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Periodic water waves generate Stokes drift as manifest from the orbits of Lagrangian
particles not fully closing. Stokes drift can contribute to the transport of floating marine
litter, including plastic. Previously, marine litter objects have been considered to be perfect
Lagrangian tracers, travelling with the Stokes drift of the waves. However, floating marine
litter objects have large ranges of sizes and densities, which potentially result in different
rates of transport by waves due to the non-Lagrangian behaviour of the objects. Through
a combination of theory and experiments for idealised spherical objects in deep-water
waves, we show that different objects are transported at different rates depending on
their size and density, and that larger buoyant objects can have increased drift compared
with Lagrangian tracers. We show that the mechanism for the increased drift observed
in our experiments comprises the variable submergence and the corresponding dynamic
buoyancy force components in a direction perpendicular to the local water surface. This
leads to an amplification of the drift of these objects compared to the Stokes drift
when averaged over the wave cycle. Using an expansion in wave steepness, we derive a
closed-form approximation for this increased drift, which can be included in ocean-scale
models of marine litter transport.
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R. Calvert and others

1. Introduction

In the last half-century, large concentrations of plastic have polluted the oceans, with
harmful effects on marine wildlife and potentially on human health (Cole et al. 2011;
Cózar et al. 2014; Ostle et al. 2019). Plastic pollution may have lasting impact, noting that
it has been estimated that plastic may take hundreds or thousands of years for plastic to
decay in the ocean (Cole et al. 2011), although such estimates are subject to considerable
uncertainty (Ward & Reddy 2020). Floating plastic debris is transported and dispersed by
three key mechanisms: currents, wind and waves (van Sebille et al. 2020). This paper will
investigate wave-induced transport.

To leading order and in deep water, the Lagrangian motion induced by waves takes
the form of circular orbits with Lagrangian particles following these orbits in a periodic
fashion. The imbalance between the forward orbital velocity when under the crest and
backward orbital velocity when under the trough, caused by the decay in velocity
with depth, and the fact that particles spend more time under the forward-moving
crest than under the backward-moving trough results in orbits that do not close, i.e. a
Lagrangian-mean drift, known as Stokes drift (Stokes 1847). Stokes drift in deep water is
proportional to the square of wave steepness and decays with depth at twice the rate of the
oscillatory water particle velocity (see e.g. the review by van den Bremer & Breivik 2017).
Ocean surface gravity waves are driven by wind, and thus Stokes drift has often been
assumed to be locally proportional to the wind forcing (Weber 1983). However, waves are
slow to build and, once established as swell, waves can travel long distances with little
dispersion (Hanley, Belcher & Sullivan 2010; Ardhuin et al. 2019), and so their magnitude
is not always proportional to the local wind forcing. Wave models, such as WaveWatch III
(The WaveWatch III Development Group 2016), can be used to predict Stokes drift (Webb
& Fox-Kemper 2011, 2015).

Several authors have considered the effect of Stokes drift on the transport of floating
marine litter. In an early study, Kubota (1994) found that Stokes drift derived from local
wind fields did not make a significant contribution towards debris transport. However,
more recent studies that included the entire wave field showed that Stokes drift could play
an important role. For example, Iwasaki et al. (2017) found that Stokes drift transported
plastic towards the coast in the Sea of Japan during winter, and Delandmeter & Van Sebille
(2019) reported similar behaviour in the Norwegian Sea. Stokes drift could enable debris
to leak out of the Indian Ocean (Dobler et al. 2019), cause drifting debris to cross the
strong circumpolar winds and currents to reach the Antarctic coast (Fraser et al. 2018),
and thus promote increased transport to polar regions (Onink et al. 2019). Isobe et al.
(2014) modelled the plastic beaching process by including Stokes drift and sinking velocity
and observed that larger plastic debris was selectively moved onshore. All the foregoing
studies have simply assumed that floating marine litter objects are transported with the
Stokes drift; in other words, that they are perfect Lagrangian tracers.

If a particle is infinitesimally small and has the same density as water, it will behave
purely as a Lagrangian tracer and will be transported with the Stokes drift. This is not
necessarily true for an object of finite size or of a density different to that of water. As the
inertia of such an object becomes important, the fluid will exert a drag on the object owing
to the relative velocity between the object and fluid. Furthermore, the object may rise,
sink, or float depending on the density difference. The literature distinguishes between
fully submerged and floating objects, discussed separately below.

The motion of a fully submerged sphere in unsteady flow with viscous drag can be
described by the Maxey–Riley equations (Maxey & Riley 1983). Based on this pioneering
work, Eames (2008) and Santamaria et al. (2013) examined how far slightly positively
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The increased wave-induced drift of floating marine litter

or negatively buoyant objects would be transported by regular waves. They defined the
distance transported as either the horizontal distance transported whilst a negatively
buoyant object sinks from the free surface to the sea floor or the horizontal distance
transported whilst a positively buoyant object rises from the sea floor to the free surface.
Eames (2008) and Santamaria et al. (2013) used an expansion in wave steepness and
Stokes number to arrive at analytical solutions for small objects. To leading order and
for negatively buoyant objects, Eames (2008) showed such small objects are transported
with a mean horizontal Stokes drift velocity and sediment with their terminal fall velocity.
Santamaria et al. (2013) predicted that positively buoyant objects would experience an
increase in drift owing to their inertia. Although Eames (2008) and Santamaria et al.
(2013) considered the object’s inertia when examining transport by waves, both considered
completely submerged objects.

Also considering fully submerged objects, DiBenedetto & Ouellette (2018) first showed
that non-spherical objects have a preferential orientation under waves, confirming this
result numerically (DiBenedetto & Ouellette 2018) and experimentally (DiBenedetto,
Koseff & Ouellette 2019) but not examining the effect of the object’s inertia. The
orientation changes the drag on slightly negatively buoyant objects, which results in
objects of different shapes being transported different distances before ‘raining out’
(DiBenedetto, Ouellette & Koseff 2018).

Analysis of the motion of floating objects commences with the extension of
Maxey–Riley equation (Maxey & Riley 1983) to include a free surface, as undertaken
by Rumer, Crissman & Wake (1979). These authors considered the free surface to be an
oscillating slope with a vertical force balance between gravity and buoyancy, whilst the
horizontal part of the buoyancy force induces object motion in what Rumer et al. (1979)
termed the slope-sliding effect. Shen & Zhong (2001) further extended the slope-sliding
model, proceeding to find analytical solutions of the object motion in limit of no added
mass or no resistance. Huang, Huang & Law (2016) found that the drift of relatively
large floating discs, used to model floating ice sheets, increased beyond the Stokes drift
in physical experiments. This could be explained by numerical solutions to an equation of
motion based on a rotating coordinate system which aligned with the free surface, leaving
the physical mechanism at work unclear.

Although not focusing on waves, Beron-Vera, Olascoaga & Lumpkin (2016) showed that
the inertia of an undrogued drifter is important for their accumulation in subtropic gyres.
The study integrated a Maxey–Riley equation that modelled the variable submergence
of surface drifters and included forcing from current and wind velocities, by varying
the relative effect of each with the submerged volume of the drifter. The drag
formulation assumed linear dependence of force on the density ratio between the
object and water, as has been experimentally validated by Miron et al. (2020). The
Maxey–Riley equation has been extended to model floating Sargassum rafts (Beron-Vera &
Miron 2020).

Surface tension can be important in the response of small inertial particles under wave
action, as shown by Falkovich et al. (2005), who found that hydrophobic and hydrophilic
particles concentrate in antinodes and nodes of a standing wave, respectively. Denissenko,
Falkovich & Lukaschuk (2006) demonstrated the importance of surface tension when
predicting time scales of small particle clusters in standing waves. In this paper, we do not
examine the effect of surface tension, which places a lower limit on the size of particles
for which our model is valid.

This paper examines the transport of inertial, finite-size floating marine litter under the
influence of non-breaking waves. Our derivation starts from Newton’s second law, with
buoyancy, gravity and drag force components. Using a transformed coordinate system,
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similar but not equivalent to Huang et al. (2016), that vertically translates and is oriented
orthogonally to the time-varying free surface, we ensure that the dynamic buoyancy
term is directed normal to the free surface. In this model, the drag force changes with
submergence of the object, and we formulate a drag coefficient that is valid across
a range of Reynolds numbers. We use perturbation methods to derive a closed-form
solution for the transport of inertial, finite-size floating spherical objects, which is then
used to interpret the physical mechanism for their enhanced transport compared to
the Stokes drift. Numerical and analytical solutions are compared for viscous drag. In
order to observe the predicted response, we perform experiments in a laboratory wave
flume.

This paper is laid out as follows. Section 2 presents the theoretical model. Section 3
describes solutions obtained using perturbation methods for viscous drag. Section 4
compares the analytical solutions thus obtained against numerical solutions of the model.
The numerical solutions are also used to compare model predictions of viscous and
non-viscous drag. Conclusions are drawn in § 5.

2. Mathematical model

2.1. Equation of motion of a floating object
The motion of a floating inertial object is described by Newton’s second law

mv̇ = F ≡ B + M + G + R, (2.1)

where m is the mass of the object and v its velocity with the dot denoting a derivative
with respect to time. The total force on the object F can be decomposed into a buoyancy
force B, an added-mass force M , a gravity force G and a resistance force R, which are
formulated below. The buoyancy and added-mass forces arise from the integral of pressure
around the object. For simplicity, we will assume the object is spherical with diameter
D. Throughout, it is assumed that the object is small relative to the wavelength, such
that D/λ0 � 1, with D the diameter of the object and λ0 the wavelength. This has four
important consequences. First, the wave field is unaffected by the presence of the object;
in other words, there is no diffraction. Second, the free surface can be approximated
as an (inclined) straight line on the scale of the object. Third, we can approximate the
(relative) velocity field between the liquid and object, which determines the drag on
the object, as the velocity at a point. Fourth, the buoyancy force can be computed from
the submergence measured relative to the free surface. Nevertheless, the model neglects
surface tension. This assumption is reasonable for floating objects provided the following
threshold criterion (e.g. Falkovich et al. 2005) is met: D/2 >

√
γ /(ρg), where γ is surface

tension, ρ is density of water and g is gravitational acceleration. For water, the criterion is
satisfied for objects of diameter exceeding 5.4 mm, resulting in the findings being invalid
for microplastic. However, such small plastics are likely to behave as purely Lagrangian
tracers.

We first adopt a stationary two-dimensional laboratory coordinate system (x, z) with the
vertical coordinate z measured upwards from the undisturbed free surface. To define the
forces on the object, a second, moving coordinate system (τ , n) is established that moves
vertically with the free surface z = η(x, t) and aligns locally with the τ -axis tangential to
the free surface at the position of the object xp and the n-axis normal to it, as shown in
figure 1. The coordinate transformation takes the form of a vertical translation followed by
a clockwise rotation through the angle θ = arctan(∂η/∂x), both at the horizontal position
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z

n

x

xp

D

en

xp

s

z = η

z = η

z = 0

z = 0

eτ
τ

θ

Figure 1. Diagram of the two coordinate systems used to describe a floating object of diameter D: a stationary
laboratory coordinate system (x, z) and a vertically translating and rotating coordinate system (τ , n) with its
origin at the vertical position of the free surface z = ηp and the τ -axis aligned tangential to the free surface.
The vector xp locates the centre of the object relative to the origin of the stationary coordinate system, tan θ =
∂η/∂x is the slope of the free surface and s is the (variable) submergence.

of the object xp[
τ

n

]
=
[

1 ∂xη(x, t)|xp

−∂xη(x, t)|xp 1

][
x

z − η(xp, t)

]
Ξ(xp, t)

with Ξ(xp, t) ≡ (1 + (∂xη(x, t)|xp)
2)−1/2, (2.2)

where a small-angle approximation on θ has been used and Ξ is required for the
determinant of the transformation matrix to be unity and thus conserve area. The quantities
∂xη(x, t), η(x, t) and Ξ(x, t) are evaluated at the object position xp(t) and are thus solely
functions of time t. The coordinate system (τ , n) does not translate in the horizontal
direction, enabling direct estimation of the object’s horizontal drift v̄x = ¯̇xp, where the
overbar denotes an average over the wave cycle. The time-dependent unit normal vectors
are

eτ = [1, ∂xη(x, t)|xp]Ξ(xp, t) and en = [−∂xη(x, t)|xp, 1]Ξ(xp, t). (2.3a,b)

It should be emphasised that (τ , n) is an accelerating coordinate system, both in terms of
rotation and vertical translation. Inverting (2.3)

ex = (eτ (t) − ∂xη(x, t)|xpen(t))Ξ(xp, t) and ez = (∂xη(x, t)|xpeτ (t) + en(t))Ξ(xp, t).
(2.4a,b)

For the time-dependent unit normal vectors eτ (t) and en(t)

deτ (t)
dt

= θ̇pen(t) and
den(t)

dt
= −θ̇peτ (t) with θ̇p = dt(∂xη(x, t)|xp)Ξ

2
p , (2.5a,b)

in which θp(t) ≡ θ(xp(t), t), Ξp(t) = Ξ(xp(t), t) and dt ≡ d/dt.
Denoting the position of the object as xp = xpex + zpez = ηpez + τpeτ + npen with

ηp(t) ≡ η(xp(t), t), its velocity may be written as

v = vxex + vzez = (τ̇p − θ̇pnp + η̇p∂xη|xpΞp)eτ + (ṅp + θ̇pτp + η̇pΞp)en, (2.6)
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where we have used (2.5) for the time derivatives of the unit vectors eτ and en, and ez was
substituted for from (2.4b). The velocity in the translating reference frame v∗ is related to
the velocity in the stationary reference frame v by v∗ = v − η̇pez, where both vectors can
be expressed in any arbitrary set of orthogonal components, such as ex and ez or eτ and en.
Accordingly, the acceleration of the object can be written as

v̇ = v̇xex + v̇zez = (τ̈p − θ̈pnp − 2θ̇pṅp − (θ̇p)
2τp + η̈p∂xη|xpΞp)eτ

+ (n̈p + θ̈pτp + 2θ̇pτ̇p − (θ̇p)
2np + η̈pΞp)en. (2.7)

To evaluate (2.7), the double time derivatives θ̈p and η̈p must be evaluated explicitly. The
double time derivative θ̈p can be obtained by differentiating with respect to time twice
using the relationship θp = arctan(∂η/∂x|xp), noting that xp is a function of time requiring
the chain rule, to obtain

θ̈p = (∂ttxη|xp + 2ẋp∂txxη|xp + (ẋp)
2∂xxxη|xp + ẍp∂xxη|xp)Ξ

2
p

+ (∂txη|xp + ẋp∂xxη|xp)2ΞpΞ̇p. (2.8)

Similarly, the double time derivative η̈p takes into account the dependence of the free
surface ηp(xp(t), t) on time t and the time-dependent horizontal position xp(t), which gives
through the chain rule after differentiating twice

η̈p = ∂ttη|xp + 2ẋp∂txη|xp + (ẋp)
2∂xxη|xp + ẍp∂xη|xp . (2.9)

Substituting (2.8) and (2.9) into (2.7) and (2.7) thence into (2.1) results in two second-order
differential equations in the (n, τ ) coordinate system, which are explicitly given by (A1)
and (A2) in Appendix A. These two equations contain three second-order time derivatives,
and so a third (kinematic) equation relating the second-order derivatives is required to
solve the system. Such an equation can for example be found by taking the dot product of
(2.7) and ex (see (A3) in Appendix A).

For convenience, we express the normal coordinate of the centre of the object np in
terms of the submergence depth s (see figure 1). To do so, we assume that D/λ0 � 1 so
that the free surface is a locally straight line with n-coordinate ns = −∂xη|xpxpΞp (using
(2.2), setting x = xp and z = ηp). The submergence depth is then given by s = D/2 −
(np − ns) = D/2 − np − xp∂xη|xpΞp, where D is the diameter of the object. From (2.6),
the following expression is obtained for the horizontal velocity of the object:

ẋp = (τ̇p − θ̇p(np + τp∂xη|xp) − ṅp∂xη|xp)Ξp. (2.10)

It should be noted that ṡ = −ṅp − dt(xp∂xη|xpΞp).

2.1.1. Buoyancy and added mass
We decompose total pressure p into an undisturbed component pundisturbed and a disturbed
component pdisturbed owing to the presence of the object. Assuming an object that is small
relative to the wavelength (D/λ0 � 1), the undisturbed pressure varies as pundisturbed =
ρf g(η(x, t) − z) on the scale of the object with ρf the density of the fluid, so that the
dynamic free surface boundary condition pundisturbed(z = η) = 0 is satisfied, the variation
with depth is hydrostatic, and any depth-dependent variation owing the waves (cf. exp(k0z)
with k0 the wavenumber) is ignored.
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The undisturbed pressure integrated around the wetted surface results in a buoyancy
force acting in the normal direction to the free surface,

Bn(t) = gm
β

Vs

V
Ξ−1

p = gm
β

(
3
(

s(t)
D

)2

− 2
(

s(t)
D

)3
)

Ξ−1
p , (2.11)

where g is the gravitational constant, Vs is the submerged, V the total volume of the
sphere and β ≡ ρo/ρf is the ratio of object to fluid density. By including ρf gη(x, t) in
the undisturbed pressure, we have included the Froude–Krylov force resulting from the
waves.

The disturbed component of pressure leads to added-mass terms, as derived by Maxey
& Riley (1983)

Mτ = Cm,τ (s)m
β

(u̇τ (x̃p, t) − v̇τ ) and Mn = Cm,n(s)m
β

(u̇n(x̃p, t) − v̇n), (2.12a,b)

where Cm = (Cm,τ , Cm,n) is the added-mass coefficient, which is deliberately left as an
unspecified function of submergence s(t) at this stage of the derivation.

The small-diameter assumption leaves the vertical location, where we should evaluate
the velocity of the surrounding fluid in (2.12), unspecified. We set this location to be at the
free surface, x̃p = (xp, ηp).

2.1.2. Gravity forces
The gravity force acts in the vertical direction, and has the following components in the
moving coordinate system:

Gτ (t) = −mg∂xη|xpΞp(t) and Gn(t) = −mgΞp(t). (2.13a,b)

2.1.3. Resistance forces
The resistance terms are caused by drag on the object when it has a velocity relative to that
of the surrounding liquid. To begin, we assume viscous drag. We assume this drag depends
on the submergence of the object and, specifically, we assume the drag is proportional to
the submerged projected area of the sphere in the tangential and normal directions (see
figure 2). Other drag formulations are discussed and examined in § 4. The resistance force
in the tangential direction is,

Rτ = 3πρf νDÂs,τ (u∗
τ − v∗

τ ), (2.14)

where u∗
τ and v∗

τ are the velocity components in the τ -direction of the surrounding fluid
and the object velocity respectively (in the moving reference frame). The normalised area
in the tangential direction Âs,τ is the projected area of the submerged sphere,

As,τ = D2

8
(ζ − sin(ζ )) with ζ ≡ 2 cos−1 (1 − 2s/D) , (2.15)

normalised by the maximum projected area A = πD2/4, so that Âs,τ = As,τ /A. Assuming
the drag is proportional to the submerged projected area following Beron-Vera et al. (2016),
which has been validated for steady flows (Miron et al. 2020; Olascoaga et al. 2020), we
evaluate the fluid velocity u∗

τ at the free surface, x̃p = (xp, ηp).
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en

eτ
x x x

Vs = πs(t)2/3 (3D/2 – s(t))
As,n = πs(t)(D – s(t)) As,τ = D2/8 (ζ – sin(ζ))

ζ = 2cos–1(1 – 2s/D)

s(t)

As,n

As,τs(t)

uτ – vτ
un – vn

s(t)

(a) (b) (c)

Figure 2. Diagrams of (a) the submerged volume Vs as a function of the variable submergence s(t); (b) the
projected area of a submerged sphere moving in the normal direction (en); and (c) the projected area of a
submerged sphere moving in the tangential direction (eτ ). All diagrams are shown in the (τ , n) coordinate
system.

Similar to the τ -direction, we have for the n-direction,

Rn = 3πρf νDÂs,n(u∗
n − v∗

n), (2.16)

where we have evaluated the velocity of the surrounding fluid at the same location x̃p as
for the tangential resistance force. The submerged projected area of a sphere in the normal
direction is given by (see figure 2)

As,n = πs(t) (D − s(t)) , (2.17)

which again, is normalised by the maximum projected area of a sphere A = πD2/4, so
that Âs,n = As,n/A. Later, in § 4, other drag formulations are considered to examine the
robustness of the model’s predictions.

2.2. Fluid velocity for surface gravity waves
We consider unidirectional deep-water surface gravity waves propagating over a horizontal
bed in the (x, z)-coordinate system, with z measured vertically upwards from still water
level, and the free surface located at z = η. For irrotational flow of inviscid, incompressible
fluid, the governing (Laplace) equation is,

∇2φ = 0, for − d ≤ z ≤ η, (2.18)

where φ is the velocity potential and d depth. Equation (2.18) is solved subject to the
no-flow bottom boundary condition,

∂zφ = 0, for z = −d, (2.19)

and the kinematic and dynamic linear free surface boundary conditions,

uz − ∂tη − u∂xη = 0 and gη + ∂tφ + 1
2(∇φ)2 = 0 at z = η, (2.20a,b)

where the velocity components are ux = ∂xφ and uz = ∂zφ.

3. Perturbation theory for viscous drag

To interpret the physical mechanism behind the drift predicted by the model derived in § 2,
we use perturbation theory to establish an analytical solution. We do so here for the case of
viscous drag, as this allows inclusion of drag at first order in our expansion. We will discuss
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Field Symbol Solution

First-order horizontal velocity u(1)
x A0ω0 exp(iϕ + k0z)

First-order vertical velocity u(1)
z −A0ω0i exp(iϕ + k0z)

First-order free surface elevation η(1) A0 exp(iϕ)

Second-order horizontal Eulerian velocity u(2)
x −ω0

2d
|A0|2

corresponding time-integrated displacement �x(2)
E −ω0

2d

∫ t2
t1

|A0|2 dt

Second-order horizontal Stokes drift velocity u(2)
S k0ω0|A0|2 exp(2k0z)

corresponding time-integrated displacement �x(2)
S k0ω0

∫ t2
t1

|A0|2 dt

Table 1. First- and second-order solutions for the kinematic properties of deep-water surface gravity waves,
with A0 = a0Â0 the wave amplitude envelope, a0 its amplitude, Â0 a non-dimensional envelope, ω0 the carrier
wave frequency and k0 the carrier wavenumber. Where complex fields are given, the real part is understood,
and ϕ = k0x − ω0t. The first three rows are first-order solutions, valid for regular waves or wave packets. The
remaining rows comprise second-order solutions for the wave-averaged Eulerian and Stokes velocities and
the set-down. The second-order wave-averaged Eulerian velocity only arises for wave packets, considered in
the experiments in Appendix B.

limitations of viscous drag in § 3.4 and consider numerical solutions of our model in § 4
in which the assumption of viscous drag is relaxed. We consider only periodic, weakly
nonlinear, deep-water surface gravity waves, so that k0d � 1 with k0 the wavenumber. We
perturb the object position xp in a Stokes-type expansion in wave steepness (α = k0a0,
where a0 the wave amplitude), giving

xp(t) = x(0)
p + α x(1)

p (t)
∣∣∣
x(0)

p
+ α2 x(2)

p (t)
∣∣∣
x(0)

p
+ O(α3), (3.1)

where the superscript corresponds to the order in α, and x(0)
p is the object label and thus

not a function of time. As we are interested in wave-induced drift, which arises at second
order, we only pursue those terms necessary to obtain this drift.

Applying a perturbation expansion in the same small parameter α to the governing
equation of the fluid (2.18) and its boundary conditions (2.19) and (2.20) allows the free
surface η and the velocity potential φ to be determined, and we do so up to second order.

Although the perturbation theory solutions in this section are for regular waves, the
experiments introduced in Appendix B make use of long (or narrow-bandwidth) wave
packets for practical reasons. We assume that inertial effects do not arise on the scale
of the packets, as justified in Appendix C, so that we can correct for the presence of a
wave packet simply by accounting for its Eulerian mean flow. Table 1 lists the resulting
solutions, whose derivation and laboratory validation is given in more detail by van den
Bremer et al. (2019) for deep water and Calvert et al. (2019) for intermediate depth. We
consider only deep-water waves here (k0d � 1). The solutions for the Eulerian return flow
and the second-order surface elevation are based on wave packets with envelope |A0|. It
is assumed that the wave packets are narrow banded and that the Eulerian return flow is
shallow, corresponding to a depth that is small relative to the packet length (Calvert et al.
(2019) establish the Eulerian return flow without the shallow return flow assumption). In
practice, inclusion of the effect of the return flow merely leads to a small correction of less
than 2 % for our laboratory experiments.
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3.1. Zeroth order in wave steepness: O(α0)

At zeroth order in wave steepness, wave forcing evidently does not play a role. Only the
normal direction of (2.1) has any forcing at zeroth order, where the following leading-order
static balance is achieved between buoyancy force and gravity,

F(0)
n = gm

β

⎡
⎣3

(
s(0)

D

)2

− 2

(
s(0)

D

)3
⎤
⎦− gm = 0. (3.2)

We have used the fact that Ξp = 1 at zeroth order and note that (3.2) is only valid for a
floating sphere, i.e. |D/2 − s(0)| ≤ D/2. Equation (3.2) is a cubic equation, which can be
readily solved numerically for the depth of submergence of a floating sphere in the absence
of waves s(0).

3.2. First order in wave steepness: O(α1)

We begin by expressing the projected areas of the sphere required to calculate the
tangential and normal resistance forces as series expansions around s(0). The submerged
projected area of a sphere in the tangential direction (2.15) can be approximated by

As,τ (s) = As,τ (s(0)) + 2D

√
s(0)

D
−
(

s(0)

D

)2

s(1) + O(α2), (3.3)

where we have obtained ∂s(As,τ ) from (2.15) by implicit differentiation. For the submerged
projected area of a sphere in the normal direction, it is sufficient for our purposes to
evaluate As,n(s) at zeroth order, i.e. As,n(s) = As,n(s(0)) + O(α1).

3.2.1. The tangential direction
To first order of approximation, the velocity and acceleration in the horizontal coordinate
x and the tangential coordinate τ are equal, i.e. ẋ(1)

p = v
(1)
x = v

(1)
τ and ẍ(1)

p = v̇
(1)
x = v̇

(1)
τ .

The only forces that play a role are the tangential components of the added mass, gravity
and the resistance force. The first-order added-mass terms in the tangential direction are

M(1)
τ = Cmm

β
(u̇(1)

x − ẍ(1)
p ), (3.4)

where we now assume for simplicity that the added-mass coefficient Cm is a constant and
independent of direction. Other added-mass formulations are discussed and examined in
§ 4.

In a potential flow, a fully submerged sphere has an added-mass coefficient of 1/2.
Instead of deriving the complicated dependence of Cm on the object’s density, we
interpolate linearly between the values for a sphere that is fully submerged (β = 1, Cm =
1/2) and a sphere that is entirely out of the water (β = 0, Cm = 0) and set Cm = β/2. The
robustness of this assumption is investigated numerically in § 4.

The resistance force (2.14) can be approximated as

R(1)
τ = ΓRmω0Â(0)

s,τ (u
(1)
x |x̃(0)

p
− ẋ(1)

p ) with ΓR ≡ 3πνD
βVω0

, (3.5)

where the non-dimensional coefficient ΓR measures the importance of the resistance force.

915 A73-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

72
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2021.72


The increased wave-induced drift of floating marine litter

From the object’s equation of motion (2.1) we thus obtain(
1 + Cm

β

)
ẍ(1)

p = Cm

β
u̇(1)

x |x̃(0)
p

− g∂xη
(1)|x(0)

p
+ ΓRÂ(0)

s,τω0(u(1)
x |x̃(0)

p
− ẋ(1)

p ). (3.6)

We seek a solution to the forced second-order ordinary differential equation (3.6) of
the form x(1)

p = R(iX(1)a0 exp(iϕ(0)
p )) with ϕ

(0)
p = k0x(0)

p − ω0t + ϕ0 and ϕ0 = arg(A0),
ignoring initial transients. The complex coefficient X(1) represents the amplitude and phase
change of the horizontal motion of the object relative to those of an idealised Lagrangian
object under the influence of waves at the same order, x(1)

L = R(ia0 exp(iϕ(0)
p )). We obtain

X(1) = 1, i.e. there is no horizontal motion amplification compared to that of a Lagrangian
particle.

3.2.2. The normal direction
Expressing the submergence depth s in terms of the vertical coordinate zp, we
have, without approximation, that s = D/2 − (zp − ηp)Ξp. Therefore, the velocity and
acceleration in the vertical coordinate z and the normal coordinate n are related to first
order by

ż(1)
p = v(1)

z = −ṡ(1) + η̇(1)
p and z̈(1)

p = v̇(1)
z = −s̈(1) + η̈(1)

p . (3.7a,b)

We first approximate the buoyancy force (2.11) by

B(1)
n = ΓBmω2

0s(1) with ΓB ≡ 6
βk0D

⎛
⎝s(0)

D
−
(

s(0)

D

)2
⎞
⎠ , (3.8)

the added-mass terms by

M(1)
n = Cmm

β
s̈(1), (3.9)

and the resistance force (2.16) by

R(1)
n = ΓRmω0Â(0)

s,nṡ(1), (3.10)

where we have used u(1)
z (z = 0) = η̇

(1)
p from the linearised kinematic free surface

boundary condition and v
(1)
n = ż(1)

p . The new non-dimensional coefficient ΓB measures
the strength of dynamic buoyancy, and ΓR measures the strength of the resistance force, as
for the tangential resistance force in (3.5). From the object’s equation of motion (2.1) we
thus obtain(

1 + Cm

β

)
(η̈(1)

p − s̈(1)) = Cm

β
u̇(1)

z |x̃(0)
p

+ ΓBω2
0s(1) + ΓRÂ(0)

s,nω0ṡ(1), (3.11)

where we note gravity only enters at zeroth order. As for the tangential direction, we seek
a solution to the forced second-order ordinary differential equation (3.11) of the form
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Figure 3. For viscous drag, magnitudes of the first-order horizontal motion amplification X(1) (a) and the
variable submergence S(1) (b) as functions of dimensionless object size D/λ0 for different density ratios β =
ρo/ρf , where the density ratio for each colour is shown in the legend. We have set Cm = β/2. Numerical and
analytical solutions from perturbation theory are denoted by crosses and solid lines, respectively.
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Figure 4. For viscous drag, arguments of the first-order horizontal motion amplification X(1) (a) and the
variable submergence S(1) (b) as functions of dimensionless object size D/λ0 for viscous drag and for different
density ratios β = ρo/ρf , as shown in the legend. We have set Cm = β/2. Numerical and analytical solutions
from perturbation theory are denoted by crosses and solid lines, respectively.

s(1) = R(S(1)a0 exp(iϕ(0)
p )) with ϕ

(0)
p = k0x(0)

p − ω0t + ϕ0 and ϕ0 = arg(A0), ignoring
initial transients. We find for the non-dimensional submergence at first order S(1)

S(1) =
1 + Cm

β
− ΓB − iΓRÂ(0)

s,n(
1 + Cm

β
− ΓB

)2

+ (ΓRÂ(0)
s,n)2

. (3.12)

Figures 3 and 4 respectively show the magnitudes and arguments of the first-order
solutions for the horizontal motion amplification X(1) and the variable submergence S(1).
In these figures, the purely Lagrangian limit, in which the object is simply transported
with the Stokes drift and floats on the moving surface, corresponds to X(1) = 1, S(1) = 0.
This limit is obtained as the object size tends to zero. Note that the phase of variable
submergence in this limit is non-zero, arg(S(1)) → π/2. This is because both imaginary
and real parts of the variable submergence tend to zero, with the imaginary part
approaching zero at a faster rate. As our model is only valid for objects that are small
relative to the wavelength, we truncate the x-axis at D/λ0 = 6 %. Diffraction of the wave
field typically only becomes important for D/λ0 > 20 %.
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The increased wave-induced drift of floating marine litter

As confirmed in figure 3(a), the magnitude of the horizontal motion |X(1)| is equivalent
to that of a purely Lagrangian tracer. Turning to figure 4(a), the argument of the horizontal
motion arg(X(1)) is evidently also zero. As shown in figure 3(b), the magnitude of the
variable submergence |S(1)| increases monotonically with object size and does so at a
larger rate for density ratios closer to unity. Variable submergence is driven by the free
surface elevation and governed by drag, dynamic buoyancy and (added) mass, which
are respectively the resistance, spring and inertia terms of a forced spring–mass–damper
system (cf. (3.11)). The larger the object, the more dominant is the acceleration of the
free surface, which acts as an apparent force in the moving reference frame in which
the variable submergence is defined, thus increasing the ‘bobbing’ of the object. The
lower the density ratio, the stronger the buoyancy force and the stiffer the ‘spring’. The
response in variable submergence for a stiffer ‘spring’ is smaller. The argument of variable
submergence arg(S(1)) decreases monotonically with object size and growing importance
of inertia but is dependent on the density ratio, as shown in figure 4(b).

At first order in steepness the tangential and normal directions are independent, and so
it is possible for there to be a significant change in first-order variable submergence whilst
the first-order horizontal motion remains unchanged. As can be seen in the next section,
a change in first-order variable submergence results in a change in horizontal motion at
second order.

3.3. Second order in wave steepness: O(α2)

The equation of motion (2.1) resolved in the horizontal direction and at second order of
approximation gives

ẍ(2)
p = 1

m
(F(2)

τ − ∂xη
(1)|x(0)

p
F(1)

n ). (3.13)

In order to examine the wave-induced drift of a floating object in periodic waves, we
consider the steady wave-averaged transport and set ¯̈x(2)

p = 0, so that the resultant force
must be zero. We will now consider the tangential and normal force contributions to (3.13)
in turn.

3.3.1. Tangential and normal directions
In the tangential direction, the added-mass terms at second order can be obtained from the
combination of an expansion in the horizontal and vertical displacements of the object, a
coordinate transformation and evaluation of the advective derivative, respectively

M(2)
τ = Cmm

β
(u̇(2)

x + x(1)
p ∂xu̇(1)

x |x̃(0)
p

+ η(1)
p ∂zu̇(1)

x |x̃(0)
p

+ u̇(1)
z |x̃(0)

p
∂xη

(1)|x(0)
p

+ ẋ(1)
p ∂xu(1)

x |x̃(0)
p

+ η̇(1)
p ∂zu(1)

x |x̃(0)
p

− v̇(2)
τ ). (3.14)

In addition to the added-mass terms, the tangential force consists of a correction to the
tangential component of gravity due to the object’s horizontal displacement,

G(2)
τ = −mg∂xxη

(1)
∣∣∣
x(0)

p
x(1)

p , (3.15)

and a tangential resistance force,

R(2)
τ = 3πρf νD(Â(1)

s,τ (u
(1)
τ,p − v(1)

τ ) + Â(0)
s,τ (u

(2)
τ,p − v(2)

τ )). (3.16)
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For the first-order velocity components, we have u(1)
τ,p = u(1)

x |x̃(0)
p

and v
(1)
τ = ẋ(1)

p . Noting

from the coordinate transformation that uτ = ux + ∂xη|xpuz + O(α3), we obtain for the
second-order accurate horizontal fluid velocity component at the object position

u(2)
τ,p = u(2)

x |x̃(0)
p

+ ∂xu(1)
x |x̃(0)

p
x(1)

p + ∂zu(1)
x |x̃(0)

p
z̃(1)

p + ∂xη
(1)|x(0)

p
u(1)

z |x̃(0)
p

. (3.17)

We set the second-order Eulerian wave-induced velocity u(2)
x to zero for the regular waves

considered here. The object’s horizontal velocity component at second order is

v(2)
τ = ẋ(2)

p + ∂xη
(1)|x(0)

p
ż(1)

p , (3.18)

where ẋ(2)
p is the quantity that is ultimately of interest. Combining (3.17) and (3.18) and

substituting into (3.16) gives

R(2)
τ = 3πρf νD(Â(1)

s,τ (u
(1)
x |x̃(0)

p
− ẋ(1)

p )

+ Â(0)
s,τ (∂xu(1)

x |x̃(0)
p

x(1)
p + ∂zu(1)

x |x̃(0)
p

η(1)
p − ẋ(2)

p + ∂xη
(1)|x(0)

p
ṡ(1))), (3.19)

where we have substituted u(2)
x = 0, ż(1)

p = η̇
(1)
p − ṡ(1) and u(1)

z |x̃(0)
p

= η̇
(1)
p from the

linearised kinematic free surface boundary condition. We use the notation Â(1)
s,τ =

Â′(0)
s,τ (s(1)/D) with Â′(0)

s,τ ≡ ∂ŝÂs,τ (ŝ)|ŝ(0) and ŝ ≡ s/D according to (3.3).
In the normal direction, the total force at first order consists of a buoyancy force, an

added mass and a resistance force already evaluated in (3.8), (3.9) and (3.10), respectively.

3.3.2. The wave-induced drift
Substituting the first-order solutions for x(1)

p (i.e. X(1) = 1) and for s(1) from (3.12) and for
the wave quantities from table 1 and averaging over the waves, we obtain the following

expression from (3.13) for the wave-induced drift of the object v̄x = �ẋ(2)
p :

v̄x = uS

2

⎡
⎢⎢⎢⎢⎢⎣

Adjusted Stokes drift︷ ︸︸ ︷
2 − R(S(1))︸ ︷︷ ︸

Increases
drift

+ 1

Â(0)
s,τ ΓR

⎛
⎜⎜⎜⎜⎜⎝

Buoyancy
resolved into

the x-direction︷ ︸︸ ︷
−ΓBI(S(1))︸ ︷︷ ︸
Increases drift

+

Added mass︷ ︸︸ ︷
CmI(S(1))

β︸ ︷︷ ︸
Negligible effect

⎞
⎟⎟⎟⎟⎟⎠+

Normal drag︷ ︸︸ ︷
Â(0)

s,n

Â(0)
s,τ

R(S(1))︸ ︷︷ ︸
Reduces drift

⎤
⎥⎥⎥⎥⎥⎦ ,

(3.20)

where uS = k0ω0a2
0 is the Stokes drift. We define the drift amplification factor X(2) ≡

�vx/uS, so that X(2) corresponds to the terms inside the square brackets in (3.20) divided
by 2. Equation (3.20) is the main result of this paper, and we will interpret it below. The
text above the terms explains their physical origins, and the text below their effect on the
wave-induced drift of the object compared to the Stokes drift.

We begin by examining the wave-induced drift amplification factor X(2) as a function of
object size and for different density ratios in figure 5. It is evident that the drift is enhanced
and increasingly so for larger and heavier objects. Figure 6 examines the contributions to
X(2) of the four components in (3.20): the adjusted Stokes drift, buoyancy resolved in the
x-direction, normal drag and added mass, which we will discuss in turn. In (3.20) and
figure 6, X(2) = 1 corresponds to objects that do not experience an increase in drift and
are simply transported with the Stokes drift (i.e. v̄x = uS).
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Figure 5. For viscous drag, wave-induced drift amplification X(2) as a function of dimensionless object size
D/λ0 for different density ratios β = ρo/ρf (see legend). We have set Cm = β/2. Numerical and analytical
solutions from perturbation theory are denoted by crosses and solid lines, respectively.
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Figure 6. For viscous drag, contributions to the wave-induced drift amplification X(2) from the five
components in (3.20) as a function of non-dimensional object size D/λ0 for density ratio β = 0.8 and
Cm = β/2.

3.3.3. Adjusted Stokes drift
The adjusted Stokes drift terms in (3.20) reflect change in linear object trajectory. For
unmodified horizontal motion (X(1) = 1) and zero variable submergence (S(1) = 0), we
obtain X(2) = 1 from the adjusted Stokes drift terms alone. For larger objects, the increase
in the vertical motion due to ‘bobbing’ of the object effectively enhances the Stokes drift,
as shown in figure 6. This mechanism occurs because the linear variable submergence
changes the object’s orbit and hence its velocity and time spent under trough and crest.
Integration of the linear velocity component along the linear orbit results in Stokes drift.
Hence, changes to velocity and orbit result in an adjusted Stokes drift.
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No variable submergence Variable submergence

No normal drag

Variable submergence

With normal drag

No enhanced drift.
No mean component and

no enhanced drift.
This mean component

causes an enhanced drift.

The in-phase component of

s(1) with ∂xη
(1) has a mean

component in the x-direction.

z
z z

z = 0
z = 0 z = 0

z = η(1)
z = η(1)z = zp

(1)
z = zp

(1)

S(1) = 0 S(1) S(1)

arg (s(1))/ω0

S (1) is real

s(1) is out of phase with ∂xη
(1).

S (1) = 0

z = η(1) = zp
(1)t

t t

s(1)∂xη
(1) = 0 s(1)∂xη

(1) = 0 s(1)∂xη
(1) = A2

0k0 (I (S (1)/2))

S (1) is complex

Figure 7. Schematics of the object trajectory (red) and free surface (blue) for three cases: no variable
submergence, variable submergence with no normal drag and variable submergence with normal drag. The
schematics illustrate the physical mechanism for increased drift arising from variable submergence s(1), where
variable submergence and drag are in the n-direction, and a mean motion in the x-direction is created due to
the slope of the free surface ∂xη

(1). For this illustration, we have chosen a density ratio β = 1/2.

3.3.4. Buoyancy resolved in the x-direction
The mechanism through which buoyancy, when resolved in the x-direction and averaged
over the wave cycle, can increase the drift of an object is illustrated in figure 7. Without
variable submergence (left column), the dynamic buoyancy force is simply zero. With
variable submergence but without drag in the normal direction (middle column), the
first-order buoyancy force resolved in the x-direction does not result in a net force on the
object, as the first-order buoyancy force and the first-order slope required to resolve this
force into the x-direction are out of phase. It is only in the presence of a drag component in
the normal direction (right column) that a phase lag in the submergence depth arises and
a net force results. As shown in figure 6, the buoyancy force thus makes a relatively large
contribution to the object’s drift.

3.3.5. Normal drag
Although normal drag is required to create the phase difference that leads to the net
buoyancy force resolved in the x-direction, normal drag also acts to reduce the magnitude
of the ‘bobbing’ mechanism and thus reduces the drift motion, as shown in figure 3.
The horizontal direction component of normal drag opposes the horizontal direction
component of buoyancy force, with the balance resulting in a drift that is greater than the
adjusted Stokes drift discussed above. Tangential drag, through the inverse dependence
of X(2) on the projected area Â(0)

s,τ and the effective drag coefficient ΓR in (3.20), acts to
reduce the increase in object drift, by effectively ‘anchoring’ the object to the fluid and its
Stokes drift.

3.3.6. Added mass
At first order, the object accelerates in the normal direction, experiencing an inertia force in
addition to the buoyancy force and the normal drag discussed above, and so an added-mass
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term has to be take into account. As shown in figure 3, the contribution by added mass is
relatively small and acts to reduce drift.

3.4. Limitation on validity of viscous drag
Although the preceding analysis has demonstrated how enhanced drift of non-infinitesimal
objects may arise, the underlying assumption of viscous drag places an upper limit on
object size. The maximum Reynolds number that arises from the linear motion in the
normal direction is estimated from

Remax = a0ω0 |S(1)|D
ν

≤ 2, (3.21)

where we take 2 to be the maximum Reynolds number for drag to be considered viscous.
Noting that S(1)(D/λ0, β) and taking β = 0.8, we obtain from (3.21) for the maximum
diameter that

S(1) (Dmax/λ0, β = 0.8) (D/λ0) = k2
0ν

αω0π
. (3.22)

For a typical laboratory water wave of steepness α = 0.1 and frequency f0 = 1.25 Hz,
the right-hand side of (3.22) becomes equal to 1.6 × 10−5. Fitting a linear curve S(1) =
5.8D/λ0 to figure 3(b), we can solve the quadratic (3.22) in D/λ0 and obtain a maximum
diameter to wavelength ratio of 0.2 % corresponding to Remax = 2. Examining figure 5, we
can conclude that drift enhancement is negligible for such small objects. We will therefore
have to use a realistic, non-viscous drag formulation, as discussed in the next section.

4. Numerical solutions

To validate the perturbation theory for viscous drag in § 3 and to explore the predictions
of our model for realistic, non-viscous drag, we set out to obtain numerical solutions of
our model. Specifically, we solved the set of differential equations ((A1)–(A3)) with the
forces described in detail in § 2 using a numerical ordinary differential equation solver.
The fluid velocity and free surface elevation from table 1 were used as input. We first
consider viscous drag in § 4.1 and then non-viscous drag in § 4.2, distinguishing conditions
(notably Reynolds numbers) that are representative of laboratory (§ 4.2.1; see Appendix B
for further details) and field scale (§ 4.2.2). Appendix D discusses the small-object limit
of the numerical solutions. Alternative drag and added-mass formulations are examined in
Appendix E.

The numerical solutions commenced from an initial condition in the absence of waves
with the object depth set at the static submergence given by numerical solution of (3.2).
Numerical integration in time was carried out using an explicit Runge–Kutta method with
variable time step based on Dormand & Prince’s (1980) formulation, which is fifth order
in time and fourth order in accuracy. Avoiding initial transients, wave forcing was ramped
up using half of a Gaussian envelope to steady state. A convergence study showed that a
Gaussian half-width set to 20 wavelengths was sufficient to avoid initial transients, whilst
the spatial and temporal convergences were in part resolved by the variable time step
method and checked explicitly for the largest objects. Once the object motion reached
steady state, its motion components in the x and z directions were effectively linearised
using a band-pass filter between 0.8f0 and 1.2f0. The linear phase was determined using
the cross-correlation of the linearised object motion and the linearised Eulerian velocity
evaluated at the object position in both directions. The object drift velocity was calculated

915 A73-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

72
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2021.72


R. Calvert and others

as the gradient of a straight line fitted to the sub-harmonic x(t) motion obtained by
low-pass filtering at 0.5f0.

4.1. Viscous drag
The crosses in figures 3–5 display the numerical solutions of the model with a viscous
drag formulation for a (small) steepness α = 0.02. Near perfect agreement is evident
with the perturbation theory solutions shown as continuous lines for both the first-order
amplitudes (figure 3) and phases (figures 4) and the second-order drift (figure 5). Tiny
discrepancies between perturbation theory and numerical simulations in these figures are
due to the inherent inclusion of higher-order terms (beyond second order) in steepness
in the numerical simulations. The comparison verifies both the numerical model and the
second-order perturbation theory.

4.2. Non-viscous drag
To overcome the maximum-Reynolds-number limit of the viscous drag formulation
(of Re ≡ |u − v|D/ν = 2.5 × 104), we also consider the following non-viscous drag
formulation:

Rj(t) = 1
2 Cd (Re) ρf As,j|u∗

j (x̃p, t) − v∗
j (t)|(u∗

j (x̃p, t) − v∗
j (t)), (4.1)

where the indices j = n, τ represent the tangential and normal directions; and drag is
determined using an experimentally fitted, non-viscous drag coefficient Cd. We choose
a formulation of the drag coefficient Cd(Re) that captures both viscous drag at small
Reynolds number, which is linear in velocity difference, and form drag at high Reynolds
number. Specifically, we use the fit to experimental data for drag on a sphere obtained by
Morrison (2013, p. 625), which is accurate for Re < 1 × 106

Cd(Re) = 24
Re

+ 2.6
Re/5

(1 + Re/5)1.52 + 0.411
(Re/(2.63 × 105))−7.94

(1 + Re/(2.63 × 105))−8

+ 0.25
Re/(1 × 106)

1 + Re/(1 × 106)
, (4.2)

where (4.2) is the same in both directions because the Reynolds number is
independent of direction (Re ≡ |u − v|D/ν). Taking the small-object and thus the
small-Reynolds-number limit of the drag force in (4.1) we can recover the viscous drag
on a partially submerged sphere (2.14) and (2.16).

4.2.1. Laboratory-scale results
At laboratory scale, we set f0 = 1.25 Hz, corresponding to λ0 = 1.0 m and α = 0.1. With
object diameters up to D = 60 mm, we obtain D/λ0 = 6 %, where the limit of validity
for viscous drag is D/λ0 = 0.2 % (see § 3.4). At laboratory scale, figure 8 compares the
analytically predicted linear motion using viscous drag with the corresponding numerical
results using non-viscous drag. The response in the normal direction is unchanged because
the forcing is inertial with little effect from drag. As the object size increases, inertia
increasingly dominates over drag. A small decrease in horizontal linear motion is evident
reaching a few per cent for larger objects. The results for small objects are the same because
the non-viscous drag recovers viscous drag in the small-object limit.
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Figure 8. Laboratory-scale numerical simulation results using non-viscous drag for magnitudes of the
first-order horizontal motion amplification X(1) (a) and the variable submergence S(1) (b) as functions of
dimensionless object size D/λ0 for different density ratios β = ρo/ρf , where the density ratio corresponding
to each colour is listed in the legend. Here, Cm = β/2. Numerical and analytical solutions from perturbation
theory are denoted by crosses and solid lines, respectively.
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Figure 9. Laboratory-scale numerical simulation results using non-viscous drag for wave-induced drift
amplification X(2) as a function of dimensionless object size D/λ0 and for different density ratios β = ρo/ρf
(see legend). Here, Cm = β/2. Analytical solutions using viscous drag from perturbation theory are denoted
by solid lines.

The drift amplification increases slightly when using non-viscous drag for larger objects,
as seen in figure 9. This is because the (tangential) drag force for larger objects is lower for
non-viscous drag than for viscous drag, resulting in reduced resistance to increased drift
compared to the Stokes drift. The maximum Reynolds number reached in the numerical
solutions at laboratory scale was Remax = 3.1 × 104.

4.2.2. Field-scale results
We set a wave frequency of f0 = 0.2 Hz and a steepness of α = 0.05 to represent a typical
wind wave at field scale. The frequency of 0.2 Hz corresponds to the peak in the spectrum
with α = 0.05 at the upper end of the steepness range for wind waves in the ocean (Toffoli
& Bitner-Gregersen 2017). This steepness corresponds to a dimensional wave amplitude
of a0 = 0.3 m. The difference between viscous and non-viscous drag results will be larger
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Figure 10. Field-scale numerical simulation results using non-viscous drag for magnitudes of the first-order
horizontal motion amplification X(1) (a) and variable submergence S(1) (b) as functions of dimensionless object
size D/λ0 for different density ratios β = ρo/ρf , where the density ratio corresponding to each colour is shown
in the legend. Field scale here denotes a 0.2 Hz wave with a steepness of α = 0.05. Here, Cm = β/2. Numerical
and analytical solutions from perturbation theory are denoted by crosses and solid lines, respectively.
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Figure 11. Field-scale numerical simulation results using non-viscous drag for the wave-induced drift
amplification X(2) as a function of dimensionless object size D/λ0 for different density ratios β = ρo/ρf (see
legend). Field scale is modelled by a 0.2 Hz wave with a steepness of α = 0.05. Here, Cm = β/2. Analytical
solutions using viscous drag from perturbation theory are denoted by solid lines.

at field scale owing to the higher value of Reynolds numbers, which reached a maximum
of Remax = 7.3 × 105 in the numerical simulations.

Figure 10(a) shows the linear horizontal motion, which is mostly unchanged from the
perturbation theory result. The magnitude of variable submergence is inertia driven and
thus very similar to the viscous analytical result shown in figure 10(b).

The drift amplification for field-scale simulations using non-viscous drag shown in
figure 11 is greater than the perturbation theory result based on viscous drag, and even
more so than at laboratory scale. This is because the non-viscous drag force is now
considerably smaller than its viscous equivalent (taken outside the range of Reynolds
numbers for which it is valid). The (tangential) drag force obtained for larger objects
is lower for non-viscous drag than for a viscous drag formulation, resulting in reduced
resistance to increased drift compared to the Stokes drift.
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Using the results from field-scale numerical simulations for non-viscous drag, a
1 m diameter object of density ρp = 0.9 g cm−3 leads to a 50 % increase in drift
(X(2) = 1.5). This is a significant increase compared to the Stokes drift infinitesimal
objects would experience. By comparison, a 0.1 m diameter object in the same wave
field does not experience any drift amplification (X(2) = 1) and behaves as a perfectly
Lagrangian tracer.

5. Conclusions

In this paper, we have developed a model for the transport of spherical, finite-size, floating
marine debris by deep-water waves. Using a Stokes-like expansion in wave steepness, we
have derived closed-form solutions for the linear response and the wave-induced drift of an
object forced by regular waves and experiencing viscous drag. These closed-form solutions
match numerical solutions of our model in the case of viscous drag. Our model recovers
the Lagrangian limit as object size tends to zero, meaning that small objects are simply
transported with the Stokes drift of surface gravity waves.

Through our perturbation solutions, we have identified two mechanisms for increased
drift. The first arises from the change in magnitude of the linear orbits, especially
its vertical component. The second arises when an out-of-phase variable submergence
is resolved in the horizontal direction by the slope of the free surface. The second
mechanism requires buoyancy and drag to be acting normal to the free surface, where
the drag is required to create the phase difference that gives rise to the drift when
averaged over the wave cycle. In any realistic oceanographic scenario, an non-viscous
drag is required in order for the drift amplification to be significant. To observe the
predicted effect, we have carried out laboratory wave flume experiments for a range of
object sizes and densities (see Appendix B). The experiments show that an increase in
wave-induced drift occurs. However, due to large experimental error, the present results
have not been used to validate the theoretical model or choice of physics contained
within.

The main driver for an increased drift is predicted to be an object’s size relative to the
wavelength. Thus, in the real ocean, where wavelengths range from 10 to 103 m, increased
drift will likely only be observed where shorter wavelengths are present, such as in gulfs or
smaller seas. Modelling an object with a diameter of 1 m and density of 0.9 g cm−3 floating
on a wave with a 5 s period and a steepness of α ≡ k0a0 = 0.05, typical of a moderately
steep wind wave, results in a 50 % increase in wave-induced drift compared to the Stokes
drift for such a wave. In the same wave field, an object with a diameter of 0.1 m would not
experience an increase in drift at all. High-quality experiments are recommended at larger
scale, covering a wider range of object sizes and considering the effect of object shape.
Insights from the present work should be useful in the development of more sophisticated
models for tracking floating marine litter.
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Appendix A. Equations of motion

Substituting (2.8) and (2.9) into (2.7), and (2.7) into (2.1) results in two second-order
differential equations in the (n, τ ) coordinate system

τ̈p − (−(∂xη|xp)
2Ξp + ∂xxη|xpΞ

2
p np)ẍp = 1

m
(

1 + Cm,τ

β

)Fτ + {2θ̇pṅp + (θ̇p)
2τp

− ∂xη|xpΞp(∂ttη|xp + 2ẋp∂txη|xp + (ẋp)
2∂xxη|xp) + np[(∂txη|xp + ẋp∂xxη|xp)2ΞpΞ̇p

+ (∂ttxη|xp + 2ẋp∂txxη|xp + (ẋp)
2∂xxxη|xp)Ξ

2
p ]}, (A1)

n̈p + (∂xη|xpΞp + ∂xxη|xpΞ
2
p τp)ẍp = 1

m
(

1 + Cm,n

β

)Fn − {2θ̇pτ̇p − (θ̇p)
2np

+ Ξp(∂ttη|xp + 2ẋp∂txη|xp + (ẋp)
2∂xxη|xp) + τp[(∂txη|xp + ẋp∂xxη|xp)2ΞpΞ̇p

− (∂ttxη|xp + 2ẋp∂txxη|xp + (ẋp)
2∂xxxη|xp)Ξ

2
p ]}, (A2)

where we have kept all the second-order time derivatives on the left-hand side. We now
have two equations in terms of three second-order time derivatives, namely τ̈p, n̈p and ẍp,
and require a third equation to solve the system. We obtain this third (kinematic) equation
by taking the dot product of (2.7), in which we have substituted for θ̈p and η̈p from (2.8)
and (2.9), and ex, giving

ẍp[1 + ∂xxη|xpΞ
3
p (np + ∂xη|xpτp)] − τ̈pΞp + n̈p∂xη|xpΞp

= Ξp{−np[(∂txη|xp + ẋp∂xxη|xp)2ΞpΞ̇p + (∂ttxη|xp + 2ẋp∂txxη|xp

+ (ẋp)
2∂xxxη|xp)Ξ

2
p ] − 2θ̇pṅp − (θ̇p)

2τp − ∂xη|xp[τp[(∂txη|xp + ẋp∂xxη|xp)2ΞpΞ̇p

+ (∂ttxη|xp + 2ẋp∂txxη|xp + (ẋp)
2∂xxxη|xp)Ξ

2
p ] + 2θ̇pτ̇p − (θ̇p)

2np]}. (A3)

Appendix B. Wave flume experiments

B.1. Set-up and data acquisition
A series of object tracking experiments were conducted in the Sediment Wave Flume
in the Coastal, Ocean and Sediment Transport (COAST) Laboratory at the University of
Plymouth, UK. The flume has length 35 m, width 0.60 m and was filled with water to
0.50 m depth, as shown in figure 12. A double-element piston-type wavemaker supplied
by Edinburgh Designs Ltd was used to generate a wave packet with a spectral shape that
linearly focuses to a Gaussian packet, A0 = a0 exp(−(xf − cg,0t)2/2σ 2), at a measurement
zone centred xf = 9.75 m from the rest position of the wavemaker. The wave packet was
made as long as possible to make it quasi-monochromatic whilst avoiding reflection (ε =
1/(k0σ) = 0.04) with a steepness α = a0k0 = 0.1 and peak frequency f0 = 1.25 Hz.

Despite our perturbation theory solutions being for periodic waves, we used
quasi-monochromatic wave packets in our laboratory experiments because wave-induced
transport is much easier to measure experimentally for wave packets (see van den Bremer,
Yassin & Sutherland 2019; Calvert et al. 2019 and the discussion in Monismith 2020).
In Appendix C, we confirm that the slow modulation associated with the wave packet does
not result in any additional non-inertial behaviour of the object. As a result, our model
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Figure 12. Experimental set-up used to track the motion of floating objects under wave motion generated by
a double-element piston-type wave maker at the COAST Laboratory, University of Plymouth, UK.

predictions for periodic waves and the wave packets considered in our experiments are
equivalent.

We controlled the wavemaker using linear wave theory. Although sub-harmonic error
waves at second order generated for wave packets (e.g. Nielsen & Baldock 2010;
Orszaghova et al. 2014) can lead to spurious wave-induced displacements (Calvert et al.
2019), these displacements are negligibly small for the deep-water waves we consider (van
den Bremer et al. 2019).

Seven resistance-type wave gauges provided 128 Hz free surface elevation
measurements. Five gauges were located close to the focus location at 15 cm intervals,
as shown in figure 12. Two gauges were located significant distances before and after
the focus location. After propagating through the measurement zone, the dispersed wave
packets were absorbed by mesh-filled wedges within an absorption zone located at the
downstream end of the wave flume. To ensure near-quiescent initial conditions for each
experiment, the water surface was allowed to settle for 10 min between experiments. A
Photron SA4 high-speed camera captured the object motions at 125 frames s−1, resolution
of 1024 by 1024 pixels and shutter speed of 1/125 s. Optical distortion was removed using
35 mm chequerboard images and MATLAB’s inbuilt image processing package.

B.2. Matrix of experiments
In the experiments, we selected a peak frequency of f0 = 1.25 Hz, corresponding to a
wavelength of λ0 = 1.0 m and non-dimensional water depth k0d = 3.1. We then varied
systematically the diameter D and the density ρo of the spherical floating object, with
values for the 16 experiments listed in table 2. Object size was limited by camera resolution
and the MATLAB tracking algorithm. Density was varied by filling hollow spheres with
different ratios of epoxy to glass micro-ball filler. Each experiment was repeated five times.

B.3. Data processing

B.3.1. Free surface elevation
Wave packets were created from narrow-banded spectra to allow frequency filtering
to separate the linear and second-order sub-harmonic components in the wave gauge
signal. A band-pass filter between 0.8f0 and 1.2f0 was used to extract the linear free
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Experiment D (m) ρo (kg m−3) D/λ0 (%) β (−)

1 0.051 508 5.1 0.51
2 0.051 551 5.1 0.55
3 0.051 620 5.1 0.62
4 0.051 703 5.1 070
5 0.038 597 3.8 0.60
6 0.038 637 3.8 0.63
7 0.038 678 3.8 0.68
8 0.038 750 3.8 0.75
9 0.025 649 2.5 0.65
10 0.025 678 2.5 0.68
11 0.025 700 2.5 0.70
12 0.025 809 2.5 0.81
13 0.019 647 1.9 0.65
14 0.019 679 1.9 0.68
15 0.019 654 1.9 0.65
16 0.019 807 1.9 0.81

Table 2. Matrix of experiments listing dimensional object diameter D, object density ρo, non-dimensional
object diameter D/λ0 and density ratio β = ρo/ρf .

surface elevation. The measured envelope A0 was calculated using the Hilbert transform of
the linear free surface elevation. Use of the measured envelope at the location where the
trajectories were measured, to calculate purely Lagrangian displacement, accounted for
any dissipation or nonlinear dispersion between the wavemaker and the zone of interest.

B.3.2. Object tracking
Profile images of the floating white spheres were illuminated from various angles and
captured by the Photron camera. The trajectories of the floating objects were tracked by
identifying their position in each frame using a circle finding algorithm. The apparent size
of the circle in the image was used to calibrate the pixel scale against the known size of the
sphere. This also reduced any errors from out-of-plane motion not captured by the single
camera. The horizontal components of the raw trajectories, repeated five times, are shown
in figure 13.

Every effort was made to settle the sphere at the start of each experiment in order to give
it a zero initial velocity. This was not completely possible due to air flows over the water
surface and slight disturbance from human touch. A linear fit in the time domain, assuming
a constant pre-existing drift velocity, was used to remove motion before the arrival wave
packet from the raw orbits in figure 13. The focus location was determined as coinciding
with the position of the maximum of the linearised vertical motion envelope of the object.
The difference in object location and exact focus location in the flume had negligible effect
because of the very long wave packets used.

The magnitudes of the linear response were determined by filtering the horizontal and
vertical motion components with a band-pass filter of 0.8–1.2f0, followed by a Hilbert
transform to obtain the envelope A0. Note that frequency filtering was only applied to
velocities, and numerical integration was used to calculate displacements. The maximum
magnitude of the envelope was then normalised by wave amplitude a0 to obtain X(1) and
unity subtracted from the normalised vertical motion to give S(1) (the normal and vertical
directions equivalent up to first-order accuracy). We were not able to extract the linear
phase from the experiments because exact spatial and temporal matching of Eulerian wave
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Figure 13. Time histories of object horizontal position for each experiment. Each panel shows the five
repeated experiments in different colours.

gauge data and Lagrangian object positions could not be achieved. A low-pass filter at
0.5f0 was used to extract the sub-harmonic horizontal velocity component. The drift value
X(2) was then determined by subtracting the Eulerian return flow from the maximum value
of the sub-harmonic horizontal velocity component flow and dividing by the Stokes drift.

B.4. Comparison between theory and experiments

B.4.1. First order in wave steepness: O(α)

Figure 14 presents the first-order magnitudes |X(1)| and |S(1)| as functions of
dimensionless diameter (D/λ0) for each experiment, with colour corresponding to density
ratio. Comparison is made with numerical solutions of our model for non-viscous drag
and analytical solutions using viscous drag. Overall, the horizontal motion in figure 14(a)
is of similar magnitude to what is theoretically predicted (X(1)) with some variability,
as quantified by the error bars. We note that a decrease of a few per cent in the
numerical simulation solutions to |X(1)| is equivalent to a (small) dimensional decrease
in the horizontal motion less than 1 mm. The first-order variable submergence |S(1)| in
figure 14(b) increases monotonically with dimensionless diameter (D/λ0), as predicted by
theory.

The experiments do not show a consistent trend with density for either linear motion
component. We note that the densities are not equally spaced or the same for each size
sphere owing to practical constraints on filling the spheres with different ratios of epoxy
to glass micro-ball filler (see table 2 for the experimental matrix). The error bars shown
for each experiment, which are twice the standard deviation of the five repeats, are large
enough to mask any trend in density. Although we could measure the overall density of the
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Figure 14. Magnitude of the first-order motion as a function of non-dimensional object size D/λ0 for different
density ratios (see legend): analytical solution with viscous drag (solid lines) and experiments (circles). The
density ratios for the numerical solutions are listed in the legend; density ratios for the experiments are labelled
using the same colour scale. The error bars are obtained from repeated experiments and correspond to two
standard deviations.

spheres accurately, we emphasise that we were not able to measure its uniformity within
the sphere.

Errors could have arisen from various physical sources that can account for the relatively
large standard deviations. The initial motion of the object was hard to eliminate. Air
conditioning was switched off, but there were occasional air flows over the flume. The
method of taking the value of sub-harmonic velocity at the peak of the wave packet has
been shown numerically to match regular waves in Appendix C. However, inertia at packet
scale can be seen in figure 15 as the velocity does not go to zero after the packet passes.
Although a 10 minute delay was prescribed between experiments to allow water in the
flume to settle, there may have been residual currents still present. The theoretical model
also has uncertainty, as can be seen in the sensitivity analysis in Appendix E, which arises
from the choice of drag and added-mass formulations, and the exclusion of certain physics
from the model, such as surface tension.

B.4.2. Second order in wave steepness: O(α)

Figure 15 presents time histories of the normalised sub-harmonic horizontal object
velocity component for all 16 experiments, having first removed motion ahead of the
wave packet and the Eulerian mean flow associated with the wave packet. In all cases, the
non-dimensional sub-harmonic horizontal object velocity exceeds or is very close to unity
near focus, and has a Gaussian-like profile, reducing close to zero within approximately
25 s either side of focus. The distributions are slightly skewed, with a faster rising limb
than falling. There is more variability after focus than before. Using the peak values from
figure 15, figure 16 shows the dimensionless drift factor X(2) for each experiment as a
function of dimensionless diameter, with colour indicating density ratio. Drift increases
with non-dimensional diameter and, as for the first-order results, the trend with density
is unclear from the experiments and masked by substantial variability. We note that the
density of floating plastic in the ocean typically has a small range between 800 and
1000 kg m−3 and may thus be a less important variable than object size. The trend with
object size is consistent between experiments and theory, both presenting a similar increase
with size.

The experiments show that sufficiently large floating objects experience an increase
in wave-induced drift. However, the experimental results are not sufficiently accurate to
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Figure 15. Sub-harmonic horizontal object velocity relative to the Eulerian mean flow, normalised by the
Stokes drift at the centre of the wave packet: X(2)

exp = (v
(2)|t=0
x − u(2)

x |t=0)/(us|t=0) where us|t=0 = ω0k0a2
0. The

mean of the five repeated experiments is shown as a continuous red line, and the confidence band corresponding
to two standard deviations is shaded in grey, with five lines overlaid for each individual experiment.
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Figure 16. Second-order drift amplification factor X(2) as a function of non-dimensional object size for
different density ratios (see legend): analytical solution with viscous drag (solid lines) and experiments
(circles). The density ratios for the numerical solutions are listed in the legend; density ratios for the
experiments are labelled using the same colour scale. The error bars are obtained from repeated experiments
and correspond to two standard deviations.
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Figure 17. Numerical predictions of the magnitude of the first-order horizontal motion amplification X(1) (a)
and the variable submergence S(1) (b) as functions of dimensionless object size D/λ0 for non-viscous drag and
for different density ratios β = ρo/ρf (see legend). In the figure, periodic waves are denoted by crosses and
wave packets of the same bandwidth as in the experiments by circles.

validate the theoretical model. In future work, it is therefore intended to carry out more
experiments aimed at validating the model.

Appendix C. Wave packets vs. periodic waves

We use numerical solutions (see § 4) to the model developed in § 2 to examine the
difference in predictions for objects subject to the quasi-monochromatic wave packets we
use in our experiments and periodic waves. The processing of the trajectory data from the
numerical simulations using wave packets was the same as for the experiments described
in Appendix B. Figure 17 shows the almost identical first-order response as a function of
non-dimensional object diameter at different density ratios for periodic waves (crosses)
versus wave packets of the same bandwidth as in experiments (circles). Figure 18 shows
the corresponding second-order drift amplification factors. Very slight differences are only
predicted for larger object sizes for which the role of inertia is more dominant. For wave
packets, a slightly smaller drift motion is predicted, because the time required for inertial
objects to reach steady state is longer for larger objects.

Appendix D. Limiting behaviour of the numerical solutions

To confirm the model developed in § 2 is correct, including its cumbersome coordinate
transforms, we examine the perfectly Lagrangian limit (§ D.1) and the small-object limit
(§ D.2) of its numerical solutions obtained using MATLAB’s ODE15s solver.

D.1. The Lagrangian limit
To obtain the Lagrangian limit, we replace the forces on the object by the accelerations a
Lagrangian particle would experience under linear periodic waves

ẍp = a0ω
2
0 sin(ϕ) exp

(
k0zp

)
, z̈p = −a0ω

2
0 cos(ϕ) exp

(
k0zp

)
, (D1a,b)

where ϕ = k0xp − ω0t + ϕ0. The accelerations are then mapped to the translating
coordinate system and expressed in the (n, τ )-directions. The system is then solved
numerically in (n, τ )-coordinates and the results mapped back onto (x, z)-coordinates,
providing confirmation our transformations are correct. As shown in figure 19, we obtain
the correct amplitude of the vertical and horizontal linear motion and the correct Stokes
drift.
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Figure 18. Numerical predictions of the magnitude of the second-order horizontal motion amplification X(2)

as functions of dimensionless object size D/λ0 for non-viscous drag and for different density ratios β = ρo/ρf
(see legend). In the figure, periodic waves are denoted by crosses and wave packets of the same bandwidth as
in the experiments by circles.
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Figure 19. Trajectory of a perfectly Lagrangian tracer obtained using a numerical solution of the present model
with forcing provided by (D1). Panels (a,b) display the horizontal and vertical motions xp(t) and zp(t), with
the blue dashed line showing the theoretical Stokes drift displacement and the red lines the superimposed wave
amplitudes. Panels (c,d) show the tracer particle positions in the (n, τ )-coordinate system.
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D.2. Small-object limit
As object size tends to zero, D → 0, the solution should recover the behaviour of a
perfectly Lagrangian tracer. This has been explicitly checked by numerically solving for
an object of non-dimensional diameter D/λ0 = 1 × 10−6, which results in X(1) = 1.00,
S(1) = 0.00 and X(2) = 1.00.

Appendix E. Alternative drag and added-mass formulations

This appendix examines several alternative approaches to modelling the drag (§ E.1)
and added-mass (§ E.2) forces on a floating object. Results are obtained from numerical
solutions at laboratory-scale conditions as in § 4.

E.1. Drag
Although drag on a fully submerged sphere away from a free surface and in steady flow is
well defined across a large range of Reynolds numbers (e.g. Morrison 2013), the drag force
on a partially submerged, floating object in the unsteady flow field arising from surface
waves is not. To understand the implications for our model’s predictions, we consider
the following drag formulations: viscous drag with Cd = 24/Re, non-viscous drag with
Cd = Cd(Re) based on Morrison (2013) and turbulent drag with Cd = 1/2.

E.1.1. Viscous drag: Cd = 24/Re
For the viscous drag coefficient Cd = 24/Re, we consider three cases: a case based on
submergence-dependent and thus time-varying projected area APA(t) = (As,n(t), As,τ (t)),
as in the paper, a case that ignores the time dependence and sets APA = A(0)

PA ≡ APA(s(0)),
and a case that is based on the time-varying, direction-independent submerged surface area
ASA(t). To compute the drag force, we use (2.14) and (2.16). For a sphere, the submerged
surface area ASA(t) = πDs(t). We normalise this by the surface area of a sphere AFS =
πD2, so that ÂSA(t) = s(t)/D and replace both Âs,τ in (2.14) and Âs,n in (2.16) by ÂSA.
As a result of this normalisation, the drag forces on a fully submerged sphere based on
projected area and based on submerged area are equal.

The first-order horizontal motion remains unchanged and so is not presented here.
Variable submergence and second-order drift solutions are shown in figure 20. It is evident
that inclusion of time-varying submergence in the projected area and replacing projected
by submerged area has a negligible effect on the first-order submergence and only a very
minor effect on the drift.

E.1.2. Non-viscous drag: Cd = Cd(Re)
For the non-viscous drag coefficient, which is based on a fit to experimental data for a
fully submerged sphere (4.2) (from Morrison 2013), we consider two cases. First, we set
the drag to be proportional to the submergence-dependent, time-varying projected area
APA(t), which is the approach used in the paper. Second, we ignore the time dependence
and use the projected area of the sphere without waves APA = A(0)

PA ≡ APA(s(0)).
Again, the first-order horizontal motion is unchanged and not presented here. The

magnitude of the variable submergence and the drift are presented in figure 20. The
variable submergence responses in these two cases are very similar to each other and to
the viscous drag cases discussed above. The solutions for drift are similar to the viscous
solution for small objects, diverging as the object size increases. For larger objects, the
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Figure 20. The effect of alternative drag formulations on the numerical predictions of first-order variable
submergence S(1) (a) and second-order drift X(2) (b) as a function of non-dimensional object size D/λ0 for
a density ratio β = 0.8 at laboratory-scale conditions. The lines correspond to different drag formulations,
labelled in the legend, using either viscous drag (Cd = 24/Re, solid lines), non-viscous drag (Cd = Cd(Re),
dashed lines) or turbulent drag (Cd = 1/2, dotted lines), which either vary with the time-varying projected
area in the respective directions (A(t) = APA(t)), with the constant projected area in the respective directions
(A = A(0)

PA ), or with the submerged surface area (A(t) = ASA(t)).

drift is significantly larger than when modelled with viscous drag. This is caused by the
relative reduction in the drag force. There is a slight increase in drift when the projected
area is time dependent.

E.1.3. Turbulent drag: Cd = 1/2
We capture the turbulent drag limit by setting Cd = 1/2, which we consider to be the
practical large-object limit of (4.2). We consider two cases; similar to non-viscous drag,
we have used the time-dependent projected areas APA and also consider time-independent
projected areas of a sphere in the absence of waves A(0)

PA .
Again, the linear horizontal motion is unchanged and so not presented. The variable

submergence is slightly decreased when compared with the viscous and non-viscous cases
for larger object sizes, which results in a smaller adjusted Stokes drift. The increase in drift
is larger than the viscous cases because of the relative reduction in drag, but smaller than
the non-viscous cases. The comparative increase observed when using time-dependent
submerged projected area, seen for non-viscous drag, can also be observed with turbulent
drag.

E.2. Added mass
Maxey & Riley (1983) derived the added mass for a fully submerged sphere in a low
Reynolds regime and found the added-mass coefficient to be Cm = 1/2. Hulme (1982)
studied a floating hemisphere under wave forcing and derived independent surge and heave
added-mass coefficients as functions of non-dimensional object size k0D/2. The range of
non-dimensional object sizes in the present study is 0 < k0D/2 ≤ 0.16, which corresponds
to added-mass coefficients in the range 0.83 ≤ Cm,n ≤ 0.86 in heave and 0.5 ≤ Cm,τ ≤
0.53 in surge (Hulme 1982).

We consider two categories of added-mass formulations: direction independent and
dependent. In the first category, we consider Cm = 0, Cm = 0.5 representative of a
submerged sphere in a low Reynolds regime, and Cm = 0.5β for an added mass that
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Figure 21. The effect of alternative added-mass formulations on the numerical predictions of first-order
variable submergence S(1) (a) and drift X(2) (b) as a function of non-dimensional object size D/λ0 for a density
ratio β = 0.8 at laboratory-scale conditions for non-viscous drag. The lines correspond to different added-mass
formulations, described in the legend, with solid lines for directionally independent added-mass formulations,
and dashed lines for added-mass formulations decomposed into normal and tangential directions.

increases linearly with depth of submergence in the absence of waves but remains
time independent. In the second category, we consider constant Cm = (0.53, 0.83)

representative of a hemisphere (Hulme (1982)), Cm = 2β(0.53, 0.83) so that the added
mass recovers Hulme’s (1982) result for a hemisphere and is zero for an entirely
unsubmerged sphere. Finally, we extend this to a submergence and time-dependent added
mass: Cm = 2(0.53, 0.83)s(t)/D.

As for the different drag formulations, the first-order horizontal motion is insensitive
to our choice of added-mass formulation. Figure 21 shows the first-order variable
submergence and drift responses obtained for the different added-mass formulations
considered. Figure 21(a) shows the relative insensitivity of the variable submergence
response to the different added-mass formulations. The variable submergence exhibits
a slight increase when the added mass is directionally dependent and a function
of submergence. Drift, shown in figure 21(b), is more sensitive to the choice of
added-mass formulation. Direction-independent formulations result in a smaller increase
in drift compared to their direction-dependent counterparts. The smallest increase in
wave-induced transport (excluding the special case of zero added mass Cm = 0) is Cm =
0.5β which is used to generate the analytical and numerical solutions presented in the
paper.
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