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Preface
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very clear. Thank you for allowing me to visit you to discuss the key principles of Machine Learn-
ing and for your patience in explaining them. Sesmu, I would like to express my deep gratitude for
all the time and effort you have put into me and my thesis over the past nine months. You have
provided immense support in both parts and were always available for brainstorming or advice. I al-
ways felt energized after our meetings. I would also like to thank Tina and all the TM2 students who
contributed to the realization of Chapter 2. I always looked forward to our Wednesday afternoon
meetings and enjoyed taking on a sort of supervisory role.

Above all, I want to acknowledge the support I received from my friends and family. Thank you all for
your support during the writing of this thesis. In particular, I want to thank my roommates, without
whom my evenings and weekends would have been much less enjoyable. Appie, thank you for
always being there for me. The same goes for my boyfriend, Pim —thank you for your unconditional
support. Lastly, and most importantly, a huge thank you to my parents. Mom and dad, without you, I
would never have been able to complete my studies in this way. I will always be grateful for this.

That leaves me with nothing more to say than to wish you an enjoyable read of my MSc thesis!

Puck Noorlag
Rotterdam

August, 2024
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Summary
The intensive care unit (ICU) is a hospital department where critically ill patients requiring organ
support or intensive monitoring are admitted. Nowadays, the care provided in an intensive care
unit has advanced so that more patients are being discharged alive. Advances in ICU care have in-
creased patient survival rates, yet ICU admission is still associated with high morbidity and mortality
both during and after the stay.

Identifying patients at high risk of complications during ICU admission is crucial. Even though there
has been an increasing focus on predictive models, making accurate predictions with the data cur-
rently available remains challenging. A non-conventional parameter that appears to have promising
value is heart rate variability (HRV), which reflects the fluctuations in time intervals between con-
secutive heartbeats and can be derived from the electrocardiogram. We investigated whether heart
rate variability was able to predict ICU mortality and ICU length of stay. We employed a machine
learning approach, assessing three models for each outcome. We used nested cross validation to
estimate the performance and optimize and select the final models. Data from 468 adult patients
admitted to the ICU for 48 hours or longer were analyzed and nine HRV measures were calculated.
Two HRV measures, the power in the high frequency band and the standard deviation of 5-minute
average RR intervals, showed a significant difference between the ICU survivors (n=398) and ICU
non-survivors (n=71). While individual HRV measures had limited predictive power for ICU mortality,
combining HRV with clinical features improved performance. The best performing model was an
eXtreme Boosting Gradient classifier that used clinical features in combination with three HRV mea-
sures (power in the high frequency band, power in the low frequency band and the ratio between
the power in the low frequency and high frequency band) achieving an AUC of 0.76. The models
predicting ICU length of stay performed poorly, with the best model achieving a mean absolute error
of 5.07 days. These findings suggest that HRV, when combined with clinical features, has potential
in predicting ICU mortality, though further research is necessary before clinical implementation.

Monitoring ICU survivors after discharge is equally important, as half of these survivors suffer from
Post Intensive Care Syndrome, which negatively impacts their quality of life and increases their
healthcare needs. A team of researchers from the ICU conducted a pilot study establishing the
feasibility of monitoring fifteen ICU survivors using eHealth, but a larger clinical trial was needed to
assess feasibility on a larger scale. Therefore, we aimed to prepare for the ICU Recover Box 2.0
study. We evaluated the results and challenges of the first pilot. The study protocol was revised
to include more participants and the use of new smart technology, specifically the Corsano Car-
dioWatch, replacing the non-CE marked devices from the first pilot, which required 24/7 researcher
availability. Preparations included finalizing the application to the Medical Ethical Review Committee
and thinking out the study logistics, resulting in a comprehensive plan for the conduct of the study.
Key takeaways from this process include the recognition that research is an iterative process of
continuous learning, that the purpose of the study must be carefully considered with ethical con-
cerns in mind, and that the increasing importance of data requires careful planning for its security,
processing and storage. The METC application has been submitted. Once approved, the study can
proceed on a well-prepared basis.
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1
Improved Intensive Care Unit outcome

prediction based on Heart Rate Variability

Abstract

Background: The ICU is critical for patients who require intensive monitoring or organ support.
ICU admissions are associated with high mortality and morbidity, making it essential to identify pa-
tients at increased risk of complications. HRV, the fluctuation in time intervals between consecutive
heartbeats, shows promise as a prognostic marker.
Objective: The aim of this study was to determine whether heart rate variability is predictive of ICU
length of stay and ICU mortality using a machine learning approach.
Methods: We retrospectively analyzed data from all adult patients admitted to the ICU of the LUMC
for at least 48 hours between February 2023 and March 2024. We derived nine HRV measures
from electrocardiograms and extracted additional clinical features from electronic health records.
We then evaluated the performance of three classifiers for predicting ICU mortality and three regres-
sors for predicting ICU length of stay.
Results: We included 468 patients of which 71 died during ICU admission. The eXtreme Gradient
Boosting model, incorporating clinical features and three short-term HRV measures (i.e., the power
in the high frequency band, the power in the very low frequency band and the low frequency/high
frequency ratio) achieved the highest area under the curve of 0.76 for predicting ICU mortality. Pre-
dictive models for ICU length of stay were less effective, with the best model achieving a mean
absolute error of 5.07 days.
Conclusion: HRV, when combined with clinical features, provides valuable predictive information
for ICU mortality. Models using clinical features with or without HRV measures did not accurately
predict ICU length of stay. Further research is needed to fully explore the potential of HRV to predict
both ICU mortality and length of stay before considering its clinical implementation.
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Chapter 1.

1.1 Introduction

An intensive care unit (ICU) is a specialized hospital setting providing intensive and specialised
medical and nursing care to critically ill patients, including extensive monitoring and various forms
of organ support to sustain life during acute organ system insufficiency (1). An ICU admission is
not only essential for critically ill patients but is also often required postoperatively for patients who
have undergone major surgery such as cardiothoracic surgery. According to the European Society
of Intensive Care Medicine, per year, about five million adults are admitted to ICUs worldwide (2).
Even though an increasing number of critically ill patients survive the ICU and are discharged to
their homes due to advances in technology and practice, the ICU remains associated with both high
mortality and morbidity (3–5). A recent study into the survival of ICU patients showed an overall ICU
mortality of 16% and an in-hospital mortality of 24% (6).

It is crucial to identify patients who face an elevated risk of complications during ICU admission. In
recent years, there has been an increasing focus on predictive models due to advances in technol-
ogy and machine learning (7). Nevertheless, making accurate predictions with the data available
remains challenging, even, today, for conventional vital signs.

However, a non-conventional parameter that appears to have promising prognostic value but re-
quires further research is heart rate variability (HRV) (8). HRV is the fluctuation in the time intervals
between consecutive heartbeats and a measure of autonomic nervous system (ANS) activity on the
heart (9). In healthy individuals, there is a dynamic balance between the two arms of the ANS, the
parasympathetic nervous system (PNS) and the sympathetic nervous system (SNS). This balance
can be disturbed in critical illnesses and is often seen in critically ill patients in the ICU (10). Evalu-
ating this aspect of autonomic function in critically ill patients can offer insight into pathophysiology,
disease severity, response to treatment and prognosis.

1.2 Background

1.2.1 Heart rate variability

Heart rate variability is a term to describe the fluctuation in the time intervals between consecutive
heartbeats (9). We can derive these intervals, known as RR intervals, from an electrocardiogram
(ECG) (Figure 1.1).

The ANS, a component of the peripheral nervous system that regulates involuntary physiological
processes, constantly alters and regulates heart rate and rhythm (11). The PNS and SNS control
heart rate through different mechanisms (12). The PNS slows heart rate by releasing acetylcholine,
while the SNS increases heart rate and contractility by releasing catecholamines. These effects
occur at different speeds, with the PNS acting almost immediately and the SNS having delayed
onset but longer-lasting effects. The PNS regulates heart rate on a beat-by-beat basis, while the
SNS affects heart rate for several seconds after stimulation ends (5-10 seconds).

HRV can be captured by a variety of measures that are calculated in either the time or frequency
domain. Time domain measurements of HRV involve statistical calculations, such as the standard
deviation and the root mean square of successive differences of RR intervals, which quantify the
variability in the time intervals between consecutive heartbeats (9).
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Figure 1.1: The RR intervals of the electrocardiogram signal.

Frequency domain analysis, which uses Power Spectral Density (PSD), employs a Fast Fourier
Transform (FFT) to convert fluctuations in RR intervals into specific frequency ranges (12). This
helps to understand the physiological mechanisms behind HRV. Spectral analysis shows how
power is distributed across different frequencies of rhythms in RR-fluctuations (13). It measures
how strong (amplitude) and how often (frequency) these rhythms occur. The results are expressed
as power spectral density, which is the area under the peak in a frequency range. A visual repre-
sentation of the steps from RR intervals to frequency domain parameters is shown in Figure A.1
of Appendix A.1. The Task Force of the European Society of Cardiology and the North American
Society of Pacing and Electrophysiology divided RR interval oscillations into ultra-low frequency
(ULF), very low frequency (VLF), low frequency (LF) and high frequency (HF) bands (14).

HRV can be recorded over different periods of time, typically categorized as short-term measure-
ments of 5 minutes or long-term measurements of 24 hours. Each combination of HRV measure
and recording duration provides a reflection of the ANS. The autonomic, cardiovascular, central
nervous, endocrine, and respiratory systems, alongside baroreceptors and chemoreceptors, impact
HRV over a short time period, contributing to the very low to high frequencies of the spectrum (6).
Factors such as circadian rhythms, core body temperature, metabolism, sleep cycles, and the renin-
angiotensin system are believed to contribute to HRV recordings of 24 hours. Therefore, short-term
values cannot be substituted for 24-hour values, even though the mathematical formula may be the
same.

Unlike conventional vital signs, which also provide insight into a patient’s health status, HRV serves
as a comprehensible and non-invasive measure of autonomic dysregulation. HRV has been shown
to have potential as a useful predictor of several (critical) illnesses, such as neurological disorders,
cardiovascular disorders, infection, sepsis, septic shock, multiple organ dysfunction and severe
trauma (10). It has also proven to be a non-specific predictor of mortality (16). There is no con-
sensus in the literature as to whether increased or decreased HRV leads to poorer outcomes, with
studies suggesting that both higher and lower HRV can be associated with poor outcomes (6).
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1.2.2 Machine Learning

Machine learning is a form of artificial intelligence (AI) that uses mathematical and computational
systems to extract information from data, typically for the purpose of prediction (15). One subtype
of machine learning is supervised machine learning, an approach that generalizes information from
a training set’s features to create a model that can correctly predict outcomes. Subsequently, this
learned model is applied to make predictions using the unseen features from a testing data set (16).
Advantages of (supervised) machine learning compared to conventional statistical models are its
ability to incorporate a larger number of variables, allowing it to make more powerful predictions,
and its ability to identify trends or patterns in large datasets that might be missed by researchers
(17). Nowadays, machine learning is widely adapted in intensive care medicine. For instance, stud-
ies have demonstrated its effectiveness in predicting clinical outcomes such as the risk for ICU
transfer, cardiac arrest, or mortality in ICU patients (18).

1.3 Methods

1.3.1 Objective

The objective was to determine if heart rate variability is predictive of clinical outcomes in ICU pa-
tients, i.e., ICU length of stay (LOS) and ICU mortality. To achieve this objective, we extracted the
HRV measures from ECG data while also incorporating additional patient data to develop other clini-
cal features. We then applied machine learning techniques to assess the predictive value, as shown
in Figure 1.2.

Figure 1.2: A schematic overview of the Method. A. shows the preprocessing of the raw data and the
creation of the labeled dataset and B. shows the machine learning approach.
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1.3.2 Study design

This was a single-centre, retrospective, prognostic study.

1.3.3 Subjects

All patients admitted to the ICU of the Leiden University Medical Center (LUMC) between March
1st, 2023 and February 29th, 2024 were retrospectively reviewed. We included adult patients (18
years or older) admitted for 48 hours or longer. This study was not subject to the Medical Research
Involving Human Subjects Act (WMO). We received approval from the local ethics review committee
and the requirement to obtain informed consent was waived.

1.3.4 Data availability

We used two different types of data: high-frequency data obtained from the patient’s bedside mon-
itor and data extracted from the electronic health record. The bedside monitor displays various
clinical values, consisting of waveform and numerical data, and stores them in a database referred
to as Data Warehouse (DWH). We sampled waveform data, like ECG data, at 500 Hz. Numeric
data, such as heart rate and blood pressure, were sampled at 1 Hz. All DWH data were available
for the entire ICU admission; however, we used only the data from the first 24 hours of admission.
There may have been brief interruptions in the data due to the patient undergoing (re)procedures
or diagnostic tests at another location within the hospital. There was no fixed sampling frequency
for data from the electronic health record. This data included one-time recordings upon admis-
sion or discharge, such as gender or admission diagnosis, or at fixed intervals during each shift,
such as clinical (risk) scores. Data such as medication administration and lab values were always
documented at the time of the event, but the specific details and frequency of these events varied
depending on the individual patient.

The DWH data and the electronic health record data were linked by patient number. Each partic-
ipant’s study ID was linked to the patient numbers. In the final datasets, this patient number was
removed. It was stored in a key file on a secure server that was only accessible to the researchers.
Although it no longer contained any traceable patient information, the rest of the dataset was also
stored on a secure LUMC server.

1.3.5 Electrocardiogram processing

From the DWH data, lead II of the ECG was available for each patient and was used to calculate
the HRV measures. The DWH database stored the ECG data in hexadecimal format. Using Struc-
tured Query Language (SQL), the raw data were imported into Python for further processing. A
schematic overview of all the steps involved in ECG processing is shown in Figure 1.3. A visual
step-by-step overview showing how the ECG signal was affected at each step is provided in Figure
A.2 in Appendix A.2.

We started by converting the hexadecimal data into decimal values. The function clean_ecg from
Python package neurokit2 was used to apply the Pan-Tompkins method to the raw ECG data (19).
The Pan-Tompkins method involves applying a band-pass filter to the signal, followed by differentia-
tion, squaring, and moving window integration (20).
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Figure 1.3: A schematic overview of all steps involved in the processing of the ECG and the RR
intervals.

R-peaks were then detected using the function signals_ecg from Python package biosppy (21). To
ensure accurate HRV calculation of only the normal RR intervals, falsely detected R-peaks caused
by movement artifacts or R-peaks from ectopic beats needed to be removed. Ectopic beats are
heartbeats that do not originate from the sinus node are often premature, and therefore do not di-
rectly reflect the activity of the autonomic nervous system (22). First, the function clean_peaks was
applied to the initially detected R-peaks. This function was based on a method used by Van Wijk et
al. in a study where they calculated HRV measures using ECG recordings (23). This function calcu-
lated the mean amplitude of the R-peaks over a five-minute period, then set a minimum threshold of
one-third of the mean and a maximum threshold of the mean times 1.6 for each peak.

Then, we calculated the RR intervals based on the remaining R-peaks. The clean_peaks func-
tion removed R-peaks outside the limits set by the thresholds, resulting in RR intervals that were
too large. Because of this and the presence of ectopic beats, there were both excessively large
and small RR intervals. These outlier intervals were removed using the ADARRI method (24). The
ADARRI method uses the absolute difference between consecutive RR intervals, deeming an adja-
cent RR interval non-physiological if it exceeds the optimal threshold of 276 ms.

Hereafter, we implemented a quality control step to identify and remove five-minute segments heav-
ily affected by artifacts or ectopic beats. This was achieved by calculating the percentage of initially
detected R-peaks that were subsequently removed during clean_peaks and ADARRI steps. Five-
minute segments exceeding a 35% removal threshold were excluded from HRV calculations. We
established this threshold through manual trial and error based on visual inspection, balancing the
removal of excessive data with minimizing the inclusion of noisy data.

The final step involved removing all RR intervals outside the range of 333 to 1500 milliseconds,
corresponding to a minimum heart rate of approximately 40 beats per minute and a maximum heart
rate of approximately 180 beats per minute. These boundaries were selected in close consultation
with an intensivist. For each patient, a visual inspection was performed to determine whether the
full ECG processing algorithm was performing correctly, and patients with ECGs that contained too
much noise or morphology incompatible with the ECG processing steps were excluded.

1.3.6 Heart rate variability calculation

After processing the ECG, we calculated HRV measures from the remaining RR intervals using
the Python package pyhrv (25). The Task Force created guidelines for standards of measurement
for HRV (14). It is recommended to use 5-minute/short-term recordings for four frequency domain
measures: the power in the VLF, LF and HF band and the LF/HF ratio. For 24-hour or long-term
measurement, it is recommended to use four time domain measures and one frequency domain
measure: the root mean square of successive differences of the normal RR intervals (RMSSD), the
standard deviation of the normal RR intervals (SDNN), the standard deviation of the average normal
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RR intervals (SDANN), the triangular index and the power in the ULF band. More recently, it was
discovered that RMSSD could be accurately calculated over a 5-minute period (9). This recording
duration is now the gold standard for RMSSD measurement, which is why we included RMSSD in
the short-term measures. In addition to the Task Force recommendations, we conducted a brief but
comprehensive review of studies that also investigated the predictive value of HRV in a critically ill
population (23, 26–36). A brief overview of these studies is provided in Table A.1 of Appendix A.3.
In addition to the measures recommended by the Task Force, a few additional HRV measures were
used in these studies. However, the most frequently used HRV measures were the nine that were
recommended by the Task Force, so we opted to use these as the primary metrics for our study
(Table 1.1).

Table 1.1: The included HRV measures and their reflection of the ANS. (14, 37). HR: heart rate, HRV:
Heart Rate Variability, Hz: hertz, ms: milliseconds, PNS: parasympathetic nervous system, SNS: sympathetic
nervous system.

Measure Domain Meaning Reflection of the autonomic nervous sytem
Short term

RMSSD (ms) Time
The root mean square of successive
differences between normal RR intervals Reflects parasympathetic activity

VLF (ms²) Frequency
Power in the very low frequency range
0.003 - 0.04 Hz

Reflects regulation mechanisms,
thermoregulation and hormonal mechanisms.

LF (ms²) Frequency
Power in low frequency range
0.04 - 0.15 Hz

Reflects a mix of sympathetic, parasympathetic
activity and baroreflex activity.

HF (ms²) Frequency
Power in high frequency range
0.15 - 0.4 Hz

Reflects parasympathetic activity and is linked
to heart rate changes associated with the
respiratory cycle.

LF/HF Frequency Ratio LF/HF Reflects a mix of sympathetic and vagal activity.
Long term

SDNN (ms) Time
Standard deviation of all normal RR
intervals

Reflects all the cyclic components responsible
for variability, both sympathetic and
parasympathetic activity.

SDANN (ms) Time
Standard deviation of 5-minute average
normal RR intervals

Is similar to SDNN, but minimizes the effects
of editing, artefacts and missed or ectopic beats.

HRV
triangular
index

Time

Total number of all normal RR intervals
divided by the height of the histogram of
RR intervals measured on a discrete scale
with bins of 7.8125 ms (1/128 seconds)

Reflects overall HRV measured and is more
influenced by the lower than by the higher
frequencies. Permits for only casual
preprocessing of the ECG signal.

ULF (ms²) Frequency
Power in the ultra-low frequency range
≤0.003 Hz

Reflects circadian oscillations, core body
temperature, metabolism and the
renin-angiotensin system.

The five-minute segment with the lowest percentage of removed R-peaks in the first hour of admis-
sion was used to calculate the short-term HRV measures to ensure the most reliable R-peaks were
used. As for the long-term measures, the values were calculated over the first 8 hours of admission.
Due to computational issues, the long-term measures could not be calculated over a 24-hour pe-
riod.

1.3.7 Clinical features

In addition to the HRV measures that served as the predictor of interest, we included a total of 43
demographic and clinical features to improve the accuracy and robustness of the model. The ad-
ditional features, which are known to be related to ICU mortality and ICU LOS, allowed the identifi-
cation of complex interactions between HRV and other patient and ICU-related characteristics. To
ensure clinical relevance, these features were carefully selected in consultation with an intensivist.
The specifics of the features, including their types and the times at which they were measured, are
shown in Table A.2 of Appendix A.4.
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1.3.8 Clinical feature engineering

Three features had to be adjusted before they could be used in the model. Gender was converted
from male/female to a binary variable where male = 1 and female = 0. The admission type feature
consisted of three categories: medical admission, emergency surgery and planned surgery. One
hot encoding was used to adjust this feature (38). The acute physiology and chronic health evalu-
ation (APACHE) IV admission diagnosis category consisted of 145 different categories denoted by
integers. A drawback of using a single feature with 145 unique integer values is that the machine
learning algorithm may misinterpret these integers as having an ordinal relationship (39). Besides,
if we were to apply one hot encoding to this feature, 144 new columns would have to be added,
resulting in a huge increase in the size of the dataset, which would slow down the learning of the
model and degrade the overall performance (40). Instead of having 145 integers representing the
diagnosis categories, we replaced these with the mortality coefficients of the diagnoses, which were
available from the Nationale Intensive Care Evaluatie (NICE) foundation dictionary.

An exploratory data analysis was performed to identify outliers and missing data. Missing numerical
data were imputed using the median, while missing categorical data were replaced with the most
frequent value. Outliers were manually reviewed, assessed and acted upon as appropriate. The
treatment of outliers is described in more detail in Appendix A.5.

1.3.9 Intensive care unit outcomes

The clinical outcomes ICU LOS and ICU mortality were available from the electronic health record.
ICU LOS was expressed in days of 24 hours and ICU mortality was defined as 1 = non-ICU survivor
and 0 = ICU-survivor.

1.3.10 Model optimization and selection

The ICU length of stay is a continuous outcome, whereas ICU mortality is a categorical outcome.
We used regression models to predict ICU length of stay, whereas the models predicting ICU mortal-
ity used a classification approach. We evaluated a Lasso regression model, a support vector regres-
sion (SVR) model, and an Extreme Gradient Boosting (XGBoost) model for the ICU LOS prediction
model. We evaluated a logistic regression model, a support vector machine (SVM) model, and an
XGBoost model for the ICU mortality prediction model. We defined a set of possible hyperparame-
ter settings for each model, which are shown in Table A.3 in Appendix A.6. We created a pipeline
for each model to ensure a standardized and reproducible workflow. This approach included scaling
non-binary features using the StandardScaler function from the Python scikit-learn package (42).
Standardization is a common requirement for many machine learning models to perform optimally,
especially when features deviate from a normal distribution.

To optimise and select the final model, we used nested cross-validation (Figure 1.4). We started
by performing an outer cross-validation across the entire dataset using 10 folds with stratified splits.
Within each fold of the outer cross-validation, an inner cross-validation with 5 folds was conducted,
using stratified splits as well. This inner cross-validation served the purpose of hyperparameter
optimization and model selection. From the five folds of the inner cross-validation, the model with
the highest performance was selected as the best model of the corresponding outer cross-validation
fold. Subsequently, this selected model was evaluated on the test set of this fold.
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Figure 1.4: A schematic overview of the model optimization and selection using nested cross
validation. A. shows an overview of getting an estimate of the model’s performance and B. shows the model

selection process.

For the regression problem, we used the Mean Absolute Error (MAE) as a performance metric and
for the classification problem, we used the Area Under the Curve (AUC). The 10-fold outer cross-
validation yielded a maximum of 10 different models, one for each fold, each associated with its
respective MAE/AUC score. The average performance score across these 10 models was com-
puted and served as an estimate of the model performance. This was the most reliable estimate
because it reflected how the model performed on unseen data through multiple folds.

Following this evaluation, we configured the final model by applying the inner cross-validation to the
entire dataset to select the best model based on performance across the entire dataset.

1.3.11 Model evaluation

The mean MAE and AUC from the outer 10-fold cross-validation served as the primary metrics for
evaluating model performance. In addition to these metrics, we translated the model’s performance
into other metrics. These additional metrics were also calculated during the 10-fold cross-validation
by averaging the results from all folds. For the ICU LOS prediction, the other measures included the
root mean squared error (RMSE) and the R squared (R²) metric. For the ICU mortality prediction,
the additional measures were sensitivity, precision and the F1-score. In the results section, men-
tions of feature set performance (of all evaluation metrics) refer to the average of the 10 outer folds
unless otherwise stated.

In addition to identifying which HRV measure(s) would be the most predictive, we also wanted to
determine the extent to which the HRV measure contributed to that outcome, especially when com-
bined with other clinical features. Therefore, we determined feature importance scores and SHapley
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Additive exPlanations (SHAP) values for the model with the highest performance.

1.3.12 Analysis plan

We aimed to evaluate the predictive value of the individual HRV measures, the individual HRV mea-
sures combined with clinical features, and combinations of HRV measures with clinical features.

We started with the incorporation of one of the selected HRV measures, allowing us to evaluate the
performance of each measure individually, without the context of the other selected clinical features.
We then examined the performance of the clinical features alone to establish baseline performance
without any HRV measures. Next, we evaluated the effect of all clinical features combined with
each individual HRV measure. We then wanted to explore the performance of all HRV measures in
pairs of two and combinations of multiple HRV measures, i.e. all short-term measures combined, all
long-term measures combined and all HRV measures combined. However, correlations between
various HRV measures have previously been described in the literature (6, 41–43). Multicollinearity
can lead to poor generalization and overfitting of the data, negatively affecting model performance
on unseen data (44). Therefore, before evaluating the predictive models using combinations of
HRV measures, we created a correlation matrix to gain insight into the interactions between HRV
measures, allowing us to make informed decisions to mitigate multicollinearity, such as removing or
combining highly correlated measures.

We decided to evaluate all pairwise combinations of HRV measures to provide a complete overview,
regardless of the correlations. For combinations including multiple HRV measures (> 2), we as-
sessed correlations using the rule of thumb for interpreting the size of a correlation coefficient (45).
We refrained from combining HRV measures with high and very high correlations (> 0.70) and also
aimed to minimize the use of HRV combinations with moderate correlations (0.50 - 0.70).

1.3.13 Statistics

Descriptive data were reported as mean ± SD for normally distributed continuous variables or me-
dian with interquartile range [IQR] for non-normally distributed variables, unless stated otherwise.
Categorical variables, such as gender, comorbidities, and admission type, were expressed as per-
centages. Normality was tested using the Kolmogorov-Smirnov test. Group differences in dichoto-
mous variables were tested using Fisher’s exact test, while group differences in continuous data
were tested using the Mann-Whitney U test. P-values were considered significant at p < 0.05.

1.4 Results

1.4.1 Population

Between March 1st, 2023 and February 29th, 2024, 517 patients with 581 admissions were admit-
ted to the ICU of the LUMC with a length of stay of at least 48 hours. Among these patients, 468
admissions from 453 patients were included in our study. Eighty-three admissions were excluded
due to discrepancies between the DWH database and the electronic patient record. Twenty-nine
admissions were excluded based on visual inspection of the ECG. Either the signals contained too
much noise, resulting in no usable data, or the ECG processing algorithm failed to process that spe-
cific ECG. Each admission was treated as a separate patient due to potential differences in baseline
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and disease progression over time. Therefore, we referred to 468 patients and based all calcula-
tions on this number.

The median [IQR] age was 62 [52 - 71] and 65% were male. The median [IQR] APACHE IV score
was 66 [51 - 84]. 59% had a medical admission, 23% were admitted after planned surgery and
18% were admitted after emergency surgery. Within the first 24 hours of admission, 68% of patients
required mechanical ventilation. The median [IQR] LOS was 5 [3 - 10] days. Seventy-one patients
died during ICU admission. Complete demographic and clinical information is listed in Table 1.2 and
characteristics of the ICU admission are listed in Table 1.3.

Table 1.2: Demographic and clinical characteristics of the included patients. The p-value indicates the
statistical significance of the differences between the groups, as determined by Fisher’s exact test (for di-
chotomous data) or the Mann-Whitney U test (for continuous data). A p-value less than 0.05 was considered
significant.

Characteristic
All
n = 468

ICU survivors
n = 398

ICU non-survivors
n =71 p-value

Age (years) 62 [52-71] 62 [52-71] 65 [56-71] 0.303
Gender (% male) 64.7% 64.2% 67.7% 0.686
BMI (kg/m²) 26.0 [23.0 - 29.0] 26.0 [23.1 - 28.8] 26.1 [22.9 - 31.1] 0.316
APACHE IV 66.0 [51.0 - 83.8] 63.0 [49.0 - 80.0] 84.0 [68.0 - 98.0] <0.001
Highest SOFA during first 24 hours of admission 8 [6 - 10] 8 [6 - 9] 9 [8 - 13] <0.001
Medical admission (%) 59.2% 56.2% 76% 0.002
Planned surgery (%) 23.3% 24.9% 14.1% 0.048
Emergency surgery 17.5% 18.9% 9.9% 0.088
Admission diagnosis
Cardiovascular 49.6% 49.1% 52.1% 0.700
Gastrointestinal 11.8% 11.6% 12.7% 0.841
Genitourinary 1.7% 2.0% 0% 0.614
Hematology 0.4% 0.5% 0% 1.000
Metabolic/Endocrine 0.6% 0.8% 0% 1.000
Musculoskeletal/skin 0.9% 0.8% 1.4% 0.483
Neurologic 8.1% 8.6% 5.6% 0.488
Respiratory 17.5% 17.6% 16.9% 1.000
Transplant 3.2% 3.3% 2.8% 1.000
Trauma 6.2% 5.8% 8.5% 0.420
% of patients with comorbidities at admission
Acquired immune deficiency syndrome 0.0% 0.0% 0.0% -
Cardiopulmonary resuscitation 9.9% 9.1% 14.3% 0.192
Chronic dialysis 0.9% 1% 0% 1.000
Chronic cardiovascular insufficiency 1.1% 1% 1.4% 0.563
Chronic obstructive pulmonary disease 3.2% 3.1% 4.2% 0.486
Chronic renal insufficiency 7.1% 6.6% 10% 0.312
Chronic respiratory insufficiency 2.6% 2.0% 5.6% 0.093
Cirrhosis 3.4% 3.3% 4.2% 0.721
Diabetes 10.1% 9.6% 12.7% 0.397
Hematologic malignancy 3.4% 2.5% 8.5% 0.023
Immunological insufficiency 4.3% 4.0% 5.6% 0.525
Metastatic neoplasm 0.9% 1% 0% 1.000
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Table 1.3: Intensive care unit treatment characteristics. The p-value indicates the statistical significance
of the differences between the groups, as determined by Fisher’s exact test (for dichotomous data) or the
Mann-Whitney U test (for continuous data). A p-value less than 0.05 was considered significant.

Characteristic
All
n = 468

ICU survivors
n = 398

ICU non-survivors
n = 71 p-value

Vital parameters of the first 24 hours of admission (mean ± SD)
Diastolic blood pressure 58.9 ± 8.6 58.9 ± 8.8 58.4 ± 8.6 0.836
Heart frequency 87.2 ± 19.5 86.0 ± 18.8 93.4 ± 22.4 0.014
Mean arterial blood pressure 76.8 ± 8.9 76.9 ± 9.0 76.2 ± 7.9 0.514
Oxygen saturation 96.4 ± 1.9 96.5 ± 1.8 95.8 ± 1.9 0.020
Respiratory rate 17.93 ± 4.17 17.74 ± 4.14 19.02 ± 4.19 0.010
Systolic blood pressure 114.97 ± 16.47 115.31 ± 16.41 113.12 ± 16.83 0.131
% of patients with comorbidities after first 24 hours of admission
Acute renal failure 13.5% 10.1% 32.4% <0.001
Mechanical ventilation 68.1% 67.2% 73.2% 0.336
% of patients who received medication within the first 24 hours of admission
Adrenalin 3% 2.3% 7.6% 0.046
Amiodaron 7.7% 6.8% 12.7% 0.093
Clonidine 9.8% 10.6% 5.6% 0.278
Dexmedetomidine 0.6% 0.8% 0% 1.000
Dobutamine 12.2% 10.8% 19.7% 0.047
Bumetanide 1.1% 1.0% 1.4% 0.562
Furosemide 17.5% 18.4% 12.7% 0.309
Labetalol 5.3% 6.3% 0% 0.021
Metoprolol 3.6% 4% 1.4% 0.490
Sotalol 1.9% 2.0% 1.4% 1.000
Midazolam 10.3% 8.3% 21.1% 0.002
Nitroglycerine 2.1% 2.0% 2.8% 0.653
Nitroprusside 5.1% 6.1% 0% 0.036
Noradrenaline 73.1% 70.1% 90.1% <0.001
Propofol 58.3% 56.7% 67.7% 0.091
Sufentanil 48.9% 46.4% 63.4% 0.010
Lab values
Highest C-reactive protein
during first 24 hours of admission 60.6 [19.6 – 150.2] 57.7 [17.2 – 140.2] 98.2 [32.6 – 243.5] 0.015

Length of stay
Length of stay (days) 4.9 [3.0 - 9.6] 4.8 [3.0 – 8.9] 7.4 [4.0 – 17.1] <0.001

1.4.2 Heart rate variability measures

We calculated five short-term HRV measures and four long-term HRV measures (Table 1.1). The
mean and standard deviation of each measure are shown in Table 1.4 for the entire population and
for ICU survivors and ICU non-survivors separately. Two HRV measures, the power in the HF band
and the SDANN, showed a significant difference between the two groups, where the power in the
HF band was higher and the SDANN was lower in non-survivors.

To gain insight into the interactions between the HRV measures, we explored their correlation (Fig-
ure 1.5). We observed high correlations (>0.80) between 1) the RMSSD and the power in the HF
band, 2) the power in the LF band and the power in the HF band and 3) the SDNN and SDANN. As
the power in the LF band and the RMSSD were also somewhat correlated (0.68), we decided to
discard these two and include the power in the HF band when combining multiple HRV measures,
especially as the power in the HF band demonstrated a significant difference between ICU survivors
and non-survivors. In addition, the SDNN showed some correlation with the triangular index (0.57)
while the SDANN did not. Given that we wanted to minimize correlations, we decided to discard the
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SDNN and include the SDANN when combining multiple HRV measures, also because the SDANN
showed a significant difference between ICU survivors and non-survivors as well.

Table 1.4: Values of the nine included heart rate variability measures. Data are presented as mean ±
SD. The p-value indicates the statistical significance of the differences between the groups, tested using the
Mann-Whitney U test. A p-value <0.05 was considered significant.

HRV measure All ICU survivors ICU non-survivors p-value
Short-term
RMSSD (ms) 68.0 ± 27.0 66.8 ± 26.2 74.7 ± 30.8 0.071
VLF (ms²) 307.3 ± 864.5 296.9 ± 851.6 365.2 ± 937.7 0.257
LF (ms²) 385.5 ± 821.0 357.0 ± 764.1 544.9 ± 1078.6 0.230
HF (ms²) 1202.0 ± 1341.8 1155.0 ± 1354.9 1465.1 ± 1242.4 0.013
HF/LF ratio 0.23 ± 0.23 0.22 ± 0.22 0.24 ± 0.24 0.702
Long-term
SDNN (ms) 85.9 ± 34.9 86.6 ± 35.3 82.1 ± 32.5 0.290
SDANN (ms) 57.4 ± 38.0 58.7 ± 38.4 50.3 ± 35.1 0.028
Triangular index 12.9 ± 7.7 13.1 ± 7.7 11.8 ± 7.6 0.109
ULF (ms²) 15.6 ± 45.8 16.3 ± 49.3 11.9 ± 15.8 0.221

Figure 1.5: Heatpmap showing the Pearson correlation between the nine HRV measures. The color
scale indicates the strength of the correlations, with high correlations in red and low correlations in red.

1.4.3 Predictive models for intensive care unit mortality

First, we tested predictive models for ICU mortality for individual HRV measures without includ-
ing any other relevant clinical features. We explored three different models: a Logistic Regression
model, a SVM model and an XGBoost classifier. We used nested-cross validation for model selec-
tion and performance estimation (Figure 1.4). As described in the Methods Section, all mentions
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of feature set performance refer to the average of the 10 outer folds of the nested cross-validation,
unless otherwise stated.

All AUCs were low, ranging from 0.46 to 0.57 for the best model choice (Figure 1.6). The highest
AUC was achieved by an SVM classifier using the RMSSD measure. Sensitivity, precision and
F1 score were all very low, ranging from 0.00 – 0.15, 0.00 – 0.30 and 0.00 – 0.17, respectively.
Additional results, such as the selected model, optimal hyperparameter settings, and evaluation
metrics for each HRV measure, can be found in Table A.4 of Appendix A.7.

Figure 1.6: Performance of the individual HRV measures on the prediction of ICU mortality expressed
as AUC.

The inclusion of clinical features improved performance. The performance of the clinical features
combined with individual HRV measures yielded AUCs ranging between 0.70 and 0.73, with the
power in the HF band achieving the best performance (Figure 1.7). This, however, was a marginal
improvement over when only clinical features were used, which resulted in an AUC of 0.72. The
additional results of these combinations are presented in Appendix A.7 (Table A.5).

Next, we explored whether combinations of HRV measures could improve performance, as the
correlation analysis showed that they capture different aspects of the HRV. We tested all pairwise
combinations of HRV measures together with the clinical features to see how this would affect the
performance. AUCs ranged between 0.68 and 0.74 (Figure 1.7). The best performing model com-
bined the clinical features with the power in the HF band measured over five minutes within the first
hour of admission and the SDANN measured over the first eight hours of admission. Again, in terms
of AUC, the performance gain is only 0.02 compared to using only clinical features without HRV.
Finally, we tested three additional combinations: all short-term HRV measures, all long-term HRV
measures and all HRV measures combined with the clinical features. For these combinations, we
did not include the highly correlated HRV measures as discussed in Section 2.3.2. The results are
shown in Figure 1.8. The combination of the short-term HRV measures performed best, achieving
an AUC of 0.76. The HRV measures included in this short-term set were the power in the VLF band,
the power in the HF band and the LF/HF ratio. We constructed the ROC curves for this combination
to show the performance across the ten folds (Figure 1.9). The results of the other combinations
are shown in Table A.5 in Appendix A.7. The model that was selected for this feature set was an
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Figure 1.7: The performance of (pairwise combinations of) HRV measures combined with clinical
features expressed as AUC. The diagonal shows the performance of each individual feature. The right side
shows the best estimated performance of the pairwise combinations, while the left side shows the standard

deviation of each combination, as the performance is determined by averaging over ten folds.

XGBoost model. Feature importance scores and SHAP values were calculated for this model (Fig-
ures 1.10 and 1.11). Both the feature importance scores and the SHAP values indicated that the
APACHE IV score contributed the most to the prediction. Regarding the HRV measures, the power
in the VLF band and the power in the HF band contributed the most, with the SHAP values indicat-
ing that they had the second and third highest impact on model performance right after the APACHE
IV score.

Figure 1.8: The performance of combinations of HRV measures (>2) including clinical features.

The other evaluation metrics—sensitivity, precision, and F1 score—showed poor outcomes for the
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feature sets that combined individual HRV measures or various combinations of HRV measures
with clinical features, although they did increase compared to the outcomes using only individual
HRV measures. Sensitivity ranged from 0.43 to 0.45, precision ranged from 0.13 to 0.45, and the F1
score ranged from 0.33 to 0.40 (Table A.5 in Appendix A.7).

Figure 1.9: ROC curves showing the AUC for each of the 10 folds and their mean for an XGBoost
model combining all clinical features with the short-term HRV measures.

Figure 1.10: Feature importance plot of the XGBoost model combining all clinical features with the
short-term HRV measures.
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Figure 1.11: SHAP values of the XGBoost model combining all clinical features with the short-term
HRV measures.

1.4.4 Predictive models for intensive care unit length of stay

For the prediction of ICU length of stay, we explored three different regression models: a Lasso re-
gression model, a SVR model and an XGBoost regressor. We used the same approach for model
selection and performance estimation as we did for predicting ICU mortality, i.e., nested cross-
validation (Figure 1.4).

We decided to perform the LOS prediction solely on ICU survivors because including patients with a
relatively short LOS who died might incorrectly bias the model towards considering them as ’health-
ier’. To reduce this bias, we excluded the 71 ICU non-survivors from this analysis. For non-survivors,
we created two plots to illustrate the timing of deaths in the ICU, showing that a large portion of
deaths occur within the first ten days. These plots are shown in Figures A.3 and A.4 in Appendix
A.8.

Predicting ICU LOS using only single HRV measures yielded poor results, with MAEs varying from
5.15 to 5.20. A SVR using the power in the ULF band achieved the lowest MAE, making it the best-
performing model. Additional results, including the best regressor for each feature set and the out-
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comes of other evaluation metrics, are presented in Table A.6 in Appendix A.9.

When clinical features were added, the performance in predicting ICU LOS using individual HRV
measures improved only very slightly, yielding MAEs ranging from 5.08 to 5.10 (Figure 1.12). We
found that a support vector regressor was the best model for each combination of an individual HRV
measure with clinical features. Using clinical features alone, the best predictive model yielded an
MAE of 5.09, indicating that HRV features did not substantially improve performance.

Next, we examined whether pairwise combinations of HRV could improve the performance of the
prediction models. The MAEs ranged between 5.07 and 5.10, so no real performance improvement
was found (Figure 1.12).

Finally, we explored the use of the combination of clinical features with all short-term HRV mea-
sures, all long-term HRV measures and all HRV measures, yielding MAEs of 5.07, 5.10 and 5.08,
respectively. All the outcomes regarding the prediction of ICU LOS, including the best regressor for
each feature set and the outcomes of other evaluation metrics, are listed in Table A.7 in Appendix
A.9.

Figure 1.12: The performance of (pairwise combinations of) HRV measures combined with clinical
features expressed as MAE. The diagonal shows the performance of each individual feature. The right side
shows the best estimated performance of the pairwise combinations, while the left side shows the standard

deviation of each combination, as the performance is determined by averaging over ten folds.

As we observed only small differences between using HRV measures alone and adding clinical fea-
tures, and the baseline using clinical features alone improved only marginally when HRV measures
were added, we decided to establish another baseline. This would allow us to assess whether the
HRV measures and/or clinical features had any meaningful effect on model performance. To do this,
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we used a common baseline in regression problems, often referred to as a dummy regressor: the
mean of the target variable, which in our case was LOS (46). This baseline resulted in an MAE of
6.21, demonstrating that our model outperformed the dummy regressor.

The RMSE and R² values also showed poor performance. Without clinical features, using only HRV
measures, RMSE ranged from 9.84 to 15.32 and R² ranged from -0.16 to -0.04. When clinical fea-
tures were included, RMSE ranged from 9.53 to 9.95 and R² ranged from -0.04 to 0.03 (Table A.6
and Table A.7 in Appendix A.9).

As there was no clear set of features that achieved the best performance, we decided to determine
the feature importance and SHAP values for the best performing model using all clinical features
and all uncorrelated HRV measures. This was a support vector regressor. As a support vector
regressor does not support native feature importance scores, we used permutation feature impor-
tance. This is a technique that can be applied to any model to calculate the relative importance of
features, and is particularly useful for models that do not provide native feature importance scores
(47). The feature importance score plot and the SHAP value plot are shown in Figures A.5 and A.6
of Appendix A.10.

1.5 Discussion

We studied whether heart rate variability was predictive of (short-term) clinical outcomes in ICU
patients. We employed a machine learning approach to assess the predictive value of nine HRV
measures on ICU mortality and ICU LOS. When HRV measures alone were used to predict mor-
tality, poor results were found, with AUCs ranging between 0.46 and 0.57. Models that combined
clinical features with individual HRV measures or combinations of HRV measures improved per-
formance and were considered fair (AUC 0.70) for the prediction of ICU mortality (48). The best
performing model was an XGBoost classifier that combined three short term HRV measures (power
in the VLF and HF band and LF/HF ratio) with the clinical features and achieved an AUC of 0.76.
With a mean absolute error of approximately 5 days, the regression models used to predict ICU
LOS performed poorly. Little difference was observed between the various combinations of features,
suggesting that HRV did not contribute significantly to the models.

1.5.1 Interpretation of the results

1.5.1.1 Heart rate variability measures

We observed a strong correlation between RMSSD and the HF band which has been previously
reported in the literature (Figure 1.5) (41, 42). This correlation can be attributed to their shared re-
flection of parasympathetic activity. The observed correlation between the SDNN and the SDANN
has also been frequently reported in the literature and can be explained by the fact that the mea-
sures are based on almost the same mathematical formula (42, 43). SDNN computes the standard
deviation of all normal RR intervals over a given period, whereas SDANN averages normal RR in-
tervals in 5-minute segments before calculating their standard deviation. As a result, the SDANN is
less susceptible to editing errors than the SDNN because the averaging of RR intervals minimizes
the effects of unedited artefacts, missed beats and ectopic complexity (42). The correlation between
the power in the low frequency band and the power in the high frequency band has also been previ-
ously reported, but requires a bit more explanation (41). In Table 1.1, we reported that LF power is
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influenced by both the sympathetic and parasympathetic nervous systems. However, there is a lot
of scepticism about the representation of sympathetic activity in the LF band. An important observa-
tion was that vagal blockade significantly reduced LF power, whereas sympathetic blockade showed
minimal effect (49). Miki et. al. indicated that across a broad frequency spectrum including LF and
HF bands, spectral power indices were predominantly influenced by the parasympathetic nervous
system (50). Therefore, the correlation between the LF and HF power was understandable because
both reflect the dominance of parasympathetic activity.

1.5.1.2 Predictive models for intensive care unit mortality

The models that used only the individual HRV measures did not perform well, with AUCs ranging
from 0.46 to 0.57 (Figure 1.6), suggesting that HRV alone has little predictive value for ICU mortality.
The AUC increased when combined with carefully selected demographic and clinical features. Com-
pared to a baseline model, using only clinical features (AUC of 0.72), certain combinations of HRV
measures did lead to increased performance. The feature set with the best performance included
the clinical features and all short-term HRV measures, achieving an AUC of 0.76. Especially the
power in the HF band and the power in the VLF band appeared to contribute to this performance
(Figures 1.10 and 1.11). Both measures were calculated based on 5 minutes in the first hour of
admission and were higher in patients who died during ICU admission (Table 1.4). High power in
the HF band indicates increased parasympathetic activity. The VLF, especially when calculated
over 5 minutes, remains challenging to explain physiologically. Apart from the thermoregulatory and
hormonal mechanisms reported in Table 1.1, the literature offered several other interpretations. For
example, VLF has been reported to be associated with increased chronic inflammation and it has
been suggested that the VLF rhythm is intrinsically generated by the heart and modulated by effer-
ent sympathetic activity (9, 13, 51).

In addition, the combination of HF power and SDANN with the clinical features increased the AUC
from 0.72 to 0.74 (Figure 1.7). This was an interesting observation as it combined a short-term fre-
quency domain measure with a long-term time domain measure. This suggested that a short-term
reflection of parasympathetic activity along with a long-term reflection of the ANS - including circa-
dian rhythm, temperature, metabolic and hormonal systems – outperformed the baseline model,
which included only the clinical features and no HRV, in predicting ICU mortality.

We used the AUC as the primary evaluation metric for predicting ICU mortality. However, there
appeared to be no consensus in the literature on the interpretation of this value. For instance, de
Hond et al. found that there is a wide variety in the AUC labelling system in research papers (52).
When comparing our highest AUC of 0.76 with the literature, it was described as ranging from mod-
erate, fair, or acceptable to good to very good, high or excellent. In their paper, they highlighted
that achieving high discriminatory ability alone is not sufficient to claim a positive potential impact
of using a prediction model in clinical practice. The primary role of AUC values is often to compare
the discriminatory abilities of different models. Our study focused on assessing the predictive value
of HRV, and in the future, we may consider further developing the model that achieved the highest
AUC.

Nevertheless, we assessed our models using other evaluation metrics, i.e., sensitivity, precision
and the F1-score. We included sensitivity, which measures the model’s ability to correctly classify a
person as deceased during ICU admission, because it is a measure commonly used in the medical

20



Chapter 1.

world and therefore intuitive for physicians to interpret. Precision is the proportion of true positive
predictions out of all positive predictions made by the model (53). The F1-score combines precision
and sensitivity to provide a single measure of a model’s accuracy, especially useful for imbalanced
datasets where accuracy is often misinterpreted because it largely disregards the performance of
the minority class (54). A low sensitivity indicates inadequate identification of actual ICU deaths,
while a low F1 score reflects overall poor performance of the binary classification model due to low
sensitivity and precision. Despite having a reasonable AUC, the low sensitivity, precision and F1-
score of our models suggested challenges in accurately identifying actual ICU deaths, potentially
influenced by dataset imbalance.

1.5.1.3 Predictive models for intensive care unit length of stay

The models for predicting length of stay performed poorly. All regression models showed an MAE of
approximately 5 days, regardless of whether they used individual HRV measures alone or (combina-
tions of) HRV features with clinical features. To assess whether the HRV and clinical data affected
the predictions, we evaluated a dummy regressor, which resulted in an MAE of 6.21. This indicated
that clinical features and HRV measures had some impact, albeit minimal and not sufficient for im-
plementation.

Like the MAE, the RMSE indicates the predicted discrepancy in days. The R² value indicates the
percentage of variation in the dependent variable that is explained by the regression model (55). A
value of 0 means that the model explains none of the variation in the dependent variable, indicating
that the model does not perform better than using the mean of the dependent variable. A value
of 1 means that the model explains all the variation in the dependent variable. All the R² values
we observed were around 0. The best achieved RMSE of 9.5 days and the R² values around zero,
confirmed that the individual HRV measures or HRV measures combined with clinical features were
not a good predictor of ICU length of stay.

1.5.2 Comparison with the literature

It is often hypothesized in the literature that HRV is lower in critically ill patients due to autonomic
dysfunction, as a low HRV indicates reduced adaptability of the heart and autonomic nervous sys-
tem to changing physiological demands, meaning that the body’s ability to respond to stress is
impaired (56). However, we also found evidence that some HRV measures may be higher in crit-
ically ill patients. For instance, Chen et al. demonstrated a significant increase in normalized HF
strength (HF power relative to the total power) in patients at risk of death, establishing it as the most
reliable predictor of mortality in ARDS patients (33, 57). They concluded that in critically ill patients
following thoracic surgery, increased vagal modulation may be an indicator of a poor prognosis. We
found a similar result in our study, where power in the HF band was significantly increased in ICU
non-survivors (Table 1.4). In addition, of all the models that predicted mortality with the clinical char-
acteristics and a single HRV measure, the model that included power in the HF band performed
best with an AUC of 0.73 (Figure 1.7). Furthermore, power in the HF band was part of the best per-
forming model and had the highest feature importance and SHAP values (Figures 1.10 and 1.11),
indicating its substantial contribution to the prediction.

In addition to the contribution of power in the HF band, we found that power in the VLF band also
substantially improved the performance of the best model (Figures 1.10 and 1.11). This is con-
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sistent with the existing literature, which reports that VLF power is more strongly associated with
all-cause mortality compared to power in the LF or HF bands (9, 13).

The SDANN measure also showed a significant difference between ICU survivors and non-survivors
(Table 1.4). Few studies investigating the predictive power of HRV in a critically ill population have
included SDANN as an HRV measure, as SDNN is often preferred and the two are strongly corre-
lated. Nevertheless, there have been studies investigating the effect of SDANN in other populations.
Swearingen et al. published an abstract showing that lower SDANN is a strong predictor of heart
failure hospitalization within six months of cardiac resynchronization therapy defibrillator implan-
tation (58). Di Franco et al. also showed that the SDANN was significantly lower in patients with
systemic sclerosis than in healthy controls (59). These results, in which the impaired group had a
significantly lower SDANN, are consistent with those of our study.

To the best of our knowledge, there have been no previous studies predicting ICU LOS using HRV
measures. However, there are many studies that have attempted to predict ICU LOS using other
parameters. For example, Hempel et al. presented predictive models for LOS in ICU patients us-
ing demographic, administrative and early clinical data from the MIMIC-IV database (60). They
concluded that the models performed poorly when considering a maximum LOS of 21 days. They
suggested that this may be because the models only included data from the first day of ICU admis-
sion, which limits their ability to accurately predict longer LOS durations. This may also explain the
poor regression results in our study, as we only used data from the first 24 hours of admission as
well. In future research, it would be interesting to investigate HRV trends throughout the ICU stay.

1.5.3 Clinical implications

During this prognostic study, we aimed to determine whether HRV possesses the ability to predict
short-term outcomes in the ICU. Patients in the ICU are continuously monitored, and clinicians
make ongoing decisions based on the measured values. HRV would be a valuable addition to ex-
isting parameters, as it provides us with a measure of the balance between the two arms of the
autonomic nervous system. In the ICU, it is particularly important to identify patients at high risk
of mortality, and less important to classify low-risk patients as such. Therefore, having a model
with high sensitivity is important. The models presented in this study are not yet ready for clinical
implementation. However, we demonstrated that including HRV measures slightly improved the
performance of the model that predicted mortality using only clinical features. The results gave us
confidence that in the future, with further research, models using HRV can be developed that can
identify high-risk patients in the ICU.

1.5.4 Strengths and limitations

One of the strengths of our study was that we spent a lot of time developing an accurate ECG pro-
cessing algorithm. This algorithm used several evidence-based methods (Figure 1.3). A limitation
was that there was insufficient time to perform an accuracy analysis, such as manually marking
R-peaks and comparing them with the R-peaks correctly detected by the algorithm. However, the
development of a robust artefact detection algorithm was not the focus of this study, but merely a
necessary tool, and therefore outside the scope of this study.

Another strength was that we assessed the predictive power of multiple feature sets to understand
both the individual contribution of the HRV measures as well as their combinations Another strength

22



Chapter 1.

was that we analysed multiple models to understand both the individual contribution of the HRV
measures as well as their combinations as effectively as possible. Although the AUCs showed little
difference, even a modest increase in the AUC can provide meaningful insights into the predictive
ability of additional parameters in risk assessment (61, 62).

The size of our study dataset can be both interpreted as a strength and a limitation. Compared to
other HRV studies, our dataset was relatively large (Appendix A.3). However, it was considered
small for a machine learning study. One reason for the limited dataset size was the availability of the
high-frequency data from the Data Warehouse, which was only accessible for one year before being
overwritten due to capacity reasons. In addition, patients who stayed in the ICU for less than 48
hours were excluded, further reducing the number of patients. A rule of thumb in machine learning
is that "a dumb algorithm with lots and lots of data beats a clever one with modest amounts of it"
(63). We therefore expect that increasing the amount of data would improve the performance.

A limitation was that we calculated the long-term HRV measures over 8 hours instead of the rec-
ommended 24 hours. Unfortunately, this was unavoidable due to computational issues caused by
the large number of data points from the 500 Hz sampled ECG. Given that the 24-hour data was
available, a solution would be to run the HRV calculations on a computer with greater computational
power.

Another limitation was that some ECG data might have been missing due to (re)surgery or other
reasons for disconnection from the monitor. It was also possible that some patients might have had
more five-minute segments excluded due to poor quality compared to others, which could result in
HRV being calculated over varying numbers of RR intervals across patients.

A limitation of our regression model is that we chose to exclude ICU non-survivors from the LOS
prediction to avoid potential bias. We made this decision because a significant proportion of ICU
non-survivors died within the first 10 days of admission (Appendix A.8). Including them could have
biased the model by interpreting their shorter LOS as an indication that they were ’healthier’, poten-
tially distorting the predictions for other patients. An alternative approach would have been to use
a survival analysis model, which explicitly takes into account censored data, such as patients who
died before hospital discharge (64). By using survival analysis, we could have modelled the time to
event (ICU discharge or death) more appropriately, potentially leading to a more accurate prediction
of LOS across all patient groups

1.5.5 Recommendations for future research

Our machine learning approach, which used nested cross-validation to prevent overfitting and en-
sure robust performance estimation, was a suitable method for predictive research. We therefore
recommend its continued use. However, we recommend that a future study be conducted using a
larger dataset. We expect that this will improve the performance of the model by providing more
data for learning. In addition, we suggest including more HRV measures, including non-linear ones,
to gain a more comprehensive understanding of HRV and its reflection of the autonomic nervous
system. Finally, the use of a computer with greater processing power would facilitate the calculation
of HRV over 24 hours, allowing a better comparison with the literature, which often discusses 24-
hour rather than 8-hour measures.

23



Chapter 1.

1.6 Conclusion

In combination with other clinical features, HRV contained substantial predictive information for ICU
mortality. Promising HRV measures for predicting ICU mortality were power in the HF band, power
in the VLF band and SDANN, consistent with previous findings. Models using clinical features with
or without HRV measures were not able to accurately predict ICU length of stay. Further and more
extensive research into the use of HRV to predict both ICU mortality and ICU length of stay is es-
sential before implementation in clinical practice can be considered.

It is worth noting that although it is commonly assumed that HRV is reduced in critically ill patients,
this is not always the case. HRV should not be perceived as simply higher or lower, but rather as a
deviation from typical patterns.
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2
Exploring feasibility of eHealth monitoring in

Intensive Care Unit survivors

Abstract

Background: Advances in technology have improved ICU survival rates, but half of these sur-
vivors suffer from Post Intensive Care Syndrome, which negatively impacts their quality of life and
increases their healthcare needs. A pilot study demonstrated the feasibility of home monitoring
for ICU survivors using smart technology, but with only fifteen participants, a larger clinical trial is
needed to assess feasibility on a larger scale.
Objective: The aim of this study was to prepare for the implementation of the ICU Recover Box
Study 2.0.
Methods: We evaluated the results and challenges of pilot study 1.0 and used the lessons learned
to create a new study design. We arranged all the necessities for the Medical Ethical Review Com-
mission (METC) application and thought out the entire study logistics. This included conducting
thorough research into the study trajectories and creating standard operating procedures while
maintaining contact with external parties and other departments within the hospital that were in-
volved.
Results: Although preparation is largely operational and difficult to quantify, we prepared thoroughly
for the start of the study and gained valuable insights into clinical research. Three key takeaways
are that research is an iterative process with ongoing learning, the study objective must be carefully
considered with ethical concerns in mind, and the growing importance of data requires careful plan-
ning for its security, processing and storage.
Conclusion: The METC application has been submitted. Once approved, the study will be ready to
proceed on a well-prepared basis.
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2.1 Introduction

Due to advances in technology and practice, an increasing number of critically ill patients survive
the ICU and are discharged to their homes (3–5). Despite improved survival rates, the ICU remains
associated with mortality and morbidity. Patients may continue to experience the consequences of
an ICU admission even after discharge. These consequences are enclosed in the term Post Inten-
sive Care Syndrome (PICS) which is defined as “worsening impairments in physical, cognitive, or
mental health status arising after critical illness and persisting beyond acute care hospitalisation”
(65). One in two patients who survive a critical illness is affected by PICS (66). Despite the het-
erogeneity of the syndrome, patients suffering from PICS have an increased likelihood of reduced
quality of life, hospital readmission or even death (66–68).

Several studies have investigated the outcomes of ICU survivors after one year. For instance,
Gonçalves-Pereira et al. reported a 6.3-fold increase in the risk of death in the first year after ICU
discharge (6). In a systematic review, McPeake et al. found a pooled estimate of readmission after
critical illness at 12 months to be 53% (69). They identified several patient-specific risk factors for
readmission, including comorbidities, frailty, and the specifics of the initial hospitalization. Prescott
et al. confirmed the high readmission rate, describing a readmission rate of 43% at 90 days among
survivors of severe sepsis (70). Prescott et al. also concluded that up to 42% of the readmitted
patients were admitted with diagnoses that could have been prevented (70). In addition to the incon-
venience for the patient, there are high healthcare costs associated with persistent morbidity and
healthcare utilization after discharge from the ICU.

These numbers demonstrate that, in addition to the need for accurate monitoring to identify high-risk
patients during ICU admission, it is also crucial to identify patients at increased risk for complica-
tions after ICU discharge. A post-ICU outpatient clinic is not yet part of standard care in the Nether-
lands, although some hospitals offer this care (71). Concerns remain about the cost-effectiveness
of these clinics (72). Remote monitoring could be an ideal compromise, allowing doctors to spend
less time while still monitoring and managing patients effectively. They can intervene promptly, for
example by referring patients to their general practitioner if problems arise. This could potentially
help reduce healthcare utilization numbers, reducing both the pressure on the healthcare system
and the economic burden.

2.2 Background

2.2.1 Systematic literature review

We conducted a systematic review of the healthcare utilization of ICU survivors in the year after
discharge. This review is included in Appendix B.1. The main finding is that health care use is sub-
stantial among ICU-survivors in the year after discharge. In over 80% of the studies, more than a
third of the ICU-survivors had to be readmitted to the hospital. Readmissions to the ICU and visits
to the emergency department or other health care professionals were also common. The costs as-
sociated with health care use in the year after ICU discharge were high.

26



Chapter 2.

2.2.2 Home monitoring and eHealth

In 2022, Viderman et al. published a systematic review on remote monitoring of chronically critically
ill patients after hospital discharge (73). They explain that the population of chronically critically ill
patients continues to grow due to advances in intensive care medicine. Wearable devices offer sig-
nificant support to medical staff and caregivers by monitoring vital signs like blood pressure, heart
rate, respiratory rate, blood oxygen saturation, metabolism, and central nervous system function.
Despite extensive research into telemonitoring, many uncertainties remain, particularly in terms
of device performance, safety, clinical and economic outcomes, and acceptance by patients and
healthcare professionals. Therefore, further research is necessary to address these uncertainties
and advance our understanding of remote monitoring technologies.

In 2020, Treskes et al. published the results of a randomized clinical trial investigating whether
smart technology in clinical practice could improve blood pressure regulation and its feasibility in
the year after myocardial infarction (74). The main finding of this study was that monitoring patients
with smart technology and changing two out of four outpatient visits to electronic visits resulted in
similar percentages of patients with regulated blood pressure compared with standard care (i.e.,
no use of smart technology and four outpatient visits in the first year after myocardial infarction). In
addition, monitoring patients with smart technology was feasible and deemed acceptable to patients.
In 2022, they published another study on the same topic to determine the cost-effectiveness of such
an intervention (75). They found that using eHealth in the outpatient setting for myocardial infarction
patients is likely to be cost-effective compared with regular follow-up. Although the population of our
study is different, the results of these studies show promising results for the general use of eHealth
in patient follow-up.

2.2.3 Pilot study 1.0

A team of researchers from the ICU of the LUMC conducted a pilot study, in which (vital) param-
eters of fifteen ICU survivors were monitored after discharge from the hospital (76). The aim of
the pilot was to determine the feasibility of monitoring ICU survivors at home using devices that
measure heart rate, blood pressure, weight, temperature, oxygen saturation and activity. Patients
were also given questionnaires about their quality of life (QoL) and healthcare use. The pilot study
showed that home monitoring of ICU survivors was feasible, as more than 80% of the enrolled pa-
tients provided their data throughout the study period, and the data could be collected from the
devices and stored in a secure manner.

2.3 Methods

The aim of this part of the thesis was to prepare for the implementation of a follow-up study, i.e., the
ICU Recover Box 2.0. In this section, we will briefly discuss the methods of this clinical study and
then discuss the approach to preparing for this study.

2.3.1 The ICU Recover Box 2.0

2.3.1.1 Objective

The primary objective of the ICU Recover Box 2.0 study was to assess the feasibility of having ICU
survivors use smart technology in the year following hospital discharge. Smart technology refers to
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the Corsano CardioWatch 287-2 and the accompanying blood pressure band that make up the ICU
Recover Box. Feasibility was defined as:

• 50 ICU survivors (who gave informed consent) were discharged from the ICU with the ICU
Recover Box.

• 80% of the included patients were able to use the devices within their intended use.
• We were able to acquire data from the Corsano CardioWatch 287-2.
• We were able to check the data regularly on reliability and validity.
• We were able to act on missing data.
• We were able to store the acquired data in a secure manner according to the Medical Device

Regulation (MDR) and LUMC regulations.
• We were able to analyse the acquired data.
• 80% of the included participants contributed to post-ICU data for one year.

Secondary objectives of the study were:

• To systematically collect all data on telephone calls or emails from participants regarding
the use of the Corsano CardioWatch 287-2 and to create a comprehensive overview of the
frequency and types of issues encountered by users.

• To conduct standardized oral interviews (via telephone) with participants to gather feedback,
allowing them to suggest adjustments and improvements.

• To use the Plan-Do-Check-Act cycle to incorporate lessons learned and feedback, thereby
improving all aspects of the ICU-Recover Box—from CardioWatch usage to data collection
and analysis—for future studies or clinical applications.

2.3.1.2 Study design

The ICU Recover Box 2.0 is a longitudinal, prospective, single-centre pilot study that has not yet
started. We can divide the study into three phases: the preparation phase, the study phase, and
the post-study phase. The preparation phase is needed to ensure that everything is in place for the
study to start, from obtaining study approval from the Medical Ethical Review Commission (METC)
to creating standard operating procedures for conducting the study. During the study phase, pa-
tients will be enrolled in the study and followed at home for one year after enrolment. Question-
naires will be conducted according to the schematic overview in Figure 2.1. The post-study phase
consists of data processing and analysis. Table 2.1 provides an overview of the activities for each
phase.
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Figure 2.1: A schematic overview of the ICU Recover Box 2.0 study.

2.3.1.3 Subjects

All patients admitted to the ICU of the LUMC from the start of the study phase onward will be re-
viewed. Inclusion criteria are:

• Patient has been admitted to the ICU for 24 hours.
• Patient has received mechanical ventilation during the ICU admission.
• Patient masters the Dutch or English language.
• Patient is capable of using smart technology at home.
• Patient is discharged from a nursing ward of the LUMC to home or to a rehab facility.

Participants that meet any of the following exclusion criteria will be excluded from participation in
the study:

• Patient is <18 years old.
• Patient is pregnant.
• Patient breastfeeds during the course of the study.
• Patient is discharged for palliative care.
• Patient is considered an incapacitated adult.
• Patient is unwilling to sign the informed consent form.
• Patient is discharged or transferred to another hospital.
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Table 2.1: An overview of the activities per study phase. ICU: Intensive Care Unit.

Preparation Study Post-study
Evaluate the results and challenges
of pilot study 1.0.

Monitor all ICU patients
for study eligibility.

Process and analyse
the study data.

Create a new study design, including
reassessment of the monitor device(s).

Get informed consent and
include patients in study.

Create an overview of
the results: feasibility
and secondary
objectives.

Write the study protocol and ensure
that all the necessary documents are
ready for the METC application.

Monitor patient data
through research protocol.

Put together a list of
recommendations for
future research.

Conduct thorough research into the
study trajectory for both the patient
and the researchers.

Contact patients in case
of abnormalities, such as
when measurements fail
to come through or there
is a deteriorating trend.

Put together a list of
recommendations for
implementation of the
ICU-Recover Box in
standard care.

Create standard operating procedure
for conducting the study.

Conduct questionnaires
by phone.

Publish results in a
scientific journal.

Make decisions about the frequency
of data retrieval and manual
measurement of patients.

Document all instances
of patient contact, both
scheduled and
unscheduled.

Adapt the questionnaires to the
revised objectives of pilot study 2.0.
Maintain contact with external
parties and other departments
within the hospital.
Prepare informed consent procedure
and forms.
Prepare the contents of the boxes,
including all devices and information
for the patient.
Prepare the essentials for online
patient monitoring, including the
research portal and communication
tools such as email and a phone.

The aim is to include 50 patients. After discharge from the ICU, patients will be admitted to the nurs-
ing ward where they will be contacted before being discharged to home or another (rehabilitation)
facility. All potential participants will be given a verbal overview of the study and a detailed infor-
mation sheet explaining the purpose and activities of the study. The researcher must ensure that
patients have the opportunity to ask questions. Written informed consent must be obtained from
each patient. This study is subject to WMO and therefore requires METC approval.

2.3.1.4 Home monitoring device

The largest change that was implemented in the ICU Recover Box 2.0 compared to pilot study 1.0
is the use of a different smart technology device. In pilot 1.0, the devices in the ICU Recovery Box
were the Withings ScanWatch, Withings Body and Withings BPM Connect. There were two issues
with these devices. The first was that the Withings ScanWatch and Withings Body were not CE
marked. This resulted in the METC imposing additional precautions on the researchers, such as
the researchers having to be available 24 hours a day, seven days a week for (medical) questions
from the participants. Secondly, the ScanWatch was found to be difficult to use in patients with
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neuromuscular impairment, which is a common condition in ICU survivors, i.e. post-ICU acquired
weakness. They found it difficult to measure their oxygen saturation using the small button on the
side of the ScanWatch. In the ICU Recover Box 2.0, we address these issues by replacing the old
devices with a new device: the Corsano CardioWatch 287-2. The CardioWatch seems to be er-
gonomically better, as there is no need for manual measurements with small buttons. By replacing
the Withings devices with the CE-marked CardioWatch, we expect that the requirement of having
to be available 24 hours a day will be lifted and that patients with neuromuscular impairment will no
longer have problems with measurements.

The CardioWatch can measure pulse rate, HRV, ECG, SpO2, respiratory rate, blood pressure, tem-
perature, activity and sleep. The watch comes with a blood pressure band for monthly blood pres-
sure calibration. An app allows patients to view their own measurements and send push notifica-
tions when it is time for blood pressure calibration, an ECG or when the battery is low. The research
team uses an online research portal to monitor the measurements.

2.3.1.5 Data collection

The participants will wear the CardioWatch around their wrist. There are different frequency set-
tings for the clinical measurements, ranging from 1/sec to 1/30min, adjustable per parameter. The
watch is connected to an app and the app is connected to the online research portal. The raw data
will be stored in the Corsano cloud. Questionnaires are conducted over the phone by one of the
researchers. We will manually store the answers on Castor DC, a clinical data platform.

There will be a key file linking the patient’s identity (LUMC ID) to a study ID. This file will be stored
securely on a server accessible only to the research team. In all other platforms used, such as the
Corsano app, the research portal or Castor DC, only the study ID will be used.

We will use several Excel files for various purposes, such as tracking study eligibility based on inclu-
sion criteria, managing the informed consent process, maintaining a key file, and scheduling ques-
tionnaire phone calls. These files will be stored securely on a server. In addition, any unplanned
contact with participants, in case of data transfer problems to the research portal or problems with
the CardioWatch, will be documented in a separate Excel file, also stored on a secure server.

2.3.2 Preparation for the ICU Recover Box 2.0 study

2.3.2.1 Objective

The study’s preparation involved two main aspects. One was to complete the METC application
as the study is subject to the WMO and Article 82 of the MDR. This included writing a study pro-
tocol and preparing all the necessary documents. The second was to prepare all the logistics of
the study. It is crucial to carefully plan and prepare the logistics of a study. Failure of many clinical
trials is due to the lack of a structured, practical and businesslike approach to trial management
(77). For example, Sadoon et al. conclude that “clinical trials require complex coordination of tasks
and involve many resources that need to be planned and managed carefully” (78). During the first
pilot study, the lack of a disciplined and structured approach resulted in eligible patients not being
enrolled. This can lead to bias and an inaccurate perception of patients’ willingness to use and wear
smart technology. In order to successfully conduct the ICU Recover Box 2.0 study, it was critical
to carefully plan and prepare for the different aspects of the study such as the process of tracking
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patient eligibility, managing the enrolment process, organizing patient information and technology
installation, monitoring the patients through the research portal and eventually finalizing the study.

2.3.2.2 Research team

The research team consisted of four members throughout the phase, with one member rotating
every ten weeks—this was the Technical Medicine intern (TM2). Additionally, the team consisted
of a Technical Medicine graduate (TM3) intern and two intensivists. The two intensivists had the
main responsibility for the research. The Technical Medicine interns and graduate assisted the
intensivists, tried to relieve them of work by performing tasks and were responsible for organizing
and thinking out the logistics of the entire study.

2.3.2.3 Deliverables

Deliverables included a study protocol and all necessary forms required for submitting a clinical trial
application to the METC. Details of the required documents can be found in Table B.1 in Appendix
B.2.

Furthermore, a system of files and portals has been created for researchers to use once the study
starts. The location of these resources, the intended actions for each step and the responsibilities
assigned to each individual have been carefully thought out and presented in a visual overview,
i.e., a metro map. We created two metro maps, one representing the researchers’ pathway and
one representing the patients’ care pathway. Metro mapping is a service design methodology that
can be used to design and optimise care pathways (79). The metro map was originally designed to
give patients more insight into their care pathway. A metro map has several layers. The first layer
consists of metro station icons that indicate where you are in the process. The second layer is the
information layer. The third layer shows who is involved at each stop, and the fourth layer provides
context. The last layer represents the patient’s experience.

A Standard Operating Procedure (SOP) was created to ensure that everything related to the Car-
dioWatch operated correctly. The SOP included installing the app, connecting the wristband to the
app and the research portal, and checking that the data is coming through properly and accurately.

2.4 Results

As only the preparations for the ICU Recover Box 2.0 study fell within the scope of this thesis, we
will only discuss the outputs of this phase.

2.4.1 Medical ethical review commission application

Part of this study was to complete the METC application. Under the supervision of and in collab-
oration with the intensivists from the research team, we have successfully completed the METC
application. We have submitted the application and are currently awaiting approval.

2.4.2 Study logistics

We have carefully considered the logistics and arranged all necessities to ensure a successful start
to the study. We can divide the deliverables into three parts: a visualization of the study logistics,
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the standard operating procedure created to facilitate the handling of the CardioWatch specifically
and an overview of the take-away points specific to this study, but also generalizable to other clinical
studies.

2.4.2.1 Research and patient trajectories

Two TM2 students created a metro map, one representing the researchers’ pathway and one rep-
resenting the patients’ care pathway (80, 81). A section of the research metro map and a section
of the patient metro map are shown in Figures B.1 and B.2 in Appendix B, respectively. The first
metro map created by the TM2 students was a variation on the original concept. Instead of being
designed for the patient, it was created for the researchers to provide a better insight into the overall
logistics of the study. Figure B.1 shows that the layers have been slightly modified for this purpose.
Figure B.2 shows that the focus of the metro map is on the patient experience. The metro maps
include the logistics from the time the patient is admitted to the ICU until the end of the study follow-
up.

2.4.2.2 Standard operating procedure

The third TM2 student worked on creating an SOP to ensure that everything related to the Car-
dioWatch was well thought out and tested, so there would be no surprises during the study. Through-
out this process, many small details emerged that we would not normally have discovered until the
study itself had already begun. For example, there are several settings that researchers need to
configure in the research portal in advance. The measurement frequency, as well as the parame-
ters and tabs that are visible to the patients in the app, must be set. When the CardioWatch is to
be paired with the app on the participants’ phone, the wristband must be connected to the charger.
This is a small detail, but it is important to ensure that there is always a power outlet available at
the installation site. Besides, each patient must set a password. By talking to colleagues who also
work with the CardioWatch, we discovered that the app sometimes logs out automatically and that
patients who have forgotten their password are unable to log in again. As a result of this experience,
we have decided to create and store the passwords for the patients. During testing, by wearing the
wristband ourselves, we discovered that many updates are carried out by Corsano and need the
patient’s approval before they can be installed. If the updates are not carried out, data may not be
transmitted correctly. We also found that the phone’s battery drains relatively quickly when the Cor-
sano app is constantly fetching data from the CardioWatch. All of these factors must be considered
and communicated clearly to the patient. A complete overview of all important details regarding the
CardioWatch and how to handle them is outlined in the SOP. As this SOP was created by one of the
TM2 students and is not a direct result of this thesis, it has not been included in the Appendix.

2.4.2.3 Take-away points

Several concrete take-away points have emerged during the preparation of the study, which we will
briefly discuss.

• Preparing a clinical study is an iterative process. During our preparation, there was a role
within the research team that rotated every ten weeks. With each change and a new perspec-
tive on the process, new things came to light. This showed that a fresh perspective could
contribute positively to the preparation. In addition, it was good to realize that a study can
never be prepared to perfection.
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• It is important not to lose sight of the objective of the study, which in our case, is to investi-
gate the feasibility of monitoring ICU survivors after discharge. We will primarily determine
whether the data are being received correctly and whether the values are realistic. However,
we were confronted with an ethical issue because, although it is supposed to be a feasibility
study, medical professionals cannot ignore the non-physiological values of the measurements.
Therefore, we stated in the protocol that if we notice values that raise concerns about the pa-
tient’s health, we will inform them about this. However, by adding this action, the goal shifts
towards monitoring the patients for clinical purposes, and we are not there yet as the feasibility
needs to be established first. The question is, however, whether it is ethical not to communi-
cate with the patient if a worsening trend is visible. The takeaway point is that it is crucial to
keep the study’s objective in mind while also acting ethically.

• At a time when artificial intelligence is at its peak and we are doing more with data than ever
before, it is very important to be prepared to handle data well. This is especially relevant when
dealing with personal and health data. During the preparation phase, we were confronted with
this in several ways. For example, we had to develop multiple data management plans. This
included considering data ownership, data security and data storage. The takeaway is that the
data aspect of future studies needs to be well thought out, often in consultation with experts in
areas such as security and legal.

2.5 Discussion

We aimed to prepare for clinical study the ICU Recover Box 2.0. As the preparation for such a study
is mainly operational, it is difficult to present concrete results. Much of the preparation consisted
of planning the logistics. We developed a comprehensive step-by-step plan and two TM2 students
created a visual representation of it. The planning of the steps and the whole process was within
the scope of this thesis, but the visual representation was their contribution. The results provided
a brief overview of what such a visual representation looks like, but the complete overview is not a
final product of this thesis. The same applies to the standard operating procedure.

Initially, our aim was to obtain METC approval and carry out part of the study as part of this thesis.
However, despite our weekly progress meetings, we were unable to achieve this. This showed how
time-consuming it is to prepare for a large clinical study. In order to meet all the requirements, differ-
ent parties were involved. We needed support from people within the LUMC at various stages, as
well as from people at Corsano. One of the aspects that delayed the application was the regulations
surrounding data and data sharing. The LUMC has its own rules, and since we were collaborating
with a third party, an extensive legal agreement had to be created between the LUMC and Corsano.
This data processing agreement specifies what exactly happens with the data and who owns it.
Although the reliance on third parties slowed down progress, it proved to be a valuable learning
experience for everyone involved, as the combination of different backgrounds and specialities ulti-
mately allowed for accurate study execution.

Although it was not possible to start the study during the scope of this thesis, we did prepare for
the study as best as we could. We learned a lot about conducting clinical research and identified
three main takeaway points. The first emphasized that conducting research and preparing for it is
an iterative process, where new insights will continually emerge. Furthermore, we highlighted that it
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is important to carefully consider the objective of your study, which could sometimes involve ethical
issues that need to be thought through beforehand. Finally, we concluded that we live in a time
where data plays an increasingly important role in many fields, including clinical research, which
means that handling data, in terms of security, processing and storage, must be well thought out in
advance.

2.6 Conclusion

The ICU Recover Box 2.0 study is a follow-up to pilot 1.0, in which ICU survivors were monitored
using technology after discharge from the ICU. The aim of the follow-up study is to determine the
feasibility of home monitoring. Compared to the first pilot study, the most significant change in the
second study will be the use of a different device, the Corsano CardioWatch, and the participation
of more patients. During the preparations, the entire logistical process was planned out, while si-
multaneously ensuring everything was in order for the METC application. Once the METC grants
approval, the study can start well-prepared.

35



References
[1] Marshall JC, Bosco L, Adhikari NK, Connolly B, Diaz JV, Dorman T, et al. What is an intensive

care unit? A report of the task force of the World Federation of Societies of Intensive and Crit-
ical Care Medicine [Journal Article]. Journal of Critical Care. 2017;37:270-6. Available from:
https://www.sciencedirect.com/science/article/pii/S0883944116302404.

[2] Medicine ESoIC. What is Intensive Care? [Web Page];. Available from: https://www.esicm.

org/patient-and-family/what-is-intensive-care/.

[3] Harvey MA, Davidson JE. Postintensive Care Syndrome: Right Care, Right Now. . . and Later
[Journal Article]. Crit Care Med. 2016;44(2):381-5. 1530-0293 Harvey, Maurene A Davidson,
Judy E Journal Article United States 2016/01/16 Crit Care Med. 2016 Feb;44(2):381-5. doi:
10.1097/CCM.0000000000001531.

[4] Rawal G, Yadav S, Kumar R. Post-intensive Care Syndrome: an Overview [Journal Article]. J
Transl Int Med. 2017;5(2):90-2. 2224-4018 Rawal, Gautam Yadav, Sankalp Kumar, Raj Journal
Article Poland 2017/07/20 J Transl Int Med. 2017 Jun 30;5(2):90-92. doi: 10.1515/jtim-2016-
0016. eCollection 2017 Jun.

[5] Vincent JL, Singer M. Critical care: advances and future perspectives [Journal Article]. Lancet.
2010;376(9749):1354-61. 1474-547x Vincent, Jean-Louis Singer, Mervyn Department of
Health/United Kingdom Journal Article Research Support, Non-U.S. Gov’t England 2010/10/12
Lancet. 2010 Oct 16;376(9749):1354-61. doi: 10.1016/S0140-6736(10)60575-2. Epub 2010
Oct 11.

[6] Gonçalves-Pereira J, Oliveira A, Vieira T, Rodrigues AR, Pinto MJ, Pipa S, et al. Critically ill
patient mortality by age: long-term follow-up (CIMbA-LT) [Journal Article]. Ann Intensive Care.
2023;13(1):7. 2110-5820 Gonçalves-Pereira, João Orcid: 0000-0002-7538-3777 Oliveira,
André Vieira, Tatiana Rodrigues, Ana Rita Pinto, Maria João Pipa, Sara Martinho, Ana Ribeiro,
Sofia Paiva, José-Artur Journal Article Germany 2023/02/11 Ann Intensive Care. 2023 Feb
11;13(1):7. doi: 10.1186/s13613-023-01102-3.

[7] Choi MH, Kim D, Choi EJ, Jung YJ, Choi YJ, Cho JH, et al. Mortality prediction of patients
in intensive care units using machine learning algorithms based on electronic health records
[Journal Article]. Scientific Reports. 2022;12(1):7180. Available from: https://doi.org/10.

1038/s41598-022-11226-4.

[8] Karmali SN, Sciusco A, May SM, Ackland GL. Heart rate variability in critical care medicine: a
systematic review [Journal Article]. Intensive Care Med Exp. 2017;5(1):33. 2197-425x Karmali,
Shamir N Sciusco, Alberto May, Shaun M Ackland, Gareth L RG/14/4/30736/BHF_/British
Heart Foundation/United Kingdom Journal Article Germany 2017/07/14 Intensive Care Med
Exp. 2017 Dec;5(1):33. doi: 10.1186/s40635-017-0146-1. Epub 2017 Jul 12.

[9] Shaffer F, Ginsberg JP. An Overview of Heart Rate Variability Metrics and Norms [Journal
Article]. Front Public Health. 2017;5:258. 2296-2565 Shaffer, Fred Ginsberg, J P Jour-
nal Article Review Switzerland 2017/10/17 Front Public Health. 2017 Sep 28;5:258. doi:
10.3389/fpubh.2017.00258. eCollection 2017.

36

https://www.sciencedirect.com/science/article/pii/S0883944116302404
https://www.esicm.org/patient-and-family/what-is-intensive-care/
https://www.esicm.org/patient-and-family/what-is-intensive-care/
https://doi.org/10.1038/s41598-022-11226-4
https://doi.org/10.1038/s41598-022-11226-4


References

[10] Mazzeo AT, La Monaca E, Di Leo R, Vita G, Santamaria LB. Heart rate variability: a diagnostic
and prognostic tool in anesthesia and intensive care [Journal Article]. Acta Anaesthesiologica
Scandinavica. 2011;55(7):797-811. Available from: https://doi.org/10.1111/j.1399-6576.

2011.02466.x.

[11] Waxenbaum JA VM Reddy V. Anatomy, Autonomic Nervous System. StatPearls [Internet]:
Treasure Island (FL): StatPearls Publishing;; 2023. Available from: https://www.ncbi.nlm.nih.

gov/books/NBK539845/.

[12] Johnston BW, Barrett-Jolley R, Krige A, Welters ID. Heart rate variability: Measurement and
emerging use in critical care medicine [Journal Article]. J Intensive Care Soc. 2020;21(2):148-
57. 2057-360x Johnston, Brian W Orcid: 0000-0003-1634-3297 Barrett-Jolley, Richard Krige,
Anton Welters, Ingeborg D Journal Article Review England 2020/06/04 J Intensive Care Soc.
2020 May;21(2):148-157. doi: 10.1177/1751143719853744. Epub 2019 Jun 11.

[13] McCraty R, Shaffer F. Heart Rate Variability: New Perspectives on Physiological Mechanisms,
Assessment of Self-regulatory Capacity, and Health risk [Journal Article]. Glob Adv Health Med.
2015;4(1):46-61. 2164-9561 McCraty, Rollin Shaffer, Fred Journal Article Review United States
2015/02/20 Glob Adv Health Med. 2015 Jan;4(1):46-61. doi: 10.7453/gahmj.2014.073.

[14] Electrophysiology TFotESoCtNASoP. Heart Rate Variability [Journal Article]. Circulation.
1996;93(5):1043-65. Doi: 10.1161/01.CIR.93.5.1043. Available from: https://doi.org/10.

1161/01.CIR.93.5.1043.

[15] Krumholz HM. Big data and new knowledge in medicine: the thinking, training, and tools
needed for a learning health system [Journal Article]. Health Aff (Millwood). 2014;33(7):1163-
70. 2694-233x Krumholz, Harlan M U01 HL105270/HL/NHLBI NIH HHS/United States U01
HL105270-04/HL/NHLBI NIH HHS/United States Journal Article Research Support, N.I.H.,
Extramural United States 2014/07/10 Health Aff (Millwood). 2014 Jul;33(7):1163-70. doi:
10.1377/hlthaff.2014.0053.

[16] Habehh H, Gohel S. Machine Learning in Healthcare [Journal Article]. Curr Ge-
nomics. 2021;22(4):291-300. 1875-5488 Habehh, Hafsa Gohel, Suril Journal Article Re-
view United Arab Emirates 2022/03/12 Curr Genomics. 2021 Dec 16;22(4):291-300. doi:
10.2174/1389202922666210705124359.

[17] Núñez Reiz A, Armengol de la Hoz MA, Sánchez García M. Big Data Analysis and Machine
Learning in Intensive Care Units [Journal Article]. Med Intensiva (Engl Ed). 2019;43(7):416-
26. 2173-5727 Núñez Reiz, A Armengol de la Hoz, M A Sánchez García, M Journal
Article Review Spain 2018/12/29 Med Intensiva (Engl Ed). 2019 Oct;43(7):416-426. doi:
10.1016/j.medin.2018.10.007. Epub 2018 Dec 24.

[18] Sanchez-Pinto LN, Luo Y, Churpek MM. Big Data and Data Science in Critical Care
[Journal Article]. Chest. 2018;154(5):1239-48. 1931-3543 Sanchez-Pinto, L Nelson
Luo, Yuan Churpek, Matthew M K08 HL121080/HL/NHLBI NIH HHS/United States R01
GM123193/GM/NIGMS NIH HHS/United States R21 LM012618/LM/NLM NIH HHS/United
States Journal Article Review United States 2018/05/13 Chest. 2018 Nov;154(5):1239-1248.
doi: 10.1016/j.chest.2018.04.037. Epub 2018 May 9.

37

https://doi.org/10.1111/j.1399-6576.2011.02466.x
https://doi.org/10.1111/j.1399-6576.2011.02466.x
https://www.ncbi.nlm.nih.gov/books/NBK539845/
https://www.ncbi.nlm.nih.gov/books/NBK539845/
https://doi.org/10.1161/01.CIR.93.5.1043
https://doi.org/10.1161/01.CIR.93.5.1043


References

[19] Makowski D, Pham T, Lau ZJ, Brammer JC, Lespinasse F, Pham H, et al. NeuroKit2: A Python
toolbox for neurophysiological signal processing [Journal Article]. Behavior Research Methods.
2021;53(4):1689-96. Available from: https://doi.org/10.3758/s13428-020-01516-y.

[20] Pan J, Tompkins WJ. A Real-Time QRS Detection Algorithm [Journal Article]. IEEE Transactions
on Biomedical Engineering. 1985;BME-32(3):230-6.

[21] Bota P, Silva R, Carreiras C, Fred A, da Silva HP. BioSPPy: A Python toolbox for physiological
signal processing [Journal Article]. SoftwareX. 2024;26:101712. Available from: https://www.

sciencedirect.com/science/article/pii/S2352711024000839.

[22] Wen F, He Ft. An efficient method of addressing ectopic beats: new insight into data preprocess-
ing of heart rate variability analysis [Journal Article]. Journal of Zhejiang University SCIENCE
B. 2011;12(12):976-82. Available from: https://doi.org/10.1631/jzus.B1000392.

[23] van Wijk RJ, Quinten VM, van Rossum MC, Bouma HR, Ter Maaten JC. Predicting deterio-
ration of patients with early sepsis at the emergency department using continuous heart rate
variability analysis: a model-based approach [Journal Article]. Scand J Trauma Resusc Emerg
Med. 2023;31(1):15. 1757-7241 van Wijk, Raymond J Orcid: 0000-0002-2106-7699 Quinten,
Vincent M van Rossum, Mathilde C Bouma, Hjalmar R Ter Maaten, Jan C Clinical Trial Journal
Article England 2023/04/04 Scand J Trauma Resusc Emerg Med. 2023 Apr 1;31(1):15. doi:
10.1186/s13049-023-01078-w.

[24] Rebergen D, Belur Nagaraj S, Bianchi M, van Putten M, Westover MB, Rosenthal E. ADARRI:
a novel method to detect spurious R-peaks in the electrocardiogram for heart rate variability
analysis in the intensive care unit [Journal Article]. Journal of Clinical Monitoring and Computing.
2018;32.

[25] Gomes P, Margaritoff P, Plácido da Silva H. pyHRV: Development and Evaluation of an Open-
Source Python Toolbox for Heart Rate Variability (HRV); 2019.

[26] Bodenes L, N’Guyen QT, Le Mao R, Ferrière N, Pateau V, Lellouche F, et al. Early heart rate
variability evaluation enables to predict ICU patients’ outcome [Journal Article]. Sci Rep.
2022;12(1):2498. 2045-2322 Bodenes, Laetitia N’Guyen, Quang-Thang Le Mao, Raphaël
Ferrière, Nicolas Pateau, Victoire Lellouche, François L’Her, Erwan Clinical Trial Journal Article
Research Support, Non-U.S. Gov’t England 2022/02/17 Sci Rep. 2022 Feb 15;12(1):2498. doi:
10.1038/s41598-022-06301-9.

[27] Kakde Y, Bawankule S, Mahajan S, Acharya S, Kumar S, Gaidhane A. Heart rate variability as a
prognostic marker in critically ill patients [version 1; peer review: 1 approved with reservations,
1 not approved] [Journal Article]. F1000Research. 2023;12(673). Available from: https:

//f1000research.com/articles/12-673/v1.

[28] Zhang P, Roberts T, Richards B, Haseler LJ. Utilizing heart rate variability to predict ICU pa-
tient outcome in traumatic brain injury [Journal Article]. BMC Bioinformatics. 2020;21(Suppl
17):481. 1471-2105 Zhang, Ping Orcid: 0000-0002-3907-1127 Roberts, Tegan Richards,
Brent Haseler, Luke J Journal Article England 2020/12/15 BMC Bioinformatics. 2020 Dec
14;21(Suppl 17):481. doi: 10.1186/s12859-020-03814-w.

38

https://doi.org/10.3758/s13428-020-01516-y
https://www.sciencedirect.com/science/article/pii/S2352711024000839
https://www.sciencedirect.com/science/article/pii/S2352711024000839
https://doi.org/10.1631/jzus.B1000392
https://f1000research.com/articles/12-673/v1
https://f1000research.com/articles/12-673/v1


References

[29] de Castilho FM, Ribeiro ALP, da Silva JLP, Nobre V, de Sousa MR. Heart rate variabil-
ity as predictor of mortality in sepsis: A prospective cohort study [Journal Article]. PLoS
One. 2017;12(6):e0180060. 1932-6203 de Castilho, Fábio M Orcid: 0000-0002-0489-3737
Ribeiro, Antonio Luiz P da Silva, José Luiz P Nobre, Vandack de Sousa, Marcos R Journal
Article United States 2017/06/28 PLoS One. 2017 Jun 27;12(6):e0180060. doi: 10.1371/jour-
nal.pone.0180060. eCollection 2017.

[30] Winchell RJ, Hoyt DB. Spectral analysis of heart rate variability in the ICU: a measure of au-
tonomic function [Journal Article]. J Surg Res. 1996;63(1):11-6. Winchell, R J Hoyt, D B
Comparative Study Journal Article United States 1996/06/01 J Surg Res. 1996 Jun;63(1):11-6.
doi: 10.1006/jsre.1996.0214.

[31] Adam J, Rupprecht S, Künstler ECS, Hoyer D. Heart rate variability as a marker and predictor
of inflammation, nosocomial infection, and sepsis x2013; A systematic review [Journal Article].
Autonomic Neuroscience: Basic and Clinical. 2023;249. Doi: 10.1016/j.autneu.2023.103116.
Available from: https://doi.org/10.1016/j.autneu.2023.103116.

[32] Chen WL, Kuo CD. Characteristics of heart rate variability can predict impending septic
shock in emergency department patients with sepsis [Journal Article]. Acad Emerg Med.
2007;14(5):392-7. 1553-2712 Chen, Wei-Lung Kuo, Cheng-Deng Journal Article Research
Support, Non-U.S. Gov’t United States 2007/03/29 Acad Emerg Med. 2007 May;14(5):392-7.
doi: 10.1197/j.aem.2006.12.015. Epub 2007 Mar 26.

[33] Chen WL, Chen JH, Huang CC, Kuo CD, Huang CI, Lee LS. Heart rate variability mea-
sures as predictors of in-hospital mortality in ED patients with sepsis [Journal Article]. The
American Journal of Emergency Medicine. 2008;26(4):395-401. Available from: https:

//www.sciencedirect.com/science/article/pii/S0735675707004366.

[34] Pontet J, Contreras P, Curbelo A, Medina J, Noveri S, Bentancourt S, et al. Heart rate variability
as early marker of multiple organ dysfunction syndrome in septic patients [Journal Article].
Journal of Critical Care. 2003;18(3):156-63. Available from: https://www.sciencedirect.com/

science/article/pii/S0883944103000777.

[35] Samsudin MI, Liu N, Prabhakar SM, Chong SL, Kit Lye W, Koh ZX, et al. A novel heart rate
variability based risk prediction model for septic patients presenting to the emergency depart-
ment [Journal Article]. Medicine (Baltimore). 2018;97(23):e10866. 1536-5964 Samsudin,
Mas’uud Ibnu Liu, Nan Prabhakar, Sumanth Madhusudan Chong, Shu-Ling Kit Lye, Weng Koh,
Zhi Xiong Guo, Dagang Rajesh, R Ho, Andrew Fu Wah Ong, Marcus Eng Hock Journal Article
Observational Study United States 2018/06/08 Medicine (Baltimore). 2018 Jun;97(23):e10866.
doi: 10.1097/MD.0000000000010866.

[36] Luo X, Gao H, Yu X, Jiang Z, Yang W. Spectral analysis of heart rate variability for trauma
outcome prediction: an analysis of 210 ICU multiple trauma patients [Journal Article]. European
Journal of Trauma and Emergency Surgery. 2021;47(1):153-60. Available from: https://doi.

org/10.1007/s00068-019-01175-5.

[37] Laborde S, Mosley E, Thayer JF. Heart Rate Variability and Cardiac Vagal Tone in Psychophys-
iological Research - Recommendations for Experiment Planning, Data Analysis, and Data
Reporting [Journal Article]. Front Psychol. 2017;8:213. 1664-1078 Laborde, Sylvain Mosley,

39

https://doi.org/10.1016/j.autneu.2023.103116
https://www.sciencedirect.com/science/article/pii/S0735675707004366
https://www.sciencedirect.com/science/article/pii/S0735675707004366
https://www.sciencedirect.com/science/article/pii/S0883944103000777
https://www.sciencedirect.com/science/article/pii/S0883944103000777
https://doi.org/10.1007/s00068-019-01175-5
https://doi.org/10.1007/s00068-019-01175-5


References

Emma Thayer, Julian F Journal Article Review Switzerland 2017/03/08 Front Psychol. 2017
Feb 20;8:213. doi: 10.3389/fpsyg.2017.00213. eCollection 2017.

[38] scikit-learn org. OneHotEncoder [Web Page];. Available from: https://scikit-learn.org/

stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html.

[39] Jarapala KN. Categorical Data Encoding Techniques [Blog]; 2023. Available from: https:

//medium.com/aiskunks/categorical-data-encoding-techniques-d6296697a40f.

[40] Saxena S. What are Categorical Data Encoding Methods | Binary Encoding [Blog];
2024. Available from: https://www.analyticsvidhya.com/blog/2020/08/

types-of-categorical-data-encoding/.

[41] Kunikullaya K, Kunnavil R, Muradi V, Goturu J, Prakash Vs, Murthy S. Normative data and
gender differences in heart rate variability in the healthy young individuals aged 18–30 years, a
South Indian cross-sectional study [Journal Article]. Indian Pacing and Electrophysiology Journal.
2021;21.

[42] Kleiger RE, Stein PK, Bigger J J T. Heart rate variability: measurement and clinical utility
[Journal Article]. Ann Noninvasive Electrocardiol. 2005;10(1):88-101. 1542-474x Kleiger, Robert
E Stein, Phyllis K Bigger, J Thomas Jr Journal Article Review United States 2005/01/15 Ann
Noninvasive Electrocardiol. 2005 Jan;10(1):88-101. doi: 10.1111/j.1542-474X.2005.10101.x.

[43] Shaffer F, McCraty R, Zerr CL. A healthy heart is not a metronome: an integrative review of
the heart’s anatomy and heart rate variability [Journal Article]. Front Psychol. 2014;5:1040.
1664-1078 Shaffer, Fred McCraty, Rollin Zerr, Christopher L Journal Article Review Switzerland
2014/10/18 Front Psychol. 2014 Sep 30;5:1040. doi: 10.3389/fpsyg.2014.01040. eCollection
2014.

[44] Chan JY, Leow SM, Bea KT, Cheng WK, Phoong SW, Hong ZW, et al.. Mitigating the Multi-
collinearity Problem and Its Machine Learning Approach: A Review [Electronic Article]; 2022.

[45] Mukaka MM. Statistics corner: A guide to appropriate use of correlation coefficient in medical
research [Journal Article]. Malawi Med J. 2012;24(3):69-71. 1995-7270 Mukaka, M M Journal
Article Malawi 2013/05/03 Malawi Med J. 2012 Sep;24(3):69-71.

[46] scikit-learn org. DummyRegressor [Web Page];. Available from: https://scikit-learn.org/

stable/modules/generated/sklearn.dummy.DummyRegressor.html.

[47] scikit-learn org. Permutation feature importance [Web Page];. Available from: https://

scikit-learn.org/stable/modules/permutation_importance.html.
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Appendices

Appendix A.1

Figure A.1: Visualisation of the steps from RR intervals to frequency domain parameters for a five
minute recording. A. shows the original RR waveform and the corresponding frequency waveforms for the

VLF, LF and HF band, B. shows the power spectra and C. the absolute power in each band.
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Appendix A.2

Figure A.2: A visual step-by-step overview showing how the ECG signal was affected by each
processing step.
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Appendix A.3

Table A.1: The outcomes of a brief literature review into studies that investigated the predictive value
of HRV in a critically ill population (23, 26–36). APACHE: Acute Physiology and Chronic Health Evaluation,
ECG: electrocardiogram, HRV: Heart rate variability, ICU: Intensive care unit, MEWS: Modified Early Warning
Score, NEWS: National Early Warning Score, PPG: photoplethysmogram, ROC: receiver operating character-
istic, SOFA: Sequential Organ Failure Assessment, TBI: traumatic brain injury.

Title Author Year N Objective Conclusion Recording setting

Heart rate
variability
as a marker
and predictor
of inflammation,
nosocomial
infection, and
sepsis – A
systematic review

Adam et al. 2023 N/A

To conduct a
systematic review
of the current
literature on the
associations and
predictive value
between HRV
and inflammation,
and HRV and
nosocomial
infections/sepsis.

A pro-inflammatory state
was associated with
reduced total HRV power,
affecting both vagal and
non-vagal indices. VLF
power appears to be most
robust in predicting
nosocomial infections and
sepsis in adults. Promising
classical indices include HF
(RMSSD), LF, VLF and TP
(SDNN).

Not applicable.

Early heart
rate variability
evaluation
enables to
predict ICU
patients’
outcome

Bodeness et al. 2022 540

To identify the
most effective
indicators of ANS
variation for
predicting
outcomes in ICU
patients.

A lower LF/HF ratio,
SD2/SD1 ratio, and
Shannon entropy values at
admission were linked to
increased ICU mortality. In
multivariate analysis, both
LF/HF and Shannon entropy
were found to be
independently related to
mortality.

PPG recordings
during two
consecutive hours
within the first 24
hours of ICU
admission.

Heart rate
variability as
predictor of
mortality in
sepsis: A
prospective
cohort study

de Castilho et al. 2017 63

To evaluate HRV
as a predictor of
28-day all-cause
mortality in septic
patients.

In the 20-minute Holter
recording, non-survivors
had notably lower SDNN,
total power, VLF, LF, and
LF/HF compared to
survivors. An ROC curve
for SDNN showed an AUC
of 0.772, with SDNN 17
linked to higher mortality
risk. The 24-hour Holter
HRV parameters did not
correlate with 28-day
mortality.

20-minute Holter
and a 24-hour Holter
on the first day of
ICU admission.
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Heart rate
variability
measures as
predictors of
in-hospital
mortality in ED
patients with
sepsis

Chen et al. 2008 132

To evaluate how
well HRV
measurements
can predict in-
hospital mortality
in sepsis patients
in the emergency
department.

Non-survivors had
significantly lower SDNN,
TP, VLF power, LF power
and LF/HF ratios and higher
normalized HF power
compared with survivors.
Logistic regression
identified SDNN and
normalized HF power as
significant predictors of
in-hospital mortality in
sepsis patients.

A continuous 10-
minute ECG was
performed within
one hour of arrival
at the emergency
department.

Characteristics
of Heart Rate
Variability Can
Predict Impending
Septic Shock in
Emergency
Department
Patients with
Sepsis

Chen et al. 2007 81

To assess whether
HRV measurements
can predict which
septic patients in
the emergency
department are
likely to develop
septic shock.

In the septic shock group,
LF power, normalized LF
power, and the LF/HF ratio
were significantly lower
compared to the group
without septic shock.
Multiple logistic regression
analysis found RMSSD to
be the most reliable predictor
of impending septic shock
in septic patients in the
emergency department.

A continuous 10-
minute ECG was
performed.

Heart rate
variability as a
prognostic
marker in
critically ill
patients

Kakde et al. 2023 225

To assess
whether HRV
can be used as a
predictive marker
for critically ill
patients.

The LF measurement was
strongly and independently
linked to mortality. A
reduction in LF from 24-
hour HRV was able to
predict mortality with an
accuracy of 74%, a
specificity of 81.2%, and
a sensitivity of 46.7%.

24-hour holter
ECG during ICU
admission.

Spectral analysis
of heart rate
variability for
trauma outcome
prediction: an
analysis of 210
ICU multiple
trauma patients

Luo et al. 2019 210

To evaluate and
compare short-term
spectral HRV
indices with
widely used
trauma scores
in predicting
multiple trauma
outcomes, and to
investigate the
effectiveness of
using them
together.

The normalized LF/HF
ratio was an independent
predictor of 30-day
mortality and multiple
organ dysfunction
syndrome. The
combination of normalized
LF/HF and conventional
trauma scores may
improve the accuracy of
outcome prediction in
multiple trauma.

5-minute ECG was
performed within
first 24 hours of
ICU admission.
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Heart rate
variability as
early marker of
multiple organ
dysfunction
syndrome in
septic patients

Pontet et al. 2003 46

To assess whether
HRV measurements
in septic patients
without multiple
organ dysfunction
syndrome can
predict which
individuals will
later develop the
syndrome.

SDNN, RMSSD, TINN,
LF, and HF were
significantly lower in the
multiple organ dysfunction
syndrome group.
Multivariable logistic
regression identified LF as
the best predictor, with a
cut-off point of 18 ms²
established by ROC curves.

A 10-minute ECG
was performed
during the first
24 hours of
admission.

A novel heart
rate variability
based risk
prediction model
for septic patients
presenting to the
emergency
department

Samsudin et al. 2018 214

To create a
predictive model
for evaluating the
risk of 30-day in-
hospital mortality
in septic patients
presenting to the
emergency
department.

The novel risk assessment
model, incorporating age,
two vital signs, and two
HRV parameters (mean NN
and DFA 2), performed
better than qSOFA, NEWS,
and MEWS scores in
predicting mortality and
adverse events like
intubation and ICU
admission for septic
patients in the emergency
department.

6-minute one-lead
ECG.

Predicting
deterioration of
patients with
early sepsis at
the emergency
department using
continuous heart
rate variability
analysis: a model
-based approach

van Wijk et al. 2023 168

To identify key
HRV parameters
linked to clinical
deterioration in
early septic
patients and to
develop a model
to compare these
parameters with
other emergency
department scoring
systems.

AVNN, ULF, VLF, LF
and total power differed
between groups (no,
stable or progressive
organ dysfunction) in the
first 12 hours after
admission. The predictive
accuracy of HRV was
similar to other scoring
systems, but integration
of HRV features into a
multivariate model showed
potential for predicting
progressive organ
dysfunction.

ECG waveforms
were recorded
from arrival at the
emergency
department up to
48 hours after
arrival. HRV
parameters were
calculated over 5-
minute intervals and
summarized into 3-
hour intervals for
analysis.

Spectral Analysis
of Heart Rate
Variability in the
ICU: A Measure
of Autonomic
Function

Winchell et al. 1996 742

To investigate
how changes in
HRV affect
mortality rates in
a surgical ICU.

Low total power HRV and
high HF/LF ratio were
associated with increased
mortality.

HRV measurements
were obtained every
6 hours in the ICU.
For each HRV
measurement, a 5-
minute segment of
ECG waveform data
was acquired.
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Utilizing heart
rate variability
to predict ICU
patient
outcome in
traumatic
brain injury

Zhang et al. 2020 26

To study
continuous
HRV monitoring
during the first
24 hours of ICU
stay in severe
TBI patients
and to develop a
predictive
outcome system
based on HRV
data.

HRV-based parameters
alone may outperform
disease severity scores
in predicting outcome
in brain injury patients.

ECG signals were
collected from
bedside monitors
throughout the ICU
stay, and HRV
parameters were
calculated over
consecutive 30-
minute recordings
in the time and
frequency domains.
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Table A.2: Included clinical and demographic features. APACHE: Acute Physiology And Chronic Health
Evaluation, BMI: body mass index, bpm: beats per minute (heart rate), breaths per minute (respiratory rate),
CPR: cardiopulmonary resuscitation, CRP: C-reactive protein, ICU: Intensive Care Unit, mmHg: millimeter of
mercury, SOFA: Sequential Organ Failure Assessment, SpO2: oxygen saturation.

Feature Frequency Data type
Bedside monitor
Mean heart rate (bpm) Once for first 24 hours Float
Variance of heart rate Once for first 24 hours Float
Mean mean arterial blood pressure (mmHg) Once for first 24 hours Float
Variance of mean arterial blood pressure Once for first 24 hours Float
Mean systolic arterial blood pressure (mmHg) Once for first 24 hours Float
Variance of systolic arterial blood pressure Once for first 24 hours Float
Mean diastolic arterial blood pressure (mmHg) Once for first 24 hours Float
Variance of diastolic arterial blood pressure Once for first 24 hours Float
Mean respiratory rate (bpm) Once for first 24 hours Float
Variance of respiratory rate Once for first 24 hours Float
Mean SpO2 (%) Once for first 24 hours Float
Variance of SpO2 Once for first 24 hours Float
Electronic health record
Age (years) Once at admission Integer

Gender Once at admission
Male (M)
Female (F)

BMI (kg/m²) Once at admission Float
APACHE IV Once at admission Integer
APACHE IV diagnosis category Once at admission Integer

Admission type Once at admission
Medical admission (1)
Emergency surgery (2)
Planned surgery (4)

Planned admission Once at admission
Planned (1)
Unplanned (0)

Highest SOFA score Once for first 24 hours Integer
Chronic kidney insufficiency
or chronic dialysis

Once at admission
Yes (1)
No (0)

Chronic obstructive pulmonary disease or chronic respiratory insufficiency Once at admission
Yes (1)
No (0)

Chronic cardiovascular insufficiency Once at admission
Yes (1)
No (0)

Cirrhosis Once at admission
Yes (1)
No (0)

Metastasized neoplasm or hematologic malignancy Once at admission
Yes (1)
No (0)

Acquired Immunodeficiency Syndrome or immunological insufficiency Once at admission
Yes (1)
No (0)

CPR before ICU admission Once at admission
Yes (1)
No (0)

Diabetes Once at admission
Yes (1)
No (0)

Acute renal failure Once for first 24 hours
Yes (1)
No (0)

Mechanical invasive ventilation in the first 24 hours Once for first 24 hours
Yes (1)
No (0)
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Highest CRP value (mg/L) Once for first 24 hours Float
Highest noradrenalin setting (mg) Once for first 24 hours Float

Dobutamine administration Once for first 24 hours
Yes (1)
No (0)

Total dose clonidine and dexmedetomidine (µg) Once for first 24 hours Float
Total dose propofol (mg) Once for first 24 hours Float
Total dose midazolam (mg) Once for first 24 hours Float
Total dose sufentanil (µg) Once for first 24 hours Float
Total dose labetalol (mg) Once for first 24 hours Float

Nitroglycerine or nitroprusside administration Once for first 24 hours
Yes (1)
No (0)

Total dose furosemide and bumetanide Once for first 24 hours Float
Highest adrenalin setting (mg) Once for first 24 hours Float

Oral beta-blockers (metoprolol or sotalol) Once for first 24 hours
Yes (1)
No (0)

Total dose amiodarone (mg) Once for first 24 hours Float
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During our exploratory data analysis, we manually reviewed the distribution and range of each fea-
ture and assessed them to the best of our clinical ability. If there was a question about whether the
maximum value was realistic, for example in the case of a medication dose, we checked the medical
records using the key file to verify that the value was correct. For the BMI feature, we found a max-
imum value of 81.3 kg/m². This value was extracted from the NICE database. When we checked
the patient’s electronic health record, we found a different, more realistic value. This corrected value
was used for further analysis. This was the only parameter that was actually incorrect; all other po-
tential outlier values were verified to be correct.
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Table A.3: The possible hyperparameter settings for each model.

Model Possible settings
Classification

Logistic Regression
Penalty: l1, l2
C: 0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000
Solver: linlinear, saga

Support Vector Machine
Kernel: linear, rbf
C: 0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000
Gamma (in case of rbf kernel): 0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000

eXtreme Gradient Boosting classifier

Learning rate: 0.01, 0.05, 0.10, 0.20
Max depth: 3, 4, 5, 6, 8, 10
Min child weight: 1, 3, 5, 7
Gamma: 0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000
Colsample by tree: 0.3, 0.5, 0.7, 0.9

Regression
Lasso Regression Alpha: 0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000

Support Vector Regression
Kernel: linear, rbf
C: 0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000
Gamma (in case of rbf kernel): 0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000

eXtreme Gradient Boosting regressor

Learning rate: 0.01, 0.05, 0.10, 0.20
Max depth: 3, 4, 5, 6, 8, 10
Min child weight: 1, 3, 5, 7
Gamma: 0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000
Colsample by tree: 0.3, 0.5, 0.7, 0.9
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Table A.4: Results from classification models that included the individual HRV measures without
clinical features to predict ICU mortality. AUC: Area under the curve, SVM: Support vector machine,
XGBoost: Extreme gradient boosting.

Feature
set

Average AUC over
10 outer folds

Best
model

Best hyperparameter
settings

Other evaluation
metrics

Short-term

RMSSD
Time domain 0.57 ± 0.11 SVM

C: 0.0001
gamma: 1.0
kernel: rbf

Sensitivity: 0.07 ± 0.10
Precision: 0.30 ± 0.42
F1 score: 0.06 ± 0.10

VLF
Frequency domain 0.53 ± 0.12 SVM

C: 0.001
gamma: 0.001
kernel: rbf

Sensitivity: 0.06 ± 0.10
Precision: 0.13 ± 0.32
F1 score: 0.07 ± 0.12

LF
Frequency domain 0.52 ± 0.12 SVM

C: 0.1
gamma: 0.1
kernel: rbf

Sensitivity: 0.01 ± 0.06
Precision: 0.00 ± 0.00
F1 score: 0.02 ± 0.06

HF
Frequency domain 0.54 ± 0.10 SVM

C: 0.01
gamma: 0.1
kernel: rbf

Sensitivity: 0.07 ± 0.10
Precision: 0.02 ± 0.05
F1 score: 0.09 ± 0.13

LF/HF ratio
Frequency domain 0.46 ± 0.14 SVM

C: 1.0
gamma: 1.0
kernel: rbf

Sensitivity: 0.11 ± 0.13
Precision: 0.03 ± 0.11
F1 score: 0.09 ± 0.10

Long-term

SDNN
Time domain 0.55 ± 0.11 XGBoost

colsample_bytree: 0.3
gamma: 0.1
learning_rate: 0.01
max_depth: 5
min_child_weight: 7

Sensitivity: 0.06 ± 0.14
Precision: 0.03 ± 0.08
F1 score: 0.07 ± 0.13

SDANN
Time domain 0.52 ± 0.16 XGBoost

colsample_bytree: 0.3
gamma: 0.0001
learning_rate: 0.01
max_depth: 3
min_child_weight: 7

Sensitivity: 0.15 ± 0.14
Precision: 0.16 ± 0.26
F1 score: 0.17 ± 0.16

Triangular Index
Time domain 0.54 ± 0.11 XGBoost

colsample_bytree: 0.3
gamma: 0.1
learning_rate: 0.01
max_depth: 6
min_child_weight: 3

Sensitivity: 0.13 ± 0.13
Precision: 0.03 ± 0.11
F1 score: 0.14 ± 0.14

ULF
Frequency domain 0.53 ± 0.09 XGBoost

colsample_bytree: 0.3
gamma: 0.0001
learning_rate: 0.01
max_depth: 5
min_child_weight: 5

Sensitivity: 0.04 ± 0.10
Precision: 0.08 ± 0.18
F1 score: 0.04 ± 0.12
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Table A.5: Results from classification models that included individual HRV measures and combina-
tions of HRV measures in combination with clinical features to predict ICU mortality. AUC: Area under
the curve, HRV: Heart rate variablity, XGBOOST: Extreme gradient boosting.

Feature
set

Average AUC over
10 outer folds

Best
model

Best hyperparameter
settings

Other evaluation
metrics

Clinical features only
No HRV 0.72 ± 0.12 Logistic Regression

C: 0.0001
penalty: l2
solver: saga

Sensitivity: 0.45 ± 0.13
Precision: 0.35 ± 0.47
F1 score: 0.39 ± 0.12

All HRV measures
VLF, HF, LF/HF ratio, SDANN,
Triangular Index, ULFa

0.72 ± 0.12 XGBoost

colsample_bytree: 0.7
gamma: 1.0
learning_rate: 0.01
max_depth: 8
min_child_weight: 1

Sensitivity: 0.45 ± 0.13
Precision: 0.25 ± 0.36
F1 score: 0.35 ± 0.14

Short-term

RMSSD
Time domain 0.71 ± 0.10 Logistic Regression

C: 0.0001
penalty: l2
solver: saga

Sensitivity: 0.44 ± 0.14
Precision: 0.33 ± 0.47
F1 score: 0.33 ± 0.16

VLF
Frequency domain 0.71 ± 0.12 XGBoost

colsample_bytree: 0.5
gamma: 0.1
learning_rate: 0.01
max_depth: 10
min_child_weight: 1

Sensitivity: 0.45 ± 0.13
Precision: 0.18 ± 0.34
F1 score: 0.38 ± 0.11

LF
Frequency domain 0.70 ± 0.09 Logistic Regression

C: 0.0001
penalty: l2
solver: saga

Sensitivity: 0.45 ± 0.13
Precision: 0.28 ± 0.42
F1 score: 0.39 ± 0.12

HF
Frequency domain 0.73 ± 0.09 XGBoost

colsample_bytree: 0.5
gamma: 0.1
learning_rate: 0.01
max_depth: 8
min_child_weight: 1

Sensitivity: 0.44 ± 0.14
Precision: 0.45 ± 0.50
F1 score: 0.39 ± 0.12

LF/HF ratio
Frequency domain 0.71 ± 0.08 Logistic Regression

C: 0.0001
penalty: l2
solver: saga

Sensitivity: 0.45 ± 0.13
Precision: 0.28 ± 0.42
F1 score: 0.40 ± 0.12

Short-term measures combined
VLF, HF, LF/HF ratiob 0.76 ± 0.10 XGBoost

colsample_bytree: 0.7
gamma: 0.0001
learning_rate: 0.01
max_depth: 3
min_child_weight: 1

Sensitivity: 0.44 ± 0.14
Precision: 0.33 ± 0.34
F1 score: 0.33 ± 0.16

Long-term

SDNN
Time domain 0.72 ± 0.11 Logistic Regression

C: 0.0001
penalty: l2
solver: saga

Sensitivity: 0.44 ± 0.11
Precision: 0.23 ± 0.42
F1 score: 0.38 ± 0.11

SDANN
Time domain 0.72 ± 0.12 XGBoost

colsample_bytree: 0.5
gamma: 0.0001
learning_rate: 0.01
max_depth: 10
min_child_weight: 1

Sensitivity: 0.43 ± 0.12
Precision: 0.13 ± 0.22
F1 score: 0.36 ± 0.13

Triangular Index
Time domain 0.71 ± 0.11 Logistic Regression

C: 0.0001
penalty: l2
solver: liblinear

Sensitivity: 0.45 ± 0.13
Precision: 0.35 ± 0.46
F1 score: 0.39 ± 0.12

ULF
Frequency domain 0.71 ± 0.10 XGBoost

colsample_bytree: 0.5
gamma: 0.01
learning_rate: 0.01
max_depth: 10
min_child_weight: 1

Sensitivity: 0.45 ± 0.13
Precision: 0.27 ± 0.42
F1 score: 0.39 ± 0.12

Long-term measures combined
SDANN, Triangular Index, ULFc 0.72 ± 0.12 XGBoost

colsample_bytree: 0.9
gamma: 0.01
learning_rate: 0.01
max_depth: 3
min_child_weight: 1

Sensitivity: 0.45 ± 0.12
Precision: 0.19 ± 0.36
F1 score: 0.39 ± 0.11

a SDNN, RMSSD and LF were removed based on their correlation with the other HRV measures
b RMSSD and LF were removed based on their correlation with the power in the HF band
c SDNN was removed based on its correlation with the SDANN
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Figure A.3: This indicates how long they were admitted before passing away at the ICU.

Figure A.4: Kaplan-Meier curve showing the survival duration of non-ICU survivors.
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Table A.6: Results from regression models that included the individual HRV measures without clinical
features to predict ICU LOS. MAE: Mean absolute error, RMSE: Root mean squared error, SVR: Support
vector regressor, XGBoost: Extreme gradient boosting.

Feature
set

Average MAE over 10
outer folds

Best
model

Best hyperparameter
settings

Other evaluation
metrics

Short-term

RMSSD
Time domain 5.19 ± 1.22 SVR

C: 0.01
gamma: 100.0
kernel: rbf

RMSE: 15.32 ± 16.21
R²: -0.04 ± 0.09

VLF
Frequency domain 5.18 ± 1.20 SVR

C: 1
gamma: 100.0
kernel: rbf

RMSE: 9.86 ± 3.60
R²: -0.04 ± 0.06

LF
Frequency domain 5.17 ± 1.23 SVR

C: 0.01
kernel: linear

RMSE: 9.87 ± 3.61
R²: -0.04 ± 0.07

HF
Frequency domain 5.18 ± 1.22 SVR

C: 0.1
gamma: 0.1
kernel: rbf

RMSE: 9.91 ± 3.64
R²: -0.05 ± 0.09

LF/HF ratio
Frequency domain 5.17 ± 1.23 SVR

C: 0.01
gamma: 100
kernel: rbf

RMSE: 9.86 ± 3.60
R²: -0.04 ± 0.06

Long-term

SDNN
Time domain 5.18 ± 1.23 SVR

C: 0.1
gamma: 100
kernel: rbf

RMSE: 10.10 ± 3.26
R²: -0.16 ± 0.39

SDANN
Time domain 5.18 ± 1.24 SVR

C: 0.01
gamma: 1000
kernel: rbf

RMSE: 9.84 ± 3.60
R²: -0.04 ± 0.07

Triangular Index
Time domain 5.20 ± 1.28 SVR

C: 1000
gamma: 1
kernel: rbf

RMSE: 9.86 ± 3.50
R²: -0.04 ± 0.08

ULF
Frequency domain 5.15 ± 1.21 SVR

C: 1000
gamma: 1
kernel: rbf

RMSE: 10.16 ± 3.76
R²: -0.10 ± 0.16
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Table A.7: Results from regression models that included individual HRV measures and combinations
of HRV measures in combination with clinical features to predict ICU LOS. HRV: Heart rate variablity,
MAE: Mean absolute error, RMSE: Root mean squared error, XGBoost: Extreme gradient boosting.

Feature
set

Average MAE over 10
outer folds

Best
model

Best hyperparameter
settings

Other evaluation
metrics

Clinical features only
No HRV 5.09 ± 1.17 SVR

C: 0.01
kernel: linear

RMSE: 9.70 ± 3.34
R²: -0.04 ± 0.26

All HRV measures
VLF, HF, LF/HF ratio, SDANN,
Triangular Index,
ULFa

5.08 ± 1.17 SVR
C: 1.0
gamma: 0.01
kernel: rbf

RMSE: 9.73 ± 3.43
R²: -0.03 ± 0.17

Short-term

RMSSD
Time domain 5.08 ± 1.17 SVR

C: 1.0
gamma: 0.01
kernel: rbf

RMSE: 9.73 ± 3.43
R²: -0.03 ± 0.17

VLF
Frequency domain 5.09 ± 1.16 SVR

C: 1.0
gamma: 0.01
kernel: rbf

RMSE: 9.58 ± 3.55
R²: 0.02 ± 0.13

LF
Frequency domain 5.08 ± 1.18 SVR

C: 0.01

kernel: linear

RMSE: 9.65 ± 3.69

R²: 0.03 ± 0.13
HF
Frequency domain 5.10 ± 1.17 SVR

C: 0.01
kernel: linear

RMSE: 9.69 ± 3.56
R²: 0.01 ± 0.19

LF/HF ratio
Frequency domain 5.08 ± 1.19 SVR

C: 0.01
kernel: linear

RMSE: 9.53 ± 3.46
R²: 0.03 ± 0.13

Short-term measures combined
VLF, HF, LF/HF ratiob 5.07 ± 1.17 SVR

C: 0.01
kernel: linear

RMSE: 9.70 ± 3.49
R²: -0.01 ± 0.16

Long-term

SDNN
Time domain 5.10 ± 1.17 SVR

C: 1.0
gamma: 0.01
kernel: rbf

RMSE: 9.55 ± 3.45
R²: 0.02 ± 0.13

SDANN
Time domain 5.08 ± 1.19 SVR

C: 1.0
gamma: 0.01
kernel: rbf

RMSE: 9.69 ± 3.73
R²: 0.01 ± 0.14

Triangular Index
Time domain 5.09 ± 1.18 SVR

C: 1.0
gamma: 0.01
kernel: rbf

RMSE: 9.61 ± 3.65
R²: 0.01 ± 0.12

ULF
Frequency domain 5.08 ± 1.18 SVR

C: 0.01
kernel: linear

RMSE: 9.95 ± 3.57
R²: 0.03 ± 0.14

Long-term measures combined
SDANN, Triangular Index, ULFc 5.10 ± 1.19 SVR

C: 1.0
gamma: 0.01
kernel: rbf

RMSE: 9.66 ± 3.56
R²: 0.01 ± 0.12

a SDNN, RMSSD and LF were removed based on their correlation with the other HRV measures
b RMSSD and LF were removed based on their correlation with the power in the HF band
c SDNN was removed based on its correlation with the SDANN
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Figure A.5: Feature importance plot of a support vector regressor combining all clinical features with
all HRV measures.
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Figure A.6: SHAP values a support vector regressor combining all clinical features with all HRV
measures.
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The following documents are required when submitting a METC application for clinical research
on medical devices under the scope of Article 82. The names of these documents will be listed in
Dutch.

A1 Aanbiedingsbrief
A2 Machtiging van de verrichtera

A2 Machtiging person EU als sponsor niet in EU gevestigd isa

B1 ABR formulier
B6 CCMO-formulier beëindiging studiea

C1 Onderzoeksprotocol
C2 Protocolamendementena

D2 Investigational Medical Device Dossier (IMDD)b

D2 Instruction for use
D4 Verklaring fabrikant over veiligheid en prestaties medisch hulpmiddelb

E1/E2 Informatiebrief en toestemmingsformulier proefpersonen
E3 Wervingsmateriaal proefpersonena

E4 Overig voorlichtingsmateriaala

E5 Nieuwsbrieven/brieven resultatena

F1 Vragenlijstena

F2 Patiëntendagboekena

F3 Patiëntenkaartena

F4 Overiga

G1 WMO-proefpersonenverzekering
G2 Aansprakelijkheidsverzekeringen
H2 CV coördinerend onderzoeker
I1 Lijst van deelnemende centra
I2 Onderzoeksverklaringen of Verklaring Geschiktheid Onderzoeksinstelling (VGO)
I3 CV’s hoofdonderzoekers
I4 Overige centruminformatiea

J1 Vergoedingen proefpersonen
J2 Vergoedingen onderzoekers en centra
K1 Adviezen andere instanties
K2 Beoordeling andere EU-lidstatena

K3 Onderzoekscontracten
K4 Relevante publicatiesa

K5 Charter DSMBa

K6 Overige informatiea

a If applicable.
b Only required for non-CE marked medical devices or CE marked medical devices used outside of their intended use.
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Figure B.1: A section of the research metro map (80).
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Figure B.2: A section of the patient metro map (81).
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