0.7 or higher. Furthermore, box plots were made of all predictors versus the outcome
variables PH and CD to roughly assess the possible differences between the outcome variables. On the basis of
these graphs, the correlation coefficients and knowledge of the pathophysiology of PH and CD in CDH, choices
were made as to which predictors to remove from further analysis. This was done separately for the prediction of
PH and CD and in cooperation with a paediatric intensivist and a technical physician.

Next, quantile-quantile plots (QQ-plots) were made of all remaining predictors and for each group of PH and CD
in order to check the assumption for normality. Considering the presence of zero values in several predictors, the
square root was calculated of the predictors that did not reasonably meet the assumption of normality. [57]

Finally, the variance inflation factor (VIF) was calculated for each remaining predictor. The VIF measures the
relative inflation of the variance of the regression coefficient of each predictor due to collinearity. [56] If this
relative inflation is high, the power of tests will be reduced. [58] Unlike a pairwise measure such as the Pearson
correlation coefficient, the VIF is calculated based on the linear relationship between a predictor and all other
predictors within a model. [59, 60] Using a sequential approach, the predictor with the highest VIF was excluded
after which the VIF of the remaining values was recalculated. [53] This process was repeated until all VIF values
were below 10, which is a threshold often used to consider the VIF as large. [56, 59]

4.3 Model fitting
For the prediction of the dichotomous outcome variables PH and CD, logistic mixed effects models (LMEM) were
fitted. Mixed effects models can be used for data with a multilevel hierarchy, which is the case here since the CUS
are often repeated within one patient. [61] Consequently, the PH and CD measurements are not independent. [58]
With modelling the grouping factor at the patient level, the violation of the assumption of independence of the
PH and CD measurements was accounted for. Due to the exploratory basis of this research and the difficulty of
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interpretation, only the intercept of the grouping factor was modelled. For the same reason, no interactions were
used in the models. [58] Before fitting, all predictors were centered around their mean and caution was taken
to avoid common pitfalls of logistic regression. [62] All models were fitted using the R-based jamovi software
(version 2.3.21). [63]

First, univariable LMEM were fitted to assess the predictive value of all separate predictors on the outcome vari-
ables, using a significance level of 0.05. Next, multivariable models were fitted for the prediction of PH and CD
by performing a sequential forward selection procedure. The model fit criterion used for this procedure was the
Akaike information criterion (AIC). The AIC is a measure of fit based on the maximised log-likelihood of a model,
while penalising for the number of parameters. [61, 64] During the forward selection procedure, the first predictor
to be included in the model is the predictors of which the univariable LMEM has the lowest AIC. Subsequently,
predictors were included in the model based on which additional predictor produced the largest reduction in AIC.
This process was repeated until no further reduction of the AIC was possible. Predictors were not included if their
addition to the model caused the model not to converge or resulted in unlikely large increases in standard errors
or coefficients. For each fitted model, odds ratios (OR) are calculated, defined as the probability that the outcome
will occur divided by the probability that the outcome will not occur [65].

4.4 Model validation
In order to validate the LMEM, a leave-one-out cross-validation procedure (LOO-CV) was followed. During this
procedure, the models were trained with all data except one observation. The model was then used to predict in
which group of either PH or CD the remaining observation was classified. This was repeated until the classified
group was predicted for all observations. LOO-CV results in a low bias compared to other cross-validation pro-
cedures and is less complex when dealing with large numbers of missing data. [66] Based on the results of the
LOO-CV, the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were
calculated for each model.
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Predictors

Cleveland dot plots

Removing outliers

Correlation matrix

Boxplots Boxplots

Removing collinear
variables

QQ-plots QQ-plots

Transformation if not
normally distributed

Calculation of VIF Calculation of VIF

Removing collinear
variables

Model fitting Model fitting

Model validation Model validation

Pulmonary
Hypertension

Cardiac
Dysfunction

Figure 4: Flowchart of the data exploration and statistical analyses in this
study. After creating the correlation matrix, the variables were analysed in
two parallel paths: one for creating a model for the prediction of pulmonary
hypertension and another for creating a model for the prediction of cardiac
dysfunction. QQ-plots = quantile-quantile plots; VIF = variance inflation
factor.
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5 Results

5.1 Patients
Between the 1st of January 2019 and the 31th of December 2022, 57 patients were admitted to the PICU of the
Erasmus MC Sophia Children’s Hospital for treatment of CDH. Of these patients, 19 patients (33.3%) required
ECMO treatment for at least one period and 49 patients (86.0%) survived until discharge.

5.2 Continuous data
Of the vital parameters, only two files (1.5%) could not be retrieved. OSI could not be calculated for 39 CUS
(28.7%) due to missing mechanical ventilator data. Of 48 CUS (35.8%), no ECG data was found and 11 ECG
recordings (12.5%) were excluded from analysis due to unacceptable quality. Consequently, HRV measures were
calculated for 77 CUS (57.5%). Two CUS (1.5%) had no valid measures and were completely excluded from the
analysis. Extreme outliers were removed based on Cleveland dot plots, which can be found in Appendix B. An
overview of the available parameters in total and per group of PH and CD can be found in Table 2. Due to the low
numerical values, the HRV-VLF and the HRV-HF were both multiplied by 1000 to aid visualisation and to obtain
more comparable ranges between the predictors.

Pulmonary Hypertension Cardiac Dysfunction

Predictor CUS Class 0-1 Class 2 Class 0 Class 1-3

Total 134 (100%) 76 (100%) 58 (100%) 72 (100%) 62 (100%)

HR 131 (97.8%) 74 (97.4%) 57 (98.3%) 70 (95.9%) 61 (96.8%)
preductal SpO2 123 (91.8%) 73 (96.1%) 50 (86.2%) 68 (94.4%) 55 (88.7%)
postductal SpO2 55 (41.0%) 27 (35.5%) 28 (48.3%) 28 (38.9%) 27 (43.5%)
dSpO2 53 (39.6%) 27 (35.5%) 26 (44.8%) 27 (37.5%) 26 (41.9%)
OSI 89 (66.4%) 48 (63.2%) 41 (70.7%) 47 (65.3%) 42 (67.7%)
ABP measures 101 (75.4%) 53 (69.7%) 48 (82.8%) 51 (70.8%) 50 (80.6%)
HRV measures 77 (56.7%) 47 (61.8%) 29 (50.0%) 44 (61.1%) 32 (51.6%)

Table 2: Number of cardiac ultrasounds (CUS) for each type of predictor in total and for each group of pulmonary
hypertension and cardiac dysfunction. This only includes CUS during which the patient did not receive extracorporeal
membrane oxygenation therapy. HR = heart rate; SpO2 = peripheral oxygen saturation; dSpO2 = difference between
preductal and postductal SpO2; OSI = oxygen saturation index; ABP = arterial blood pressure, of which the pulse
pressure and systolic, mean and diastolic arterial pressure are components; HRV = heart rate variability.

5.3 Outcome variables
A total of 167 CUS were performed, of which 134 CUS (80.2%) were performed without the patient receiving
ECMO therapy and of which both the PH and CD classes could be scored. The median number of CUS per patient
was 2 [range 1-7]. Three CUS were excluded to obtain a maximum of five CUS per patient. No outliers were
identified based on the Cleveland dot plot of the time from admission to CUS (see Appendix B). The classification
of all CUS without simultaneous ECMO, before dichotomisation, can be seen in Table 3.
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Classification
Class 0 Class 1 Class 2 Class 3

Pulmonary Hypertension 32 44 58 -
Cardiac Dysfunction 72 54 0 8

Table 3: Number of cardiac ultrasounds (CUS) per class of pulmonary hyper-
tension and cardiac dysfunction for all CUS during which the patient did not
receive extracorporeal membrane oxygenation therapy.

5.4 Variable selection and transformation
Based on the correlation matrix of the Pearson correlation coefficients of each pair of predictors and the boxplots
(see Figure 6 and Appendix C, respectively), the median of the postductal SpO2, DAP and SAP; the IQR of the
preductal SpO2, postductal SpO2, PP, DAP and OSI; and the HRV-LF and HRV-LFn were excluded to remove
collinearities within the data.

The median of postductal SpO2 and dSpO2 showed similar differences between the PH and CD groups in the
boxplots. dSpO2 was considered more informative for PH than postductal SpO2 as dSpO2 is not influenced by
shunting across the foramen ovale or pulmonary factors. Consequently, the median of the postductal SpO2 was
excluded. Because the median values of SAP, MAP, DAP, and PP show similar differences between the PH and
CD groups and because MAP is more often used in clinical practice, the median of MAP was chosen instead
of the median of DAP or SAP. This was done for the prediction of both PH and CD. Consequently, the median
of PP was also kept for further analysis due to its correlation with the median of SAP. Furthermore, of the IQR
predictors, only the postductal SpO2 and SAP showed a slight difference between the PH and CD groups. Due to
the high percentage of missing values, it was decided to exclude the IQR of the postductal SpO2 together with all
other correlated IQR predictors without an apparent effect on the box plots. For the HRV predictors, the selection
was based solely on the box plots, since it is unclear whether and how the power in the low-frequency band or

Figure 5: Bar charts of the variance inflation factors (VIF) per predictor for the prediction of pulmonary hypertension (PH) and
cardiac dysfunction (CD). The VIF values are calculated after fitting three separate generalised linear models for the median,
interquartile range (IQR) and heart rate variability (HRV) predictors. It was not possible to fit all predictors into one model
due to the high percentage of missing values. HR = heart rate; SpO2 = peripheral oxygen saturation; dSpO2 = difference
between preductal and postductal SpO2; PP = pulse pressure; MAP = mean arterial pressure; OSI = oxygen saturation index;
SDNN = standard deviation of the normal-to-normal beat intervals; HRV-VLF and HRV-HF = total spectral power of heart rate
variability in the very low and high frequency bands, respectively; HRV-HFn = HRV-HF normalised to the total power.
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Figure 6: Correlation matrix containing the Pearson correlation coefficient of each pair of predictors. The colour indicates
the direction and magnitude of each correlation. The subscripts indicate the type of predictor (median or interquartile range
(IQR)). Pairs with a correlation coefficient higher or equal than 0.70 or lower or equal than -0.70 were considered correlated
to each other. The black lines separate the different types of predictors as a visual aid. HR = heart rate; SpO2 = peripheral
oxygen saturation; dSpO2 = difference between preductal and postductal SpO2; PP = pulse pressure; DAP, MAP and SAP =
diastolic, mean and systolic arterial pressure, respectively; OSI = oxygen saturation index; SDNN = standard deviation of the
normal-to-normal beat intervals; HRV-VLF, HRV-LF and HRV-HF = total spectral power of heart rate variability in the very
low, low and high frequency bands, respectively; HRV-LFn and HRV-HFn = HRV-LF and HRV-HF normalised to the total
power, respectively.
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the power in the high-frequency band might be related to PH or CD. Because HRV-HFn appeared to be more
promising for the prediction of both PH and CD, it was preferred over HRV-LFn. Lastly, because only a slight
difference was observed between the PH classes for HRV-HF but not HRV-LF and no differences were observed
between the CD groups for those predictors, HRV-HF was selected for the prediction of both PH and CD.

Next, the IQR of HR, SDNN, HRV-VLF and HRV-HF were squared because of their skewed distribution. The
QQ-plots of all predictors can be found in Appendix D. After normalisation, the VIF was calculated for each
predictor. Due to the presence of a significant number of missing values, it was not possible to fit one simple
linear model to calculate the VIF values. Unlike LMEM, a linear model drops all observations with missing
values, which would have resulted in an insufficient number of CUS to create a model based on which the VIF
values could be calculated. With less variables, less observations were dropped. Because collinearity was most
expected in similar predictors, the VIF values were calculated using three different models for the three types of
predictors (median, IQR and HRV). The VIF values for these three groups for the prediction of both PH and CD
can be found in Figure 5. Because none of the VIF values exceeded 10, additional exclusions of predictors were
not needed.

5.5 Univariable models
In Table 4, the OR values of both the intercept and the coefficient of each univariable LMEM can be found,
including 95% confidence intervals (CI). For the prediction of PH, the OR values of both the median and the
IQR of the HR are statistically significant. Furthermore, statistically significant OR values were also found for
the median values of preductal SpO2, dSpO2, PP and OSI. In the univariable LMEM for the prediction of CD,
the HRV-VLF and the median values of HR, MAP and OSI were statistically significant. Except for the models
for HRV-HF and HRV-HFn, no intercept value reached statistical significance. The performance measures of all
univariable LMEMs that achieved statistical significance can be found in Table 5.

Predictor N Sensitivity Specificity PPV NPV

Pulmonary Hypertension

Median of HR 131 50.0% 75.3% 60.9% 66.3%
Median of preductal SpO2 123 30.6% 84.7% 57.7% 64.2%
Median of dSpO2 53 50.0% 85.2% 76.5% 63.9%
Median of PP 101 53.2% 58.8% 54.3% 57.7%
Median of OSI 89 62.5% 81.3% 73.5% 72.2%
IQR of HR 131 60.7% 65.8% 57.6% 68.6%

Cardiac Dysfunction

Median of HR 131 40.7% 70.0% 53.3% 58.3%
Median of MAP 101 54.2% 51.0% 51.0% 54.2%
Median of OSI 89 48.8% 72.3% 60.6% 61.8%
HRV-VLF 73 44.8% 84.1% 65.0% 69.8%

Table 5: Performance measures of all statistically significant univariable logistic mixed effects models. All pre-
dictors were centered around the mean. N = number of observations; PPV = positive predictive value; NPV =
negative predictive value; HR = heart rate; SpO2 = peripheral oxygen saturation; dSpO2 = difference between
preductal and postductal SpO2; PP = pulse pressure; OSI = oxygen saturation index; IQR = interquartile range;
MAP = mean arterial pressure.
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Intercept Coefficient

Predictor Mean Unit OR 95% CI p-value OR 95% CI p-value

Pulmonary Hypertension

Median predictors

HR 153 bpm 0.741 0.502 - 1.090 0.131 1.035 1.014 - 1.060 0.001*
preductal SpO2 96.3 % 0.691 0.428 - 1.115 0.130 0.753 0.630 - 0.901 0.002*
dSpO2 3.91 % 1.150 0.486 - 2.720 0.750 1.290 1.009 - 1.640 0.042*
MAP 45.8 mmHg 0.894 0.591 - 1.350 0.596 0.935 0.874 - 1.000 0.052
PP 22.1 mmHg 0.909 0.593 - 1.395 0.663 0.927 0.872 - 0.985 0.015*
OSI 8.04 1 0.850 0.518 - 1.400 0.521 1.302 1.126 - 1.500 <0.001*

IQR predictors

HR 1.42
√

bpm 0.699 0.445 - 1.098 0.120 0.343 0.182 - 0.648 <0.001*
dSpO2 0.887 % 0.965 0.553 - 1.690 0.901 1.166 0.815 - 1.670 0.400
SAP 2.9 mmHg 0.921 0.620 - 1.370 0.686 0.948 0.758 - 1.180 0.637

HRV predictors

SDNN 2.41
√

ms 0.639 0.386 - 1.060 0.081 0.633 0.164 - 2.440 0.507
HRV-VLF 1.71

√
1000 ·ms2 0.583 0.361 - 0.941 0.027* 0.813 0.511 - 1.295 0.384

HRV-HF 2.53
√

1000 ·ms2 0.590 0.367 - 0.947 0.029* 1.156 0.928 - 1.441 0.196
HRV-HFn 0.314 nu 0.610 0.382 - 0.975 0.039* 5.148 0.347 - 76.36 0.234

Cardiac Dysfunction

Median predictors

HR 153 bpm 0.843 0.546 - 1.300 0.440 1.021 1.001 - 1.040 0.045*
preductal SpO2 96.3 % 0.801 0.527 - 1.220 0.298 0.931 0.846 - 1.020 0.144
dSpO2 3.91 % 0.993 0.534 - 1.850 0.982 1.098 0.984 - 1.230 0.093
MAP 45.8 mmHg 0.911 0.559 - 1.483 0.707 0.923 0.855 - 0.996 0.040*
PP 22.1 mmHg 0.943 0.591 - 1.500 0.804 0.965 0.910 - 1.020 0.234
OSI 8.04 1 0.873 0.546 - 1.400 0.572 1.151 1.031 - 1.280 0.012*

IQR predictors

HR 1.42
√

bpm 0.833 0.544 - 1.280 0.402 0.686 0.433 - 1.090 0.109
dSpO2 0.887 % 0.970 0.545 - 1.730 0.918 1.139 0.788 - 1.650 0.489
SAP 2.9 mmHg 0.953 0.611 - 1.490 0.831 1.010 0.798 - 1.280 0.937

HRV predictors

SDNN 2.41
√

ms 0.690 0.372 - 1.280 0.239 5.868 0.904 - 38.10 0.064
HRV-VLF 1.71

√
1000 ·ms2 0.593 0.326 - 1.079 0.087 0.543 0.312 - 0.942 0.030*

HRV-HF 2.53
√

1000 ·ms2 0.676 0.391 - 1.170 0.161 1.022 0.806 - 1.300 0.858
HRV-HFn 0.314 nu 0.703 0.411 - 1.200 0.197 2.848 0.167 - 48.44 0.469

Table 4: Univariable logistic mixed effects models for the prediction of either pulmonary hypertension or cardiac dysfunction. All predictors
were centered around the mean. The odds ratio (OR) was calculated as eβ with β the intercept or coefficient value. Before fitting, IQR of
HR and SDNN were squared and HRV-VLF and HRV-HF were multiplied with 1000 and then squared. CI = confidence interval; HR =
heart rate; SpO2 = peripheral oxygen saturation; dSpO2 = difference between preductal and postductal SpO2; PP = pulse pressure; MAP
= mean arterial pressure; OSI = oxygen saturation index; SDNN = standard deviation of the normal-to-normal beat intervals; HRV-VLF
and HRV-HF = total spectral power of heart rate variability in the very low and high frequency bands, respectively; HRV-HFn = HRV-HF
normalised to the total power; nu = normalised units.
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5.6 Multivariable models
The course of the forward selection process is described in Table 6. For the prediction of PH, this process resulted
in a multivariable LMEM with the SDNN and the median values of dSpO2, HR, PP and OSI as predictors (see
Table 7). The LOO-CV for this model was performed with 20 complete observations of which 10 CUS were
classified as PH classes 0-1 and 10 CUS as PH class 2. The model showed a sensitivity of 72.0%, a specificity
of 80.0%, a PPV of 77.8%, and an NPV of 72.7%. The LMEM for the prediction of CD consisted of the median
dSpO2, the HRV-VLF, the SDNN and the IQR of SAP as predictors. The LOO-CV was performed with 21
complete observations of which 13 CUS were classified as CD class 0 and 8 CUS as CD classes 1-3. The model
showed a sensitivity of 62.5%, a specificity of 76.9%, a PPV of 62.5%, and an NPV of 76.9%.

Pulmonary Hypertension Cardiac Dysfunction

Predictors AIC Predictors AIC

Median of dSpO2 66.22 Median of dSpO2 75.68
+ HRV-SDNN 35.71 + HRV-VLF 31.79
+ Median of HR 33.89 + HRV-SDNN 29.17
+ Median of PP 29.87 + IQR of SAP 23.31
+ Median of OSI 28.33

Table 6: Description of the forward selection procedure for creating the multivari-
able logistic mixed effects models for the prediction of pulmonary hypertension
and cardiac dysfunction. The selection criterion for the forward selection proce-
dure was the Akaike information criterion (AIC), which was minimised. dSpO2 =
difference between preductal and postductal peripheral oxygen saturation; SDNN
= standard deviation of the normal-to-normal beat interval; HR = heart rate; PP =
pulse pressure; OSI = oxygen saturation index; HRV-VLF = total spectral power
of heart rate variability in the very low frequency band; IQR = interquartile range;
SAP = systolic arterial pressure.

Predictor Mean Unit OR 95% CI p-value

Pulmonary Hypertension

Intercept - - 1.068 0.222 - 5.140 0.935
Median of dSpO2 3.91 % 1.281 0.934 - 1.760 0.125
SDNN 2.41

√
ms 0.217 0.001 - 40.56 0.567

Median of HR 153 bpm 1.073 0.988 - 1.170 0.094
Median of PP 22.1 mmHg 0.879 0.749 - 1.030 0.114
Median of OSI 8.04 1 1.174 0.742 - 1.860 0.494

Cardiac Dysfunction

Intercept - - 0.451 0.068 - 3.000 0.410
Median of dSpO2 3.91 % 1.709 0.966 - 3.020 0.066
HRV-VLF 1.71

√
1000 ·ms2 0.017 0.000 - 1.090 0.055

SDNN 2.41
√

ms 4.442 0.096 - 204.9 0.446
IQR of SAP 2.9 mmHg 0.621 0.285 - 1.350 0.230

Table 7: Multivariable logistic mixed effects models for the prediction of pulmonary hypertension
and cardiac dysfunction. All predictors were centered around the mean. The odds ratio (OR) was
calculated as eβ with β the intercept or coefficient value. CI = confidence interval; dSpO2 = difference
between preductal and postductal peripheral oxygen saturation; SDNN = standard deviation of the
normal-to-normal beat interval; HR = heart rate; PP = pulse pressure; OSI = oxygen saturation index;
HRV-VLF = total spectral power of heart rate variability in the very low frequency band; IQR =
interquartile range; SAP = systolic arterial pressure.
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6 Discussion

6.1 Relevance
Although there are similar studies on the predictive value of vital and clinical parameters in CDH, most of these
studies focused on the prediction of mortality or other overall outcomes. [11, 20, 25, 26, 28, 29] Moreover,
the current method of assessing the degree of PH and CD through CUS is relatively labour-intensive and often
experienced as stressful for these critically ill patients. [10, 12] Consequently, CUS are only performed when
deemed necessary based on other clinical indicators, often resulting in intervals of days or even more between
subsequent CUS. Continuously and non-invasive measured parameters that predict the degree of PH and CD
can help guide bed-side treatment and allow monitoring of subsequent treatment effects. It is likely that with
more timely interventions, (further) increases in the degree of PH and/or CD can be mitigated or even prevented.
Conversely, the length of stay of patients may even be reduced by earlier detection of improvement and facilitation
of recovery.

This study fills an important gap within the existing literature by identifying continuously and non-invasively
measured parameters that can be used to predict the concurrent degree of PH and CD in neonates with CDH. One
study did look at the prediction of PH in CDH using the mean OSI value in the first hour and the maximum OSI
values in the first 12 and 24 hours after birth. [33] However, the mean OSI value in the first hour after birth was
used more as a prognostic factor rather than as a predictor of concurrent degree of PH. Moreover, maximum OSI
values are not suited for long-term monitoring purposes. No studies have attempted to predict CD in patients with
CDH using continuously measured parameters.

6.2 Prediction of pulmonary hypertension
Several continuously measured parameters have been shown to be associated with the degree of PH. The most
promising results were found in the parameters related to oxygen saturation. As expected, patients with severe PH
are more likely to have a lower preductal SpO2, a higher dSpO2 (i.e. right-to-left shunting across the ductus arte-
riosus) and a higher OSI (i.e. higher ventilation settings and/or lower preductal SpO2). This is also expected since
in a PICU, the preductal SpO2 can often be maintained at values close to 100% until the point when the patient’s
pulmonary condition becomes severe. In earlier studies, it has already been shown that there is a relationship
between OSI values within the first 24 hours after birth and PH. [33] Other studies in CDH found associations
between preductal SpO2, similar parameters such as OI and PaO2 and survival. [20, 25, 26, 28, 29] Considering
the fact that PH is also related to mortality, these studies may have looked at the same mechanisms that underlie
the results found here. [10, 11] Although the sensitivity of the median preductal SpO2, dSpO2 and OSI were
around or even far below chance in this study, these predictors have specificity values greater than 80% and the
PPV values for the median values of dSpO2 and OSI were 76.5% and 73.5%, respectively. Thus, within clinical
practice, these parameters could be used to confirm a favourable pulmonary status or to initiate further diagnostics.

In addition, an increase in the median HR and a decrease in the IQR of HR appeared to increase the risk of severe
PH, albeit with limited predictive performance. The highest performance measure of the two HR predictors was
obtained for the median HR, with a specificity of 75.3%. When considering that the IQR of HR could also be
seen as a HRV measure, these results are in agreement with the predictive value of SDNN in the multivariable
LMEM and with previous studies reporting higher mean HR and lower HRV indices in adult patients with PH
compared to healthy controls. [67, 68] However, it is inconsistent with the fact that none of the HRV predictors
were statistically significant in the univariable LMEM for the prediction of PH. The median PP also reached
statistical significance in the univariable LMEM. This can be explained by the fact that PP is dependent on left
ventricular preload, which is reduced in PH. [69, 70]

The multivariable LMEM for the prediction of PH contained the SDNN and the median values of dSpO2, HR,
PP and OSI. With the exception of SDNN, all of these predictors also showed a statistically significant result in
the univariable LMEM, with similar OR values. The inclusion of SDNN is again in line with previous findings
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showing lower HRV values in adult patients with PH. [67, 68] All performance measures of this model were
greater than 70%, with a specificity of 80% as the highest measure. Although that might not be sufficient for
direct clinical application, these results are promising nonetheless.

6.3 Prediction of cardiac dysfunction
The median values of HR, MAP and the HRV-VLF were all independently predictive of CD, with higher chances of
CD for increased median values of HR and OSI and decreased median MAP and HRV-VLF. No studies have been
found that confirm the direct relationship between HR and CD in CDH, but CD is known to lead to hypotension
in CDH. [3] An increase in HR might be a compensatory reaction to the decrease in stroke volume caused by
CD. Additionally, the inclusion of HRV-VLF in the model is in line with a study that has shown that HRV-VLF is
predictive of death or readmission in adult patients with congestive heart failure. [71] Moreover, it has also been
shown that adult patients with subacute coronary artery disease have lower HRV-VLF values compared to healthy
controls. [72] However, another study in neonates and infants with cardiac disease did not find a statistically
significant result for HRV-VLF but did find HRV-HF to be predictive of impending cardiac arrest, which did not
reach statistical significance here. [34] Thus, although conflicting results are found in the literature, HRV-VLF
might be related to the occurrence and/or severity of CD.

Another interesting finding was that the median OSI, a marker of respiratory failure, was predictive of CD. Almost
all cases of CD were classified as right ventricle dysfunction (see Table 3), which is usually secondary to PH in
CDH. [7] With OSI predictive for PH, the predictive value of OSI for CD is then easily explained. It would be
interesting to specify the effect of left ventricular and biventricular failure on the different parameters. However,
the numbers of patients with these types of CD were too low to do so with these data. Unfortunately, most
performance measures of the univariable LMEM for the prediction of CD did not exceed 60% or even had values
below chance. The highest performance values were of the median of HR and OSI and the HRV-VLF with
specificity values of 70.0%, 72.3% and 84.1%, respectively. Consequently, these predictors might be primarily
useful in identifying CDH patients without CD.

In the multivariable LMEM for the prediction of CD, the median dSpO2, HRV-VLF, SDNN and the IQR of SAP
were included. Of these predictors, only HRV-VLF was also statistically significant in the univariable LMEM.
Similar to why OSI might be predictive of CD, the presence of median dSpO2 in the model can be explained
through its relationship with PH and CD being often secondary to PH. Interestingly, the SDNN has an OR value
greater than 1, which is in contrast with the OR value of below 1 for the prediction of PH and with what would
be expected based on the literature. Namely, mortality was predicted by a lower SDNN in adult patients with
heart failure. [73–75] In children with congenital heart disease, SDNN was correlated with the New York Heart
Association (NYHA) functional class. [76]. However, a recent study found mean SDNN values close to 30 ms for
healthy neonates, while the mean SDNN found here was 5.81 ms. [77] This would either mean that the SDNN of
neonates with CDH is significantly lower than in healthy neonates, for which no explanation can be found at this
time, or that the SDNN was incorrectly calculated. Further research should shed more light on the origins of these
findings.

Next, the predictive value of the IQR of SAP could be explained by a reduced preload of the left ventricle and/or
restricted left ventricular filling due to displacement of the interventricular septum. [12] In contrast, increased
variability in systolic blood pressure has been known to have predictive and prognostic value of heart failure in
adults. [78, 79] Additionally, mechanical ventilation also has an effect on arterial pressure variation through a
decrease in venous return to the right ventricle, causing a reduction in the preload of the left ventricle and, conse-
quently, stroke volume and SAP variability. [80, 81] In patients with CD, these ventilator effects may be reduced
due to a different pressure distribution in the thorax caused by the pulmonary hypoplasia and the diaphragm de-
fect. Therefore, it would be interesting to study the effects of mechanical ventilation on ABP variations in CDH
patients. The highest performance measures of this model were specificity and NPV with a value of 76.9% for
both measures. Consequently, although this model could be used to identify patients without CD, clinical use is
limited at this time.

6.4 Limitations
The present study is not without limitations, although they have been mitigated as much as possible. First, the fact
that this was a retrospective study caused several problems in data acquisition and analysis. With the exception
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of the first CUS of each patient, most CUS were performed based on clinical indication rather than prescribed
by a protocol. This resulted in an over-representation of patients whose clinical status was relatively unstable.
Additionally, CUS reports often did not contain specific parameters needed for the classification of PH or CD.
Consequently, classification of the degrees of PH and CD was regularly done with limited information. Also,
CUS is not the golden standard to be used for the diagnosis of PH. The gold standard is cardiac catheterisation,
which is not possible in this population of severely ill patients. In addition, almost all patients will show PH to
some degree during the first CUS. Even in healthy neonates, the mean PAP gradually drops to 50% of systemic
pressure at the end of the first day of life. [49] It may therefore be difficult, if not impossible, to distinguish
physiological from pathological PH during this period. Because the majority of CUS were performed within the
first day of life, the statistical power of the LMEM predicting PH will have been limited.

Another issue with respect to the data is the sampling frequency of 200 Hz of the ECG recordings. Namely,
higher sampling frequencies of 250 to 500 Hz or even higher are recommended for the correct calculation of
HRV measures. [38–40] A sampling frequency of 200 Hz might be sufficient when the RR interval variability
is sufficiently high and the amplitude of the respiratory sinus arrhythmia (RSA) is low. RSA refers to HR ac-
celerations and decelerations caused by respiration, mediated by the vagus nerve. [40] Within this study, it was
assumed that RR variability was sufficiently high and that RSA did not play a significant role. However, RSA was
observed in neonates in previous studies and contributed more than 30% to the frequency spectrum of HRV. [82,
83] Consequently, the HRV calculations may have been biased.

Furthermore, 91.8% of the CUS had a corresponding window with valid SpO2 data, while only 41.0% of these
CUS had a valid second SpO2 measurement. This was due to a registration error in the years before 2020.
Furthermore, the registration of the preductal and postductal SpO2 measurements depends on which channel the
oximeter physically connects to. Misconnections of the oximeters leads to a loss of either or both SpO2 data.
Generally, the postductal SpO2 will have been missing. Missing preductal SpO2 values may have biased OSI
calculation, as OSI values calculated using postductal SpO2 values are generally lower. Together with the fact that
other parameters also often contained missing data, this could have led to statistical analyses being underpowered.
Although these missing data could have been imputated, the choice was made not to do this due to the exploratory
nature of this study and because most missing data were assumed not to be missing at random.

With regard to the statistical analyses, one limitation was the fact that no diagnostics were done on the LMEM
after fitting. Consequently, it is unclear whether appropriate models were used and if other possible random effects
should have been used, such as age or whether the patient was mechanically ventilated. Especially age could be
relevant as HR, ABP and HRV values change during the first days and weeks of life, which has not been taken
into account. [84–86] Additionally, the choice was made to exclude collinear variables from all further analyses,
including the univariable analyses. Although this was done with the creation of a multivariable model in mind,
this could have caused the exclusion of predictors that might have been independently predictive of PH or CD.
This could, in turn, have influenced the choices made in the creation of the multivariable LMEM. Furthermore,
there was an over-representation of PH class 2 within the LOO-CV due to the fact that only complete observations
could be used. However, the over-representation was limited.

6.5 Future research
In order to draw stronger conclusions about the predictive value of specific parameters for the degree of PH and
CD, a prospective trial is needed with specific focus for correct measurement and data registration and during
which all patients will receive protocol-based CUS at predetermined points. Such a trial will improve the classifi-
cation of PH and CD and give a more accurate representation of the patient population. Moreover, it will reduce
the number of missing data, which will improve the power of the statistical analyses. The statistical method itself
might be improved by incorporating interaction effects of variables and by taking the age and age-related changes
in HR, ABP and HRV into account. [84–86] It is unknown whether these changes are relevant to the prediction
of PH and/or CD, but it might be useful to investigate. Furthermore, the decision boundary within the LMEM to
decide which PH or CD group a CUS belonged to was set at 50%, but this might not be the ideal cutoff point.
Other decision boundaries could improve the prediction of PH and CD.

In addition, dichotomous outcome variables naturally do not correctly represent the diversity of severity of PH
and CD within the patient population. The use of non-dichotomous outcome variables would provide a more
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complete representation of the diversity of PH and CD severity. This can be done using discrete groups such as
the classes used before dichotomisation, but there might also be a role here for continuous outcome variables.
Although no literature on continuous measures of PH or CD was found, one might think that a measure such as
the ratio of PAP to systemic pressure could be informative of the degree of PH. Lastly, considering the purpose
of monitoring, it might be interesting to perform trend analysis of both continuous data and PH and CD measures
and assess the similarity between those signals. An example of such an approach has been described by Henriques
et al., who performed trend analyses on telemonitoring data and used a similarity measure to predict heart failure
decompensation events. [87]

Furthermore, it might also be useful to combine continuously measured parameters with discrete measurements
such as blood gas values or biomarkers such as brain-type natriuretic peptide (BNP) to gain a more complete
impression of pulmonary and/or cardiac functioning. BNP has already been shown to predict PH in CDH and also
correlates with right ventricular strain. [88, 89] However, an important condition for the use of such additional
measurements would be that stable values over the course of hours can reasonably be assumed. This is because
rapidly changing parameters could give a false impression of the general pulmonary and/or cardiac status of the
patient between discrete measurements.

Lastly, some potential predictors that were identified in the preliminary literature review were not included in this
study because they were simply not measured in our PICU. [30] CVP, for example, has been shown to predict
of PH in adult patients with acute respiratory distress syndrome. [90] The downside of CVP measurements is
that it is an invasive measurement which is often not performed in CDH patients. Another potentially useful
parameter is the cardiac index, which might be used as a measure for cardiac functioning for which continuous
and non-invasive measurement techniques exist. [91–94]
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7 Conclusions

This research aimed to identify continuously measured parameters predictive of the concurrent degree of PH and
CD in neonates with CDH. These results show that the most promising predictive measures of PH are the median
values of preductal SpO2, dSpO2 and OSI. For the prediction of CD, HRV-VLF and the median values of HR, OSI
and dSpO2 are the most promising predictors. Despite limited predictive performance of the regression models,
these results contributes to improved monitoring of CDH patients, which can lead to more timely interventions
and eventually improved outcomes within this patient population.
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Appendices



A Artefact detection and removal

A.1 Invalid data
All missing and invalid data points within the raw vital parameter data were removed in order to convert the data
to numerical values and to preserve the structure of the data window. The same was done for HR data which were
classified by the monitor as ventricular fibrillation or asystole. Furthermore, for all measured parameters, with the
exception of dSpO2, zero values were also considered artefacts and removed. This was not done for dSpO2 as
preductal and postductal SpO2 are equal in the absence of shunting. An example of a recording with invalid ABP
data can be seen in Figure 7.

A.2 Physiological ranges
To define data that were considered not physiologically possible, the ranges mentioned in Table 8 were used.
These ranges are based on a study that described the ABP and HR distributions of critically ill neonates. [84]. For
ABP data, margins of 10 to 20 mmHg were used below the 3th percentile and above the 97th percentile of those
ABP distributions. No lower limit was defined for the PP data because the mechanism behind the artefacts that
cause low PP is relatively complex, an issue which will be addressed in Section A.4.

The 5th percentile and the 95th percentile of the reported HR distributions were approximately 105 bpm and 170
bpm, respectively. However, when visually inspecting the data, it was seen that HR was often in the range of
170-180 bpm and occasionally even higher. Therefore, a wider margin of 80 bpm to 250 bpm was used. For
SpO2, a lower limit of 50% was used. An upper limit was not defined, as it is technically not possible to have
SpO2 values greater than 100%.

Parameter Physiologic range Abrupt change
Lower limit Upper limit Absolute difference

HR 80 bpm 250 bpm 30 bpm · s-1

SpO2 50% - 10% · s-1

SAP 30 mmHg 110 mmHg 20 mmHg · s-1

MAP 15 mmHg 80 mmHg 20 mmHg · s-1

DAP 10 mmHg 70 mmHg 20 mmHg · s-1

PP - 100 mmHg -

Table 8: Criteria used for detection of non-physiologic values and abrupt changes. Data
points outside the physiologic ranges and data points of which the absolute difference
with the preceding point were above the limit for abrupt change were considered artefacts
and removed. HR = heart rate; SpO2 = peripheral oxygen saturation; SAP = systolic
arterial pressure; MAP = mean arterial pressure; DAP = diastolic arterial pressure; PP =
pulse pressure.

A.3 Abrupt changes
Abrupt changes within the vital parameter data which were considered too great to be physiological were also
removed. In order to do this, the absolute difference between each sample and the preceding sample was calcu-
lated. With a sample frequency of 1 Hz for the vital parameter data, this was equal to the change in one second.
Data points with an absolute difference greater than the limits presented in Table 8 were considered artefacts.
The absolute difference limits for the ABP values were equal to the criteria of a signal abnormality index for ABP
waveforms. [95] The limits for HR and SpO2 were arbitrarily chosen based on trial and error and visual inspection
of the data. As with the non-physiological artefacts, a margin of 5 seconds on each side of detected artefacts was
also removed.
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Figure 7: Recording with several moments of measurement artefacts
during which all parameters briefly return to zero. SAP, MAP, DAP
= systolic, median and diastolic arterial pressure, respectively; PP =
pulse pressure.

Figure 8: Recording with a period of overdamping lasting for around
two minutes. The systolic arterial pressure (SAP) gradually decreases
while the diastolic arterial blood pressure (DAP) gradually increases,
causing a reduction in pulse pressure (PP). MAP = median arterial
pressure.

A.4 Resonance and damping artefacts
Important sources of artefacts are resonance, underdamping and overdamping. Resonance occurs when the fre-
quency of the physiological signal measured matches the undamped natural frequency of the transducer system,
causing an increase in the amplitudes of the signal. When a system is not optimally damped, erroneous amplifica-
tion of the signal occurs when the system is underdamped and erroneous decreases in amplitude will occur in the
case of overdamping. Flush tests or square-wave tests can be performed to see whether the system is overdamped
or underdamped. [47, 48, 96] Such a test can be seen on the monitor as a square wave, similar to the artefact seen
in Figure 2.

Resonance and underdamping can largely be avoided by using catheters and tubing of appropriate length and
stiffness, which we assume was the case. Even if resonance and underdamping artefacts occur, it was assumed
that with removal of data points outside defined physiological limits (see Table 8), the effects of resonance and
underdamping as well as square wave artefacts were detected and removed from the data. While the risk of
overdamping can be reduced by using an appropriate measuring system, it can also be caused by air bubbles, blood
cloths, or catheter kinks in the system and is therefore a common artefact in clinical practice. [47] Characteristics
of artefacts due to overdamping are an overestimation of DAP and an underestimation of SAP, resulting in a
decrease in PP. This effect can increase with time, with the PP gradually decreasing until minimal values are
reached. An example of a brief period of overdamping can be seen in Figure 8. In order to detect these periods of
overdamping, a modified version of the algorithm of Cao et al. [49] was used. The algorithm used consisted of
the following steps:

1. smoothing of the PP data using a low-pass second-order forward-backward (zero-phase) Butterworth filter
with a cut-off frequency of 1

15 Hz;

2. selecting series of at least 8 consecutive data points with values below 5 mmHg as potential over-damping
sites;

3. scanning the potential overdamping sites forward and backward in time until a point greater than the 25th

percentile of the filtered PP data was reached. These points were considered the beginning and end of the
over-damping artefact;

4. adding a margin of 5 seconds of data to the beginning of the over-damping artefact to account for distur-
bances before the artefact and to the end of the over-damping artefact to account for a potential flush test
artefact and its consecutive pressure oscillations.
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A.5 ECG recordings
The ECG quality assessment method described by Zhao and Zhang [50] calculates four different signal quality
indices (SQI) based on the matching degree of R-peak detection (qSQI), the power spectrum distribution of QRS
waves (pSQI), kurtosis (kSQI; a measure of signal symmetry) and the relative power in the baseline (basSQI).
The different SQI are then fused using simple heuristics to classify the ECG signal as either unacceptable, barely
acceptable or excellent. For unknown reasons, the qSQI was not used in the NeuroKit2 package used in this study.
[52] The Pan-Tompkins algorithm used after the quality assessment first pre-processed the ECG signal and then
applied several decision rules to detect R-peaks. [51]

When calculating parameters in the frequency domain, which was the case for all HRV measures except SNN,
the minimal sample frequency or Nyquist frequency should be at least twice the highest frequency of interest (see
Equation 3) in order to ensure adequate sampling of the data. Since the highest frequency to be analysed was 0.4
Hz (the upper limit of HF), the Nyquist frequency is 0.8 Hz. This meant that HR, which was equal to the sample
frequency in our data, had to be at least 48 bpm and preferably higher to avoid aliasing. As neonates and infants
usually have HR greater than 100 bpm, this was not a problem. [84, 97]

Fnyquist = 2 ·Fmax (3)

A.6 Oximetry measurements
Furthermore, the accuracy of the oximetry measurement device used on our PICU (Masimo SET; Masimo Corpo-
ration, Irving, CA, USA) was 1.5% for SpO2 values between 70% and 100%. [98] With subtracting the postductal
from the preductal SpO2 measurement, the possible measurement error of dSpO2 becomes twice the accuracy of
the oximetry. To be safe, the assumed accuracy of the oximetry measurements was rounded up to 2%, resulting in
an assumed possible error of 4% for dSpO2 values. Accordingly, all dSpO2 values ≤4% were replaced by zero.
Moreover, unreliable oximetry measurements can also occur due to sensor disturbances or insufficient contact
between the sensor and the skin (e.g. during movement). This can lead to highly variable PLS values, an example
of which can be seen in Figure 9. To detect and remove such artefacts, the variance of the PLS was calculated.
If the variance of the PLS values was more than three time the variance of the HR values, the PLS and all SpO2

measurements were considered unreliable and completely removed.

Figure 9: Recording during which the heart rate measurement using
pulse oximetry (PLS) shows an erroneously high variability compared
to heart rate measurement using electrocardiography electrodes (HR).
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B Cleveland dot plots

Figure 10: Cleveland dot plots of median predictors before and after outlier removal. HR = heart rate; SpO2 = peripheral
oxygen saturation; dSpO2 = difference between preductal and postductal SpO2; PP = pulse pressure; DAP, MAP and SAP =
diastolic, mean and systolic arterial pressure, respectively; OSI = oxygen saturation index.
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Figure 11: Cleveland dot plots of interquartile range (IQR) predictors before and after outlier removal. HR = heart rate; SpO2
= peripheral oxygen saturation; dSpO2 = difference between preductal and postductal SpO2; PP = pulse pressure; DAP, MAP
and SAP = diastolic, mean and systolic arterial pressure, respectively; OSI = oxygen saturation index.
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Figure 12: Cleveland dot plots of heart rate variability (HRV) predictors before and after outlier removal. SDNN = standard
deviation of the normal-to-normal beat intervals; HRV-VLF, HRV-LF and HRV-HF = total spectral power of heart rate variabil-
ity in the very low, low and high frequency bands, respectively; HRV-LFn and HRV-HFn = HRV-LF and HRV-HF normalised
to the total power, respectively.
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Figure 13: Cleveland dot plot of the time from admission to the moment of cardiac ultrasound (CUS).
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C Boxplots

Figure 14: Boxplot of median predictors per group of pulmonary hypertension (PH) and cardiac dysfunction (CD). HR = heart
rate; SpO2 = peripheral oxygen saturation; dSpO2 = difference between preductal and postductal SpO2; PP = pulse pressure;
DAP, MAP and SAP = diastolic, mean and systolic arterial pressure, respectively; OSI = oxygen saturation index.
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Figure 15: Boxplot of interquartile range (IQR) predictors per group of pulmonary hypertension (PH) and cardiac dysfunction
(CD). HR = heart rate; SpO2 = peripheral oxygen saturation; dSpO2 = difference between preductal and postductal SpO2; PP
= pulse pressure; DAP, MAP and SAP = diastolic, mean and systolic arterial pressure, respectively; OSI = oxygen saturation
index.
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Figure 16: Boxplot of heart rate variability predictors per group of pulmonary hypertension (PH) and cardiac dysfunction
(CD). SDNN = standard deviation of the normal-to-normal beat intervals; HRV-VLF, HRV-LF and HRV-HF = total spectral
power of heart rate variability in the very low, low and high frequency bands, respectively; HRV-LFn and HRV-HFn = HRV-LF
and HRV-HF normalised to the total power, respectively.
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D Quantile-quantile plots

Figure 17: QQ-plots per group of pulmonary hypertension (PH) of all predictors after variable selection. HR = heart rate;
SpO2 = peripheral oxygen saturation; dSpO2 = difference between preductal and postductal SpO2; PP = pulse pressure; MAP
= mean arterial pressure; OSI = oxygen saturation index; SDNN = standard deviation of the normal-to-normal beat intervals;
HRV-VLF and HRV-HF = total spectral power of heart rate variability in the very low and high frequency bands, respectively;
HRV-HFn = HRV-HF normalised to the total power.
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Figure 18: QQ-plots per group of cardiac dysfunction (CD) of all predictors after variable selection. HR = heart rate; SpO2
= peripheral oxygen saturation; dSpO2 = difference between preductal and postductal SpO2; PP = pulse pressure; MAP =
mean arterial pressure; OSI = oxygen saturation index; SDNN = standard deviation of the normal-to-normal beat intervals;
HRV-VLF and HRV-HF = total spectral power of heart rate variability in the very low and high frequency bands, respectively;
HRV-HFn = HRV-HF normalised to the total power.
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