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Stability Margins in Adaptive Mixing Control
via a Lyapunov-based Switching Criterion

Simone Baldi and Petros A. loannodkellow, IEEE

Abstract—This paper proposes a Lyapunov-based switching possibility that a destabilizing controller is finally switched-on

logic within the framework of adaptive mixing control (AMC),  and kept in the loop because the unstable dynamics are not
where a weighted combination of a family of candidate controllers excited.

can be inserted in the loop to regulate the output of an uncertain It is theref . tant to devel danti itchi
plant. The proposed AMC scheme employs a bank of parallel IS therelore important o develiop adaplive switching

estimators, or multiple estimators, together with a switching Mechanisms that can infer, from input/output data, the stability
logic that orchestrates which estimate should be evaluated by margin of a potential feedback loop and switch the corre-
the mixer. The switching logic is driven by input/output data sponding candidate controller on. For this purpose switching
and uses Lyapunov-based criteria to assess the best estlmatqogics employing Lyapunov-based criteria have been designed

among the bank of parallel estimates. The resulting scheme . t n th text of switchi . trol
guarantees convergence of the switching signal in finite time In recent years in the context of switching supervisory contro

to a controller that satisfies a Lyapunov inequality implying a [5], [6]. The objective of this work is the development of
prescribed stability margin. The problem of convergence to the Lyapunov-based criteria for adaptive mixing control (AMC)

desired controller is addressed both analytically and numerically. [7], [8], where, rather than selecting a single candidate con-
In contrast, most classes of continuous tuning adaptive control or troller like in switching architectures, a weighted combination

switching adaptive control schemes do not guarantee that after f didat troll be | ted in the | ¢
the switching stops or the adaptation is switched off the resulting of more candidate controfiers can be nserted in the loop 1o

closed loop linear time-invariant (LTI) system is stable, unless regulate the output of the uncertain plant. Mixing architectures,
there is sufficient plant excitation that guarantees convergence whose stability and robustness properties have been estab-

to the desired fixed parameter controller. The proposed scheme |ished in [7], [8], have been shown to moderate the detuning
guarantees that if the desired controller is switched on, it phenomenon arising in adaptive switching control due to

will never be switched off thereafter. Furthermore, simulations the di ¢ ¢ f th didat troll th
demonstrate that while alternative adaptation methods can con- e discrete nature o € candidate controflers versus the

verge to an LTI unstable feedback loop, the proposed scheme Continuous nature of the uncertainty set [7]. The development
consistently converges to the desired controller. of Lyapunov-based criteria for the selection of the control law

Index Terms—Adaptive control, mixing control, supervisory N @n adaptive mixing fram_ework_ i§ of relevant import_ance for
logic, linear matrix inequalities. the development of adaptive mixing schemes with improved
stability properties. In this paper the AMC scheme is extended
to employ a bank of parallel estimators, or multiple estimators,

, » . together with a switching logic that, according to Lyapunov-
_In the absence of any persistently exciting signals, Clagaseq criteria, orchestrates which estimate should be evaluated
sical adaptive control schemesg., model-reference or pole-y,, the mixer in order to determine the participation level each
placement adaptive control schemes, cannot guarantee tha“céﬁ‘didate controller. The resulting scheme guarantees that the
estimated parameters converge to the true parameter valy@sy syitched-on controller satisfies a Lyapunov inequality
therefore convergence to the desired LTI controlle_r is n%plying a prescribed stability margin in terms of a desired
guaranteed. Consequently, in the absence of persistencys@onential decay of the norm of the states. While guarantee-
excitation, there is no guarantee that if adaptation is switch convergence to a stable LTI system is, in the absence of
off the resulting closed loop LTI system is stable: the contrgesistency of excitation, still an open problem, the proposed
scheme can possibly converge to a system whose unstablfeme guarantees that if the desired controller is switched on
part is not excited [1]. Similarly, in adaptive schemes emy feaghack with the uncertain plant, it will never be switched
ploying switching among a family of precalculated candidaty thereafter. Furthermore, numerical examples demonstrate
controllers,e.g.[2], [3], [4], even though the boundedness of,4t the proposed mechanism increases the chances that the
the closed-loop signals is established, there is no guarantee {hal syitched-on controller is the desired controller for the
the final switched-on controller is stabilizing if the switching,,.ertain plant. Numerical methods based on Linear Matrix
logic is turned off. In this case it is not possible to exclude thl?lequalities (LMIs) for the analysis and the synthesis of the

The research leading to these results has been partially funded by Iﬂy@punov-baged Cr'te_”a are prowded. . )
European Commission FP7-ICT-5-3.5, Engineering of Networked Monitoring The paper is organized as follows: Section Il introduces the
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and synthesis of the Lyapunov-based conditions and of thermalization signal [9], [10] is considered:
family of candidate controllers. Extension of the proposed

method in the presence of disturbances is dealt with in &ecti 0t) = %r (Le(t)e(t)),  6(0) = bo, @)

VII. In Section VIII two numerical examples are used to show C(t) =0T (t)o(t)

the effectiveness of the method. et) = O ()
Notation: Given the vector-valued time function € R", m2(t) = 1+na(t), 4)

v, denotes the time truncation of the functiorup to timet.

~—

. 1/2 na(t) = —ona(t) +u’(t) +y*(t), na(0) =0, (5)
The £, norm of vy is [[ve |, = (fg lo(7))? dr) , where]o| L
is the Euclidean norm, and the.. norm of v, is [|o;]|_ := Where0(0) € €, 6 > 0, Pr stands for the projection
sup {[v(q)|,0 < ¢ < t}. We say thatv € Lo (v € L,oo) if operator that forces the estimated parameters to staynvilthi
the Lo (L ’) norm exists and is finite fot — oo. Fi;oally specified convex se®, e is the normalized estimation error,

: S . +m+1)x (n+m+1) j P L . .
the notation[y] indicates the smallest integer greater than or © R " Jx(nrm+1) s the positive definite adaptive gain.
The quantities

equal toy.
Sn
O WAL (6)
Il. PROBLEM FORMULATION: UNCERTAIN PLANT pT( ) T (o T
PARAMETRIZATION T G G 7
o) = |52 raCI NG

The adaptive control problem is formulated for the class of . .
. . L : . are the observation and the regressor vector of the paiametr
noise-free linear time-invariant (LTI) uncertain systeriifie . ) :
. ._model of the plant (1), and,(s) is a Hurwitz polynomial of
extension of the proposed method to the case where distyr- .
bances and unmodelled dynamics are present is considered i ¢ The adaptive law (2)-(5) guarantees [9, Sect. 4.4.1
Y P and Table 4.2], [10, Sect. 3.3]:

Sect. VII. Consider the uncertain LTI SISO plant .
El. €(t), e(t)ms(t), 0(t) € LoaN Lo -

s™ + HzTanfl(S) Uy Ill. STATE-SPACE FORMULATION OF PLANT AND CONTROL
LAW

While considering an uncertain plant in the input/output

y=Go(s,0")u=

where Gy (s, 0*) represents the transfer function of the un-

: . * . *T *TT n+m-+1
certal_n plaant, trll(e vectop” = [f] G 0. 9]* ] eh R . form (1), a state-space formulation associated with the un-
contams the un nown parameters G(s, . ) the notation o tain plant will be used for the purpose of analysis, as wel
o (s) is used to indicate the vector containing all the POWERS for the development of the switching logic of Sect. V. The

from n to zero of the Laplace variable, i.e. an(s) = plant (1) can be transformed into the following state-space
[Sn " 1 ... s 1}T

) ) ) representation
We make the following plant assumptions, which are con-
sidered in most adaptive control designs: z(t) = AO")z(t) + Buﬁc") (t) (8)
P1. The degree of the denominator o63(s, #*) is known. y(t) = C0")z(t).
P2. The plant is strictly propere., m <n — 1. n— n—
P Y Propere., m = n Here z(t) := [y\" " (t),....yp(0), " D (0),...,up (D)7,

P3.0* € Q for some known compact convex s€t C (n—1) , (n—1) o
RA+m+1 Yy (u; ) denotes then — 1)-th derivative ofy; (uy),

_ _ _ . where y; = y/A(s), uy = u/A(s) and A(s) = s" +
Remark 1: Assumptions P1-P3 are considered in most Claﬁ;,_ls”* 4 ...+ X is a Hurwitz polynomial of degree.

sical adaptive control designs. It must be underlined thtt w ;
. Besides,
respect to model reference adaptive control we do not requir

the numerator of the plant to be Hurwitz, while with respect —0;" | ;"

to adaptive pole placement control we do not require tr}g(e*) _ Incv [Ogm-1x1 | On—1)xn

numerator and the denominator of the plant to be coprime, O1xn | O15n ’

i.e. stable zero-pole cancellations are allowed. The scheme can O(n—1)xn | Tno1 |O@m—1)x1

be extended to include tracking by using the internal model

principle, where the reference signale L., is assumed to 0

satisfy Q.,(s)r = 0. Q..(s) is the internal model of-, a _ | Om-1)x1 ¥\ _ [_p*T | g*T _ oT

monic i i B , CO7)=[-0" 165" - 03],
polynomial of degreg with nonrepeated roots on the 1

imaginary axis must satisfy: On—1)x1

P4. The numerator of the plant adgl,, are coprime. wherefy = [A\,_1,...,\o]T andf; € R" denotes the vector

O that derives from fillingd; with n —m — 1 zeros.

The adaptive mixing law approach replacés with its Remark 2:A  state-space  transformation similar
estimate . An on-line parameter estimatobased on the to (8) also applies for any statex(t) =
parametrization (1) of the uncertain plant is used to g&aer@y;"_l)(t), e ,yﬂt),u&"‘”(t), ...,up(t)]T and any Hurwitz

0 at each timet. In this work, a gradient law with dynamic polynomial A(s) of degreen, with 7 > n. In this case the
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vectorsd; and§; should be filled withn —m —1 andn—n  —(Q(s)A(s))/(L(s)A(s))y(t). In the rest of the paper, the
zero entries, respectively. It is useful to consider> n to control action is supposed being implemented as shown in
include control designs where the order of the controllglgorithm 1: for the sake of implementation in a digital
is greater than the order of the plant. In the sequel, faomputer, a temporal discretization for the solutions & th
simplicity, we will consider controllers of ordet. Besides, ordinary differential equations is shown. In the next sattve
without loss of generality, we will také (s) = A,(s). O will show how to combine a family of candidate control laws
The state and input of (8) are filtered values of the inpuplout in the form (15) in a multicontroller with mixing architectu

pair (u,y) obtained via

Algorithm 1 Implementation of control action

yr(t) = Fyg(t) + Gy(t) O Attmes
ﬁf (t) = Fuy (t) + Gu(t), (10) Given: Given the measurements of the input/output faift), y(t));
B (n-1) - 1: Calculate the filtered input/output pdii ¢ (t 4 dt), ¢ (t + dt)) via (9)-
where g(t) = [y (1), up ), ag(t) = (10);

2: Form the statec(t + 6t) = [y} (¢ + 6t) u} (¢ + 6t)]" and calculate

(n—1) (T
[uy ™ (t), -, ugp(t)]” and ul (t+ 6t) = —Ka(t + 6t)

P e } . { 1 ] e 3: Apply the inputu(t+6t) = ulf") (t+6t) — [\n—1,..., Aol Ty (t+5t).
Ini Og—1yxa1 On—1)x1

Note that, assuming that the designer selects the initiat co

ditions 7(0) and @;(0) of the filters (9)-(10), it is possible [V. MULTICONTROLLER AND MIXER

to calculate, at each time the stater(t) = [gf(t) a?(t)]T, The focus of the control problem is on situations where

independently(g the_initial co_ndition of the plant (1). ttcmld. a large parameter uncertainty $&prevents any single linear
be noted thay ;' (¢) is also directly measurable at each tim@ontroller,e.g, designed with robust linear control techniques,
t via the first row of (9),i.e. from meeting the performance requirements over the whole
(n) 1y _ (n—1) uncertainty sef2. In multiple model architectures, in order
t) = —An_ t)— .= doyr(t) +yt). (12 : _

vy () 1y 0 oys (1) +3(t) (12 to cope with the large uncertainty set of the plant (1), we
The measurements of filtered inputs and outputs will be usggsume the presence of a finite family df control laws
in Sect. V to develop the switching logic among differen{c;(s) = Pi(s)/Li(s)};cz, whereZ := {1,...,N}. When
candidate control laws. The state-space formulation (8% cathe filtering action of Sect. Il is employed, the control kaw
for a particular implementation of the control law, as prése can be implemented &s<; },,, with K; as in (15). Given the

in the following. family of N candidate controller§X;},_,, a multicontroller
C(p) is constructed. As typically assumed in multiple model
A. Controller implementation architectures, each candidate controllE; yields a stable

Since the control objective is to choose the plant inpsb closed-loop system that meets the performance requiresment
that the plant outpuy is regulated to zero, we consider output‘for a COTEZ‘jflSUbS@i of the, uncertainty .se(ﬂ. The subsets
feedback control laws in the form(t) = —Q(s)/L(s)y(t), 1% CR” } o1 are afinite cover af),i.e, Q C Uier;.
that can be written in a streamlined notation as The multicontroller is a dynamical system capable of gerera

ing the N candidate control laws, as well as a mix of candidate
u™ 4 1, 1w 4 L™ 4 g (13) control laws for overlapping parameter subsets

= —po1y™ Y — =iy —poy, (14

N
where u(™) (y(™) is the n-th order derivative ofu (y). By ”5‘ (1) = _Zﬂi(e)Kix(t)' an)
adopting the representation (8), the output-feedbackrabnt ) =l o .
law (13) can be implemented in such a way to feed back t{@€ multicontrolier depends on a mixing signal =
statex(t). In fact, after filtering the left and the right side ofl81:- -, Bn]" € RY which determines the participation level

(13) by the stable filtel /A(s), we obtain a controller in a Of €ach of the candidate controllers. The mixer implements
full-state feedback form the mappings : Q — By, whereB3y is the set of admissible

mixing values

uf(t) = —Ka(), (15) N .
K = [pn1 - prpoln ... lilo). (16) Bi=1{p ek :;,@i(@) =15 820 Bi =00 ¢ S}

It should be noted that (15) leads to a non-minimal transfer } ] ) (18)

function representation of (13). This is due to the introlne following properties of3(-) and of the multicontroller

duction of the filter 1/A(s). In particular, from (15) we C(5) are assumed

obtainu(t) = —(Q(s)A(s))/(L(s)A(s))y(t): thus the filtering M1. 3(-) is Lipschitz inQ.

action (9)-(10) introduces stable zero-pole cancellatiohs C1. Foreveng* € Q, let 3* := 3(0*); thenC(5*) internally

a consequence of this representation, the internal stabili stabilizes the plan&o(6™).

the feedback loop formed by the plant (1) and the controller Remark 3:Property M1 ensures that & is tuned slowly

(13) is equivalent to the internal stability of the feedbackn the £, sense of property E1), then the closed-loop system

loop formed by the plant (1) and the controllet) varies slowly in theC, sense. This property is used to establish
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stability of the closed loop system by using results frorBect. 2.2]: the LMI-based numerical procedure for deteimgin
time-varying systems [9]. Property C1l ensures tli43) the positive definite symmetric matricdd and the positive
is a certainty equivalence stabilizing controller. Notetth constantsp; will be explained in Section VI.
assumption C1 is a point-wise stability requirement thadse  Remark 5:Lyapunov stability arguments can be used to
not to be verified for every admissible mixing strategydn ~ establish that (19) guarantees exponential stabilityérstibset
but only for the chosen mixing strategy(-). O Q; (cf.[12, Thm. 4.10]),i.e., (19) guarantees the existence of
The on-line parameter estimator is now combined with th@o positive constants; and a» such that:
bank of linear controllers and the mixing strategy to depelo ot
an adaptive mixing control design. The stability propesrtid [2()] < e1e™* |2(0)], (20)
such AMC scheme are recalled [7], [8]: where oo = p;/2 is the stabilty margin, ay =
Theorem 1:Let the uncertain plant be given by (1). Con()\,,,m(Pi)/)\mm(ﬂ))lm, and Aoz (B;), Amin(P;) are the
sider the adaptive mixing controller with the multicontenl maximum and the minimum eigenvalue dP;, respec-
C(p) given by (9), (10) and (17) and satisfying assumptiotively. O
C1. If the mixing function3(#) given by (18) satisfies M1; Inequality (19) is used in the proposed adaptive mixing
and if ¢ is generated by the adaptive law (2)-(5), then th&pproach to guarantee a desired stability margin in terms of
resulting adaptive mixing control scheme guarantees that an exponential decay rate of the Lyapunov function. Using
closed-loop signals are boundé@,, u, y € L.; furthermore similar ideas as in [5], define ag(t) the derivative that the
y(t) — 0 ast — oc. statex would have if the controllets; is placed in the loop
Proof: See [7], [8]. B at timet, that is
Remark 4:In the absence of sufficient plant excitation the i .
regressor vectop in the adaptive law (2) cannot be guaranteed #'(t) = A(0")x(t) — BKx(t)
to be persistently exciting, which implies that the estiedat = i(t) - BK;z(t) — Bu(f") (t). (21)

parameters generated by (2) may not converge to the "Hfe idea behind the development of the switching logic is

values [7], [8]. This in turn implies that the_AMC schemeio verify which are the controller indexesthat satisfy the
cannot be guaranteed to converge to the desired contigller inequality

whose index: satisfiesf* € ;. In the following section,
a Lyapunov-basgd switching logic is deyeloped in orQer .to %@i(t) = 2T ()P (1) < —pia () Pa(t), (22)
guarantee, also in the absence of persistency of excitation Oz

exponential decaying of the norm of the states according teaad choose the corresponding estimated parameter vector

desired stability margin. [ 0; to be evaluated by the mixer. Thanks to the partic-
ular transformation in (8), the components of are di-
V. LYAPUNOV-BASED SWITCHING LOGIC rectly measurable or can be calculated. In facff) :=

(n) 1) (n) M) (1T

In this section the AMC scheme is equipped with g/({L_g)"“’yf (Ef)’“f (t)’('n'_"l;ﬁf )] 'J)he components,
Lyapunov-based switching logic. By monitoring 1/O datag thy;  (),....y; ' (t) andu,; " (f),...,u, ' (t) are directly
switching logic inserts in the feedback loop a control lawvailable from the state(t). The quantityu}") (t) is available
that verifies a Lyapunov mequa_llty. inlke adap_twe sth@_ from the applied control law, While;/](c”) can be calculated
control, that selects at each time instant a single carelidglom (12).
controller, adaptive mixing control allows for the weigtite
sqlec_tlon of the candidate pontrollgrs. Thus, the Lyapu_n%\{ Multiple estimators and hysteresis switching logic
criterion to be developed will take into account the mixing ) ) . ] )
policy occurring in the overlapping region of two or more A parallel estimation architecture is used, in an effort to
subsets). improve initial learning performance. We use as many estima

( . . . .

It is assumed that the bank of controllers has been desigri@tf as theV candidate controllers: each estimator differs in
to guarantee a known stability margin for every possibleeal 'S initial cond.|t|on and it is designed to project its et
of the uncertain parameter 2. To this end, the following ©N & Subsefl;:

assumption is introduced: 0;(t) = Pr(To(t)e(t)) (23)
L1. There exists a family of Lyapunov function¥;(xz) = i .
2T Pz, i € T, that satisfy 6(t) = ¢(t) = 0; (H)o(t) (24)
' mi(t)
N
8‘4@(9*75(9)) _ oV A(67) _BZBJ(H>KJ T where ¢;(0) € ; and m§ is as in (4)-(5). A hysteresis
Ox Ox = switching mechanism is introduced to choose which is the
% best estimate among th& estimated parameters vectors
< —piVi(x), VO* € Q;, V0 € Q;,Va, 19 .
< —piil@) < < * (19) 0,,---,0x. Based on the Lyapunov conditions (19), for each
where P;, i € Z, are positive definite symmetric matricepparameter estimator we consider the performance signal

andp;, i € Z, are positive constants.

Note that inequality (19) is a simultaneous stabilizailit B A
condition that can be checked using LMi-based tools [11, Ji(t) = max {A:(q)},

Ai(t) = max {227 (t)Pd"(t) + pa” (t)Pyx(t),0}(25)
(26)
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where &’ is as in (21). A supervisory logic compares the
performance signal&7; (t) }:cz, and selects, at each timethe
estimated,, () := 0, (t) of indexo via the followinghysteresis
switching logic[13]:

o(t) = {the least j: j = arg Illél%l{jq(t) - héw(t)}} ,
o (0) e Z,

where §; ; is the Kronecker's indexd(; = 1 if i = j,
d9;; = 0 otherwise),c~ (¢) is the limit of o(7) from below
asT — t and h, a (typically small) positive real number,
is the hysteresis constantWhen more than one index
minimizes {ji(t) —héwf(t)}, the least index is selected
[13]: alternatively, any other minimizing index can be céios
without altering the properties of the switching logic.

The following Hysteresis Switching Logic (HSL) lemma

establishes the behavior of the switching system arisiom fr
(27).

HSL Lemma [13] Let . denote the class of all possible

switching sequences(-). Consider the following assumptions:

Al. For eacho(-) € .7 andi € Z, J;(t) admits a limit as
t — oo, or the limit goes to infinity;

A2. For eacho(-) € .7, there exist integerg € Z such that
J,.(+) is bounded.

Let o be the switching sequence resulting from (27). Then,

Al and A2 hold, there is a finite timé € R, after which

no more switching occurs. Moreovef, .+ (-) is bounded.

B. Stability of Lyapunov-based Adaptive Mixing Control

Logic-based 1 — I I
S 1 Hysteresis 1
Supervisor : switching ) la— V :
1 logic 1 0 L
1 —1 1 E P U
1 1 la—t
1 farg min ¢} :
1 ja— U 1
g T+ Y H
i 6 MO [ Tt
1 v + N
1 . Lyapunov-based :
Candidate : Mixer performance Robust
1 signal generators  estimators |
controllers Lo [leneenemlors  esmaon !
[y p———
i B
: Kl L o i
| Mixing # | Unknown |
1 strategy of control
1 Fy
™K
H Filtering
1

Fig. 1. Lyap-AMC architecture

A(s) be analytic inR[s] < —p/2, wherep = min,; {p;,7 € Z}.
If the multicontroller is driven by the mixing strateg0,.,),
with 8(-) given in (18) and the index(-) selected according
to the switching logic (27), (25) and (26), then the follogin
hold:
1) (Final switching timé There is a final switching time*
for the indexo and J,(;+) < h.

(@7) 2) (Transient performance before final switching tjnize-

fore the final switching time7,, ;) < h, which guarantees
that each controller is switched-on at most once, there are
at mostN switches before the final switching time and

ly(t)] < cie” 7 |2(0)| + Nh, Y 0<t<t*, (28)

where ¢; = e 1) Amax(Bi)/Amin(P)?, ¢ de-
pends on the coefficients of the filt&rs), co = min; p;,
and h = O(h). Furthermore, whenever a (desired) con-
troller whose index satisfiesf* € €); is inserted in the
loop, it will never be switched-off thereafter.

3) (Steady-state performance after final switching jifke
final switched-on controller, namel§(3(6,-))) guar-
antees

[y(t — 1) < are™ 5 [o(t) 4 b, Yt > 17, (29)

where 1 = C) <)\7naz(Pa(t*))/)\min(Pa(t*)))1/2, h =

O(h). In addition, whenevef* € Q-+, lim; o0 y(t) =
it Proof: See the Appendix. ]
Remark 6:In supervisory adaptive control schemes with
multiple models, the performance signalg are typically
based on some norm of the estimation ereg, J;(t)
[ lesms(7)|* dr [14], [15]. Such performance signals have
been used also in the context of AMC [16]. The resulting AMC
scheme guarantees the same stability properties as tHe-sing
estimator AMC presented in Theorem 1. Similar stabilitygero
erties are also achieved by classical adaptive controlnsebge
namely model-reference and pole-placement adaptive aontr
as well as by many supervisory adaptive control schemes with
multiple models. The developed performance signals (25)-
(26), based on a Lyapunov criterion, guarantee additional
stability propertiesj.e., a desired stability margin.

Remark 7:For purely switching adaptive architectures, se-
lecting a single candidate control law without mixing the
candidate controllers inside the overlapping subsetgliton
L1 reduces to

Vi .
5 2(07)

O (A) ~ BE) 2(1)

which is similar to the conditions that can be found e.g. ih [5
(cf. eq.(3)) and in [6] (cf. eq.(3)). The results of Theorem 2
apply to an adaptive switching control architecture syitisf

IN

The stability properties of the resulting Lyapunov-base@®0) and equipped with the Lyapunov-based switching logic

AMC (Lyap-AMC), whose architecture is shown in Figure 1
are established by the following Theorem:

(25), (26) and (27) in a straightforward manner. The switghi
control architecture can be seen as the limiting case of a mix

Theorem 2:Let the uncertain plant be given by (1). Coning architecture, with the overlapping regions of the stidbse

sider the bank of parallel estimators (23)-(24),(4)-(5)n€ider
the adaptive mixing controller with the multicontroll€r(3)

Q; shrinking to zero. As a consequence, condition L1 includes
(30) as a limiting case and it is no more restrictive than iothe

given by (9),(10) and (17) and satisfying assumption L1. Léyapunov-based approaches available in literatufe.
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Remark 8:The focus of the results in Theorem 2 is orCondition (33) is a parameter dependent LMI that should
guaranteeing stability of the adaptive system under theliconbe satisfied over the whole subs@f. Since a parameter-
tion that#* is unknown but constant. It is possible to verifydependent LMI is equivalent to a set of infinitely many LMIs,
that the presented results are still validif(¢) € Q; Vt, i.e, itis difficult to solve in general. In literature we can disguish
if the parameter vectof* is time-varying but it never leavestwo main approaches aiming at the solution of parameter-
its initial uncertainty subse®;. In the case of a time-varying dependent LMIs: if the uncertainty subs@t belongs to a
parameter vecto6*(¢) going from one uncertainty subset tgpolytope with verticesV’*, k = 1,... . n + m + 1, the first
another, themax operator in (26) must be modified. In factapproach uses convexity properties to formulate the LMy onl
such an operator makgg monotonically nondecreasing, thusat the vertices [18], [19]:
not allowing to insert in the loop a candidate controller ethi . .
performed unsatisfactorily in the past, before all the riema AT (O )Py + PAO™) + piPs - K BT P!
candidate controllers perform at least as badly. Modifireti —-PBK; 20, vo'M eVvFvjeT, (34)
of (25)-(26) in order to deal with time-varying parameter,

include the use of finite windows or fading memoriesg. ﬁ/hereL- is the subset of indicating the mixing signals that

can be active in the subsét;. Note that in (34) we took

Ai(t) = maX{QmT(t)Pi;y(t) + pixT(t)Pix(t),O}(Sl) into account the fact that(d) € RY belongs to a polytope
—r(t—q) with verticese, ..., ex, Wheree; is the orthogonal basis with
Ji(t) = 0o {e Ai( )} ’ (32)  zero entries and a 1-entry in theth position. The number of

LMIs in (34) is (n + m + 1) * dim(Z;). A second approach

wherer > 0 is the discount factor. The stability analysis i . . o
the time-varying case is not straightforward and will be tr:{é) the solution of (33) consists of gridding the parameter

i i (1] [M] .
subject of future studies. Designing controllers for ptantth set by taking' sample pomts{& o180 } € 9, and

. . formulating the LMIs at the grid points. Gridding methods
time varying parameters even when the parameters of thé plan S : .
$ased on deterministic or randomized sampling have been

are known is not straightforward and requires a complete
different approach than in the LTI case as documented _(iI\r/?veloped for several LMI problems [20], [21], [22]. {t;

[17]. O is not a polytope, the gridding approach may reduce the level
' of conservatism: however, one drawback is the fact thaether
is no guarantee that the LMIs are satisfied between the grid
points. A practical approach is selecting two sets of grich{zo
the first set to be used for the solution of the LMIs and the
Linear Matrix Inequalities are a powerful tool that alloveth second one, possibly denser than the first set, to be used
construction of quadratic Lyapunov functions for stapiind for validating the solution. An appropriate selection o th
performance analysis of linear systems [11]. In this sectiysteresis constant will help to address the quantizatioor e
LMI-based numerical methods are developed to solve thﬂroduced by the gr|d in fact, So|ving (33) by using a g"[gj
following two problems, associated to the Lyapunov-baseghproach implies that there exists always an inglsxch that

condition (19): 20T (t)Pya? (t) + pja” (t) Pja(t) < &, (35)

VI. LINEAR MATRIX INEQUALITIES FOR ANALYSIS AND
SYNTHESIS OF CANDIDATE CONTROLLERS

1) Given a family of candidate controllefs(; }, ., find the
symmetric matrice$’; and the scalarg;, i € Z, such that where x > 0 takes into account the quantization error
condition (19) is verified (Analysis problem). introduced by the grid, which decreases by increasing the

2) Find the symmetric matrice8; and the scalarg;, i € Z, number of grid points. By choosing the hysteresis constant
as well as the state-feedback gailis, i € Z, such that 1 > x we can avoid spurious switching due to the quan-

condition (19) is verified (Synthesis problem). tization error. With the gridding approach the number of
LMIs to be solved for every subsé?; is M *« M. Such a
A. Analysis problem formulation, although tractable in many practical applmas,

might suffer from dimensionality problem due to the factttha

In lity (1 n be written X . . . .
equality (19) can be written as the number of grid points increases exponentially with the

N dimension of the parameter. At the current state-of-the-ar
o | AT(0%)P; + P,A0%) + pi Py — Zﬁj(H)KjTBTPiT Semi-Definite Programming (SDP) solvers based on interior-
j=1 point methods [23], [24], can efficiently handle mediumisca

N problems with< 20,000 optimization variables; SDP solvers
—Pi325j(9)Kj r <0, V0" e,VoeQ, Ve, based on augmented-Lagrangian methods [25], [26] scale to

j=1 larger problems. Algorithm 2 proposes an algorithm to solve
which implies the problem of maximizing the decaying raig

B. Synthesis problem

If the problem is to find both the Lyapunov matricés
N and the state-feedback gaihs, i € Z, then inequality (33)
_pi325j(g)Kj <0, V0" €Q;,V0eQ, (33) Iisnotlinearin the unknown terms. Besides, because of the
=1

N
AT(0%)P; + PA(6%) + pi P = Y _ B;(0)K B" P

j=1

mixing architecture, the state-feedback gains are rel&ded
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Algorithm 2 Analysis problem with ¥, = —X,BBT P, — P,BB"X, + X,BB"X,. The last
Given: Given a family of candidate controllefsi’i }; . ; inequality can be solved by applying a Schur complement
1: Selecth sample FiOi”tj{e[”wdw@[M]} € ©;, and a positive constant and the iterative algorithm presented in Algorithm 3. The
; > 0. Setec =1 and p§ = 0; - -
2. Solve the feasibility problem FB-th: I._MI Condltlons_ should be satisfied over the whole subSTets
1 € Z. If we grid each subse®, by taking M sample points

find P; {o1, ... oM} € Q;, i € Z, the total number of LMIs to be

8-t N solved in Algorithm 3 isM M x N. An interesting problem is

AT (@) P; + P AGY) + psP, — > B (07 KT BTPT finding the greatesp; which make the LMI problem feasible,
j=1 in order to maximize the decaying rate of the regulationrerro

N . In Algorithm 3 an algorithm is proposed to solve such a
_PiB;ﬁj(a K =0, 1=1....M r=1....M  proplem. Similar comments as the analysis problem reggrdin
J_ the computational tractability of the gridding approackoal

P; >0 :
apply to the synthesis problem.

3. If FB c-th is feasible, set = c+ 1, p§ = pf‘l + Ay, , then go to Step

2. Elsep; = p§ — Ay, . Stop. - -
Repeat Steps 1-3 for every subséts Algorithm 3 Synthesis problem

Return: Return: P; andp;, i € Z. Given: Given M + N sample points{0lil, ... 0lMi1Y € Q,, i € T;

1: SelectQ; > 0, i € Z, and solve forP;, i € Z, for some points)¥l
inside Q2;, the algebraic Riccati equations:

each ofch_er by nonlinear c_:onstraints, which make th(_a problem AT(O*) P, 4 PAOF)) — BBBTP, +Q; =0, €T (40)
more difficult than a classical state-feedback synthesiblpm
based on LMIs. In other words, while in the analysis problen}_
we can solve each optimization problem separately for each
Q;, the same thing is not true in the synthesis problem, since #° = minp*

the solution of the problem for a certain subset affects st

the solution of the other subsets, because of the mixing ar- | AT(OU)P, + A +ws  (BTP —KB@O)" |
chitecture. Next, an iterative LMI-based procedure fovsm BT P —KA(0!") -1 N
inequality (19) is proposed. For compactness of notati@®) (3 i = —X{BB'Pi — P;BB'X} + X{BB'X} + p°P;

is rearranged as P, =0 l=1,...,M, r=1,...,M, i €T

T ( g\ P, A(D* p._ 3(n\TT pT p. 3: If p° < 0 and|p® — p°~ 1| < k1, with k1 @ prescribed toleranc& are
A (9 )Pl + PZA(Q ) +pili 5(9) K B P the desired controller gainReturn: Return: P;, p; = p¢, i € Z, and

—P,BKB(0) <0, V0" € Q;,V0 e, (36) K. Stop.
4: Solve forP;, K

Setc=1andp’ =0, X! = P, i € I;
Solve forP;, K and p°©

wher _ _
ere i [Pr,..., Py] = argmin[tr(Py) + ... + tr(Py)]
14m s.t.
B(0) = : . K=[Ki - Kyl (37) AT (O P, + PAWW) +we  (BTP, —KAOM)T ]
Bal BT p; — Ka(0lri) —I -
m
; . V¢ = —XfBB'P, — P;BB'X{ + X{BB'X¢ + p°P;
Inequality (36) has the same form as static output feedback Pso I=1. M r=1.. Mi€eT

stabilization: several numerical methods have been pempios B _ .
literature for the solution of this problem [27], [28], [29B0], 5 If || BT X7 — BT Pi|| < sz, i € Z, with  a prescribed tolerance, the
[31]. Next, the iterative method proposed in [29] is elaleda synthesis problem may not be solvable, Stop. Elsecset ¢ + 1 and

. » I - propc _ X¢ = P;, then go to Step 2.
for the adaptive mixing control architecture in order tovsol
the synthesis problem. Inequality (33) is satisfied if anty on
if there exist matrices?; > 0, i € Z and K satisfying the

following matrix inequality,v6* € Q;, V0 € Q;:

Even if, as typical in iterative schemes, finding the global
optimum is not guaranteed, the optimization problem of Step
2 is a generalized eigenvalue minimization problem, which
AT(6")P; + P,A(6%) + p; P, — PLBBT P, + guarantees the progressive reductiorpaf The initial choice

(BTpi — KB(G))T(BTPi —Kp(#) =0. (38) of Q; might affect the number of iterations required and the

. . . o . final solution of the algorithm.
Inequality (38) is a quadratic matrix inequality. In order t g

solve it we introduce additional design variablgsthat satisfy VIl. EXTENSION TOH... CONTROL DESIGNS

X;BB"P;+ P,BB" X, — X;BB" X, < P,BB"P;. (39) Despite the achieved convergence and stability properties
Inequality (39) holds sincéX; — )T BBT(X; — P;) = 0. the proposed approach is not immune to the ‘model-mismatch’

The equality holds if and only iX; B = P,B. By combining instability problems that have been addressed in unfadsifie

inequalities (38) and (39) we obtain a sufficient condition tMethods [32], and that are inherent in model-based adaptive
solve inequality (36): design approaches. In case of mismatch between the plant

o . model and the real plant, due to nonlinearities, time-delay
AT(O")Pi + PA(O") + piPs + Wi + and/or unstructured uncertainties, the stability of thapdite
(BT P, — Kp(0)T (BT P, — Kj3(0)) <0, scheme might be lost. In order to address such phenomena,
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the proposed method is extendedHg,-based control designs, 5(-) given in (18) and the index(-) selected according to the
thus handling in an effective way bounded disturbancesoaindséwitching logic (27), (44) and (45), then the following hold
unmodelled dynamics [11], [33]. Such an extension goes|) (Final switching tim¢ There is a final switching time*
through a modification of both the multicontroller design  for the indexos and Jst+) < h+ do, wheredy is the
criterion L1 and the performance signals (25). In this secti bound ford defined after (41).

such modifications are presented and discussed. When th§ (Transient performance before final switching tjnige-
uncertain plant (1) is affected by bounded input and/or wutp fore the final switching time7,(,, < h + dy, which

disturbances, using similar transformations as in Seciwél guarantees that there are at madst[dy/h] switches
can transform the uncertain plant into before the final switching time. Furthermore, if= do,
. B X . there are at mos switches before the final switching
#(6) = AW@)2(t) + Bu(t) + L(E7)d(?), (41) time, and whenever the (desired) controller whose index
whered is a bounded disturbancee., |d(t)| < dg, Vt € R,. i satisfies)* € Q; is inserted in the loop, it will never be

Condition L1 must be modified in order to account for the  switched-off thereafter. _ o
disturbance term. The following assumption is supposed t®) (Steady-state performance after final switching Jjiffiee
hold: final switched-on controller, namel§(3(6,-y)) guar-

L2. The multi-controllerugc") =— Z;V:l B;(0)K;z has been antees e
designed to guarantee the existence of a family of Lya- |yt — *)| < ale—%(t—t*) ly(t)| +h, Y t>t*, (46)
punov functionsV;(z) = 27 P;z, i € Z, that satisfy L

where a1 = C) ()\maz(Pg(t*))/)\min(Pa(t*))) / , and

~ Vi ..
Vilw) = 5a(0",8(0)) < —piVi(w) b = O(Yo(s+)(h + do)?).
z 4) Finally
T T *
—ypyr +yd d, VO*,0 € Q;, YV, (42) -
T
wherep, and~;, i € Z, are known positive constants. .. [y (Ms (7) = Yoeyd do] AT < 754)O(R?). (47)
Remark 9:The condition (42) guarantees, inside the uncer-  proof- See the Appendix. u

tainty subset2; that Similarly to traditional adaptive control schemes with and

© InyII without switching,. aIsp Theorems 2 and 3 dp not guarantee
/ [y (s (t) — vd" (£)d(t)] dt <0 = 2 < ~,, (43) that when adaptation is switched off the resulting LTI syste
0 |d Hz stable. The reason that in theory the closed loop system may
thus achieving finiteC; gain [11]. Similarly to condition (19), Settle at an unstable equilibrium point for some approgriat
also (42) can be transformed into a set LMI, to be used both fiitial conditions and remain at that point till it is exteity
analysis and synthesis problems, in order to find the Lyapun@isturbed. Consider the exampte= Az with z(¢o) = 0; then
functions P;, the feedback gain&’; and the constants; and z(t) = 0 for all ¢t > ¢, J; = 0, Vi, and the final switching
~:. An optimal criterion for solving the LMI could be the onetime is t* = 0, no matter whatA is. Proving analytically
of maximizing p;, while minimizing~,, so as to maximize the such a scenario is difficult if at all possible. Since analysi
decaying rate of the regulation error and minimize the effeeannot exclude it, simulation-based evaluations can be use
of the disturbance term.] to investigate whether it is possible for the adaptive sahem
The performance signals (25) must be modified as well, 18 settle to an unstable controller when the adaptive part is
take into account the additional term. A natural choice far t Switched off. In the following section we use a numerical

performance signal is: example to evaluate this scenario.
Ai(t) = max {227 (t)Pd'(t) + pia” (t) P (t) VIIl. N UMERICAL EXAMPLES
+yf( ) 0} (44) 1) Example 1:A simple numerical example is presented to
Ai(q) 1/2 show the effectiveness of the proposed Lyapunov-based AMC
Ji(t) = 0Les ( P ) : (45)  scheme. Consider the first-order uncertain system
1
Note that, even in the presence of disturbandég;,) can be y(t) = Gols)ult) = — o u(t), (48)

calculated from Eq. (21). ) ) . )
whered; is an uncertain parameter belonging to the interval
The stability properties of the resulting Lyapunov-based Q={0: 1<6, <25}. (49)
AMC are: o
Theorem 3:Let the uncertain plant (1) be affected bylhe system (48) can be written in the streamlined notation
bounded input and/or output disturbances. Consider th& ban . *
. ’ t) = Oyt t), 0) = yo, 50
of parallel estimators (23)-(24),(4)-(5). Consider thea@md y(t) () +ul®), y(0)=yo (50)
tive mixing controller with the multicontrollelC(3) given wherey(0) is the initial condition of the plant. Despite the
by (9),(10) and (17) and satisfying assumption L2; if théact that for this first-order uncertain system the state)
multicontroller is driven by the mixing strategy(0,.)), with is completely measurable, we adopt the transformation (8)
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and the controller implementation (15) for tutorial puress
Taking A(s) = s + 1, the system (48) is associated with

jp(t) ] [ 67 1 #(t) 01].
=L o ] e e
where
:l)f(t) = _yf(t) + y(t)’ yf(O) = Yfo> (52)
up(t) = —up(t) +ut), ur(0)=uy, (53)

and y¢(0), us(0) are the initial states of the filtet/A(s),

which are assumed to be known to the designer. It is also

assumed that the state of the filter can be completely mehsu
Define the stater(t) = [ys(t) us(t)]T. Note thatz(0)
is different than the initial conditiony(0) of the plant: in
particular, we havg(0) = —ys, +yo andus(0) = —u s, +uo.

56| |
— o B6)
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Fig. 2.
(dashed)

Mixing strategy:51(61) (solid), 82(61) (dash-dotted),33(61)

The uncertainty se® is divided into three subsets and three

output-feedback candidate controllers in the form

~Cils)ylt) =~y (1),

are designed for the nominal valués = 1, 1.8, 2.4061.

u(t) = - (54)

The controllers have been designed to place the closed Io%l?

Other functions can be use@é,g, the trapezoidal function
or sinusoidal functions. Consider the pre-normalized Wsig
51(01) = (p((291 -U; — Lq) / (U, — Lq))' = 17273, where

U;, L; are the upper and lower bounds, respectively, of the
set); = {0, : L; <0, < U;}. The mixing signal3(,) is

eigenvalues of the three nominal feedback control loophdo td€nerated by normalizing = [5: ... fs)', i.e, i = 1,2,3

roots of the polynomiat? +2s+1.5. The candidate controller
implementation (15) is adoptede.

yr(t)
ug(t)

The actual input to be applied is thugt) = s (t) + us(¢).
The candidate controllers, as well as the three sul§3gtare
reported in Table I. The subseis have been found by taking
into account the stability intervals of each candidate et
The last column of Table | reports the nominal values of t
uncertain parameter vector for which the candidate cdetrol
K; is marginally stable, that is, if the controllek; is
placed in feedback with the plant correspondingdfo= 1.8

Uy (t) = —Kx(t) = — [k kio] [ ] , (55)

h

Z?=1 ﬂj(ol)

The mixing function derived from the described procedure,
using the bump function (56), is shown in Figure 2.

The resulting multicontroller constructed using gain tinte
polation (17) has been verified to satisfy assumption C1. The
Lyapunov-based AMC (Lyap-AMC) is compared both with
tge standard AMC scheme employing one single estimator
and with a switching scheme, namely Unfalsified Adaptive
Switching Control (UASC) scheme [34], [3]. The designed
variables used for the Lyap-AMC scheme afe: = 5,

09 = 0.2, h = 0.001. Using the LMI (33), condition L1 is

Bi(61) = (57)

(belonging tof2,), the resulting feedback-loop is marginally > " .

stable. Analogously, if the controlld(; is placed in feedback verified with

with the plant corresponding t8; = 2.4061 (belonging to p_ 0.871 0.329 P _ 0.899 0.296

Q3), the resulting feedback-loop is marginally stable. Fathea ' — | 0.329 0.161 |° 2~ | 0.296 0.129 £g
subsef();, an adaptive law estimating the unknown parameterp ~ 1 0916 0.947 p1=0.6 p;=0.13 (58)
07 is developed as in (2)-(5). 3710947 0219 |7 p3=1.2

K; Q; Marg. Stab. fOr@T
[4.5 2.5} 0, € [1, 1.5} 1.8
(7.94 3.3] 0 € [1.4, 2.1] 2.4061
[11.3982 3.9061] 6, € [2.0, 2.5]
TABLE |

CONTROLLER COEFFICIENTS

The hysteresis constant used for the UASC schenfe0isl.

The three schemes are simulated for two values of the
uncertain parametef; 1.8, 2.4061, with plant initial
conditionsy, = U[£0.1]. The notationi/[+a] stands for a
random uniform distribution on the intervgta, a]. The initial
state of the filted /A(s) is also selected randomly, in particular
[y, ug,]’ = [U[£0.1] U[+0.1]]". For each experiment we run

Given the parameter subsefy, the mixer can be con- 100 Monte-Carlo simulations: the results of the simulagion
structed on the basis of any Lipschitz functigiiz), that is for the three adaptive schemes are shown in Table Il. Each
greater than zero on a compact set and zero elsewhere. $iorulation has a time-length @bs. Every time the schemes
this simple example, a function that satisfies this requéinem are initialized with the candidate controller giving a maegly
is the smooth bump function stable feedback loop. The stability of the frozen feedback

. control system afte25s is recorded. The last three columns of
]
p(z) = { ‘

0

if |z <1
otherwise

Table 1l show how many times (out of 100) the final switched-

(56) ;
on controller was the marginally stable one.
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07 Initial controller |  UASC AMC Lyap-AMC
1.8 K1 9of 100 11 0of 100 0 of 100 8 T
2.4061 Ko 15 0f 100 18 of 100 0 of 100 al

TABLE II 6l

SIMULATION RESULTS
15r

131

While, for some initial conditions, both the AMC and
UASC scheme may keep for a long time the marginally stable

12

controller, the Lyap-AMC scheme switches off the marginall L

stable controller and the switching signal rapidly conesrg 15 : = . -

to the appropriate desired controller. The reason why the imels]

standard AMC keeps in the |00p the |n|t|a”y margina”y dtab (a) Estimated; (t): standard AMC (solid), Lyap-AMC
controller, can be seen from Figure 3(a): for some initial (dashed)

conditions, the parameter estimate of the single estintakess

longer time to converge close tf = 1.8, so that the initial 01

marginally stable controller is kept in the loop for a longjare
(Figure 3(b)). The reason for the good behavior of Lyap-AMC
can be explained by comparing the UASC performance signals
of Figure 4(a), with the Lyap-AMC performance signals of
Figure 4(b) for one experiment among the 100 experiments
performed withd; = 1.8. Here [7,, the dotted performance

¥
o
)
g

signal, is the one corresponding to the most appropriate Of N et TTmmmmmommmmmmmm
controller. While the UASC algorithm might take some time 002

before discriminating with sufficient accuracy the perfarme

signals (eventually keeping in the loop the initial mardina % 5 o is 2
stable controller), the Lyap-AMC rapidly detects the cohér

satisfying the Lyapunov inequality (implying desired skiap (b) Regulation ofy(t): standard AMC (solid),  Lyap-

margin) and discards the others. AMC (dashed)

2) Example 2:This second numerical example presents thgy 3 ¢: — 1.s: Estimate and regulation tasks for standard AMC and
effect of disturbances on the proposed architecture. Tamex Lyap- “AmC'
ple consists of a mass coupled with the wall via a spring and
a damping, as depicted in Figure 5. The objective is to keep
the mass at a constant position in spite of disturbancesgactl!l- Similarly to the first example, the candidate controlle
on the wall. Despite its apparent simplicity, such dynaniies |mp|ementat|on described in Sect. Il is adopted witfs) =
behind many practical problems like active suspensioregyst 5%+ V25 + 1,
in cars, vibration redugtlon in platforms, mech'anlcal_slnnues it ] [ -ve -1 o) 1 6
and other smart flexible structures. Assuming without loss =l 1 9 () y(t), (62)
of generality a unitary mass, the equation of motion can b

(t)
i ip(t) | _ [ -v2 } [ “f(t)] { ]
descrbed by | o } { 1 s u(t), (63)
IO = =0 =d0) = +ult) O ang i — Koafe), with 2(t) = [5,0) (1) i (1) ws (1)
with initial conditionsy(0), y(0), wherey is the position of Due to the disturbance rejection nature of the control bl
the massy is the force control inputy is the disturbancek a set of LMIs arising from condition L2 has been solved in
is the spring stiffness andis the damping coefficient. In this order to find the family of Lyapunov function, decaying and
example we take = 0.2 and assume that the spring stiffnesattenuation rates. For lack of space, only the last two dfirst

k* is uncertain and belongs to the uncertainty set are reported in Table IV.
Q={k: 0.08 <k<1.0}. (60) K; 9P
) . ) [9604.8 3633.8 51.9 1278.1] K € [0.08, 0.12]
The uncertainty set is divided into 7 subsets and for each [1894.3 734.0 29.7 366.3] k € [0.11, 0.18]
subset ant{., controller has been designed according to [23627.9 4434.8 116.9 2363.5]  k € [0.16, 0.29]
the mixed-sensitivity criterionnin lwlo £l - The con- (62410 958.7 43.9 811.9] k< lo25, 0.4
y deLe —af, - [5041.7 574.1 43.8 930.2] k € [0.35, 0.57]
trollers have the output-feedback form [3900.7 444.7 47.7 1129.2] k€ 10.5, 0.75]
[3944.9 375.2 54.0 1455.0] k € [0.65, 1]
s+ 1o
u=——a0——"—y. (61) TABLE IlI
$°+ 818+ So CONTROLLER COEFFICIENTS

Both the uncertainty subsef3; and the coefficients of the
controllers K; = [r1, 1o, S1, So;] are indicated in Table
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PLEY : : : the boundh+d, results conservative, since all the performance
signals are below 0.1, Figure 7 shows that, after a short
transient, the performance signd} is the smallest, so that
the desired controller is finally selected.

~

=)

)

IS

UASC functionals
w

N

-

0 / 1
0 5 10 15 20
time [s]

k(t)

0.6

(@) UASC func.:7: (solid), 7> (dotted), Js (dashed)

0.4

x10° 0.2H

~
o

0 5 10 15 20 25 30 35 40 45
time [s]

=)

(a) Estimatek(t): standard AMC (solid), Lyap-AMC
(dashed)

IS o

w
T = ed-c=--2-oo

Lyap—-AMC functionals

N

N

o

10 15 20
time [s]

o
@

(b) Lyap-AMC func.:7; (solid), 7> (dotted), 73 (dashed)

Fig. 4. 07 = 1.8: Performance signals for UASC and Lyap-AMC

-0.02

0 5 10 15 20 25 30 35 40 45
time [s]

(b) Regulation ofy(t): standard AMC (solid), Lyap-
AMC (dashed)

Fig. 6. k* = 0.2: Estimate and regulation tasks for standard AMC and
Lyap-AMC

Fig. 5. Mass-spring system

#1 #2 #3 #4 #5 #6 #T o
pi 008 010 012 011 018 017 020 009
v 005 008 012 020 032 046 0.63 008
TABLE IV 2 007} ,
DECAYING AND ATTENUATION RATES é 0ost| 1
“5 0.05 E
2 _' ;
10.04— 1
S‘O.OS*_FJ_’ 1
Figure 6 shows, fok* = 0.2 and for the initial condition ooz ]!
7(0) = 0.05, y(0) = —0.007, the output estimate and regula- oot |
tion task of the standard AMC as compared with the proposed I S e I S

time [s]

Lyap-AMC. Similar results can be found for different inltia
conditions. The switching logic leads to a faster adaptatio . , , _
of k(t), thus resulting in superior transient and attenuati(gi‘gh;' Jf aS:SOOC';:t;e@?t%mt?]';cgess'ﬁgZli;ﬂir;ﬁzfﬁ"‘g&m’;adaShed line the
performance. A random uniform disturbandg) between -

0.1 and 0.1 has been chosefy (= 0.1). In Figure 7 the
performance signals of the proposed Lyap-AMC are plotted:
in a dashed line, the signal; associated with the desired
controller is shown. Theorem 3 guarantees such signal to baVe developed an adaptive scheme based on mixing and
below h+dy. Despite the fact that, for the chosen disturbanceultiple estimators that guarantees that the closed losiesy

IX. CONCLUSIONS
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converges in finite time to a controller that satisfies a Lyepu
inequality implying a prescribed stability margin. Simtide

results demonstrate that, in contrast to most popular agapt
control techniques and structures, the proposed appraath c

verges to a stable closed loop system even if adaptation is

switched off at steady state.

1)

2)

APPENDIX: PROOF OFTHEOREM 2 3)

As a first step of the proof it is shown that assumptions
Al and A2 of the hysteresis switching lemma hold. Con-
sider the switched system given by the parallel estimates
0,,...,0n and the switching logic (27) selecting the
indexo(-) of 6,.y. In addition, consider the performance
signals (25)-(26). It can be shown that the max operator
in (26) guarantees the existence of a limit @f, i € 7
for every possible switching sequeneg:) € S (the
max operator makes/; monotonically non decreasing,
so that the limit exists, in case the performance signal
J; is bounded, or that the limit goes to infinity, in case
the performance signa¥; grows unbounded). Now we
must show that there exists at least one index 7
such that7, is bounded for every possible switching
sequencer(-) € S. Note that, inequality (22) is satisfied
for some indexj € Z, then the following inequality holds
fort > 0:
22T (1) Py (1) + pya” (1) Pjae(t) < 0 (64)

The design criterion L1 guarantees that there exists al-
ways at least one index € Z such that (64) holds and
thus 7, in (26) is bounded for every possible switching
sequence. So the HSL holds, there is a finite switching
time ¢* and J,;+)(-) is bounded. Because of the fact
that there exists always at least one index Z such
that (64) holds, the/, ;-)(-) cannot be greater than the
hysteresis constarit.
The hysteresis switching logic (27) together with the fac
that there exists always at least one ingdex Z such
that (64) holds guarante€g, ;) (t) < h, 0 <t < t*. In
fact, if 6* € Q, then7;(t) = 0 Vt > 0. So, if the indexi
is switched-on, it will never be switched-off thereaftdr. |
another indexj is switched-on, such an index will stay
in the loop till lim._,; 7,(t) = h. As soon as the last
equality is verified another indek satisfying 7 (t) < h
will be switched-on. The new index can be= i or k #
i, in any case,7,)(t) < h, vVt > 0. We also notice that
whenever a controller is switched on twice in feedback to
the plant, its performance signal grows at leastibyVe
conclude that every candidate controller is switched on at
most once and that there are at mo&tswitches before
the final switching time. Calt, o, ..., t* the instants at
which a switching occurs: then, between two switching
instants we have

JHax {2wT(t)Pa<ti>fb”(t“)(t)

+000)8” (OPouyz(t) —h } <0 (65)

12

which implies

26 = )] € Foupe™ F O [2(t) 4By b < i,
1/2

where Ro(t;) — ()‘maa:( o(t; ))/)\mzn( o(t; ))) / and

h = O(h). By observing that(t) = CTi(t) + dyz(t),

y(t) = Cg.’l](ﬁ) +d21$(t), with C, Cy, dy1, doy depend—

ing of the coefficients of\(s), (28) follows.

After the final switching time*, J,+(-) < h which is

equivalent to

max {sz(t)pg(t*)f(m (t)

t>t*
0oy 2T (1) Poeeya(t) = b | <0

which implies (29). In order to establish the convergence
of y in the case that* € Q,(;-) we proceed as follows:
after the final switching time¢* we can can show that the
following two equations hold [9, Thm. 7.4.1]

(66)

Qot)YA + Log=yun = 0,

pr/\ - Z pUAN = (67)

2
Go-(t*)m

whereu, = A U, Yp = A Y, Qo+) and L+ are the
numerator and the denominator of the final switched-on
controller andR, = s" + 0T, _1(s), Z, = O cm(s),
wheref = [#7 0117 are the estimated parameters. Then,
Eq. (67) can be rearranged as

B(t) = A)z(t) +bi(teseymi(t)  (68)
ut) = Cfi(t) +dua(t) (69)
y(t) = C3i(t) + dox(t) (70)

where A(t) is a time-varying matrix whose determinant,
for each frozen time, is equal to

det(sI — A(t)) = R,L + QZ, = A*(s,1) (71)
where A*(z, k) is the characteristic polynomial of the
closed-loop formed by the estimated plant and the con-
troller. Thanks to C1A*(z, k) is Hurwitz at each frozen
time k, so thatA(k) has stable eigenvalues at each frozen
time k. Using a similar procedure as in [9, Sect. 7.7.1],

we can establish that

+c (72)

[(¥)ellas < CH U(t*)m Hza

for 0 < § < 2\, where)q < 0 is the exponential con-
vergence rate of the homogeneous part of (68). Defining
the fictitious signatn? (k) £ 1+ ¢ (k)é(k)+|(y)ell55 +

[[(w)e \|25 and applying the Bellman-Gronwall Lemma [9,
Lemma 3.3.7] to

[ (73)

m?c <c+c H(eg(t*)msmf)t
we establishn; € . Using the boundedness of;, we
can establish the boundedness of all closed-loop signals,
i.e, ¢, u, y € L. Finally, applying [9, Lemma 3.3.3] to
(68), we observe that if the input,;-ym3 € L2 N L,
which is guaranteed by the adaptive law, thewill be
in £, and in additiony — 0 ast — oc.
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APPENDIX: PROOF OFTHEOREM 3 [15]

The proof proceeds by following similar steps as in thﬁ6]
proof of Theorem 2. It is first shown that assumptions Al
and A2 of the hysteresis switching lemma hold: this happeﬂs”
because L2 guarantees that there exists an ifdexZ such
that

227 (t) Pja (t) + pja” () Pjz(t) + yT (t)ys (1)
Vi

[18]
1/2
<dp

(19]

and thus there exists at least one indgexe Z such that [20]
J,. in (45) is bounded for every possible switching sequence
o(-) € §. The hysteresis switching logic (27) guarantees th[”}tl]
whenever a controllef is switched on twice in feedback to
the plant, its performance signgl has grown at least by.
This implies that there are at moat [dy/h| switches before
the final switching time. Consequently,/if= d, there are at
most N switches before the final switching time. In addition(23]
if 0* € Q,; then J;(t) < dop Vt > 0. So, if h = dy and the
index is switched-on, it will never be switched-off thereaftern24]
Finally, after the final switching time, the following cotidin,
deriving from 7, () < h

[22]

(25]

T co(t* T
It%zﬁ({(%: (t)Py(e=y ) (1) + Poy " (t)Pygpeyz(t) 2

. /2 4 /2
+yr )y (1) ) Voriey —do—hp <0 (74)
[27]
guarantees (47).
[28]
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