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Article

Distance and velocity estimation using
optical flow from a monocular camera

Hann Woei Ho1,2, Guido CHE de Croon1 and Qiping Chu3

Abstract

Monocular vision is increasingly used in micro air vehicles for navigation. In particular, optical flow, inspired by flying

insects, is used to perceive vehicle movement with respect to the surroundings or sense changes in the environment.

However, optical flow does not directly provide us the distance to an object or velocity, but the ratio of them. Thus,

using optical flow in control involves nonlinearity problems which add complexity to the controller. To deal with that, we

propose an algorithm that estimates distance and velocity of the vehicle based on optical flow measured from a mon-

ocular camera and the knowledge of control inputs. This algorithm applies an extended Kalman filter to state estimation

and uses the estimates for landing control. We implement and test our algorithm in computer simulation and on board a

Parrot AR.Drone 2.0 to demonstrate its feasibility for micro air vehicles landings. Results of the simulation and multiple

flight tests show that the algorithm is able to estimate height and velocity of the micro air vehicles accurately, and

achieves smooth landings with these estimates, even in windy outdoor environments.
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Introduction

Micro air vehicles (MAVs) have gained in popularity
in recent years. Due to their small size, they are
easier and safer to use than large unmanned aerial
vehicles. However, the size and weight constraints
make the MAVs more challenging to be deployed
for autonomous missions. To deal with the problems,
it requires reducing the amount of payload or sensors
and developing more intelligent and efficient
algorithms.

Optical flow, which can be extracted from a mon-
ocular camera, provides a very promising solution for
miniaturization. Optical flow refers to the apparent
visual motion of objects in a scene relative to an obser-
ver.1 This information tells us not only how fast the
camera moves, but also how close it is relative to the
things it sees. Flying insects use it as the main visual cue
for sensing their own movements and surrounding
objects while flying. They can perform complex tasks,
such as landing, by only relying on this visual input and
using limited neural resources. For instance, honeybees
heavily use optical flow to perceive the environment
and avoid dangerous objects while flying.2,3

To accomplish vertical landings, honeybees use a
divergent pattern of optical flow or the so-called flow
divergence. By keeping the flow divergence constant,
honeybees can perform smooth landings. This strategy
leads to exponential decay of both height and velocity
to zero at touchdown, and it is ideal for MAVs land-
ings.4–7 Often, a straightforward proportional or pro-
portional integral feedback controller is used for MAVs
to perform constant flow divergence landing.

However, in our previous studies, we found that
fixed-gain controls used in constant flow divergence
can lead to instability of the landing.8,9 This is because
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the critical control gain is directly proportional to the
height.8 Most of the current approaches to solving this
problem are to use a gain-scheduling technique which
is actually designed according to the knowledge of an
initial height.10,11 However, if no additional sensor is
installed, the height is unknown. Besides, if the initial
height deviates too much from the one which is used to
design the gain-scheduling structure, this method will
not work properly. Thus, the knowledge of the height is
important for optical flow control.

In fact, optical flow does not give us the absolute
distance to a surface or velocity of the camera directly.
There are four known methods to estimate distances
from optical flow. First, one can add sensors that dir-
ectly or indirectly measure distance, velocity, or accel-
erations. The right type of filtering and fusion can then
give distance estimates. For instance, some studies
include an inertial measurement unit (IMU), a camera
sensor, and a pressure sensor, and use a Kalman-based
sensor fusion technique to estimate distances.12,13

Second, when performing a perfect constant flow
divergence landing, the control input (the thrust) or
so-called efference copy follows a specific monoton-
ously decreasing function over time, which can be
used to estimate distances.14 They demonstrated this
approach by moving a camera along a track toward
an image scene to first estimate an initial distance.
Since the constant flow divergence control will result
in an exponential decay of distances, they simplified
the estimation problem to an exponential propagation
of distances after obtaining the initial value.

Third, a stability approach that detects self-induced
oscillation caused by high controller gains and uses
these gains to estimate distances was introduced.8

He showed analytically that there exists a directly pro-
portional relationship between the critical control gain,
i.e., the gain which causes instability, and the height.
Based on this relationship, the MAV detects self-
induced oscillation and uses these gains to estimate
the height.

Fourth, by knowing the effect of the control inputs,
one can ‘‘scale’’ the optical flow to obtain the distance
and velocity. An early study on the dynamic effects in
visual servoing showed that the control gain is a func-
tion of the distance.15 It was used in an adaptive control
scheme for visual servoing.16 The relationship also
implies that the closed-loop response depends on the
distance which opens up the possibility of estimating
the distance to a target from closed-loop dynamics.

In this paper, we build upon the principle presented
in the fourth method to estimate the height (distance
to the ground) and vertical velocity of an MAV. An
extended Kalman filter (EKF) is used to estimate the
height and vertical velocity of an MAV using the know-
ledge of the control input in combination with the flow

divergence observed from a monocular camera. This
algorithm uses the efference copy to predict the effects
of an action and the observed flow divergence to correct
the prediction. The significant advantage of this
method is that we simplify the nonlinear control of
the constant flow divergence to a linear control that
uses height and velocity estimates. Thus, this provides
the possibility of using some optimization techniques
with vision output from a monocular camera to
improve the performance of the control.

The remainder of the paper is set up as follows:
In the first section, we provide some knowledge about
the flow divergence and the constant flow divergence
guidance and control strategy. The following section
describes the proposed EKF-based height and velocity
estimation using the flow divergence and the control
inputs, the nonlinear observability analysis of the
system, and vision algorithms used to estimate flow
divergence with a monocular camera. Then, the next
section shows the results of estimation in computer
simulation while in the succeeding section we also
show the results of multiple landings of an MAV.
Finally, a conclusion with future work is drawn.

Background

Flow divergence

For vertical landing of an MAV, flow divergence (D) or
visual looming as shown in Figure 1 can be computed
as the ratio of its vertical velocity VZ to the height from
the ground Z

D ¼
VZ

Z
ð1Þ

When the MAV is approaching the ground, we meas-
ure positive Z, negative VZ, and thus D< 0 according to
the coordinate systems shown in Figure 2. The camera
coordinate system is assumed to coincide with the body
coordinate system.

Figure 1. Divergence of optical flow vectors (flow divergence)

when the observer is approaching a surface.
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Constant flow divergence guidance and control

Constant flow divergence approach has been used for
vertical landing of the MAVs. This approach controls
the vertical dynamics of the MAVs by tracking a con-
stant flow divergence. When |D| equals a positive con-
stant c, we can derive from equation (1) the height
Z ¼ Z0e

�ct, and velocity VZ ¼ �cZ0e
�ct, where Z0 is

the initial height. This shows that both height and vel-
ocity will decrease exponentially and eventually become
zero when touching the ground.

A proportional feedback controller is used to track the
desired flow divergence D� as shown in equation (2)

� ¼ KpðD
� �DÞ ð2Þ

where Kp is the gain of the proportional controller.
A double integrator system is used to model the

dynamics of an MAV toward the ground in one-dimen-
sional space. The continuous state space model can be
written as

r
:
ðtÞ ¼ f ðrðtÞ,�ðtÞÞ ¼ A � rðtÞ þ B � �ðtÞ

¼
0 1

0 0

� �
rðtÞ þ

0

1

� �
�ðtÞ

ð3Þ

yðtÞ ¼ hðrðtÞÞ ¼ ½r2ðtÞ=r1ðtÞ� ¼ D ð4Þ

where r ¼ ½r1, r2�
T
¼ ½Z,VZ�

T and � is the control input.
It is clear that the model dynamics in equation (3) are

linear but the observation in equation (4) is nonlinear.
Figure 3 shows a time response of the system when
tracking a constant flow divergence. In this figure, we
can see that the MAV accelerates in the first 2.5 s and
then decelerates to zero velocity to touch the ground.
Both height and velocity of the MAV decrease exponen-
tially to zero in the end.

EKF-based height and velocity estimation
using flow divergence and control input

An overview of the methodology is presented in
Figure 4. Images captured by a camera are served as

the inputs to the software while the control input com-
mands the actuator to control the MAV. In this section,
we describe (1) an EKF algorithm using the flow diver-
gence and efference copies to estimate the height and
velocity of an MAV during landing, (2) a nonlinear
observability analysis of the system, and (3) a vision
method to compute the flow divergence.

EKF

In practice, the flow divergence is computed using
an on-board processor. Therefore, we used a discrete-
time EKF to estimate the height and vertical velocity of
the MAV. The system model and observation model
are shown in equations (5) and (6), respectively

x
:
ðtÞ ¼ f ðxðtÞ,�ðtÞÞ þ wðtÞ ð5Þ

zk ¼ hðxkÞ þ vk ð6Þ

Camera

FAST &
Lucas Kanade

Divergence
estimator

EKF

Controller

Actuator

images

tracked corners

divergence

height, velocity

control input

Software

Figure 4. An overview of the methodology.
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Figure 3. Height Z, velocity VZ, and flow divergence D of an

MAV during landing using constant flow divergence strategy

(D� ¼ �0:3 s�1) with control input �. MAV: micro air vehicle.

Figure 2. MAV body (xb, yb, zb) and world (xw, yw, zw) coord-

inate systems. MAV: micro air vehicle.
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where f ð�Þ and hð�Þ are the system matrix and the obser-
vation matrix which are obtained from equations (3)
and (4), respectively. wðtÞ and vk are the system noise
and observation noise which are both assumed to be
zero mean multivariate Gaussian process with covari-
ance Q and R, respectively.

Several computational steps taken in EKF when the
update of flow divergence is obtained are shown below:

(a) One-step ahead prediction

x̂kjk�1 ¼ x̂k�1jk�1 þ

Z tk

tk�1

f ðxð�Þ,�ð�ÞÞd� ð7Þ

(b) Covariance matrix of the state prediction error
vector

Pkjk�1 ¼ (kPk�1jk�1(
T
k þ !kQ!

T
k ð8Þ

where ( and ! are the discretized matrices of A and B

and can be computed as below (their derivations can be
found in Appendix 1)

(k ¼
1 tk � tk�1

0 1

� �
, !k ¼

ðtk � tk�1Þ
2=2

tk � tk�1

" #
ð9Þ

(c) Kalman gain

Kk ¼ Pkjk�1H
>
k HkPkjk�1H

>
k þ R

� ��1
ð10Þ

where

Hk ¼
@h

@x

����
x̂kjk�1

¼ �
x̂2kjk�1
x̂21kjk�1

,
1

x̂1kjk�1

" #T

ð11Þ

(d) Measurement update

x̂kjk ¼ x̂kjk�1 þ Kkðzk � hðx̂kjk�1ÞÞ ð12Þ

where zk � hðx̂kjk�1Þ is called the innovation of EKF.

(e) Covariance matrix of state estimation error vector

Pkjk ¼ ðI� KkHkÞPkjk�1ðI� KkHkÞ
T
þ KkRK

T
k ð13Þ

Nonlinear observability of the estimation

In this subsection, we show that with the flow diver-
gence and the efference copy/control input the system is
observable, i.e., any distinct states are distinguishable
by applying a bounded measurable input (e.g., a piece-
wise constant input). To check the observability of the
nonlinear system, the observability rank condition can
be used.17

We first construct the observability algebra which
consists of repeated Lie derivatives of the observa-
tion model in equation (4), hðrðtÞÞ ¼ r2ðtÞ=r1ðtÞ, with
respect to the model dynamics in equation (3),
f ðrðtÞ,�ðtÞÞ ¼ ½r2ðtÞ,��

T. The system is observable if
and only if the Jacobian of the observability algebra
is full rank. In our case, the observability algebra O
can be written as:

O ¼
L0
f hðrðtÞÞ

L1
f hðrðtÞÞ

" #
¼

hðrðtÞÞ

@hðrðtÞÞ

@rðtÞ
� f ðrðtÞ,�ðtÞÞ

2
4

3
5

¼
r2ðtÞ=r1ðtÞ

�ðr2ðtÞÞ
2=ðr1ðtÞÞ

2
þ �=ðr1ðtÞÞ

� � ð14Þ

Next, we analyze O to see whether its Jacobian is full
rank. The first function of the observability algebra is
yðtÞ ¼ hðrðtÞÞ ¼ ½r2ðtÞ=r1ðtÞ� ¼ D from equation (4) while
its second function is the first Lie derivative with
respect to the dynamics which equals to �ðr2ðtÞÞ

2=
ðr1ðtÞÞ

2
þ �=ðr1ðtÞÞ ¼ �ðhðrðtÞÞÞ

2
þ �=ðr1ðtÞÞ. From this

result, we can clearly see that the system is (locally)
observable (i.e., a full rank Jacobian of O) if and only
if the control input, � 6¼ 0, and r1ðtÞ 6¼ 0 and r2ðtÞ 6¼ 0.
In other words, we are able to estimate the distinct
states, i.e., Z and VZ, by using both flow divergence
and control input in the algorithm.

Features-based flow divergence estimation

In computer simulation, we used equation (1) to com-
pute flow divergence, while in flight tests, we estimated
flow divergence based on equation (15) (Proof can be
found in Ho et al.9). For each image captured by an on-
board camera, corners were detected using the FAST
algorithm18,19 and tracked in the next image using the
Lucas–Kanade tracker.20 Then, the image distances
between every two corners at one image, dðt��tÞ,i and
at the next image, dt,i were computed. By further com-
puting the ratio of dðt��tÞ,i � dt,i to dðt��tÞ,i, we can
measure the expansion and contraction of the flow.
We took the average of these ratios, and with a
known time interval between these two images �t, we
estimated divergence using equation (15)

D̂ ¼
1

n
�
1

�t

Xn
i¼1

dðt��tÞ,i � dt,i

dðt��tÞ,i

� �
ð15Þ

Ho et al. 201



where n is the total number of tracked corners. In prac-
tice, the vision output is often noisy. Therefore, we used
a low pass filter to reduce the noise in the estimation.

Computer simulation

Before performing flight tests, we simulated the pro-
posed algorithm presented in the previous section in
MATLAB to show the feasibility of the algorithm.

Landing simulation with simulated control inputs

In the simulation, we generated the height and velocity
with a timestamp of 0.05 s using a set of control inputs,
� as shown in Figure 5(e). These data served as ground
truth for validation. The flow divergence measurement
was generated using equation (1) with a measurement
noise standard deviation of 0.001 s�1 as illustrated in
Figure 5(d).

By using the control input, � and the flow divergence
measurement,D, we estimated the height, Z and the vel-
ocity, VZ with the proposed EKF algorithm. Figure 5
shows estimated states (Z and VZ) and their ground
truth, innovation of the EKF, flow divergence measure-
ment, and the control inputs. In this simulation, we can
observe that the estimated height and velocity converge
and follow the ground truth after a few seconds, even
with different initial conditions (Z0 and VZ0

) than the
actual values. In addition, the innovation of EKF has
zero mean implying that the filter is working correctly.
Simulation results show that the proposed algorithm is
able to estimate the distance to the ground and velocity
accurately.

Experiments results and discussion

We implemented the EKF algorithm and vision algo-
rithms in Paparazzi Autopilot, an open source auto-
pilot software.21 A Parrot AR.Drone 2.0 equipped
with a downward-looking camera was used as a testing
platform, and all algorithms were running on board the
MAV. We used an OptiTrack system to track the pos-
ition of the MAV in order to provide the ground truth
of its height and velocity only for validation purposes,
and these measurements were not used in the estima-
tion. In this section, we show the feasibility of the algo-
rithm by performing three different control strategies
for MAVs landings.

Before executing the algorithm in real-world experi-
ments, we need to check the relationship between the
control input � (which is assumed to be the acceleration
in the model) and the resulting acceleration aZ imposed
on our platform, e.g., aZ ¼ f ð�Þ. Figure 6 shows the
vertical acceleration aZ resulted from the control
input � used in performing a constant flow divergence

landing. The acceleration measurement was obtained
from the on-board IMU but was not used in the fol-
lowing flight tests. Knowing that the variation of the
control input � from the hovering command �g is small
(total command to motors �T ¼ �g þ �), a linear

Time (s)

Z
(m

)

true
estimate

0 50 100 150
0

10

20

(a)

(b)

(c)

(d)

(e)

Time (s)

V
Z

(m
/s

)

true
estimate

0 50 100 150

-0.1

0

0.1

In
no

va
tio

n
( 1

/s
)

Time (s)
0 50 100 150

-4

-2

0

2

4 × 10− 3

D
(1

/s
)

Time (s)
0 50 100 150

-0.08

-0.06

-0.04

-0.02

0

0.02

µ
(m

/s
2
)

Time (s)
0 50 100 150

-0.2

-0.1

0

0.1

0.2

0.3

Figure 5. EKF-based height and vertical velocity estimation

from flow divergence for landing control. (a) Height, (b) velocity,

(c) innovation, (d) flow divergence, and (e) control input. EKF:

extended Kalman filter.

202 International Journal of Micro Air Vehicles 9(3)



function is used to map the control input to the accel-
eration. From the mapping, we obtained az ¼ 9:906�þ
0:047 plotted as a dashed line in the figure.

Landing using constant flow divergence
with fixed-gain control

The first strategy we used in the flight tests is the con-
stant flow divergence. A flow divergence set point was
tracked for the entire landing. During the landing, the
EKF algorithm was running in real time to estimate the
height and velocity of the MAV.

Figure 7 shows the estimation results of the landing
with a constant divergence of �0:3 s�1 using a fixed-
gain control. The initial value of the height for EKF
was set to be Ẑ0 ¼ 3m which was different from the
true initial height, i.e., Z0 � 2m. In the figure, we can
see that the height estimate converges to the true height,
even though the initial value is different. In addition,
the velocity estimate also matches well with the true
velocity.

From the landing results, we can observe that this
strategy exponentially decreases both height and vel-
ocity to nearly zero by only tracking a constant flow
divergence. In fact, the drawback of vision algorithms
is that when the image is too dark, the algorithms will
not work properly. For instance, when the camera is
too close to the ground, the flow divergence estimate
becomes incorrect. To deal with that, we constantly
decrease the trim throttle when the MAV is very close
to the ground (Z5 0:2m) to allow the MAV for touch-
down. Another fact is that a fine-tuned control gain or
gains adapted with the height is needed to solve the
instability issue.9 This issue can be seen from the mea-
sured flow divergence in Figure 7(d) when the MAV is
close to the ground.

To show the reliability of the proposed algorithm,
we performed multiple landings with different flow
divergence set points (D� ¼ �0:1, � 0:2, � 0:3 s�1) at
different initial heights (Z0 � 2, 3m). The same initial
guess of the height (3m) was used in the EKF algo-
rithm for these flight tests. Figure 8 shows the height
and velocity estimates using EKF algorithm in different
landings. In this figure, we can see that both height and

velocity estimates match well with the true values. With
a larger set point, the MAV landed faster with the expo-
nential decrease in both height and velocity. Besides,
these results also show that a good guess of the initial
height has a faster convergence of the estimates.
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The height and velocity estimated from EKF can
then be adapted to tune the controller gain in real
time for the constant divergence landing. This will be
discussed in the coming section. By doing that, oscilla-
tions due to improperly chosen gain can be reduced,
and thus a smooth landing can be achieved by only
using a monocular camera.

Landing using constant flow divergence
with height-adapted control

Experiments presented in the previous subsection were
performed using a manually tuned control gain in order
to achieve stable landings. In fact, the critical control
gain, i.e., the control gain which causes instability, is
directly proportional to the height.8 This means that if
a fixed gain is used in constant flow divergence landing,
oscillation will occur at a certain height. When the height
is known from the proposed algorithm, it can be used to
automatically adjust the control gain in such a way that
the oscillation is eliminated.9 This second strategy is used
to keep the advantages of using constant flow divergence
landing, i.e., achieving an exponential landing profile by
just tracking a desired flow divergence set point and
avoid the instability due to a fixed-gain control.

By letting Kp ¼ f ðZÞ ¼ k � Z where k is a positive
constant, the proportional controller in equation (2),
� ¼ KpðD

� �DÞ becomes

� ¼ k � Z D� �
VZ

Z

� �
¼ kD�Z� kVZ ¼ �k � rðtÞ ð16Þ

where k ¼ ½k1 k2� ¼ ½�kD
� k�.

This controller simplifies the problem to a linear
control problem. To find k, we can first solve this
linear control problem using the pole-zero analysis.
From equation (3), the model dynamics becomes

r
:
ðtÞ ¼ A � rðtÞ þ B � ð�k � rðtÞÞ ¼ ðA� B � kÞ � rðtÞ

¼
0 1

�k1 �k2

� �
� rðtÞ

ð17Þ

To achieve stable conditions, all the poles should lie
in the left half of the s-plane. The poles of the system
are obtained as shown below

�1,2 ¼
�k2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k22 � 4k1

q
2

ð18Þ

Therefore, for a stable system, k22 � 4k1. By substi-
tuting k1 ¼ �kD

� and k2 ¼ k, we get k2 � �4kD� and
thus kðk� 4cÞ � 0, where c ¼ �D�. Since k> 0, k � 4c.

Three flight tests were performed at different flow
divergence set points (D� ¼ �0:1, � 0:2, � 0:3 s�1)
shown in Figure 9. The initial guess of the height for
EKF was set to be different from the true height in
order to test the convergence of the estimates.
When the landing was activated, the control gain was
adapted to the height according to Kp ¼ k � Ẑ. Note
that the value of Kp used in the real flight needs to be
mapped according to the result shown in Figure 6.
Since the initial height was selected to be much higher
than the true height, it was expected that a slight oscil-
lation occurred at the beginning of the landing. After
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the height estimate converged to the actual height, the
landing was smooth as the correct gain was used. In
addition, it can be seen from the last column of Figure 9
that the tracking of these three different D� is good.
This strategy ensures a stable and high-performance
landing.

Landing using height and velocity from EKF

The third strategy we used for landing is tracking a
height profile using the estimates from EKF. To this
end, the landing begins by (1) giving an initial excita-
tion to the MAV, or (2) using constant divergence strat-
egy, for the first few seconds. This can ensure that the
EKF converges and the controller tracks the right
height estimate.

This first initialization was performed in an indoor
flight test by giving a block input as the excitation as
shown in Figure 10(e) to the MAV for the first 0.5 s.
This allowed the MAV to go down or move in order to
‘‘observe’’ flow divergence and initialize the EKF algo-
rithm. After that, the controller used the estimates from
the EKF to track a desired profile or set points for
landing.

Figure 10 shows the height and velocity estimates
from EKF compared with their ground truth, the
innovation of EKF, the flow divergence from the
vision algorithms and the ground truth, and the control
input. After giving the initial excitation, the MAV
started to track a height profile represented by the

black dash-dot line. This profile was generated using

x�1,k ¼ x�1,k�1 þ x�2 ��t with x�1,0 ¼ Ẑ0 and x�2 ¼

�0:2m s�1. The results show that the height and vel-

ocity can be estimated accurately using the proposed
EKF algorithm and further used in the controller for
landing. The zero mean innovation of the EKF also
tells us that the filter was working properly.

The second initialization was conducted in an out-
door flight by tracking a desired divergence for the first
few seconds as shown in Figure 11. Since the OptiTrack
system is not available for outdoor flight, we can only
use the onboard sensor, such as sonar, to provide the
true height and velocity (dZ/dt) for accuracy
comparison.

The landing started at 5m, and the desired diver-
gence of �0:2 s�1 was tracked. After 2 s, the controller
was switched to track a height profile as presented in
Figure 11(a) which was generated based on the velocity
estimate at the instance when the controller was
switched (� �0:8m s�1). In fact, the height profile can
also be created based on the desired velocity
(see Figure 10). The results show that both height and
velocity estimates are accurately estimated compared to
the measurements from sonar. In addition, the height
estimate can also be used in landing control. It can also
be observed from Figure 11 that the estimates converge
soon after the landing starts. Thus, the time interval
for initialization can also be shortened. Note that
the previous indoor flights were performed to validate
the proposed algorithm using the highly accurate
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OptiTrack system while the outdoor flight was con-
ducted to show the robustness of the algorithm to a
windy outdoor environment. Some videos of the flight
tests are available online.a

In this paper, we presented three landing strategies
using (1) constant flow divergence with fixed-gain con-
trol, (2) constant flow divergence with height-adapted
control, and (3) height and velocity estimates. All these
strategies can provide a smooth landing solution for
MAVs. The first strategy, however, requires a perfectly
tuned control gain to avoid instability. The second
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strategy solves this manual tuning problem by adapting
height estimate from EKF to the control gain. This
allows stable landings without affecting the tracking per-
formance. Due to fast convergence of height, we only
observe a slight oscillation at the start of the landings.
Lastly, the third strategy uses the height and velocity
from EKF directly for landing. Although it requires an
initial excitation for observing optical flow, this strategy
lands the MAV by following a desired landing profile
and allows further performance improvement using gain
optimization techniques.

Discussion on wind effect and rejection

In principle, external disturbance, such as the wind, has
no problem in control as it can be rejected easily. For
instance, when using a proportional feedback control
with height estimates, the steady-state error due to wind
can occur, but it can be eliminated using the analysis of
final value theorem on our model with the wind. From
this analysis, we found that in order to reject for
instance a constant wind, the proportional control
gain should be KP ¼ d0=xð1Þ, where xð1Þ is the
required steady-state error, and d0 is the wind disturb-
ance estimate.

However, for state estimation, the wind as the external
force is not accounted for in our model at the moment.
The practical experiment performed in a windy outdoor
environment shows that this factor might not be prob-
lematic. However, a more thorough investigation and a
solution for this problem might be necessary. For
instance, we can augment the state vector in equation
(3) with the wind disturbance as an additional state,
i.e., _dwind ¼ w (w can be modeled by the random
walk22,23) and modify the second state to be
VZ

:
¼ �þ dwind. By doing that, the wind factor is

included in the model, and thus the estimation can be
improved in the presence of the wind.24 Both discussions
to deal with external disturbance will be the future work
of this study.

Conclusion

In conclusion, we proposed an algorithm to use an
EKF to estimate the height and vertical velocity of an
MAV from the flow divergence and the knowledge of
the control input while approaching a surface and use
these estimates for landing control. This algorithm was
tested in computer simulation as well as in multiple
flight tests in indoor and windy outdoor environments.
The results show that the proposed EKF approach
managed to estimate the height and velocity of the
MAV accurately compared to the ground truth pro-
vided by the external cameras. In addition, the esti-
mates were used in the controller to smoothly land

the MAV. The proposed approach avoids the complex-
ity of having nonlinearity in the constant flow diver-
gence-based landing by ‘‘splitting’’ the flow divergence
into the height and velocity which allows the use of a
linear controller. For future work, an augmented state
Kalman filter can be used to improve the estimation
when strong external disturbances are involved. Also,
the algorithm opens up the possibilities to use gain opti-
mization techniques to improve the control
performance.
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Note

a. Experiment videos: https://goo.gl/KiJurr.
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Appendix 1: Discretization of linear state
space models

The continuous state space model is given as

x
:
ðtÞ ¼ AxðtÞ þ BuðtÞ ð19Þ

yðtÞ ¼ CxðtÞ þDuðtÞ ð20Þ

The discretized state space model can be expressed
below

x½kþ 1� ¼ (x½k� þ !u½k� ð21Þ

y½k� ¼ Cdx½k� þDdu½k� ð22Þ

where

( ¼ eAdt ð23Þ

! ¼

Z dt

�¼0

eA�d�

� �
B ð24Þ

Cd ¼ C ð25Þ

Dd ¼ D ð26Þ

dt is the sampling time. We can find both ( and ! at
the same time by computing the matrix exponential25

exp
A B

0 0

� �
dt

� �
¼

( !

0 I

� �
ð27Þ
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