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Stability Margins in Adaptive Mixing Control
via a Lyapunov-based Switching Criterion

Simone Baldi and Petros A. Ioannou,Fellow, IEEE

Abstract—This paper proposes a Lyapunov-based switching
logic within the framework of adaptive mixing control (AMC),
where a weighted combination of a family of candidate controllers
can be inserted in the loop to regulate the output of an uncertain
plant. The proposed AMC scheme employs a bank of parallel
estimators, or multiple estimators, together with a switching
logic that orchestrates which estimate should be evaluated by
the mixer. The switching logic is driven by input/output data
and uses Lyapunov-based criteria to assess the best estimate
among the bank of parallel estimates. The resulting scheme
guarantees convergence of the switching signal in finite time
to a controller that satisfies a Lyapunov inequality implying a
prescribed stability margin. The problem of convergence to the
desired controller is addressed both analytically and numerically.
In contrast, most classes of continuous tuning adaptive control or
switching adaptive control schemes do not guarantee that after
the switching stops or the adaptation is switched off the resulting
closed loop linear time-invariant (LTI) system is stable, unless
there is sufficient plant excitation that guarantees convergence
to the desired fixed parameter controller. The proposed scheme
guarantees that if the desired controller is switched on, it
will never be switched off thereafter. Furthermore, simulations
demonstrate that while alternative adaptation methods can con-
verge to an LTI unstable feedback loop, the proposed scheme
consistently converges to the desired controller.

Index Terms—Adaptive control, mixing control, supervisory
logic, linear matrix inequalities.

I. I NTRODUCTION

In the absence of any persistently exciting signals, clas-
sical adaptive control schemes,e.g., model-reference or pole-
placement adaptive control schemes, cannot guarantee that the
estimated parameters converge to the true parameter values;
therefore convergence to the desired LTI controller is not
guaranteed. Consequently, in the absence of persistency of
excitation, there is no guarantee that if adaptation is switched
off the resulting closed loop LTI system is stable: the control
scheme can possibly converge to a system whose unstable
part is not excited [1]. Similarly, in adaptive schemes em-
ploying switching among a family of precalculated candidate
controllers,e.g. [2], [3], [4], even though the boundedness of
the closed-loop signals is established, there is no guarantee that
the final switched-on controller is stabilizing if the switching
logic is turned off. In this case it is not possible to exclude the
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possibility that a destabilizing controller is finally switched-on
and kept in the loop because the unstable dynamics are not
excited.

It is therefore important to develop adaptive switching
mechanisms that can infer, from input/output data, the stability
margin of a potential feedback loop and switch the corre-
sponding candidate controller on. For this purpose switching
logics employing Lyapunov-based criteria have been designed
in recent years in the context of switching supervisory control
[5], [6]. The objective of this work is the development of
Lyapunov-based criteria for adaptive mixing control (AMC)
[7], [8], where, rather than selecting a single candidate con-
troller like in switching architectures, a weighted combination
of more candidate controllers can be inserted in the loop to
regulate the output of the uncertain plant. Mixing architectures,
whose stability and robustness properties have been estab-
lished in [7], [8], have been shown to moderate the detuning
phenomenon arising in adaptive switching control due to
the discrete nature of the candidate controllers versus the
continuous nature of the uncertainty set [7]. The development
of Lyapunov-based criteria for the selection of the control law
in an adaptive mixing framework is of relevant importance for
the development of adaptive mixing schemes with improved
stability properties. In this paper the AMC scheme is extended
to employ a bank of parallel estimators, or multiple estimators,
together with a switching logic that, according to Lyapunov-
based criteria, orchestrates which estimate should be evaluated
by the mixer in order to determine the participation level each
candidate controller. The resulting scheme guarantees that the
final switched-on controller satisfies a Lyapunov inequality
implying a prescribed stability margin in terms of a desired
exponential decay of the norm of the states. While guarantee-
ing convergence to a stable LTI system is, in the absence of
persistency of excitation, still an open problem, the proposed
scheme guarantees that if the desired controller is switched on
in feedback with the uncertain plant, it will never be switched
off thereafter. Furthermore, numerical examples demonstrate
that the proposed mechanism increases the chances that the
final switched-on controller is the desired controller for the
uncertain plant. Numerical methods based on Linear Matrix
Inequalities (LMIs) for the analysis and the synthesis of the
Lyapunov-based criteria are provided.

The paper is organized as follows: Section II introduces the
parametrization of the uncertain plant, while Section III deals
with a state-space formulation associated with the uncertain
plant which is used for the implementation of the control
law. Section IV revises the AMC stability results. Section V
introduces the Lyapunov-based switching logic for the AMC
scheme and Section VI explores LMI methods for the analysis
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and synthesis of the Lyapunov-based conditions and of the
family of candidate controllers. Extension of the proposed
method in the presence of disturbances is dealt with in Section
VII. In Section VIII two numerical examples are used to show
the effectiveness of the method.

Notation: Given the vector-valued time functionv ∈ R
n,

vt denotes the time truncation of the functionv up to timet.

TheL2 norm ofvt is ‖vt‖2 :=
(

∫ t

0
|v(τ)|2 dτ

)1/2

, where|v|
is the Euclidean norm, and theL∞ norm of vt is ‖vt‖∞ :=
sup {|v(q)| , 0 ≤ q ≤ t}. We say thatv ∈ L2 (v ∈ L∞) if
the L2 (L∞) norm exists and is finite fort → ∞. Finally,
the notation⌈y⌉ indicates the smallest integer greater than or
equal toy.

II. PROBLEM FORMULATION : UNCERTAIN PLANT

PARAMETRIZATION

The adaptive control problem is formulated for the class of
noise-free linear time-invariant (LTI) uncertain systems. The
extension of the proposed method to the case where distur-
bances and unmodelled dynamics are present is considered in
Sect. VII. Consider the uncertain LTI SISO plant

y = G0(s, θ
∗)u =

θ∗Tb αm(s)

sn + θ∗Ta αn−1(s)
u, (1)

where G0(s, θ
∗) represents the transfer function of the un-

certain plant; the vectorθ∗ := [θ∗Tb θ∗Ta ]T ∈ R
n+m+1

contains the unknown parameters ofG0(s, θ
∗); the notation

αn(s) is used to indicate the vector containing all the powers
from n to zero of the Laplace variables, i.e. αn(s) :=
[sn sn−1 · · · s 1]T .

We make the following plant assumptions, which are con-
sidered in most adaptive control designs:

P1. The degreen of the denominator ofG0(s, θ
∗) is known.

P2. The plant is strictly proper,i.e., m ≤ n− 1.
P3. θ∗ ∈ Ω for some known compact convex setΩ ⊂

R
n+m+1.

Remark 1:Assumptions P1-P3 are considered in most clas-
sical adaptive control designs. It must be underlined that with
respect to model reference adaptive control we do not require
the numerator of the plant to be Hurwitz, while with respect
to adaptive pole placement control we do not require the
numerator and the denominator of the plant to be coprime,
i.e. stable zero-pole cancellations are allowed. The scheme can
be extended to include tracking by using the internal model
principle, where the reference signalr ∈ L∞ is assumed to
satisfy Qm(s)r = 0. Qm(s) is the internal model ofr, a
monic polynomial of degreeq with nonrepeated roots on the
imaginary axis must satisfy:

P4. The numerator of the plant andQm are coprime.
�

The adaptive mixing law approach replacesθ∗ with its
estimateθ. An on-line parameter estimatorbased on the
parametrization (1) of the uncertain plant is used to generate
θ at each timet. In this work, a gradient law with dynamic

normalization signal [9], [10] is considered:

θ̇(t) = Pr
Ω
(Γφ(t)ǫ(t)) , θ(0) = θ0, (2)

ǫ(t) =
ζ(t)− θT (t)φ(t)

m2
s(t)

, (3)

m2
s(t) = 1 + nd(t), (4)

ṅd(t) = −δ0nd(t) + u2(t) + y2(t), nd(0) = 0, (5)

where θ(0) ∈ Ω, δ0 ≥ 0, Pr stands for the projection
operator that forces the estimated parameters to stay within the
specified convex setΩ, ǫ is the normalized estimation error,
Γ ∈ R

(n+m+1)×(n+m+1) is the positive definite adaptive gain.
The quantities

ζ(t) =
sn

Λp(s)
y(t) (6)

φ(t) =

[

αT
m(s)

Λp(s)
u(t) − αT

n−1(s)

Λp(s)
y(t)

]T

(7)

are the observation and the regressor vector of the parametric
model of the plant (1), andΛp(s) is a Hurwitz polynomial of
degreen. The adaptive law (2)-(5) guarantees [9, Sect. 4.4.1
and Table 4.2], [10, Sect. 3.3]:

E1. ǫ(t), ǫ(t)ms(t), θ̇(t) ∈ L2 ∩ L∞ .

III. STATE-SPACE FORMULATION OF PLANT AND CONTROL

LAW

While considering an uncertain plant in the input/output
form (1), a state-space formulation associated with the un-
certain plant will be used for the purpose of analysis, as well
as for the development of the switching logic of Sect. V. The
plant (1) can be transformed into the following state-space
representation

ẋ(t) = A(θ∗)x(t) +Bu
(n)
f (t) (8)

y(t) = C(θ∗)x(t).

Here x(t) := [y
(n−1)
f (t), . . . , yf (t), u

(n−1)
f (t), . . . , uf (t)]

T ,

y
(n−1)
f (u(n−1)

f ) denotes the(n− 1)-th derivative ofyf (uf ),
where yf = y/Λ(s), uf = u/Λ(s) and Λ(s) = sn +
λn−1s

n−1 + · · · + λ0 is a Hurwitz polynomial of degreen.
Besides,

A(θ∗) =









−θ∗Ta | θ̄∗Tb
In−1 | 0(n−1)×1 | 0(n−1)×n

01×n | 01×n

0(n−1)×n | In−1 | 0(n−1)×1









,

B =









0
0(n−1)×1

1
0(n−1)×1









, C(θ∗) =
[

−θ∗Ta | θ̄∗Tb − θTλ
]

,

whereθλ = [λn−1, . . . , λ0]
T and θ̄∗b ∈ R

n denotes the vector
that derives from fillingθ∗b with n−m− 1 zeros.

Remark 2:A state-space transformation similar
to (8) also applies for any state x(t) :=

[y
(n̄−1)
f (t), . . . , yf (t), u

(n̄−1)
f (t), . . . , uf (t)]

T and any Hurwitz
polynomial Λ(s) of degreen̄, with n̄ ≥ n. In this case the
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vectorsθ∗b andθ∗a should be filled withn̄−m− 1 and n̄− n
zero entries, respectively. It is useful to considern̄ ≥ n to
include control designs where the order of the controller
is greater than the order of the plant. In the sequel, for
simplicity, we will consider controllers of ordern. Besides,
without loss of generality, we will takeΛ(s) = Λp(s). �

The state and input of (8) are filtered values of the input/output
pair (u, y) obtained via

˙̄yf (t) = F ȳf (t) +Gy(t) (9)
˙̄uf (t) = Fūf (t) +Gu(t), (10)

where ȳf (t) = [y
(n−1)
f (t), . . . , yf (t)]

T , ūf (t) =

[u
(n−1)
f (t), . . . , uf (t)]

T and

F =

[

−λn−1 . . . −λ0

In−1 0(n−1)×1

]

, G =

[

1
0(n−1)×1

]

. (11)

Note that, assuming that the designer selects the initial con-
ditions ȳf (0) and ūf (0) of the filters (9)-(10), it is possible
to calculate, at each timet, the statex(t) = [ȳTf (t) ūT

f (t)]
T ,

independently of the initial condition of the plant (1). It should
be noted thaty(n)f (t) is also directly measurable at each time
t via the first row of (9),i.e.

y
(n)
f (t) = −λn−1y

(n−1)
f (t)− . . .− λ0yf (t) + y(t). (12)

The measurements of filtered inputs and outputs will be used
in Sect. V to develop the switching logic among different
candidate control laws. The state-space formulation (8) calls
for a particular implementation of the control law, as presented
in the following.

A. Controller implementation

Since the control objective is to choose the plant inputu so
that the plant outputy is regulated to zero, we consider output-
feedback control laws in the formu(t) = −Q(s)/L(s)y(t),
that can be written in a streamlined notation as

u(n) + ln−1u
(n−1) + . . .+ l1u

(1) + l0u (13)

= −pn−1y
(n−1) − . . .− p1y

(1) − p0y, (14)

where u(n) (y(n)) is the n-th order derivative ofu (y). By
adopting the representation (8), the output-feedback control
law (13) can be implemented in such a way to feed back the
statex(t). In fact, after filtering the left and the right side of
(13) by the stable filter1/Λ(s), we obtain a controller in a
full-state feedback form

u
(n)
f (t) = −Kx(t), (15)

K = [pn−1 . . . p1 p0 ln−1 . . . l1 l0]. (16)

It should be noted that (15) leads to a non-minimal transfer
function representation of (13). This is due to the intro-
duction of the filter 1/Λ(s). In particular, from (15) we
obtainu(t) = −(Q(s)Λ(s))/(L(s)Λ(s))y(t): thus the filtering
action (9)-(10) introduces stable zero-pole cancellations. As
a consequence of this representation, the internal stability of
the feedback loop formed by the plant (1) and the controller
(13) is equivalent to the internal stability of the feedback
loop formed by the plant (1) and the controlleru(t) =

−(Q(s)Λ(s))/(L(s)Λ(s))y(t). In the rest of the paper, the
control action is supposed being implemented as shown in
Algorithm 1: for the sake of implementation in a digital
computer, a temporal discretization for the solutions of the
ordinary differential equations is shown. In the next section we
will show how to combine a family of candidate control laws
in the form (15) in a multicontroller with mixing architecture.

Algorithm 1 Implementation of control action
At time t;
Given: Given the measurements of the input/output pair(u(t), y(t));
1: Calculate the filtered input/output pair(ūf (t+ δt), ȳf (t+ δt)) via (9)-

(10);
2: Form the statex(t + δt) = [ȳT

f
(t + δt) ūT

f
(t + δt)]T and calculate

u
(n)
f

(t+ δt) = −Kx(t+ δt)

3: Apply the inputu(t+δt) = u
(n)
f

(t+δt)− [λn−1, . . . , λ0]T ūf (t+δt).

IV. M ULTICONTROLLER AND MIXER

The focus of the control problem is on situations where
a large parameter uncertainty setΩ prevents any single linear
controller,e.g., designed with robust linear control techniques,
from meeting the performance requirements over the whole
uncertainty setΩ. In multiple model architectures, in order
to cope with the large uncertainty set of the plant (1), we
assume the presence of a finite family ofN control laws
{Ci(s) = Pi(s)/Li(s)}i∈I , where I := {1, . . . , N}. When
the filtering action of Sect. III is employed, the control laws
can be implemented as{Ki}i∈I , with Ki as in (15). Given the
family of N candidate controllers{Ki}i∈I , a multicontroller
C(β) is constructed. As typically assumed in multiple model
architectures, each candidate controllerKi yields a stable
closed-loop system that meets the performance requirements
for a compact subsetΩi of the uncertainty setΩ. The subsets
{

Ωi ⊂ R
n+m+1

}

i∈I
, are a finite cover ofΩ, i.e., Ω ⊂ ∪i∈IΩi.

The multicontroller is a dynamical system capable of generat-
ing theN candidate control laws, as well as a mix of candidate
control laws for overlapping parameter subsets

u
(n)
f (t) = −

N
∑

i=1

βi(θ)Kix(t). (17)

The multicontroller depends on a mixing signalβ =
[β1, . . . , βN ]

T ∈ R
N which determines the participation level

of each of the candidate controllers. The mixer implements
the mappingβ : Ω 7→ Bθ, whereBθ is the set of admissible
mixing values

Bθ = {β ∈ R
N :

∑

i∈I

βi(θ) = 1; βi ≥ 0; βi = 0 if θ /∈ Ωi}.

(18)
The following properties ofβ(·) and of the multicontroller
C(β) are assumed
M1. β(·) is Lipschitz inΩ.
C1. For everyθ∗ ∈ Ω, let β∗ := β(θ∗); thenC(β∗) internally

stabilizes the plantG0(θ
∗).

Remark 3:Property M1 ensures that ifθ is tuned slowly
(in theL2 sense of property E1), then the closed-loop system
varies slowly in theL2 sense. This property is used to establish
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stability of the closed loop system by using results from
time-varying systems [9]. Property C1 ensures thatC(β)
is a certainty equivalence stabilizing controller. Note that
assumption C1 is a point-wise stability requirement that needs
not to be verified for every admissible mixing strategy inBθ,
but only for the chosen mixing strategyβ(·). �

The on-line parameter estimator is now combined with the
bank of linear controllers and the mixing strategy to develop
an adaptive mixing control design. The stability properties of
such AMC scheme are recalled [7], [8]:

Theorem 1:Let the uncertain plant be given by (1). Con-
sider the adaptive mixing controller with the multicontroller
C(β) given by (9), (10) and (17) and satisfying assumption
C1. If the mixing functionβ(θ) given by (18) satisfies M1;
and if θ is generated by the adaptive law (2)-(5), then the
resulting adaptive mixing control scheme guarantees that all
closed-loop signals are bounded,i.e., u, y ∈ L∞; furthermore
y(t) → 0 as t → ∞.

Proof: See [7], [8].
Remark 4: In the absence of sufficient plant excitation the

regressor vectorφ in the adaptive law (2) cannot be guaranteed
to be persistently exciting, which implies that the estimated
parameters generated by (2) may not converge to the true
values [7], [8]. This in turn implies that the AMC scheme
cannot be guaranteed to converge to the desired controllerKi

whose indexi satisfiesθ∗ ∈ Ωi. In the following section,
a Lyapunov-based switching logic is developed in order to
guarantee, also in the absence of persistency of excitation,
exponential decaying of the norm of the states according to a
desired stability margin. �

V. LYAPUNOV-BASED SWITCHING LOGIC

In this section the AMC scheme is equipped with a
Lyapunov-based switching logic. By monitoring I/O data, the
switching logic inserts in the feedback loop a control law
that verifies a Lyapunov inequality. Unlike adaptive switching
control, that selects at each time instant a single candidate
controller, adaptive mixing control allows for the weighted
selection of the candidate controllers. Thus, the Lyapunov
criterion to be developed will take into account the mixing
policy occurring in the overlapping region of two or more
subsetsΩi.

It is assumed that the bank of controllers has been designed
to guarantee a known stability margin for every possible value
of the uncertain parameter inΩ. To this end, the following
assumption is introduced:

L1. There exists a family of Lyapunov functions,Vi(x) =
xTPix, i ∈ I, that satisfy

∂Vi

∂x
ẋ(θ∗, β(θ)) =

∂Vi

∂x



A(θ∗)−B

N
∑

j=1

βj(θ)Kj



x

≤ −ρiVi(x), ∀θ∗ ∈ Ωi, ∀θ ∈ Ωi, ∀x, (19)

wherePi, i ∈ I, are positive definite symmetric matrices
andρi, i ∈ I, are positive constants.

Note that inequality (19) is a simultaneous stabilizability
condition that can be checked using LMI-based tools [11,

Sect. 2.2]: the LMI-based numerical procedure for determining
the positive definite symmetric matricesPi and the positive
constantsρi will be explained in Section VI.

Remark 5:Lyapunov stability arguments can be used to
establish that (19) guarantees exponential stability in the subset
Ωi (cf. [12, Thm. 4.10]),i.e., (19) guarantees the existence of
two positive constantsα1 andα2 such that:

|x(t)| ≤ α1e
−α2t |x(0)| , (20)

where α2 = ρi/2 is the stability margin, α1 =

(λmax(Pi)/λmin(Pi))
1/2, and λmax(Pi), λmin(Pi) are the

maximum and the minimum eigenvalue ofPi, respec-
tively. �

Inequality (19) is used in the proposed adaptive mixing
approach to guarantee a desired stability margin in terms of
an exponential decay rate of the Lyapunov function. Using
similar ideas as in [5], define aṡxi(t) the derivative that the
statex would have if the controllerKi is placed in the loop
at time t, that is

ẋi(t) = A(θ∗)x(t)−BKix(t)

= ẋ(t)−BKix(t)−Bu
(n)
f (t). (21)

The idea behind the development of the switching logic is
to verify which are the controller indexesi that satisfy the
inequality

∂Vi

∂x
ẋi(t) = 2xT (t)Piẋ

i(t) ≤ −ρix
T (t)Pix(t), (22)

and choose the corresponding estimated parameter vector
θi to be evaluated by the mixer. Thanks to the partic-
ular transformation in (8), the components ofẋ are di-
rectly measurable or can be calculated. In fact,ẋ(t) :=

[y
(n)
f (t), . . . , y

(1)
f (t), u

(n)
f (t), . . . , u

(1)
f (t)]T . The components,

y
(n−1)
f (t), . . . , y

(1)
f (t) and u

(n−1)
f (t), . . . , u

(1)
f (t) are directly

available from the statex(t). The quantityu(n)
f (t) is available

from the applied control law, whiley(n)f can be calculated
from (12).

A. Multiple estimators and hysteresis switching logic

A parallel estimation architecture is used, in an effort to
improve initial learning performance. We use as many estima-
tors as theN candidate controllers: each estimator differs in
its initial condition and it is designed to project its estimate
on a subsetΩi:

θ̇i(t) = Pr
Ωi

(Γφ(t)ǫi(t)) (23)

ǫi(t) =
ζ(t)− θTi (t)φ(t)

m2
s(t)

, (24)

where θi(0) ∈ Ωi and m2
s is as in (4)-(5). A hysteresis

switching mechanism is introduced to choose which is the
best estimate among theN estimated parameters vectors
θ1, · · · , θN . Based on the Lyapunov conditions (19), for each
parameter estimator we consider the performance signalJi:

Λi(t) = max
{

2xT (t)Piẋ
i(t) + ρix

T (t)Pix(t), 0
}

(25)

Ji(t) = max
0≤q≤t

{Λi(q)} , (26)
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where ẋi is as in (21). A supervisory logic compares theN
performance signals{Ji(t)}i∈I , and selects, at each timet, the
estimateθσ(t) := θσ(t) of indexσ via the followinghysteresis
switching logic[13]:

σ(t) =

{

the least j : j = argmin
i∈I

{

Ji(t)− h δi,σ−(t)

}

}

,

σ−(0) ∈ I, (27)

where δi,j is the Kronecker’s index (δi,j = 1 if i = j,
δi,j = 0 otherwise),σ−(t) is the limit of σ(τ) from below
as τ → t and h, a (typically small) positive real number,
is the hysteresis constant. When more than one index
minimizes

{

Ji(t)− h δi,σ−(t)

}

, the least index is selected
[13]: alternatively, any other minimizing index can be chosen
without altering the properties of the switching logic.

The following Hysteresis Switching Logic (HSL) lemma
establishes the behavior of the switching system arising from
(27).

HSL Lemma [13] Let S denote the class of all possible
switching sequencesσ(·). Consider the following assumptions:

A1. For eachσ(·) ∈ S and i ∈ I, Ji(t) admits a limit as
t → ∞, or the limit goes to infinity;

A2. For eachσ(·) ∈ S , there exist integersµ ∈ I such that
Jµ(·) is bounded.

Let σ be the switching sequence resulting from (27). Then, if
A1 and A2 hold, there is a finite timet∗ ∈ R+, after which
no more switching occurs. Moreover,Jσ(t∗)(·) is bounded.

B. Stability of Lyapunov-based Adaptive Mixing Control

Fig. 1. Lyap-AMC architecture

The stability properties of the resulting Lyapunov-based
AMC (Lyap-AMC), whose architecture is shown in Figure 1,
are established by the following Theorem:

Theorem 2:Let the uncertain plant be given by (1). Con-
sider the bank of parallel estimators (23)-(24),(4)-(5). Consider
the adaptive mixing controller with the multicontrollerC(β)
given by (9),(10) and (17) and satisfying assumption L1. Let

Λ(s) be analytic inℜ[s] < −ρ̄/2, whereρ̄ = mini {ρi, i ∈ I}.
If the multicontroller is driven by the mixing strategyβ(θσ(·)),
with β(·) given in (18) and the indexσ(·) selected according
to the switching logic (27), (25) and (26), then the following
hold:

1) (Final switching time) There is a final switching timet∗

for the indexσ andJσ(t∗) < h.
2) (Transient performance before final switching time) Be-

fore the final switching timeJσ(t) < h, which guarantees
that each controller is switched-on at most once, there are
at mostN switches before the final switching time and

|y(t)| ≤ c1e
−

c2
2 (t) |x(0)|+Nh, ∀ 0 ≤ t ≤ t∗, (28)

where c1 = cλ
∏N

i=1 (λmax(Pi)/λmin(Pi))
1/2, cλ de-

pends on the coefficients of the filterΛ(s), c2 = mini ρi,
andh = O(h). Furthermore, whenever a (desired) con-
troller whose indexi satisfiesθ∗ ∈ Ωi is inserted in the
loop, it will never be switched-off thereafter.

3) (Steady-state performance after final switching time) The
final switched-on controller, namelyC(β(θσ(t∗))) guar-
antees

|y(t− t∗)| ≤ α1e
−

ρσ(t∗)
2 (t−t∗) |x(t∗)|+ h, ∀ t ≥ t∗, (29)

where α1 = cλ
(

λmax(Pσ(t∗))/λmin(Pσ(t∗))
)1/2

, h =
O(h). In addition, wheneverθ∗ ∈ Ωσ(t∗), limt→∞ y(t) =
0.
Proof: See the Appendix.

Remark 6: In supervisory adaptive control schemes with
multiple models, the performance signalsJi are typically
based on some norm of the estimation error,e.g., Ji(t) =
∫ t

0
|ǫims(τ)|2 dτ [14], [15]. Such performance signals have

been used also in the context of AMC [16]. The resulting AMC
scheme guarantees the same stability properties as the single-
estimator AMC presented in Theorem 1. Similar stability prop-
erties are also achieved by classical adaptive control schemes,
namely model-reference and pole-placement adaptive control
as well as by many supervisory adaptive control schemes with
multiple models. The developed performance signals (25)-
(26), based on a Lyapunov criterion, guarantee additional
stability properties,i.e., a desired stability margin.�

Remark 7:For purely switching adaptive architectures, se-
lecting a single candidate control law without mixing the
candidate controllers inside the overlapping subsets, condition
L1 reduces to

∂Vi

∂x
ẋ(θ∗) =

∂Vi

∂x
(A(θ∗)−BKi)x(t)

≤ −ρiVi(x), ∀θ∗ ∈ Ωi, ∀x, (30)

which is similar to the conditions that can be found e.g. in [5]
(cf. eq.(3)) and in [6] (cf. eq.(3)). The results of Theorem 2
apply to an adaptive switching control architecture satisfying
(30) and equipped with the Lyapunov-based switching logic
(25), (26) and (27) in a straightforward manner. The switching
control architecture can be seen as the limiting case of a mix-
ing architecture, with the overlapping regions of the subsets
Ωi shrinking to zero. As a consequence, condition L1 includes
(30) as a limiting case and it is no more restrictive than other
Lyapunov-based approaches available in literature.�
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Remark 8:The focus of the results in Theorem 2 is on
guaranteeing stability of the adaptive system under the condi-
tion that θ∗ is unknown but constant. It is possible to verify
that the presented results are still valid ifθ∗(t) ∈ Ωi ∀t, i.e.,
if the parameter vectorθ∗ is time-varying but it never leaves
its initial uncertainty subsetΩi. In the case of a time-varying
parameter vectorθ∗(t) going from one uncertainty subset to
another, themax operator in (26) must be modified. In fact,
such an operator makesJi monotonically nondecreasing, thus
not allowing to insert in the loop a candidate controller which
performed unsatisfactorily in the past, before all the remaining
candidate controllers perform at least as badly. Modifications
of (25)-(26) in order to deal with time-varying parameters
include the use of finite windows or fading memories,e.g.

Λi(t) = max
{

2xT (t)Piẋ
i(t) + ρix

T (t)Pix(t), 0
}

(31)

Ji(t) = max
0≤q≤t

{

e−r(t−q)Λi(q)
}

, (32)

wherer > 0 is the discount factor. The stability analysis in
the time-varying case is not straightforward and will be the
subject of future studies. Designing controllers for plants with
time varying parameters even when the parameters of the plant
are known is not straightforward and requires a completely
different approach than in the LTI case as documented in
[17]. �

VI. L INEAR MATRIX INEQUALITIES FOR ANALYSIS AND

SYNTHESIS OF CANDIDATE CONTROLLERS

Linear Matrix Inequalities are a powerful tool that allow the
construction of quadratic Lyapunov functions for stability and
performance analysis of linear systems [11]. In this section
LMI-based numerical methods are developed to solve the
following two problems, associated to the Lyapunov-based
condition (19):

1) Given a family of candidate controllers{Ki}i∈I , find the
symmetric matricesPi and the scalarsρi, i ∈ I, such that
condition (19) is verified (Analysis problem).

2) Find the symmetric matricesPi and the scalarsρi, i ∈ I,
as well as the state-feedback gainsKi, i ∈ I, such that
condition (19) is verified (Synthesis problem).

A. Analysis problem

Inequality (19) can be written as

xT



AT (θ∗)Pi + PiA(θ
∗) + ρiPi −

N
∑

j=1

βj(θ)K
T
j B

TPT
i

−PiB
N
∑

j=1

βj(θ)Kj



x ≤ 0, ∀θ∗ ∈ Ωi, ∀θ ∈ Ωi, ∀x,

which implies

AT (θ∗)Pi + PiA(θ
∗) + ρiPi −

N
∑

j=1

βj(θ)K
T
j B

TPT
i

−PiB

N
∑

i=1

βj(θ)Kj � 0, ∀θ∗ ∈ Ωi, ∀θ ∈ Ωi. (33)

Condition (33) is a parameter dependent LMI that should
be satisfied over the whole subsetΩi. Since a parameter-
dependent LMI is equivalent to a set of infinitely many LMIs,
it is difficult to solve in general. In literature we can distinguish
two main approaches aiming at the solution of parameter-
dependent LMIs: if the uncertainty subsetΩi belongs to a
polytope with verticesV k, k = 1, . . . , n + m + 1, the first
approach uses convexity properties to formulate the LMI only
at the vertices [18], [19]:

AT (θ∗[k])Pi + PiA(θ
∗[k]) + ρiPi −KT

j B
TPT

i

−PiBKj � 0, ∀θ∗[k] ∈ V k, ∀j ∈ Ii, (34)

whereIi is the subset ofI indicating the mixing signals that
can be active in the subsetΩi. Note that in (34) we took
into account the fact thatβ(θ) ∈ R

N belongs to a polytope
with verticese1, . . . , eN , whereej is the orthogonal basis with
zero entries and a 1-entry in thej-th position. The number of
LMIs in (34) is (n + m + 1) ∗ dim(Ii). A second approach
to the solution of (33) consists of gridding the parameter
set by takingM sample points

{

θ[1], . . . , θ[M ]
}

∈ Ωi, and
formulating the LMIs at the grid points. Gridding methods
based on deterministic or randomized sampling have been
developed for several LMI problems [20], [21], [22]. IfΩi

is not a polytope, the gridding approach may reduce the level
of conservatism: however, one drawback is the fact that there
is no guarantee that the LMIs are satisfied between the grid
points. A practical approach is selecting two sets of grid points,
the first set to be used for the solution of the LMIs and the
second one, possibly denser than the first set, to be used
for validating the solution. An appropriate selection of the
hysteresis constant will help to address the quantization error
introduced by the grid: in fact, solving (33) by using a gridding
approach implies that there exists always an indexj such that

2xT (t)Pj
ˆ̇xj(t) + ρjx

T (t)Pjx(t) ≤ κ, (35)

where κ ≥ 0 takes into account the quantization error
introduced by the grid, which decreases by increasing the
number of grid points. By choosing the hysteresis constant
h ≥ κ we can avoid spurious switching due to the quan-
tization error. With the gridding approach the number of
LMIs to be solved for every subsetΩi is M ∗ M . Such a
formulation, although tractable in many practical applications,
might suffer from dimensionality problem due to the fact that
the number of grid points increases exponentially with the
dimension of the parameter. At the current state-of-the-art,
Semi-Definite Programming (SDP) solvers based on interior-
point methods [23], [24], can efficiently handle medium-scale
problems with< 20, 000 optimization variables; SDP solvers
based on augmented-Lagrangian methods [25], [26] scale to
larger problems. Algorithm 2 proposes an algorithm to solve
the problem of maximizing the decaying rateρi.

B. Synthesis problem

If the problem is to find both the Lyapunov matricesPi

and the state-feedback gainsKi, i ∈ I, then inequality (33)
is not linear in the unknown terms. Besides, because of the
mixing architecture, the state-feedback gains are relatedto
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Algorithm 2 Analysis problem
Given: Given a family of candidate controllers{Ki}i∈I

;

1: SelectM sample points
{

θ[1], . . . , θ[M ]
}

∈ Ωi, and a positive constant
∆ρi > 0. Setc = 1 andρci = 0;

2: Solve the feasibility problem FBc-th:

find Pi

s.t.

AT (θ[l])Pi + PiA(θ[l]) + ρciPi −
N
∑

j=1

βj(θ
[r])KT

j BTPT
i

−PiB

N
∑

j=1

βj(θ
[r])Kj � 0, l = 1, . . . ,M, r = 1, . . . ,M

Pi ≻ 0

3: If FB c-th is feasible, setc = c+1, ρci = ρc−1
i +∆ρi , then go to Step

2. Elseρi = ρci −∆ρi . Stop.
Repeat Steps 1-3 for every subsetsΩi.
Return: Return:Pi andρi, i ∈ I.

each other by nonlinear constraints, which make the problem
more difficult than a classical state-feedback synthesis problem
based on LMIs. In other words, while in the analysis problem
we can solve each optimization problem separately for each
Ωi, the same thing is not true in the synthesis problem, since
the solution of the problem for a certain subsetΩī affects
the solution of the other subsets, because of the mixing ar-
chitecture. Next, an iterative LMI-based procedure for solving
inequality (19) is proposed. For compactness of notation (33)
is rearranged as

AT (θ∗)Pi + PiA(θ
∗) + ρiPi − β̄(θ)TKTBTPi

−PiBKβ̄(θ) � 0, ∀θ∗ ∈ Ωi, ∀θ ∈ Ωi, (36)

where

β̄(θ) =







β1Im
...

βNIm






, K = [K1 · · · KN ] . (37)

Inequality (36) has the same form as static output feedback
stabilization: several numerical methods have been proposed in
literature for the solution of this problem [27], [28], [29], [30],
[31]. Next, the iterative method proposed in [29] is elaborated
for the adaptive mixing control architecture in order to solve
the synthesis problem. Inequality (33) is satisfied if and only
if there exist matricesPi ≻ 0, i ∈ I and K satisfying the
following matrix inequality,∀θ∗ ∈ Ωi, ∀θ ∈ Ωi:

AT (θ∗)Pi + PiA(θ
∗) + ρiPi − PiBBTPi +

(BTPi −Kβ̄(θ))T (BTPi −Kβ̄(θ)) � 0. (38)

Inequality (38) is a quadratic matrix inequality. In order to
solve it we introduce additional design variablesXi that satisfy

XiBBTPi + PiBBTXi −XiBBTXi � PiBBTPi. (39)

Inequality (39) holds since(Xi − Pi)
TBBT (Xi − Pi) � 0.

The equality holds if and only ifXiB = PiB. By combining
inequalities (38) and (39) we obtain a sufficient condition to
solve inequality (36):

AT (θ∗)Pi + PiA(θ
∗) + ρiPi +Ψi +

(BTPi −Kβ̄(θ))T (BTPi −Kβ̄(θ)) � 0,

with Ψi = −XiBBTPi − PiBBTXi +XiBBTXi. The last
inequality can be solved by applying a Schur complement
and the iterative algorithm presented in Algorithm 3. The
LMI conditions should be satisfied over the whole subsetsΩi,
i ∈ I. If we grid each subsetΩi by takingM sample points
{

θ[1i], . . . , θ[Mi]
}

∈ Ωi, i ∈ I, the total number of LMIs to be
solved in Algorithm 3 isM ∗M ∗N . An interesting problem is
finding the greatestρi which make the LMI problem feasible,
in order to maximize the decaying rate of the regulation error.
In Algorithm 3 an algorithm is proposed to solve such a
problem. Similar comments as the analysis problem regarding
the computational tractability of the gridding approach also
apply to the synthesis problem.

Algorithm 3 Synthesis problem
Given: GivenM ∗N sample points

{

θ[1i], . . . , θ[Mi]
}

∈ Ωi, i ∈ I;

1: SelectQi ≻ 0, i ∈ I, and solve forPi, i ∈ I, for some pointsθ[ki]

insideΩi, the algebraic Riccati equations:

AT (θ[ki])Pi + PiA(θ[ki])− PiBBTPi +Qi = 0, i ∈ I (40)

Setc = 1 and ρ̄0 = 0, X1
i = Pi, i ∈ I;

2: Solve forPi, K andρc

ρ̄c = min ρc

s.t.
[

AT (θ[li])Pi + PiA(θ[li]) + Ψc
i

(

BTPi −Kβ̄(θ[ri])
)T

BTPi −Kβ̄(θ[ri]) −I

]

� 0

Ψc
i = −Xc

i BBtPi − PiBBtXc
i +Xc

i BBtXc
i + ρcPi

Pi ≻ 0 l = 1, . . . ,M, r = 1, . . . ,M, i ∈ I

3: If ρ̄c < 0 and
∣

∣ρ̄c − ρ̄c−1
∣

∣ < κ1, with κ1 a prescribed tolerance,K are
the desired controller gains.Return: Return:Pi, ρi = ρ̄c, i ∈ I, and
K. Stop.

4: Solve forPi, K
[

P̄1, . . . , P̄N

]

= argmin [tr(P1) + . . .+ tr(PN )]

s.t.
[

AT (θ[li])Pi + PiA(θ[li]) + Ψc
i

(

BTPi −Kβ̄(θ[ri])
)T

BTPi −Kβ̄(θ[ri]) −I

]

� 0

Ψc
i = −Xc

i BBtPi − PiBBtXc
i +Xc

i BBtXc
i + ρ̄cPi

Pi ≻ 0 l = 1, . . . ,M, r = 1, . . . ,M, i ∈ I

5: If
∥

∥BTXc
i −BT P̄i

∥

∥ < κ2, i ∈ I, with κ2 a prescribed tolerance, the
synthesis problem may not be solvable, Stop. Else setc = c + 1 and
Xc

i = P̄i, then go to Step 2.

Even if, as typical in iterative schemes, finding the global
optimum is not guaranteed, the optimization problem of Step
2 is a generalized eigenvalue minimization problem, which
guarantees the progressive reduction ofρc. The initial choice
of Qi might affect the number of iterations required and the
final solution of the algorithm.

VII. E XTENSION TOH∞ CONTROL DESIGNS

Despite the achieved convergence and stability properties,
the proposed approach is not immune to the ‘model-mismatch’
instability problems that have been addressed in unfalsified
methods [32], and that are inherent in model-based adaptive
design approaches. In case of mismatch between the plant
model and the real plant, due to nonlinearities, time-delays
and/or unstructured uncertainties, the stability of the adaptive
scheme might be lost. In order to address such phenomena,
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the proposed method is extended toH∞-based control designs,
thus handling in an effective way bounded disturbances and/or
unmodelled dynamics [11], [33]. Such an extension goes
through a modification of both the multicontroller design
criterion L1 and the performance signals (25). In this section
such modifications are presented and discussed. When the
uncertain plant (1) is affected by bounded input and/or output
disturbances, using similar transformations as in Sect. II, we
can transform the uncertain plant into

ẋ(t) = A(θ∗)x(t) +Bu(t) + L(θ∗)d(t), (41)

whered is a bounded disturbance,i.e., |d(t)| ≤ d0, ∀t ∈ R+.
Condition L1 must be modified in order to account for the

disturbance term. The following assumption is supposed to
hold:

L2. The multi-controlleru(n)
f = −∑N

j=1 βj(θ)Kjx has been
designed to guarantee the existence of a family of Lya-
punov functions,Vi(x) = xTPix, i ∈ I, that satisfy

V̇i(x) =
∂Vi

∂x
ẋ(θ∗, β(θ)) ≤ −ρiVi(x)

−yTf yf + γid
T d, ∀θ∗, θ ∈ Ωi, ∀x, (42)

whereρi andγi, i ∈ I, are known positive constants.

Remark 9:The condition (42) guarantees, inside the uncer-
tainty subsetΩi that
∫ ∞

0

[

yTf (t)yf (t)− γid
T (t)d(t)

]

dt ≤ 0 ⇒ ‖yf‖22
‖d‖22

≤ γi, (43)

thus achieving finiteL2 gain [11]. Similarly to condition (19),
also (42) can be transformed into a set LMI, to be used both for
analysis and synthesis problems, in order to find the Lyapunov
functionsPi, the feedback gainsKi and the constantsρi and
γi. An optimal criterion for solving the LMI could be the one
of maximizingρi, while minimizingγi, so as to maximize the
decaying rate of the regulation error and minimize the effect
of the disturbance term.�

The performance signals (25) must be modified as well, to
take into account the additional term. A natural choice for the
performance signal is:

Λi(t) = max
{

2xT (t)Piẋ
i(t) + ρix

T (t)Pix(t)

+yTf (t)yf (t), 0
}

(44)

Ji(t) = max
0≤q≤t

{

(

Λi(q)

γi

)1/2
}

. (45)

Note that, even in the presence of disturbances,ẋi(t) can be
calculated from Eq. (21).

The stability properties of the resulting Lyapunov-based
AMC are:

Theorem 3:Let the uncertain plant (1) be affected by
bounded input and/or output disturbances. Consider the bank
of parallel estimators (23)-(24),(4)-(5). Consider the adap-
tive mixing controller with the multicontrollerC(β) given
by (9),(10) and (17) and satisfying assumption L2; if the
multicontroller is driven by the mixing strategyβ(θσ(·)), with

β(·) given in (18) and the indexσ(·) selected according to the
switching logic (27), (44) and (45), then the following hold:

1) (Final switching time) There is a final switching timet∗

for the indexσ and Jσ(t∗) < h + d0, whered0 is the
bound ford defined after (41).

2) (Transient performance before final switching time) Be-
fore the final switching timeJσ(t) < h + d0, which
guarantees that there are at mostN ⌈d0/h⌉ switches
before the final switching time. Furthermore, ifh = d0,
there are at mostN switches before the final switching
time, and whenever the (desired) controller whose index
i satisfiesθ∗ ∈ Ωi is inserted in the loop, it will never be
switched-off thereafter.

3) (Steady-state performance after final switching time) The
final switched-on controller, namelyC(β(θσ(t∗))) guar-
antees

|y(t− t∗)| ≤ α1e
−

ρσ(t∗)
2 (t−t∗) |y(t∗)|+ h, ∀ t ≥ t∗, (46)

where α1 = cλ
(

λmax(Pσ(t∗))/λmin(Pσ(t∗))
)1/2

, and
h = O(γσ(t∗)(h+ d0)

2).
4) Finally
∫ ∞

t∗

[

yTf (τ)yf (τ)− γσ(t∗)d
T
0 d0

]

dτ ≤ γσ(t∗)O(h2). (47)

Proof: See the Appendix.
Similarly to traditional adaptive control schemes with and

without switching, also Theorems 2 and 3 do not guarantee
that when adaptation is switched off the resulting LTI system is
stable. The reason that in theory the closed loop system may
settle at an unstable equilibrium point for some appropriate
initial conditions and remain at that point till it is externally
disturbed. Consider the exampleẋ = Ax with x(t0) = 0; then
x(t) = 0 for all t ≥ t0, Ji = 0, ∀i, and the final switching
time is t∗ = 0, no matter whatA is. Proving analytically
such a scenario is difficult if at all possible. Since analysis
cannot exclude it, simulation-based evaluations can be used
to investigate whether it is possible for the adaptive scheme
to settle to an unstable controller when the adaptive part is
switched off. In the following section we use a numerical
example to evaluate this scenario.

VIII. N UMERICAL EXAMPLES

1) Example 1:A simple numerical example is presented to
show the effectiveness of the proposed Lyapunov-based AMC
scheme. Consider the first-order uncertain system

y(t) = G0(s)u(t) =
1

s− θ∗1
u(t), (48)

whereθ∗1 is an uncertain parameter belonging to the interval

Ω = {θ1 : 1 ≤ θ1 ≤ 2.5} . (49)

The system (48) can be written in the streamlined notation

ẏ(t) = θ∗1y(t) + u(t), y(0) = y0, (50)

where y(0) is the initial condition of the plant. Despite the
fact that for this first-order uncertain system the statey(t)
is completely measurable, we adopt the transformation (8)
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and the controller implementation (15) for tutorial purposes.
TakingΛ(s) = s+ 1, the system (48) is associated with
[

ẏf (t)
u̇f (t)

]

=

[

θ∗1 1
0 0

] [

yf (t)
uf (t)

]

+

[

0
1

]

u̇f (t), (51)

where

ẏf (t) = −yf (t) + y(t), yf (0) = yf0 , (52)

u̇f (t) = −uf (t) + u(t), uf (0) = uf0 , (53)

and yf (0), uf (0) are the initial states of the filter1/Λ(s),
which are assumed to be known to the designer. It is also
assumed that the state of the filter can be completely measured.
Define the statex(t) = [yf (t) uf (t)]

T . Note that x(0)
is different than the initial conditiony(0) of the plant: in
particular, we havėyf (0) = −yf0+y0 andu̇f (0) = −uf0+u0.

The uncertainty setΩ is divided into three subsets and three
output-feedback candidate controllers in the form

u(t) = −Ci(s)y(t) = − ki1
s+ ki2

y(t), (54)

are designed for the nominal valuesθ1 = 1, 1.8, 2.4061.
The controllers have been designed to place the closed loop
eigenvalues of the three nominal feedback control loops to the
roots of the polynomials2+2s+1.5. The candidate controller
implementation (15) is adopted,i.e.

u̇f (t) = −Kix(t) = −[ki1 ki2]

[

yf (t)
uf (t)

]

, (55)

The actual input to be applied is thusu(t) = u̇f (t) + uf (t).
The candidate controllers, as well as the three subsetsΩi, are
reported in Table I. The subsetsΩi have been found by taking
into account the stability intervals of each candidate controller.
The last column of Table I reports the nominal values of the
uncertain parameter vector for which the candidate controller
Ki is marginally stable, that is, if the controllerK1 is
placed in feedback with the plant corresponding toθ∗1 = 1.8
(belonging toΩ2), the resulting feedback-loop is marginally
stable. Analogously, if the controllerK2 is placed in feedback
with the plant corresponding toθ∗1 = 2.4061 (belonging to
Ω3), the resulting feedback-loop is marginally stable. For each
subsetΩi, an adaptive law estimating the unknown parameter
θ∗1 is developed as in (2)-(5).

Ki Ωi Marg. Stab. forθ∗1
[4.5 2.5] θ1 ∈ [1, 1.5] 1.8
[7.94 3.3] θ1 ∈ [1.4, 2.1] 2.4061

[11.3982 3.9061] θ1 ∈ [2.0, 2.5]

TABLE I
CONTROLLER COEFFICIENTS

Given the parameter subsetsΩi, the mixer can be con-
structed on the basis of any Lipschitz functionϕ(x), that is
greater than zero on a compact set and zero elsewhere. For
this simple example, a function that satisfies this requirement
is the smooth bump function

ϕ(x) =

{

e
− 1

1−x2 if |x| < 1
0 otherwise

(56)
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Fig. 2. Mixing strategy:β1(θ1) (solid), β2(θ1) (dash-dotted),β3(θ1)
(dashed)

Other functions can be used,e.g., the trapezoidal function
or sinusoidal functions. Consider the pre-normalized weights,
β̃i(θ1) = ϕ ((2θ1 − Ui − Li) / (Ui − Li)), i = 1, 2, 3, where
Ui, Li are the upper and lower bounds, respectively, of the
subsetΩi = {θ1 : Li ≤ θ1 ≤ Ui}. The mixing signalβ(θ1) is
generated by normalizing̃β = [β̃1 . . . β̃3]

′, i.e., i = 1, 2, 3

βi(θ1) =
β̃i(θ1)

∑3
j=1 β̃j(θ1)

(57)

The mixing function derived from the described procedure,
using the bump function (56), is shown in Figure 2.

The resulting multicontroller constructed using gain inter-
polation (17) has been verified to satisfy assumption C1. The
Lyapunov-based AMC (Lyap-AMC) is compared both with
the standard AMC scheme employing one single estimator
and with a switching scheme, namely Unfalsified Adaptive
Switching Control (UASC) scheme [34], [3]. The designed
variables used for the Lyap-AMC scheme are:Γ = 5,
δ0 = 0.2, h = 0.001. Using the LMI (33), condition L1 is
verified with

P1 =

[

0.871 0.329
0.329 0.161

]

, P2 =

[

0.899 0.296
0.296 0.129

]

P3 =

[

0.916 0.947
0.947 0.219

]

,
ρ1 = 0.6 ρ2 = 0.13
ρ3 = 1.2

(58)

The hysteresis constant used for the UASC scheme is0.001.
The three schemes are simulated for two values of the

uncertain parameterθ∗1 = 1.8, 2.4061, with plant initial
conditionsy0 = U [±0.1]. The notationU [±a] stands for a
random uniform distribution on the interval[−a, a]. The initial
state of the filter1/Λ(s) is also selected randomly, in particular
[yf0 uf0 ]

T = [U [±0.1] U [±0.1]]T . For each experiment we run
100 Monte-Carlo simulations: the results of the simulations
for the three adaptive schemes are shown in Table II. Each
simulation has a time-length of25s. Every time the schemes
are initialized with the candidate controller giving a marginally
stable feedback loop. The stability of the frozen feedback
control system after25s is recorded. The last three columns of
Table II show how many times (out of 100) the final switched-
on controller was the marginally stable one.
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θ∗1 Initial controller UASC AMC Lyap-AMC
1.8 K1 9 of 100 11 of 100 0 of 100
2.4061 K2 15 of 100 18 of 100 0 of 100

TABLE II
SIMULATION RESULTS

While, for some initial conditions, both the AMC and
UASC scheme may keep for a long time the marginally stable
controller, the Lyap-AMC scheme switches off the marginally
stable controller and the switching signal rapidly converges
to the appropriate desired controller. The reason why the
standard AMC keeps in the loop the initially marginally stable
controller, can be seen from Figure 3(a): for some initial
conditions, the parameter estimate of the single estimatortakes
longer time to converge close toθ∗1 = 1.8, so that the initial
marginally stable controller is kept in the loop for a longertime
(Figure 3(b)). The reason for the good behavior of Lyap-AMC
can be explained by comparing the UASC performance signals
of Figure 4(a), with the Lyap-AMC performance signals of
Figure 4(b) for one experiment among the 100 experiments
performed withθ∗1 = 1.8. HereJ2, the dotted performance
signal, is the one corresponding to the most appropriate
controller. While the UASC algorithm might take some time
before discriminating with sufficient accuracy the performance
signals (eventually keeping in the loop the initial marginally
stable controller), the Lyap-AMC rapidly detects the controller
satisfying the Lyapunov inequality (implying desired stability
margin) and discards the others.

2) Example 2:This second numerical example presents the
effect of disturbances on the proposed architecture. The exam-
ple consists of a mass coupled with the wall via a spring and
a damping, as depicted in Figure 5. The objective is to keep
the mass at a constant position in spite of disturbances acting
on the wall. Despite its apparent simplicity, such dynamicslie
behind many practical problems like active suspension systems
in cars, vibration reduction in platforms, mechanical structures
and other smart flexible structures. Assuming without loss
of generality a unitary mass, the equation of motion can be
described by

ÿ(t) = −k∗(y(t)− d(t))− cẏ(t) + u(t) (59)

with initial conditions ẏ(0), y(0), wherey is the position of
the mass,u is the force control input,d is the disturbance,k
is the spring stiffness andc is the damping coefficient. In this
example we takec = 0.2 and assume that the spring stiffness
k∗ is uncertain and belongs to the uncertainty set

Ω = {k : 0.08 ≤ k ≤ 1.0} . (60)

The uncertainty set is divided into 7 subsets and for each
subset anH∞ controller has been designed according to
the mixed-sensitivity criterionmind∈L2

‖y‖2+‖u‖2

‖d‖2
. The con-

trollers have the output-feedback form

u = − r1s+ r0
s2 + s1s+ s0

y. (61)

Both the uncertainty subsetsΩi and the coefficients of the
controllers Ki = [r1i r0i s1i s0i ] are indicated in Table
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Fig. 3. θ∗1 = 1.8: Estimate and regulation tasks for standard AMC and
Lyap-AMC

III. Similarly to the first example, the candidate controller
implementation described in Sect. III is adopted withΛ(s) =
s2 +

√
2s+ 1,

[

ÿf (t)
ẏf (t)

]

=

[

−
√
2 −1

1 0

] [

ẏf (t)
yf (t)

]

+

[

1
0

]

y(t), (62)
[

üf (t)
u̇f (t)

]

=

[

−
√
2 −1

1 0

] [

u̇f (t)
uf (t)

]

+

[

1
0

]

u(t), (63)

and üf = −Kix(t), with x(t) = [ẏf (t) yf (t) u̇f (t) uf (t)].
Due to the disturbance rejection nature of the control problem,
a set of LMIs arising from condition L2 has been solved in
order to find the family of Lyapunov function, decaying and
attenuation rates. For lack of space, only the last two quantities
are reported in Table IV.

Ki Ωi

[9604.8 3633.8 51.9 1278.1] k ∈ [0.08, 0.12]
[1894.3 734.0 29.7 366.3] k ∈ [0.11, 0.18]

[23627.9 4434.8 116.9 2363.5] k ∈ [0.16, 0.29]
[6241.0 938.7 43.9 841.9] k ∈ [0.25, 0.4]
[5041.7 574.1 43.8 930.2] k ∈ [0.35, 0.57]
[3900.7 444.7 47.7 1129.2] k ∈ [0.5, 0.75]
[3944.9 375.2 54.0 1455.0] k ∈ [0.65, 1]

TABLE III
CONTROLLER COEFFICIENTS
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Fig. 4. θ∗1 = 1.8: Performance signals for UASC and Lyap-AMC

Fig. 5. Mass-spring system

# 1 # 2 # 3 # 4 # 5 # 6 # 7
ρi 0.08 0.10 0.12 0.11 0.18 0.17 0.20
γi 0.05 0.08 0.12 0.20 0.32 0.46 0.63

TABLE IV
DECAYING AND ATTENUATION RATES

Figure 6 shows, fork∗ = 0.2 and for the initial condition
ẏ(0) = 0.05, y(0) = −0.007, the output estimate and regula-
tion task of the standard AMC as compared with the proposed
Lyap-AMC. Similar results can be found for different initial
conditions. The switching logic leads to a faster adaptation
of k(t), thus resulting in superior transient and attenuation
performance. A random uniform disturbanced(t) between -
0.1 and 0.1 has been chosen (d0 = 0.1). In Figure 7 the
performance signals of the proposed Lyap-AMC are plotted:
in a dashed line, the signalJ3 associated with the desired
controller is shown. Theorem 3 guarantees such signal to be
belowh+d0. Despite the fact that, for the chosen disturbance,

the boundh+d0 results conservative, since all the performance
signals are below 0.1, Figure 7 shows that, after a short
transient, the performance signalJ3 is the smallest, so that
the desired controller is finally selected.
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Fig. 6. k∗ = 0.2: Estimate and regulation tasks for standard AMC and
Lyap-AMC
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Fig. 7. k∗ = 0.2: Performance signals for Lyap-AMC: in a dashed line the
signalJ3 associated with the desired controller is shown

IX. CONCLUSIONS

We developed an adaptive scheme based on mixing and
multiple estimators that guarantees that the closed loop system
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converges in finite time to a controller that satisfies a Lyapunov
inequality implying a prescribed stability margin. Simulation
results demonstrate that, in contrast to most popular adaptive
control techniques and structures, the proposed approach con-
verges to a stable closed loop system even if adaptation is
switched off at steady state.

APPENDIX: PROOF OFTHEOREM 2

1) As a first step of the proof it is shown that assumptions
A1 and A2 of the hysteresis switching lemma hold. Con-
sider the switched system given by the parallel estimates
θ1, . . . , θN and the switching logic (27) selecting the
indexσ(·) of θσ(·). In addition, consider the performance
signals (25)-(26). It can be shown that the max operator
in (26) guarantees the existence of a limit ofJi, i ∈ I
for every possible switching sequenceσ(·) ∈ S (the
max operator makesJi monotonically non decreasing,
so that the limit exists, in case the performance signal
Ji is bounded, or that the limit goes to infinity, in case
the performance signalJi grows unbounded). Now we
must show that there exists at least one indexµ ∈ I
such thatJµ is bounded for every possible switching
sequenceσ(·) ∈ S. Note that, inequality (22) is satisfied
for some indexj ∈ I, then the following inequality holds
for t ≥ 0:

2xT (t)Pj ẋ
j(t) + ρjx

T (t)Pjx(t) ≤ 0 (64)

The design criterion L1 guarantees that there exists al-
ways at least one indexµ ∈ I such that (64) holds and
thusJµ in (26) is bounded for every possible switching
sequence. So the HSL holds, there is a finite switching
time t∗ and Jσ(t∗)(·) is bounded. Because of the fact
that there exists always at least one indexµ ∈ I such
that (64) holds, thenJσ(t∗)(·) cannot be greater than the
hysteresis constanth.

2) The hysteresis switching logic (27) together with the fact
that there exists always at least one indexµ ∈ I such
that (64) holds guaranteesJσ(t)(t) < h, 0 ≤ t ≤ t∗. In
fact, if θ∗ ∈ Ωi thenJi(t) = 0 ∀t ≥ 0. So, if the indexi
is switched-on, it will never be switched-off thereafter. If
another indexj is switched-on, such an index will stay
in the loop till limτ→t Jj(t) = h. As soon as the last
equality is verified another indexk satisfyingJk(t) < h
will be switched-on. The new index can bek = i or k 6=
i; in any case,Jσ(t)(t) < h, ∀t ≥ 0. We also notice that
whenever a controller is switched on twice in feedback to
the plant, its performance signal grows at least byh. We
conclude that every candidate controller is switched on at
most once and that there are at mostN switches before
the final switching time. Callt1, t2, . . . , t∗ the instants at
which a switching occurs: then, between two switching
instants we have

max
ti≤t≤ti+1

{

2xT (t)Pσ(ti)ẋ
σ(ti)(t)

+ρσ(ti)x
T (t)Pσ(ti)x(t)− h

}

< 0 (65)

which implies

|x(t− ti)| ≤ κσ(ti)e
−

ρσ(ti)

2 (t−ti) |x(ti)|+ h, ti ≤ t ≤i+1,

where κσ(ti) =
(

λmax(Pσ(ti))/λmin(Pσ(ti))
)1/2

and
h = O(h). By observing thatu(t) = CT

1 ẋ(t) + d11x(t),
y(t) = CT

2 ẋ(t)+d21x(t), with C1, C2, d11, d21 depend-
ing of the coefficients ofΛ(s), (28) follows.

3) After the final switching timet∗, Jσ(t∗)(·) < h which is
equivalent to

max
t≥t∗

{

2xT (t)Pσ(t∗)ẋ
σ(t∗)(t)

+ρσ(t∗)x
T (t)Pσ(t∗)x(t)− h

}

< 0 (66)

which implies (29). In order to establish the convergence
of y in the case thatθ∗ ∈ Ωσ(t∗) we proceed as follows:
after the final switching timet∗ we can can show that the
following two equations hold [9, Thm. 7.4.1]

Qσ(t∗)yΛ + Lσ(t∗)uΛ = 0,

R̂pyΛ − ẐpuΛ = ǫσ(t∗)m
2
s (67)

whereuΛ = 1
Λp

u, yΛ = 1
Λp

y, Qσ(t∗) andLσ(t∗) are the
numerator and the denominator of the final switched-on
controller andR̂p = sn + θTa αn−1(s), Ẑp = θTb αm(s),
whereθ = [θTa θTb ]

T are the estimated parameters. Then,
Eq. (67) can be rearranged as

ẋ(t) = A(t)x(t) + b1(t)ǫσ(t∗)m
2
s(t) (68)

u(t) = CT
1 ẋ(t) + d11x(t) (69)

y(t) = CT
2 ẋ(t) + d21x(t) (70)

whereA(t) is a time-varying matrix whose determinant,
for each frozen timet, is equal to

det(sI −A(t)) = R̂pL̂+ Q̂Ẑp = A∗(s, t) (71)

where A∗(z, k) is the characteristic polynomial of the
closed-loop formed by the estimated plant and the con-
troller. Thanks to C1,A∗(z, k) is Hurwitz at each frozen
time k, so thatA(k) has stable eigenvalues at each frozen
time k. Using a similar procedure as in [9, Sect. 7.7.1],
we can establish that

‖(y)t‖2δ ≤ c
∥

∥(ǫσ(t∗)m
2
s)k
∥

∥

2δ
+ c (72)

for 0 < δ < 2λ0, whereλ0 < 0 is the exponential con-
vergence rate of the homogeneous part of (68). Defining
the fictitious signalm2

f (k) , 1+φT (k)φ(k)+‖(y)t‖22δ+
‖(u)t‖22δ and applying the Bellman-Gronwall Lemma [9,
Lemma 3.3.7] to

m2
f ≤ c+ c

∥

∥(ǫσ(t∗)msmf )t
∥

∥

2

2δ
(73)

we establishmf ∈ l∞. Using the boundedness ofmf , we
can establish the boundedness of all closed-loop signals,
i.e., φ, u, y ∈ L∞. Finally, applying [9, Lemma 3.3.3] to
(68), we observe that if the inputǫσ(t∗)m2

s ∈ L2 ∩ L∞,
which is guaranteed by the adaptive law, theny will be
in L2 and in additiony → 0 as t → ∞.
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APPENDIX: PROOF OFTHEOREM 3

The proof proceeds by following similar steps as in the
proof of Theorem 2. It is first shown that assumptions A1
and A2 of the hysteresis switching lemma hold: this happens
because L2 guarantees that there exists an indexj ∈ I such
that
(

2xT (t)Pj ẋ
j(t) + ρjx

T (t)Pjx(t) + yTf (t)yf (t)

γi

)1/2

≤ d0

and thus there exists at least one indexµ ∈ I such that
Jµ in (45) is bounded for every possible switching sequence
σ(·) ∈ S. The hysteresis switching logic (27) guarantees that
whenever a controlleri is switched on twice in feedback to
the plant, its performance signalJi has grown at least byh.
This implies that there are at mostN ⌈d0/h⌉ switches before
the final switching time. Consequently, ifh = d0, there are at
mostN switches before the final switching time. In addition,
if θ∗ ∈ Ωi thenJi(t) < d0 ∀t ≥ 0. So, if h = d0 and the
index i is switched-on, it will never be switched-off thereafter.
Finally, after the final switching time, the following condition,
deriving fromJσ(t∗)(·) < h

max
t≥t∗

{(

2xT (t)Pσ(t∗)ẋ
σ(t∗)(t) + ρσ(t∗)x

T (t)Pσ(t∗)x(t)

+yTf (t)yf (t)
)1/2

γ
−1/2
σ(t∗) − d0 − h

}

< 0 (74)

guarantees (47).
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