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ABSTRACT

Integrating Arti�cial Intelligence (AI) into software systems has

signi�cantly enhanced their capabilities while escalating energy

demands. Ensemble learning, combining predictions from multiple

models to form a single prediction, intensi�es this problem due to

cumulative energy consumption.

This paper presents a novel approach to model selection that

addresses the challenge of balancing the accuracy of AI models with

their energy consumption in a live AI ensemble system. We explore

how reducing the number of models or improving the e�ciency

of model usage within an ensemble during inference can reduce

energy demands without substantially sacri�cing accuracy.

This study introduces and evaluates two model selection strate-

gies, Static and Dynamic, for optimizing ensemble learning systems’

performance while minimizing energy usage. Our results demon-

strate that the Static strategy improves the F1 score beyond the

baseline, reducing average energy usage from 100% from the full

ensemble to 62%. The Dynamic strategy further enhances F1 scores,

using on average 76% compared to 100% of the full ensemble.

Moreover, we propose an approach that balances accuracy with

resource consumption, signi�cantly reducing energy usage with-

out substantially impacting accuracy. This method decreased the

average energy usage of the Static strategy from approximately 62%

to 14%, and for the Dynamic strategy, from around 76% to 57%.

Our �eld study of Green AI using an operational AI system

developed by a large professional services provider shows the prac-

tical applicability of adopting energy-conscious model selection

strategies in live production environments.

CCS CONCEPTS

• Software and its engineering→ Software creation and man-

agement; • Computing methodologies → Arti�cial intelli-

gence; • Applied computing→ Document management and text

processing.
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1 INTRODUCTION

Over recent years, the integration of Arti�cial Intelligence (AI)

into modern software systems, commonly known as AIware or AI-

powered software [32], has experienced signi�cant growth [19]. As

a result, the demand for resources, particularly the energy needed

for training, deploying, and running inferences with these AI mod-

els, has surged considerably [2, 8, 42]. To illustrate the resource

consumption associated with inference, a ChatGPT-like application

handling 11 million requests per hour is estimated to emit 12,800

tons of CO2 annually, making inference 25 times more carbon-

intensive than training GPT-3 [8].

Ensemble learning, a method that combines multiple models

to create a more e�ective solution, while highly e�ective, tends to

intensify this energy consumption problem due to the cumulative

energy requirements of the individual models [11, 28].

The focus of the AI research community has predominantly

been on improving the accuracy of AI models, overlooking the

signi�cant energy costs associated with them. AI’s rising environ-

mental and �nancial cost has led to a pressing need for a more

balanced approach to AI development that considers accuracy and

energy e�ciency [42]. The emerging �eld of Green AI addresses

this gap, promoting a favourable trade-o� between e�ciency and

accuracy [39]. A signi�cant gap remains in implementing Green

AI principles within the industry [44]. To bridge this gap, we have

partnered with Deloitte NL [34], a large professional services net-

work specializing in, amongst others, digital risk solutions, to carry

out a �eld experiment on an active AI system.

Our research explores the intersection of Green AI and ensem-

ble learning in a production environment, a domain that has yet

to be thoroughly investigated. Simply running all models every

time is not an e�cient strategy [49]. The challenge is �nding a

more intelligent approach for running inference with ensemble

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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learning [46], reducing energy consumption while maintaining or

improving accuracy.

In this paper, we propose a solution that involves a selective

approach to using models within an ensemble. The core of this

approach is the concept of model selection strategies, which refers

to various methods of selecting speci�c subsets of models for indi-

vidual tasks rather than using the complete set of models for every

task [6]. Our goal in implementing these model selection strategies

is to balance achieving accuracy and managing computational costs.

This goal leads to the following research question.

Research Question:What are the impacts of implementing model

selection strategies on the accuracy and energy usage of ensemble

learning systems?

Two model selection strategies, Static and Dynamic, are investi-

gated for optimizing model performance. Both strategies start by

evaluating all subsets of the entire ensemble on a validation set, se-

lecting the combination with the highest accuracy. Static selection

identi�es the best overall model selection, while Dynamic selection

chooses the best selection per speci�c property within the domain.

Additionally, we consider the computational cost per model

by employing a metric that discounts accuracy with energy con-

sumption. This method is incorporated into both the Static and

Dynamic selection strategies, ensuring a balanced consideration of

performance and resource e�ciency.

This empirical study explores the potential of model selection

strategies within an ensemble of AI models. We conduct a �eld

study on DocQMiner [12], a live, industry-used AI system for text

information extraction from large volumes of documents, to as-

sess the practical implications of our proposed model selection

strategies.

This research provides practical insights into making model en-

sembles more e�cient by examining and implementing our model

selection strategies within an ensemble learning context. Our con-

tributions to the �eld of AI in software systems using ensemble

learning are the following:

(1) A detailed evaluation of Static and Dynamic model selection

strategies in a production environment.

(2) An approach to enhance these strategies by incorporating

energy usage metrics, signi�cantly lowering energy con-

sumption.

These contributions demonstrate that model selection strategies

not only signi�cantly reduce resource consumption but also have

the potential to maintain or increase the accuracy of the AI system.

Moreover, these �ndings highlight the practicality and necessity

of integrating Green AI principles into AI development, working

towards more sustainable and e�cient AI applications in the in-

dustry. The replication package for this study is available at the

following DOI link: https://doi.org/10.6084/m9.�gshare.25481269.

2 BACKGROUND

In this section, we highlight the concept of ensemble learning,

followed by a detailed study of the use case and the infrastructure

of the AI system.

2.1 Ensemble Learning

Ensemble learning is a strategic approach that combines sev-

eral individual and diverse models to achieve better generalization

performance [48]. The strength of ensemble learning lies in its di-

versity; a combination of models can provide a more robust and

accurate output than any single model can [11, 18]. Popular appli-

cations of ensemble learning are speech recognition [14, 27] and

classi�cation [35, 43], image classi�cation [23, 26, 45] and forecast-

ing [5, 29, 37, 40].

A well-known method within ensemble learning is bagging

(Bootstrap Aggregating), which enhances the stability and accuracy

of machine learning algorithms by training multiple learners on

various subsets of the original dataset and then aggregating their

predictions to form a �nal decision [4].

At the core of our research are model selection strategies for en-

sembles. Model selection entails selecting a subset of models from

an ensemble of models to optimize for a particular performance met-

ric [6]. We use model selection within ensembles to reduce resource

consumption in alignment with Green AI principles.

2.2 Use Case

To evaluate the impact of using model selection strategies for en-

semble learning in a live production environment, we study the live

AI systemDocQMiner [12], a proprietary tool owned and developed

by Deloitte NL. This system uses diverse machine learning (ML)

models and NLP technologies to extract, process, and analyze data

from textual documents. It is an information extraction tool widely

used in the industry across many domains, with document set sizes

ranging from 100 to over 100,000 documents. This paper focuses

on the use case of extracting relevant properties from contracts.

Figure 1: Example of a document with relevant properties

highlighted

After processing a document, the AI system makes predictions

for prede�ned key properties. These properties are chosen by the

user according to their use case, as shown in an example in Figure

1 where properties such as Title, Parties, and Goal in a contract are

highlighted. The tool allows users to input a contract and delivers

the predictions for the properties of interest. This design makes con-

tract review more e�cient, especially for complex documents [33].

DocQMiner employs diverse (pre-)trained models, as shown

in Figure 2, to compile a ranked top 5 of textual predictions for

every queried property. The AI system deploys an ensemble frame-

work that utilizes the bagging approach. Multiple models that are

independently trained on randomly generated subsets of data are

combined to produce predictions.
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For every property, each model in the ensemble produces a set of

predictions aggregated to form the set of the �ve �nal predictions.

The user selects the correct prediction, or, in case the desired answer

is not part of the prediction, the user manually selects the answer

from the document. This human-in-the-loop work�ow ensures the

validity of the processed data.

Figure 2: Work�ow of DocQMiner. (1) Initially, documents

are processed using the pre-trained models. After processing

an initial set of documents, models are trained using the

processed data. (2) After training models, documents are

processed using the pre-trained and trained models.

The system subjects input documents to a pre-processing step to

ensure that the text within is prepared for subsequent analysis by its

models. Out of the box, the ensemble contains a set of pre-trained

models to make predictions for the properties, indicated by the

(1) in Figure 2. After the system has processed a set of documents

within a domain, it can train an additional set of models using the

in-domain data from those documents. Subsequently, the system

processes documents using both the pre-trained models and those

trained on the processed documents, as depicted by (2) in Figure 2.

2.3 Resource Consumption

This paper analyses the energy consumption of the AI system

in a production environment. Therefore, we leverage the existing

monitoring tool within the system, Datadog [10], which o�ers an

extensive set of features for extracting metrics from the system.

This cloud monitoring service provides a framework for tracking

and analyzing energy use metrics within our AI deployments, as

noted in industry literature [31].

DocQMiner uses a substantial amount of CPU when processing

a single document. Considering DocQMiner processes document

sets ranging in size from 100 to over 100,000 documents per instance,

there are environmental and �nancial implications. This energy us-

age escalates operational costs and enlarges the carbon footprint of

using DocQMiner, challenging the sustainable principles of Deloitte

NL [13].

3 MODEL SELECTION

This study aims to analyze the impact of implementing model

selection strategies in a live AI system that uses an ensemble of

models on its energy usage and accuracy. In this section, we high-

light how two selection strategies, Static [30] and Dynamic [9], can

be used for this, and we describe our approach to using them to

reduce resource consumption even more e�ciently, Energy-Aware

selection.

3.1 Model Selection for Energy E�ciency

In pursuit of sustainable AI practices, our study assesses existing

Static [30] and Dynamic [9] model selection strategies to reduce

energy consumption in a live AI system. These strategies are used

to reduce the number of models or improve the e�ciency of model

usage used during inference, which is a signi�cant determinant of

overall energy usage [28].

The Static strategy selects an optimal subset of models for gen-

eral tasks across the domain, while the Dynamic strategy adapts

model selection to the speci�cs of each task, aiming to conserve

energy without compromising the system’s accuracy.

Our main contribution lies in the novel Energy-Aware selection

approach, which enhances the standard Static and Dynamic strate-

gies by integrating an energy-aware metric in their application.

This metric informs the selection process, ensuring that only the

most energy-e�cient models are chosen for the task at hand.

3.2 Static Selection

Static selection involves choosing the optimal subset of models

for an entire domain. This approach generalizes the unique char-

acteristics of the domain and selects the optimal subset across all

queried properties. The following equation shows the process of

Static selection.

(0∗ = 0A6<0G(8 ∈(�1((8 ) (1)

where ( is the set of all possible model subsets, F1((8 ) is the F1 score

of subset (8 on the training set, and (0∗ as the optimal model subset

chosen for evaluation.

3.3 Dynamic Selection

Dynamic selection is based on the belief that a model subset

might not be optimal for an entire domain, but more speci�cally

for the properties within the domain [9]. Therefore, we take the

optimal subset for every queried property within the domain. This

approach could be bene�cial as the selection is more optimized

per property. The process of Dynamic selection is represented by

Equation 2.

(0∗ (? 9 ) = 0A6<0G(8 ∈(�1((8 , ? 9 ) (2)

We note % as the set of all properties within the domain. �1((8 , ? 9 )

is the F1 score of subset (8 for property ? 9 on the training set.

(0∗ (? 9 ) is the optimal model subset for property ? 9 in % chosen for

evaluation.

3.4 Energy-Aware Selection

Both selection strategies, Static and Dynamic, should reduce

energy consumption because a subset of models is used instead

of all. However, neither strategy considers how di�erent models
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compare in terms of energy e�ciency. For instance, one model

could slightly improve accuracy while costing a signi�cantly larger

amount of energy than another.

We propose an enhancement to the Static andDynamic approach

that discounts accuracy with resource consumption in the selection

of models, Energy-Aware selection. We use the GreenQuotientIndex

(GQI) [20] to factor the trade-o� between accuracy and electric-

ity usage. We add GQI to both Static and Dynamic versions, and

compute it as follows:

�&�BC0C82 = V ×
�1((8 )

U

;>610 (� ((8 ))
(3)

�&�3~=0<82 = V ×
�1((8 , ? 9 )

U

;>610 (� ((8 ))
(4)

This metric evaluates the trade-o� between accuracy and power

consumption, where U and V are constants used to scale the GQI.

The power consumption (� ((8 )) can vary signi�cantly across di�er-

ent models, and therefore the logarithm of the power consumption

is taken. Not all accuracy points (�1((8 ) for�&�BC0C82 and �1((8 , ? 9 )

for �&�3~=0<82 ) have the same weight, as it is much easier to get

from 0.4 to 0.5 then it is to go from 0.8 to 0.9. Therefore, the power

(constant U) of the accuracy re�ects the di�erence in di�culty.

Through the previouslymentionedmonitoring tool, Datadog [10],

there is no availability for power consumption. We, therefore, use

CPU usage as a proxy to discount the accuracy. We use this way

of discounting the accuracy scores for both the Dynamic and the

Static selection approaches highlighted above.

4 METHODOLOGY

This section outlines the methodology and evaluation of our

model selection strategies. We start with data collection and anal-

ysis, followed by the experimental setup. We continue with the

performance evaluation metrics. Lastly, we explore the energy con-

sumption of the models during inference.

4.1 Data

The datasets for our experiments are selected based on a set of

criteria. Each document within the dataset must contain contracts

with a complete text, its associated properties, and annotated re-

sponses corresponding to these properties. We employ open-source

datasets for our study, enhancing the reproducibility of our results.

The CUAD [22] dataset and a dataset from the work of Leivaditi

et al. [25] are used in this study, both of which were designed to

optimize contract review processes and improve the e�ectiveness

of information extraction.

4.1.1 CUAD. The Contract Understanding Atticus Dataset [22]

(CUAD) is an extensive corpus tailored for commercial legal contract

analysis. It comprises over 13,000 labels from 510 contracts divided

into 25 contract types. Each document contains one or more of

41 distinct properties. The dataset presents a challenging research

benchmark that can be used to enhance deep learning models’

performance for contract analysis/understanding [7].

4.1.2 Lease Contracts. Leivaditi et al. [25] introduced a special-

ized benchmark dataset focused on lease agreement documents.

These documents were sourced from a publicly available dataset

by the U.S. Securities and Exchange Commission (SEC, 2020). The

dataset concentrates on extracting speci�c properties, including

information about the lessor and details of the leased space.
Table 1: Relevant characteristics of CUAD and Lease Agree-

ment dataset

Dataset CUAD [22]
Lease

Agreement [25]

#Documents 510 123

#TypesOfDocuments 25 1

#WordsPerDocument 7861 8053

#AnnotatedProperties 41 12

#TotalQueries 20,910 1476

#MissingAnnotations 13,959 494

MissingAnnotation (%) 66.77 33.47

4.1.3 Analysis of Datasets. We compare and analyze the datasets

employed to understand the characteristics of the datasets and en-

sure the validity of the results. Table 1 shows the comparison of

relevant characteristics. The CUAD and Lease Agreement datasets

exhibit similar document lengths, with an average of approximately

8,000 words per document, as indicated by the #WordsPerDocument

metric. Consequently, we will not regard document length as in�u-

encing our results.

The CUAD dataset encompasses a diverse collection of 25 types

of contracts, re�ecting a wide range of legal agreements. In contrast,

the Lease Agreement dataset focuses solely on a single type of

contract, speci�cally lease agreements. With the CUAD dataset’s

variety, the model selection process must account for the nuances

and intricacies inherent in di�erent types of contracts. Conversely,

the Lease Agreement dataset’s singular focus may allow for more

specialized model tuning and optimization tailored speci�cally to

lease agreements.

Additionally, there is a notable di�erence in the number of

annotated properties between the two datasets. With #MissingAn-

notations, we indicate the number of properties that were queried

but did not have a ground truth in the document, thus missing

an annotation. Speci�cally, 66.77% of the queried properties in the

CUAD dataset lack annotations, in contrast to the Lease Agreement

dataset, which is missing annotations for only 33.47% of its prop-

erties. Despite the signi�cant number of missing annotations, we

use these datasets to cover a broader array of use cases, including

documents where the answer might not always exist. The varied

percentage of missing annotations allows us to cover more ground

in our results.

4.2 Experimental Setup

To integrate models tailored for speci�c domains, we select a

subset of documents from the CUAD [22] and Lease Agreement [25]

datasets that re�ect the entire dataset. We process, annotate, and

train models on these documents. After training, we run an evalua-

tion on a held-out test set.

For both approaches, we run inference using the complete model

ensemble on the documents from the validation set. We then eval-

uate the performance of the entire ensemble and each subset of

models within the ensemble. The subset that demonstrates the high-

est performance, as determined by F1 scores from the training set,

is selected for further testing.
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This optimally performing subset is applied to the test set doc-

uments to evaluate its e�ectiveness on new data. To ensure the

validity of the results, we create the validation and test datasets

through 5-fold cross-validation.

As implemented in the tool, the predictions made by the entire

model ensemble establish the performance evaluation baseline.

4.3 Performance Evaluation

When paired with the annotations, the ensemble’s predictions

can result in various scenarios: True Positive, where the prediction

aligns with the annotation; False Positive, where a prediction exists

but fails to match the annotation; and False Negative, where a

prediction exists but no corresponding annotation for the property

exists.

To evaluate the performance of the strategies and compare it to

the baseline situation of using all the models, we use the F1 score

at k. F1 score is a balanced metric of Recall and Precision [36].
Precision: Precision [41] is the percentage of all predictions that

match an annotation for the top k predictions:

%A428B8>=@: =

)%

)% + �%
for the top k predictions (5)

Recall: Recall [41] is the percentage of correctly predicted annota-
tions for the top k predictions:

'420;;@: =

)%

)% + �#
for the top k predictions (6)

Precision discounts for the number of False Positives and Recall

for the number of False Negatives. Increasing Precision typically

reduces Recall, and vice versa: increasing Recall decreases Precision.

This trade-o� shows the importance of prioritizing one over the

other based on speci�c objectives.
F1 score: F1 score provides a balanced measure of Precision

and Recall for the top k predictions. To ensure the robustness and
reliability of our research, we select a subset of models based on
the F1 score.

�1@: = 2 ·
%A428B8>=@: · '420;;@:

%A428B8>=@: + '420;;@:
(7)

DocQMiner [12] only shows the top 5 predictions produced by the

set of models. Consequently, we evaluate the results based on k set

to �ve. F1@5 serves as our primary criterion for selecting among

di�erent strategies, while we report Precision@5 and Recall@5 to

provide a detailed view of the factors contributing to the F1@5

score.

4.4 Resource Consumption during Inference

To �nd the most energy-e�cient model subset, we need a mea-

surement of the models’ consumption during inference. DocQMiner

is a live-production environment; therefore, we want to measure

the system’s resource consumption live. Due to this limitation, we

focused on tracking the Central Processing Unit (CPU) usage. With

the use of Datadog [10], we can record the CPU usage per second for

each process, which allows us to isolate the CPU usage per second,

speci�cally during the inference phase of the models. By taking

the cumulative sum of the CPU usage per second over the total

duration of the process, we obtain the CPU seconds per process [3]:

CPU seconds =

=∑

8=1

D8 (8)

= is the total number of seconds for the process, and D8 is the

CPU usage per second during 8 . Datadog [10] performs this sum

calculation.

This setup shows a clear view of each model’s performance,

given that any other model does not in�uence the CPU utilization

of one model. We gather the data for processing each document

and each model for a set of intervals of the amount of queried

properties.

Given that these measurements are taken in a live production

environment, we designed our approach to yield results that closely

represent the most probable outcomes. We acknowledge the in-

herent variability of a production environment, so we plot the

measurements’ outcomes to account for the variance in results. To

ensure the validity of the collected data, we repeat the measurement

per number of queried properties 30 times.

5 RESULTS

Our evaluation of selection strategies across two datasets—CUAD

and Lease Agreement—reveals signi�cant di�erences in accuracy

metrics, including Precision at 5 (P@5), Recall at 5 (R@5), F1 score,

and the number of correct and incorrect predictions made by the

models involved (see Table 2). Full Ensemble re�ects the baseline of

using all the models for every property within all documents.

5.1 Experimental Context

Legal information extraction. Extracting relevant information

from legal documents presents signi�cant challenges due to their

complex nature. These texts often require identifying speci�c details

within extensive documents. This task notably di�ers from more

straightforward tasks like classi�cation, where an F1 score below 0.6

might be deemed insigni�cant. In the context of legal text analysis,

the F1 scores are typically lower, re�ecting the intricate nature of

the work involved.

These lower scores are supported in research conducted by

Savelka et al. [38] using GPT-4 for property extraction from complex

legal documents, which reported a Precision of 0.63, a Recall of

0.46, and an F1 score of 0.53. Despite being from a di�erent dataset,

these results show that relevant information extraction from legal

documents is not a trivial task, and the results from the Full Ensemble

should be interpreted as such.

Recall-oriented system. DocQMiner [12] is developed prioritizing

Recall as the key metric, which aligns with its human-in-the-loop

design. This design allows users to choose the best answer from

the predictions provided. Consequently, the model development

concentrates on accurately identifying relevant properties rather

than minimizing the prediction of incorrect properties.

5.2 Full Ensemble

For CUAD, the Full Ensemble strategy achieved a P@5 of 0.0871,

R@5 of 0.5338, and F1 of 0.1495, making 490 correct and 5928

incorrect predictions, with 100% CPU usage. For Lease Agreement,

Full Ensemble had a P@5 of 0.1386, R@5 of 0.4448, and F1 of 0.2203,

with 90 correct and 584 incorrect predictions, at 100% CPU usage.

5.3 Static Strategy

For CUAD, the Static Original variant, as de�ned in Section 3.2,

achieved a P@5 of 0.6457, R@5 of 0.4872, and F1 of 0.5544, with
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Table 2: Results of Full Ensemble, Static and Dynamic strategy in Precision@5, Recall@5, F1@5, Number of Correct Prediction,

Number of Incorrect predictions and Consumption in percentage for CUAD and Lease Agreement dataset

CUAD [22] Lease Agreement [25]

Strategy P@5 R@5 F1@5
# Correct

predictions

# Incorrect

predictions

Relative

CPU Usage
P@5 R@5 F1@5

# Correct

predictions

# Incorrect

predictions

Relative

CPU Usage

Full Ensemble 0.0871 0.5338 0.1495 490 5928 100% 0.1386 0.4448 0.2203 90 584 100%

Static
Original 0.6457 0.4872 0.5544 408 265 60.39% 0.1763 0.3677 0.2545 77 376 64.62%

Energy-Aware 0.6370 0.4652 0.5366 394 259 26.52% 0.1817 0.2404 0.2054 57 278 0.82%

Dynamic
Original 0.6118 0.5448 0.5750 446 322 71.28% 0.1852 0.4732 0.2652 93 427 81.22%

Energy-Aware 0.6099 0.5471 0.5756 446 326 67.11% 0.2106 0.3415 0.2588 70 282 47.43%

408 correct and 265 incorrect predictions, consuming 60.39% CPU

compared to the Full Ensemble. For Lease Agreement, Static Original

posted a P@5 of 0.1763, R@5 of 0.3677, and F1 of 0.2545, with 77

correct and 376 incorrect predictions, at 64.62% CPU usage.

The Static Energy-Aware variation, as de�ned in Section 3.4, for

CUAD showed a slight decrease in performance to an F1 of 0.5366,

P@5 of 0.6370, R@5 of 0.4652, with 394 correct and 259 incorrect

predictions, and reduced energy consumption to 26.52% CPU. For

the Lease Agreement dataset, it managed an F1 of 0.2054, P@5

of 0.1817, and R@5 of 0.2404, with 57 correct and 278 incorrect

predictions, drastically cutting CPU use to 0.82%.

Compared to the Full Ensemble baseline, overall Recall has

slightly declined; however, overall Precision has increased, espe-

cially for the CUAD dataset. These results show that the Static

strategy can correctly identify many properties while reducing the

‘noise’ of incorrect predictions.

5.4 Dynamic Strategy

For CUAD, the Dynamic Original strategy, as de�ned in Section

3.3, resulted in an F1 score of 0.5750, a P@5 of 0.6118, an R@5 of

0.5448, 446 correct and 322 incorrect predictions, at 71.28% CPU

consumption. For Lease Agreement, it achieved an F1 score of

0.2652, a P@5 of 0.1852, an R@5 of 0.4732, 93 correct and 427

incorrect predictions, with 81.22% CPU usage compared to the Full

Ensemble.

The Dynamic Energy-Aware, de�ned in Section 3.4, showed for

CUAD an F1 of 0.5756, P@5 of 0.6099, and R@5 of 0.5471, with

446 correct and 326 incorrect predictions, lowering CPU usage to

67.11%. For the Lease Agreement dataset, the F1 was 0.2588, P@5 of

0.2106, R@5 of 0.3415, with 70 correct and 282 incorrect predictions,

reducing CPU consumption to 47.43%.

Overall, the Dynamic Original strategy outperforms the baseline

on both Precision and Recall. The increase in Recall is notable,

considering DocQMiner is tailored to Recall. The increase in Recall

is suspected to be due to how the ensemble ‘dilutes’ the predictions,

and the Dynamic strategy specializes in speci�c properties.

5.5 Strategy Selection

Identifying an optimal strategy for an ensemble of models hinges

on a few considerations. The evaluation of the Full Ensemble, Static,

and Dynamic strategies across the CUAD and Lease Agreement

datasets provides valuable insights into their respective strengths

and weaknesses.

5.5.1 Precision - Recall Trade-o�.

For Precision. The Static Original strategy stands out in the

CUAD dataset with a Precision (P@5) of 0.6457 and an F1 score

of 0.5544, signi�cantly reducing the noise of incorrect predictions.

Similarly, the Lease Agreement dataset performs with a Precision

of 0.1763, compared to 0.1386 Precision for the Full Ensemble. These

numbers suggest that the Static Original strategy o�ers a solution

when minimising false positives is the goal.

For Recall. The Dynamic Original strategy shines by delivering

a Recall (R@5) of 0.5448 for CUAD and 0.4732 for Lease Agreement,

coupled with the highest F1 scores (0.5750 and 0.2652). This strategy

ensures that more relevant properties are captured, making it ideal

when maximising the number of accurately identi�ed properties,

which is the goal.

5.5.2 Resource e�iciency. In a resource constraint environment,

their performance and e�ciency balance should inform the choice

between the Static Energy-Aware and Dynamic Energy-Aware strate-

gies.

Extreme E�ciency. The Static Energy-Aware strategy is unparal-

leled, especially evident in the Lease Agreement dataset, with CPU

usage reduced to nearly 1%. This strategy is suitable for projects

where every bit of computational resource saved makes an impact,

even at the expense of some accuracy.

Balanced Approach. The Dynamic Energy-Aware strategy, while

not as resource-e�cient as its Static counterpart, o�ers a balance

between accuracy and resource usage. This balance makes it ideal

for scenarios where a moderate resource reduction is acceptable if

it means retaining a higher level of accuracy.

5.5.3 Specificity of Properties. If the task involves identifying par-

ticular properties within legal documents, the specialisation af-

forded by the Dynamic strategies might yield better results. The

Dynamic strategies are �ne-tuned to identify speci�c properties

more e�ectively, possibly at the cost of broader applicability that

Static strategies can o�er.

However, the success of the Dynamic approach hinges on the

availability of su�cient information about the speci�c properties

within the test set to identify the optimal subset accurately. In cases

where such speci�c information is unavailable, the Static strategy

may be the more suitable option, balancing the need for broader

coverage with the available data.
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5.6 Impact of Selection Strategies

Our results indicate that implementing model selection strate-

gies can signi�cantly impact both the accuracy and resource con-

sumption of ensemble learning systems. The evaluation of the Static

strategy suggests a notable improvement in Precision, reducing the

number of incorrect predictions. In comparison, the Dynamic strat-

egy excels in Recall, e�ectively retrieving more relevant instances

while achieving a reduction in energy consumption, making it ideal

for applications where capturing as much relevant information as

possible is critical.

Furthermore, by enhancing these strategieswith the cost-inclusive

GreenQuotientIndex (GQI) [20], we have demonstrated a method

for reducing the models’ energy consumption without substantially

sacri�cing accuracy. For instance, the Static Energy-Aware strat-

egy decreases the average energy usage from approximately 62%

to 14% compared to the Full Ensemble, highlighting the potential

for signi�cant energy savings. In the case of the Dynamic Energy-

Aware strategy, we observed an average reduction from around 76%

to 57%, showing the e�ectiveness of this approach in balancing

performance with energy e�ciency.

These �ndings con�rm that model selection strategies, in their

original form and particularly when augmented with an energy

consumption metric, can combine the objectives of maintaining

high accuracy while reducing the energy demands of AI systems

in a production environment.

6 DISCUSSION

This study presents several insights for strategic model selection

for ensemble learning in live AI systems, particularly in perfor-

mance optimization and computational e�ciency.

6.1 (Green) AI

For AI practitioners, the �ndings emphasize the importance

and viability of balancing accuracy with computational cost. In

the current context, where computational e�ciency is both an

economic and environmental concern, the study’s insights suggest

that achieving this balance—maintaining high levels of accuracy

while being mindful of the computational resources consumed—is

essential for sustainable AI development [39].

These insights provide practical industry bene�ts, particularly

in strategizing AI developments. The potential for resource-e�cient

model selection without signi�cantly compromising performance

paves the way for greener AI solutions. Such solutions are particu-

larly valuable in resource-intensive applications, contributing to

e�orts to reduce AI technologies’ environmental footprint.

6.2 Future of Ensembles

With the rising popularity of large language models (LLMs), one

might wonder whether "old-school" ensembles are still the way to

go. Research has shown that for most NLP tasks considered state-

of-the-art �ne-tuned models like TULRv6 generally outperform

LLMs by a considerable margin, especially in languages other than

English [1]. An LLM may not provide superior solutions for the

speci�c task of legal information extraction.

In addition to accuracy, we prioritize e�ciency as a crucial met-

ric. A straightforward auto-regressive model like BERT!0A64 , which

consists of approximately 340 million parameters [15], requires four

days of training on 16 TPU processors [16]. In contrast, GPT-4 is

rumored to have 1.7 trillion parameters and demands 90-100 days of

training on 25,000 GPU processors [17]. Although OpenAI has not

o�cially disclosed the energy consumption of these models, it is

reasonable to assume that their resource usage is signi�cant. From

the perspective of energy consumption, ensembles of �ne-tuned

models are preferable to large language models.

6.3 Monitoring

Monitoring is critical to ensuring the sustainability of AI sys-

tems [21, 47]. Practitioners need to be able to monitor their applica-

tions to understand their energy consumption and environmental

impact. Tools and interfaces that facilitate the development of AI

systems should also incorporate features for monitoring energy

usage. Monitoring tools would enable practitioners to create eco-

friendly systems without signi�cant e�ort, addressing the gap in

making sustainable AI more accessible and practical.

Moreover, by identifying the major energy consumers within

live AI systems, practitioners can focus on reducing energy con-

sumption in the most impactful areas, leading to more e�cient and

sustainable AI solutions.

6.4 Practical Implications

Balancing theoretical performance with practical considerations

is vital when choosing the best model for a task. The Static strategy

is typically more straightforward to deploy and compatible with

a broader range of infrastructures, making it a practical option

for many setups. The Dynamic strategy, while potentially more

e�ective for speci�c tasks, might demand a more complex infras-

tructure setup. Therefore, the decision should consider the desired

accuracy, e�ciency, and practicality of integrating and maintaining

the strategy into existing systems.

Companies should prioritize sustainable AI development as the

impact of AI on the workforce continues to grow, accompanied by

signi�cant �nancial and environmental costs. Although the Green

AI �eld is expanding, its connection to the industry remains insuf-

�cient [44]. This research demonstrates that making AI systems in

production more sustainable is feasible. Continued e�orts in this

direction can further convince companies of the practicality and

bene�ts of adopting sustainable AI practices.

6.5 Limitations

While this study provides valuable insights, it also has limi-

tations. The evaluation was conducted on two speci�c datasets

within the legal domain, which may limit the generalizability of the

�ndings to other types of documents or domains. Future research

could explore the applicability of these model selection strategies

across a broader range of datasets and domains, not only within

information extraction but also in other areas beyond the scope of

NLP.

Additionally, our approach to discounting model selection based

on resource consumption relies on CPU seconds as a proxy for en-

ergy consumption. Future studies could incorporate more direct

metrics of energy consumption, such as power usage in kWh, to

assess the environmental impact and reduction in the carbon foot-

print of di�erent model selection strategies. This limitation aligns

with the continued need for accurate and easy-to-use monitoring

tools for AI systems [21, 47] highlighted in Section 6.3.

56



AIware ’24, July 15–16, 2024, Porto de Galinhas, Brazil Nienke Nijkamp, June Sallou, Niels van der Heijden, and Luís Cruz

Lastly, our study does not account for the energy costs associated

with training or �ne-tuning models for speci�c domains within the

ensemble. Future research should investigate whether the accuracy

improvements from domain-speci�c training, see blue models in

Figure 2, justify these increased energy expenditures. This analysis

could provide deeper insights into the e�ciency and e�ectiveness

of employing specialized models within ensemble systems.

7 RELATED WORK

Green AI, the intersection of energy e�ciency and model accu-

racy in Arti�cial Intelligence (AI), has sparked a growing interest

amongst researchers [39, 42]. Our work focuses on reducing re-

source consumption in ensemble learning using model selection

strategies in a live production environment. To our knowledge,

there is no other work combining all elements. Below, we highlight

the most signi�cant contributions in model selection strategies and

Green AI.

Zhou et al. [49] pivoted model selection in ensemble learning.

Their work introduced GASEN, an approach that begins by al-

locating initial weights to neural networks and then employs a

genetic algorithm to re�ne these weights. The optimized weights

are instrumental in selecting the most e�ective subset of the en-

semble. GASEN proves that incorporating the entire ensemble may

not always be the optimal strategy, demonstrating the potential of

selecting a subset of models.

Li et al. [28] present a novel approach, IRENE, to ensemble learn-

ing that focuses on balancing performance and computational cost

for inference of ensemble learning. Using a learnable selector, base

models, and implementing early halting in a sequential model setup,

IRENE reduces inference costs by up to 56% while maintaining

comparable performance to complete ensembles. IRENE presents a

highly e�ective strategy for ensemble learning in contexts where

sequential processing is feasible. However, the speci�c use case

addressed in this paper necessitates a parallel approach and, as

such, does not accommodate the sequential processing model that

IRENE requires.

David et al. [11] propose an ensemble learning approach based

on the consensus of multiple models for class prediction. It operates

under the assumption that once multiple models predict a class, it

is likely the correct one. This approach signi�cantly reduces com-

putational costs by about 50% while maintaining accuracy. Despite

its e�ectiveness in classi�cation tasks, this approach is not directly

applicable to our work, as our ensemble is geared towards infor-

mation extraction rather than classi�cation, requiring a di�erent

methodological framework.

Kotary et al. [24] introduce a framework that combines machine

learning and combinatorial optimization for di�erentiable model

selection in ensemble learning. Their method of storing data for

predicting optimal subsets in a neural network contrasts with our

approach, which involves a more straightforward collection and

selection of models within an ensemble for task-speci�c optimiza-

tion. Additionally, as with the method from David et al. highlighted

above, the success achieved on classi�cation tasks cannot immedi-

ately be transferred to information extraction.

Cordeira et al.[9] present a new approach called Post-Selection

Dynamic Ensemble Selection (PS-DES). PS-DES evaluates ensem-

bles selected by di�erent DES techniques using di�erent metrics to

determine the best ensemble for each query instance. Their work

introduces static and dynamic model selection based on evaluating

a preliminary set of results. The relevance of these selection meth-

ods to our study stems from their design goal of integration into AI

pipelines, which aligns with our focus on applying these strategies

to a real-life use case. Consequently, we adopt these methods to

reduce the number of models during inference in ensembles.

Within this landscape of optimizing ensemble learning, the work

of Gowda et al. [20] introduces a critical consideration for assessing

model e�ciency. They propose a GreenQuotientIndex (GQI) metric

that penalizes high electricity consumption while considering accu-

racy. The authors conduct a comprehensive study on the electricity

consumption of di�erent deep learning models, highlighting the

often overlooked trade-o� between accuracy and energy e�ciency.

Our work takes this concept further by demonstrating the practical

application of the GQI in real-time production environments that

rely on model ensembles.

8 CONCLUSION

In response to the rising energy demands of AI-powered soft-

ware (AIware), particularly those employing ensemble learning [28],

our empirical study investigates model selection strategies to opti-

mize both accuracy and energy e�ciency.

Our research introduces and evaluates two model selection

strategies, Static and Dynamic, aimed at optimizing the perfor-

mance of ensemble learning systems while minimizing their energy

usage.

By evaluating the Static and Dynamic strategies across the

CUAD and Lease Agreement datasets, we have highlighted the

adaptability and potential of these approaches tomeet diverse needs.

Our results reveal that the Static strategy improves the F1 score be-

yond the baseline, reducing average energy usage from 100% from

the full ensemble to 62%. The Dynamic strategy further enhances

F1 scores, while using on average 76% compared to 100% of the full

ensemble.

Additionally, we propose an approach that discounts accuracy

with resource consumption, the Energy-Aware approach, showing

potential for further reducing energy usage without signi�cantly

impacting accuracy. This method further decreased the average

energy usage of the Static strategy from approximately 62% to about

14%, and for the optimal Dynamic strategy, from around 76% to

roughly 57%.

Our �ndings, especially the successful application of the Energy-

Aware approach, align with the principles of Green AI [39, 42], advo-

cating for sustainable AI practices that maintain high-performance

standards.

This �eld study on DocQMiner, an AI system actively used in

the industry, highlights our research’s real-world applicability and

signi�cance in advancing sustainable, e�cient AI technologies for

live production environments.

These insights provide a valuable perspective for the industry

on developing AI in a resource-conscious yet e�ective manner.

They highlight the feasibility of using model selection strategies to

balance accuracy and computational e�ciency, demonstrating the

crucial need for adopting strategies that account for accuracy and

environmental impact for ensuring sustainable development as AI

progresses.
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