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Abstract

The inclusion of intronic reads in the downstream analysis of RNA-sequencing (RNA-seq) data has long been

controversial. Recent studies show that intronic reads do contain relevant biological signal. Additionally,

studies have discovered differential expression unique to intronic reads in certain diseases. Nevertheless,

most disease prediction studies only use exonic read counts as input to their models. In this study, we

investigate the informativeness of intronic read counts for RNA-seq-based machine learning prediction tasks.

Furthermore, we explore possibilities to combine exonic and intronic read counts to increase predictive

performance. To this end, we use an RNA-seq dataset originating from four different brain regions and try to

predict multiple different clinical labels, including Alzheimer’s disease and dementia. We start by identifying

differently expressed genes by performing differential gene expression (DGE) analysis. Next, we evaluate

the predictive performance of both exonic and intronic read counts using logistic regression. Subsequently,

we explore some basic machine learning techniques to combine the information contained in both sets.

Furthermore, we construct our own model architectures with the aim of gaining information by using both

sets. We show, for this dataset, that exonic and intronic reads have overlapping but also unique differentially

expressed genes. Using these genes we show that the predictive performance using the exonic and intronic

reads is very similar for all predicted labels. We further show that even though different genes are identified,

the biologically relevant signal for the prediction task appears to be the same in exonic and intronic read

counts. We are not able to leverage the combination of the counts to further increase predictive performance.

Existing disease prediction models have neglected the inclusion of intronic reads. In light of our findings,

machine learning models that incorporate intronic reads could potentially discover novel biological insights.
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Introduction

Cells are the fundamental units of life, orchestrating a variety

of complex functions essential for maintaining homeostasis and

facilitating growth and reproduction. These complex cellular

functions are made possible by proteins, which play pivotal roles

in virtually every cellular process [1]. To produce these proteins,

cells transcribe genetic information from deoxyribonucleic acid

(DNA) into ribonucleic acid (RNA). This RNA, in turn, serves

as a template for the synthesis of proteins. Not every segment

of the genomic DNA of an organism encodes proteins, only

regions corresponding to genes are transcribed and translated

into proteins. Genes are composed of exons, which encode

proteins directly, and introns which fulfil a multitude of regulatory

functions [2]. After nascent RNA is formed, it undergoes RNA

processing to become mature RNA. Among these processes is

splicing, in which the intronic parts are removed from the nascent

RNA strand, ensuring that only the exonic sequences remain

(Figure 1). RNA-sequencing (RNA-seq) is a technique that allows

one to measure the RNA content of a single cell (scRNA-seq) [4] or

a population of cells (bulk RNA-seq) [5]. By performing RNA-seq,

we obtain a digital representation of the RNA transcripts in the

cells, called reads. We can then quantify these reads per gene they

originate from to get a relative activity of that gene compared

to other genes in the cells (Figure 2). In recent years, RNA-

seq has gained immense scientific importance, providing detailed

insights into gene expression and the specific cellular activities they

regulate.

Although RNA-seq can be employed to capture all kinds

of RNA molecules, the majority of studies focus on messenger

RNA (mRNA). One of the most popular library preparation

protocols, poly(A) RNA-seq, captures RNA by targeting the

poly(A) tail, which is exclusive to mRNA. As a result, any intronic

segments detected are typically considered experimental noise and

excluded from subsequent analysis. Another widely used protocol
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Figure 1: Illustration of general steps involved in RNA-processing.

RNA-processing is the process in which nascent RNA matures

into messenger RNA (mRNA). During RNA processes, the RNA

molecule is capped and a poly(A) tail is added. Sequences

originating from intronic regions are typically removed to obtain

the mature mRNA molecule. Image from [3].

is total RNA-seq. While this approach does capture nascent

RNA, most studies still only consider sequenced reads that align

with annotated exons. This practice stems from the prevailing

assumption that for protein-coding genes, the majority of RNA

obtained from the experiment are mature mRNA transcripts [6].

In spite of this assumption, a large proportion of reads in both total

RNA-seq, and even poly(A) RNA-seq, map to intronic regions [6].

There has been a growing interest in investigating the role of

intronic reads in RNA-seq experiments. Gaidatzis et al. show that

the comparison between exonic and intronic fold change between

conditions can separate transcriptional and post-transcriptional

regulation [8]. Hereby increasing the information that can be

obtained from RNA-seq experiments. Lee et al. show that intronic

reads do contain relevant biological signal and they demonstrate

differences in the up and down-regulated genes between exonic and

intronic read counts [6].

Genomes can contain thousands of genes. Consequently,

the expression profiles from RNA-seq data will be very high

dimensional. Due to this high-dimensional nature, RNA-seq data

is complex and not readily interpretable by humans. Machine

learning algorithms are well-suited for dealing with these types of

data. Machine learning algorithms can learn to extract relevant

biological signal. As a result, RNA-seq has been widely used

in research for disease classification [9, 10]. However, since it is

common practice to only quantify exonic reads, these models only

utilize exonic read counts and disregard the intronic counts.

Numerous cellular processes have been identified that can

cause disease when deficit or dysfunctional. Alternative splicing,

for example, can be altered in disease [11]. Alternative splicing

is directly involved in removing intronic segments from RNA

strands, so it is plausible that dysfunction of this process could

be reflected in the intronic reads. Indeed, existing research has

demonstrated that certain diseases show aberrations that are

exclusively manifested in intronic reads. A recent study by Koks

et al. [12] found differential expression in intronic reads only, for

Parkinson’s disease. Another study by Maqueara et al. [13] found

an association between retained introns and Alzheimer’s disease

(AD). Another process, which if dysfunctional can cause disease,

is post-transcriptional regulation [14]. The aforementioned study

by Gaidatzis et al. [8] shows that from the separate quantification

of exonic and intronic read counts can be distinguished if a gene

is transcriptional or post-transcriptionally regulated.

Despite these findings, to our knowledge, no studies have

looked at the inclusion of intronic read counts for RNA-seq-based

prediction tasks.

In this study, we investigate if intronic reads counts contain

biologically relevant signal for RNA-seq-based prediction tasks.

Furthermore, we investigate if intronic and exonic read counts

contain the same information and we explore possibilities to

leverage both reads to further increase predictive performance.

We start by performing differential gene expression (DGE)

analysis to elucidate the difference in differentially expressed

genes. With these differentially expressed genes, we evaluate

the predictive performances by predicting multiple clinical labels.

We explore some basic machine learning techniques to combine

the information from both exonic and intronic read counts.

Lastly, we explore more complicated model architectures to utilize

the potential difference in the information contained within the

different read counts to increase predictive performance.

Figure 2: Illustration of the general steps involved in RNA-sequencing (RNA-seq) and consequent processing to obtain expression profiles.

The first three steps in this illustration are referred to as library preparation. In this process, the RNA is isolated, cleaned, fragmented

and amplified. A finished library preparation is loaded into a sequencing machine, which outputs the RNA transcripts as digital reads.

Next, reads are aligned to a reference genome to find the gene they originate from. To obtain an expression profile, alignments for each

gene are counted. Traditionally, only the alignments corresponding to exons are counted, producing a single expression profile based on

exonic alignments. However, when intronic reads are also considered, we differentiate between the two, resulting in two distinct expression

profiles. Image modified from [7].
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Methods

Dataset & Preprocessing

Dataset

Brain tissue has a higher intronic read percentage compared

to other organs [15] and has a high frequency of alternative

splicing [16]. Therefore, we have chosen an RNA-seq dataset

sequenced from brain tissue. In this study, we use a dataset

from the Aging, Dementia, and Traumatic Brain Injury (TBI)

Project [17], which represents a subset of the larger Adult Changes

in Thought (ACT) study. This particular dataset has been made

available by the Allen Institute. The Aging, Dementia, and TBI

project is a detailed collection of neuropathologic, molecular and

transcriptomic characterization of post-mortem brains. In this

study, only the transcriptomic data is used. The dataset can be

downloaded from https://portal.brain-map.org/ or at the Gene

Expression Omnibus with accession number GSE104687. The

dataset contains samples from 107 donors. From each donor, up

to four samples originating from four different brain regions were

taken. The four brain regions are hippocampus (HIP), parietal

cortex (PCx), temporal cortex (TCx) and frontal white matter

(FWM). The transcriptomic data was obtained using Illumina

TruSeq Stranded Total RNA protocol. The transcriptomic data

made available comes in the form of binary alignment map

(BAM) files, specifically anonymized BAM files. A BAM file

is a binary compression of the sequence alignment map (SAM)

format. This format is used to store biological sequence data

along with information on where the sequences align against a

reference [18]. An anonymized BAM file contains all relevant

alignment information but has the read sequences removed. This

is not a problem for our study since we are only interested in where

the reads align, not the specific nucleotide sequence reads consist

of. The alignment process is performed in a multi-step approach.

First, RNA-Seq by Expectation Maximization (RSEM) [19] was

used to align the reads to the transcriptome. Reads that did not

map to the transcriptome were aligned to the human hg38 genome

using Bowtie [20].

Prediction Labels

In this dataset, roughly half of the donors had dementia, diagnosed

by the Diagnostic and Statistical Manual of Mental Disorders, 4th

Edition (DSM-IV) criteria [21]. The DSM-IV criteria are based

on a series of psychometric tests which include verbal, memory,

recollection and drawing tests. Furthermore, the donors’ brains

were post-mortem examined for AD-related pathology. Namely,

neurofibrillary tangles and neuritic plaques. Neurofibrillary tangles

were classified into the Braak stages [22] and neuritic plaques

were assigned a The Consortium to Establish a Registry for

Alzheimer’s Disease (CERAD) score [23]. Based on the Braak

stage and CERAD score, donors were assigned a probability of

having had AD by the National Institute on Aging and Reagan

Institute (NIA-Reagan) criteria [24]. These probabilities are high,

intermediate, low and no chance of AD. Not all dementia cases

could be attributed to AD and not all cognitively unimpaired

donors were diagnosed with AD. Thus, the subsets representing

donors with dementia and AD are not identical but do overlap.

Every donor with cognitive impairment was age-matched with a

cognitively unimpaired donor. We focused on multiple prediction

tasks to facilitate a more comprehensive interpretation of the

results. The labels that were chosen for the prediction tasks are,

sex, structure (brain regions), dementia and dichotomized NIA-

Reagan score. See Table 1 for the specification and proportions

of the phenotypes of these labels. The sex label distinguishes

between male and female. The structure label corresponds to the

four brain regions (HIP, FWM, PCx, TCx). The positive class

of the dichotomized NIA-Regea label is a high and intermediate

chance of AD and the negative class is a low chance of AD and no

AD.

Gene Count Matrices

Quantification of the alignments to obtain the gene expression

matrices was performed using the qCount function in the QuasaR

package [25]. We used all default settings except for the minimal

mapping quality (MAPQ), mapqMin, which we set to ten. A low

MAPQ score reflects a high probability that the read is aligned

to the wrong position in the genome [26]. The software tool

used to align the reads to the reference employs probabilistic

alignment. It reports a lot of alignments with a MAPQ score of

zero but does not mark them as secondary alignments. Setting

mapqMin to ten, as is the default in other tools [27], removes all

these secondary alignments. Furthermore, alignments marked as

secondary, supplemental, or unmapped were not counted. Read

alignments were counted for gene bodies, which is the entire gene

from the transcription start site to the end of the transcript,

and for exons within gene bodies. Subsequently, intronic read

counts were obtained by subtracting the exonic read counts from

the gene body read counts. The gene annotation provided by

the Allen Institute contained 50,267 genes, which collectively

included 317,003 exons. Overlapping genes were filtered out to

avoid ambiguity. This resulted in a filtering of 10,489 genes. Thus,

the final trimmed version of the annotation contained 40.493 genes

with 247.929 exons. In the end, we obtained three distinct count

matrices: one for exonic read counts only, one for intronic read

counts only, and a third with both, which we refer to as the total

counts.

Quality Control & Outlier Removal

The Allen Institute notes in the accompanying documents that

RNA quality is quite variable between samples. The RNA integrity

number (RIN) assesses the integrity of RNA samples by providing

a numerical score ranging from one to ten [28]. It measures the

degree of degradation of RNA samples. A score of ten denotes

highly intact RNA while a score of one signifies almost entirely

degraded RNA. Samples with a RIN lower than four were filtered

out, this filtered out 18 samples. Upon calculating the ratio as

described in section Feature Engineering - Ratio we identified two

outliers. In Figure 9 we plotted the ratio of the intronic read

count to the total. We see two outliers on the right-hand side

of the mean of the histogram. Performing a one-sided Smirnov-

Grubss test confirmed sample 360 and sample 361 (p<0.05) as

being outliers. We removed these outliers from all experiments. In

the end, we are left with 357 samples from 106 donors.

Count Normalization, Transformation & Scaling

Within-sample normalization is needed to account for technical

effects that arise from slight variations during the sequencing

protocol [29]. This variation is referred to as a difference in

sequencing depth. Count per million (CPM) is a normalization

https://portal.brain-map.org/
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Label Category Number of classes Class proportions

Sex binary 2 ’M’: 0.59, ’F’: 0.41

Structure multi-class 4 ’TCx’: 0.26, ’HIP’: 0.25, ’FWM’: 0.25, ’PCx’: 0.24

Dementia binary 2 ’No Dementia’: 0.52, ’Dementia’: 0.48

Dichotomized NIA-Reagan binary 2 1: 0.51, 0: 0.49

Table 1. Labels used in prediction task. HIP: hippocampus, FWM: frontal white matter, PCx: parietal cortex, TCx: temporal cortex, M: Male, F: Female.

Dichotomized NIA-Reagan 1: High and intermediate chance of AD, Dichotomized NIA-Reagan 0: low chance of AD and no AD.

method that accounts for library size,

CPMi =
106 · countsi∑

j(countsj)
(1)

where i and j are gene indices within a single sample. Also,

library size normalized raw counts can contain a bias stemming

from variable gene transcript length [9]. Therefore, normalization

by transcript length can be applied. Transcripts per million (TPM)

is a normalization method that accounts for both within-sample

sequencing depth and variable transcript lengths. TPM per gene

is calculated as,

TPMi =
106 · ( counts i/ length i)∑

j

(
countsj/ length j

) (2)

where i and j are gene indices within a single sample. These

formulas are suitable in a standard setting where we only have a

single library (i.e. exonic counts only). We need to extend these

formulas so that they are also applicable in a setting where we have

both exonic and intronic counts. Although Gaidatzis et. al [8]

observe that intronic reads have sufficient coverage to perform

library size normalization separately, Lee et al. observe that

intronic to exonic proportions vary between samples, groups and

experimental conditions and therefore could give a poor estimate

of the actual sequencing depth [6]. They deviate from the normal

approach to normalize over a single count set by taking the library

size as the sum of the intronic and exonic counts. Following this

approach we modify the TPM & CPM calculation,

CPMi, exon =
106 · exon countsi∑

j(exon countsj + intron countsj)
(3)

CPMi, intron =
106 · intron countsi∑

j(exon countsj + intron countsj)
(4)

TPMi, exon =
106 · ( exon counts i/ length i)∑

j

(
(exon countsj + intron countsj)/ length j

)
(5)

TPMi, intron =
106 · (intron counts i/ length i)∑

j

(
(exon countsj + intron countsj)/ length j

)
(6)

where i and j are gene indices within a single sample. We

also report on results for the total counts as more tools start to

default on counting both intronic and exonic reads. The total

counts just use their own library size and are thus calculated

by formula 1 and 2. We investigate whether the choice of

normalization by library size or combined library size impacts

prediction performance.

Bulk RNA-seq data has very high heteroscedasticity. Small

gene counts can range from a dozen to a few hundred while

highly expressed genes can have millions of counts. This can

pose a problem for machine- or deep-learning algorithms as

they cannot cope with these high values. Since we are not

necessarily interested in the absolute number but rather a relative

change between conditions, we can further transform the data.

A common approach is to perform a logarithmic transformation.

This transforms the very high counts down to workable numbers

while having less influence on already low counts. We transform

all the counts as,

logcounti = log2(counti + 1) (7)

where i is a gene index within a sample. We add a single count

to every gene to maintain a zero value after transformation for

genes with zero counts. Lastly, we scale the counts by applying

a z-score transformation. This gives every gene zero mean and

unit variance. Although this scaling is not required for our logistic

regression model, described in section Models. It is beneficial

for gradient descent convergence, improves the comparability of

model performance, and allows us to interpret the values of learned

weights as feature importances.

Differential Gene Expression Analysis Gene Selection

Typically, RNA-seq data exhibits high dimensionality. Our dataset

comprises more than 40,000 genes. Machine learning models

are prone to overfitting when dealing with high dimensionality,

particularly when combined with a limited sample size. This

is commonly referred to as the curse of dimensionality [30].

Some machine learning methods can apply regularization to

deal with this but this is not always sufficient. Furthermore,

computational resources become a limitation when dealing with

this high dimensionality. Fitting one model is not directly a

problem. But in this study, we compare multiple models using

multiple datasets (i.e. exon and intron) across multiple labels. In

combination with our test split and cross-validation, described

in section Test, Train, Validation Split, fitting all these models

becomes infeasible for the scope of this study. To deal with

the aforementioned problems, feature selection by DGE analysis

is a common approach [31, 32], operating on the assumption

that not all genes will be informative for the prediction task.

DGE analysis identifies genes that are expressed at different

levels between experimental conditions or groups. This is achieved

using statistical methods that compare the abundance of RNA

transcripts between these groups. A drawback of this approach

is that the genes are fitted in a univariate fashion. Thus, this

will potentially exclude genes that are important in combination
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Figure 3: Diagram of logistic regression and our custom linear model implementations in PyTorch. Model A: end-to-end assemble

approach. Model B: weighted combination of the exonic and intronic gene counts approach. FC: Fully connected layer, also called linear

layer. W: learnable weight in fully connected layer. b: learnable bias weight. p: output, single probability for binomial prediction and

probability vector for multinomial. w1 and w2: single learnable weights. 0: zero-padded input genes. A: activation function, sigmoid for

binomial prediction and softmax for multinomial.

with other genes. The DGE analysis is performed using the

well-established Limma-Voom [33] pipeline. This pipeline consists

of three steps. First, the edgeR::filterByExpr function is used

to filter out genes with low counts. Next, limma::voom is

applied to transform the count data. Lastly, limma::lmFit and

limma::eBayes are applied to fit the linear models and apply

empirical Bayes moderation to increase the stability. Limma uses

False Discovery Rate (FDR) adjustment to correct the p-values.

This pipeline is implemented by modifying the tool created by Lee

et al. [6], which they call intron differences to exon (index). Index

only handles exonic and intronic read counts, we extended the tool

to also be able to deal with the total counts. Note that the Limma-

Voom pipeline uses its own transformation and normalization, we

thus supply the raw read counts as input for this analysis. We

keep the DGE analysis simple, so we don’t include any covariates

or blocking factors. In initial DGE analyses, we observed high

variability in the number of genes found between the different

train-test splits (Supplemental Table 1). A standard approach

for DGE analysis-based feature selection is to select genes with

adjusted p-vales less than 0.05. We deviate from this approach for

two reasons. First, the observed high variability between the folds

compromises comparability. Second, after taking the intersection

of the three validation folds we no longer find any genes for our

NIA-Reagan label in some test folds. Since the goal is to select

informative genes rather than report on significance we select the

1000 most differentially expressed genes (i.e. smallest adjusted p-

value) per cross-validation fold and take the intersection over these

folds. This approach has a lower coefficient of variation between

the folds, which is better for comparability and stability across the

folds (Supplemental Table 1).

Models

All models are implemented using the PyTorch framework [34, 35]

in Python. Pytorch models are fitted using gradient descent. As

our optimizer, we chose the commonly used Adam optimizer.

To prevent overfitting and to add a level of constraint to the

complexity of the models, L2 regularization was applied using

weight decay. Weight decay is not mathematically exactly the

same as L2 regularization but has the same effect, it helps penalise

large coefficients, thereby ensuring that the model does not become

overly complex.

Logistic Regression

We start by investigating the difference in predictive performance

by applying logistic regression. Logistic regression falls under the

class of generalized linear models and is used for modelling binary

outcome variables. The model consists of one fully connected

layer coupled with a Binary Cross Entropy with Logistic Loss

(BCEWithLogitsLoss). For multinomial logistic regression, where

the dependent variable can have more than two categories, we

modified the model by replacing the sigmoid with a softmax

function over the output layer. This ensures that the probabilities

sum to one, providing a valid probability distribution over the

multiple classes. Correspondingly, we changed the loss function

to cross-entropy loss (CrossEntropyLoss), which is suitable for

handling multiple categories (Figure 3).

Custom Linear Model Architecture

In the context of combining exonic and intronic counts,

we extend our exploration beyond straightforward machine-

learning approaches. PyTorch’s backpropagation mechanism

allows complicated model architectures. More complicated models

do come with an inherent risk of overfitting. With an increased

number of parameters, the models may fit the training set better

or precisely but fail to generalize as effectively as simpler models.

This is especially a risk for datasets with small sample sizes. We

explore two custom linear model architectures, visually depicted

in Figure 3. Given this risk of overfitting, we wanted to test model

architectures that remain relatively simple and have some inherent

motivation behind them. Our first model, A, can be conceptualized
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as training an ensemble, but instead of training two separate

models, this model is trained end-to-end. This model does have

more learnable parameters than the concatenation of the datasets,

however, the addition of the last layer creates an information

bottleneck. Thereby potentially limiting the overfitting ability. In

our second model architecture, B, we take a weighted summation

of our input gene counts and use this as input to our logistic

regression module. The model can learn the optimal weights to

sum the intronic and exonic read counts. Possibly outperforming

the logistic regression model using the total counts, where the

counts are essentially the exonic and intronic counts summed

with weights one. The number of parameters is drastically less

in this model compared to the concatenation of the counts.

Mathematically these models can be written as, A,

F (E, I) = g(((EW1 + w10)
⌢(IW2 + w20))W3 + w30) (8)

And B,

F (E, I) = g((w1 ∗ E + w2 ∗ I)W3 + w30) (9)

Here E and I denote the input feature, i.e. the exon and

intron counts, capital Wx denotes a weights matrix and lower

case wx denotes a single weight, and ⌢ is the concatenation

operator. In the binomial case, g(x) denotes a sigmoid function

providing a probability as output, which can be rounded to obtain

the class prediction. For the multinomial case, g(x) denotes a

softmax function where the output is an n-dimensional array of

probabilities. Here the class prediction is obtained by taking the

index of the highest probability. All input count sets that are

summed in model B need to be of the same size. Since we find

a different number of genes for exonic and intronic counts we

zero-pad the genes that are not selected. In this manner, we can

still make a valid comparison to other models, since the input

information is still the same. We train two extensions of model A.

One which also incorporates the ratios and one where the ratios

and the total information are incorporated (A-EIR, A-EIRT). For

the second model, B, there is no inherent motivation to sum rations

with the counts so we only do a weighted combination of exonic

and intronic read counts (B-EI).

Non-Linear Models

Biological systems are known to exhibit non-linear characteristics [36,

37]. We investigate if non-linear models are able to leverage the

combined information to increase the performance compared to the

linear models. We modify the models from the previous section

to include a non-linear activation function at every operation.

Specifically, we employ the Rectified Linear Unit (ReLU)

activation function. This results in the following mathematically

adaption from Formula 8 and 9,

F (E, I) = g((σ(EW1 + w10)
⌢σ(IW2 + w20))W3 + w30) (10)

And B,

F (E, I) = g((σ(w1 ∗ E) + σ(w2 ∗ I))W3 + w30) (11)

where σ denotes the ReLu activation function. We also apply this

to the extension of A where the ratios and the total counts are

included (act-A-EIR, act-A-EIRT).

Model Ensembles

Ensemble approaches can outperform a single model by leveraging

the strengths of multiple individual models. Besides increasing the

predictive performance, ensembles can also enhance the robustness

of the predictions. We employ three simple ensemble approaches

where we combine our logistic regression models for exonic,

intronic and total counts as well as the count ratios. Our logistic

regression models predict the probability of the input belonging to

a certain class. We combine these probabilities to make an average

confidence ensemble and a max confidence ensemble. Furthermore,

we make a majority voting ensemble. Here the probabilities are

first converted to a class and subsequently, we take the class with

the highest occurrence among the individual models within the

ensemble. In case of a tie, we pick at random between the tied

classes.

Experimental Setup

Test Split & Cross-Validation

A significant level of variability was observed depending on the

chosen train-test split during experiments. Since the objective was

not to develop a model but rather to investigate the differences,

a test fold split approach was employed. The original dataset

was divided into five folds. Subsequently, within each training

fold, three-fold cross-validation was conducted for hyperparameter

optimization and DGE analysis. For every train-test split, we

perform our DGE analysis thrice, once on each train part of the 3-

fold cross-validation. Subsequently, we take the intersection of the

genes identified by these three DGE analyses as our final gene

selection. This prevents information leakage between the train

and test set since the DGE analysis never sees the test data.

Furthermore, by taking the intersection over the three folds we

prevent information leakage to the validation set. The mean and

variance needed for z-score normalization are calculated from the

train set only and subsequently used to scale the validation and

test sets. Each train/test fold was fully independent, resulting

in different sets of hyperparameters and different sets of genes

from the DGE analysis per train-test fold. This workflow is

illustrated in Figure 4. Both the train-test and cross-validation

splits are performed by randomly picking donors and selecting

the samples from these donors. Consequently, no donor can have

samples in multiple folds. Hereby preventing the models from

learning donor-specific information during training. Given the low

number of samples, we stratified for all relevant labels (structure,

sex, dementia, and NIA-Reagan) to increase the stability of the

results. For the final evaluation on the test fold, we still need a

validation set to determine when to stop training. The split here

also influences the outcome. We fit three models with each of the

three train-validation splits and subsequently test these models on

the corresponding test fold.

Hyperparameter Tuning

Three critical hyperparameters influence our models’ ability to

learn. Those are learning rate, batch size, and weight decay (L2

regularization). These parameters need to be optimized to find the

optimal performance. To accomplish this we employ Optuna [38]

as our optimization framework. With the default settings, Optuna

uses a Tree-structured Parzen estimator for parameter selection.

This is a surrogate model approach where Gaussian Mixture

Models are fitted to find the best parameters. This approach

allows us to dynamically search a large search space (Supplemental
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Figure 4: Diagram of the workflow to evaluate the performance of our models.

Table 2) instead of relying on fixed values in a traditional grid

search. The specific parameter we aim to optimize is the validation

accuracy averaged over the three validation folds. Because of

the large search space and the random initialization of the

surrogate model, we search until there is no improvement for 175

consecutive trials. We observed that with this value all the models’

improvements have plateaued. A common practice when fitting a

model with gradient descent in PyTorch is to let the model run for

sufficient epochs and select the model with the highest validation

performance. We slightly deviate from this approach by taking a

rolling average of the validation accuracy. We observed extremely

erratic learning curves for some hyperparameter combinations.

Those models would obtain the highest performance, but the

accuracy could jump over 30 accuracy points per epoch. We argue

that the models are not learning anything, but by luck, adjusting

their weights to obtain high performance. By taking the rolling

average, we enforce a parameter combination with which the

model is genuinely able to learn the decision boundary rather than

exhibiting this erratic behaviour.

Evaluation Metrics

Our models are fitted using gradient descent with cross-entropy

loss. However, a minimal loss does not necessarily correspond

to maximal accuracy. Since we have a classification task, we are

interested in correctly predicted samples rather than minimizing

a loss measure. Therefore we optimize for and report on accuracy

instead of loss. Note that given our relatively small dataset of only

approximately 71 samples per test fold, a single sample contributes

about 1.4% when predicted correctly. We evaluate if the obtained

accuracies of the models are significantly different (p<0.05) from

each other, by performing a two-sided Wilcoxon rank-sum test.

Which is an unpaired non-parametric test to compare if two

samples follow the same distribution. A more standard approach

would be to use a t-test, however, not all our models’ accuracies

were normally distributed.

Feature Engineering - Ratio

The intronic ratio is interesting to investigate for a couple of

reasons. Firstly, an exon count-based machine learning model

would utilise a relative difference in counts to classify a condition.

However, a relative increase in both exon and intron will not result

in a different ratio and can therefore not be picked up in the

same way. A relative ratio difference can come from six possible

changes. Only up or down-regulated exonic reads, only up or down-

regulated intronic reads or when both are oppositely regulated,

that is, exon up and intron down or the other way around. Another

interesting aspect is that the ratios are normalization-independent

as the divide will cancel out the normalization. Furthermore,

taking the ratio scales all the values between zero and one. This

scaling makes the ratios less sensitive to outliers. All in all, it

is worth investigating if the ratios can maintain the same signal

and its relative performance to the exon and intron counts. We

calculate the ratio as the intronic part of the total counts.

ratioi =
intron counti

intron counti + exon counti
(12)

For every gene i. The ratio is calculated using the raw

counts without performing library normalization and logarithmic

transformation but the ratios are z-score normalized. The index

pipeline used for the exonic, intronic and total counts is

incompatible with ratio values. Consequently, we substituted this

part with a two-sided Wilcoxon rank-sum test. The p-values from

the Wilcoxon rank-sum test were adjusted for multiple testing

using the Benjamini-Hochberg false discovery procedure. As is

used in the limma-voom pipeline. The other steps in our workflow

are exactly the same for the ratios as for exonic, intronic and total

counts.

Feature Space Concatenation

The most straightforward way to utilize both the exonic and

intronic read counts is to supply both the count matrices as input

features to a machine learning model. If one of the two contains

different information we can potentially leverage that to increase

the model performance. However, increasing the feature space also

means that the model is more susceptible to overfitting. Another

concern is multicollinearity. Logistic regression is known to suffer

from multicollinearity [39]. If we select the same genes for different

read counts during the DGE analysis we have a chance that these

will be highly correlated. We explore three different concatenation

options, namely exonic and intronic read counts concatenation

(concat-EI). Secondly, exonic, intronic read counts and ratios

concatenation (concat-EIR). Lastly, exonic, intronic, total read
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Figure 5: Scatter plot of the first two principal components of the PCA transformed data, for exon, intron and the total counts. Coloured

by brain region, HIP: Hippocampus, FWM: frontal white matter, PCx: parietal cortex, TCx: temporal cortex

counts and ratio concatenation (concat-EIRT). Adding the total

counts when the genes are the same does not provide additional

information to the model, only if we select (partially) different

genes during the DGE analysis.

Principal Component Analysis

Principal Component Analysis (PCA) is a transformation

technique often used to reduce the dimensionality of datasets while

retaining as much variance as possible. We employ it to explore our

high-dimensional data in two dimensions. Furthermore, we utilize

PCA to mitigate the effect of multicollinearity in our dataset, as

PCA produces inherently uncorrelated principal components [40].

For visualization purposes, we transform our entire dataset at

once. When using it in our models to mitigate multicollinearity

we first transform our training set and subsequently use the found

principal components to transform our validation and test sets.

This prevents information leakage between the sets. For both use

cases, we first apply TPM normalization and z-score normalization

prior to PCA. Note that we only use the PCA transformation

in our models in section Reducing Multicollinearity by PCA

transformation Does Not Provide Performance Improvement.

We use the scikit-learn [41] Python library to perform the

PCA transformation. In our models, we use the maximum

number of principal components possible, which is defined by

min(nsamples, nfeatures). Depending on the number of genes

found during DGE analysis we are thus limited by the number

of genes selected or the number of training samples.

Code Availability

All software packages and their version numbers are listed

in Supplemental Table 3. The code for all experiments

is available at https://gitlab.ewi.tudelft.nl/goncalveslab/

master-projects/msc-thesis-2223-thomas-zuiker/.

Results & Discussion

PCA and Correlation Analysis Reveal Potential Information

Difference Between Exonic and Intronic Read Counts

We begin by inspecting the data to verify that intronic read counts

contain relevant biological signals and investigate to what extent

the information is different from the exonic or the total read

counts. We commenced by performing PCA transformation on

the whole dataset for exonic, intronic and total reads separately,

and visualized the first two principal components (Figure 5). An

immediate observation is that all three plots are very similar and

the first two components seem to separate the brain regions. This

verifies the findings by Lee et al. [6] that intronic reads contain

relevant biological signal. While the first two principal components

plots seem very similar, there are differences noticeable when

looking at higher principal components (Supplemental Figure 1, 2

and 3). Notably, the ten first principal components of the intronic

read all demonstrate greater explained variability compared to

the exonic and total read counts, 55.66, 46.12% and 52.22%

respectively. Considering that the PCA plots still look relatively

the same, this could indicate less noise being present in the intronic

reads or that they simply contain less information.

Because the overall PCA results appear very similar, we

calculated the Pearson correlation coefficient (ρ) between each

gene’s exonic and intronic counts (Figure 6). We observe a large

proportion of the genes having a correlation close to one (24.7%

Figure 6: Histogram of Pearson correlation coefficients of

correlation between exonic and intronic read counts, for all genes.

https://gitlab.ewi.tudelft.nl/goncalveslab/master-projects/msc-thesis-2223-thomas-zuiker/
https://gitlab.ewi.tudelft.nl/goncalveslab/master-projects/msc-thesis-2223-thomas-zuiker/
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Figure 7: Visualization of genes identified by differential gene expression (DGE) analysis. Genes are selected by taking the 1000 most

differentially expressed genes per cross-validation fold and subsequently taking the intersection of the cross-validation folds (Section

Differential Gene Expression Analysis Gene Selection). The p-values are corrected for multiple testing using the False Discovery Rate

(FDR) procedure. A: Venn diagram of the overlap between the DGE genes found for dementia in fold 1. B: Histogram of the number of

DGE genes found per fold, grouped by the count set. C: Venn diagram of the overlap between the exonic DGE genes for different folds,

for label NIA-Reagan. Note that these areas of the folds are not drawn to scale.

ρ > 0.75). However, there is also a very substantial proportion that

is not close to one. Moreover, there are even a lot of genes with a

correlation close to zero (11.1% ρ < 0.25). Having all correlations

close to one would be a strong indicator that the information

contained within the count sets is largely the same. Given that this

is not the case, this offers motivation to investigate the differences

within a machine-learning context.

Differential Gene Expression Analysis Reveals Unique Genes in

Exonic, Intronic, and Total Counts

Similar to Lee, et al. [6], we find uniquely differential expressed

genes from our exonic read counts as well as intronic read counts

(Figure 7A). Besides the uniquely found genes, we also observe a

substantial overlap between the two sets. This observation holds

for all our labels across all our test folds (Supplemental Figure 4).

Furthermore, our extension to also perform DGE analysis on

the total counts reveals that this set also contains differentially

expressed genes which are not found in either exonic counts or

intronic counts (Figure 7A). Lee et al. report genes with opposite

fold change (i.e. exonic upregulated and intronic downregulated

or vice versa), but we don’t observe a single gene exhibiting this

behaviour in our DGE selected genes. We also don’t observe this

for the differentially expressed genes from the total counts with

either exonic counts or intronic counts.

We observe a relatively large variability in the number of genes

found across test folds. For example, we see for dementia almost

double the number of genes found in fold five compared to the other

folds, across all the count sets (Figure 7B). Only structure shows

low variation, all other labels show high variation (Supplemental

Figure 6). This could indicate high heterogeneity in the dataset,

as different subgroups apparently have different expressions. The

difference in genes identified per count set (Figure 7A) could be

attributed to the variation between the test folds. To this end,

we also inspect the genes obtained by taking the intersection over

all the test folds. For all labels, the aforementioned observation

still holds for these genes, providing more confidence that there

are uniquely expressed genes present in the different count sets

(Supplemental Figure 5).

Another observation is that the quantity of genes identified

fluctuates considerably between different labels. For example,

structure encompasses close to 800 genes while NIA-Reagan has

roughly 100 (Supplemental Figure 6). This disparity provides

insight into the extent to which informative genes are present

within the data. The high number of genes found in structure is

expected since we saw a strong signal in the PCA plot (Figure 5).

However, NIA-Reagan finds only around a hundred genes while we

take the intersection of the thousand most differentially expressed

genes.

DGE analyses are frequently conducted to report significant

genes in diseases or between conditions. We discern that our

DGE analysis exhibits significant differences between genes

found depending on sample inclusion or exclusion (i.e. the

difference between the test folds). It becomes evident that careful

interpretation is paramount when analyzing and reporting on DGE

analyses, especially in datasets exhibiting variability akin to ours.

Furthermore, the differences in genes found between the exonic,

intronic and total counts are seldom considered in the literature,

underscoring the necessity for careful interpretation of existing

literature even more.

In light of our interest in a machine learning context, some

of these observations warrant our attention. The observed high

variability is not necessarily detrimental. A machine learning

model can possess the capability to extract meaningful features

while disregarding irrelevant ones. However, high heterogeneity in

the data can potentially compromise the model’s generalizability

and stability. Furthermore, the little overlap between the genes

found across the folds for NIA-Reagan and dementia could pose

a problem (Figure 7C, Supplemental Figure 7). For every fold, we

observe that the majority of the genes are unique to that fold.

This suggests that the identified genes might not be genuinely

informative for the prediction task and will not generalize to the

test set. This is also supported by the observation in Supplemental

Table 1 where we see that no genes are found for NIA-Reagan with

an adjusted p-value less than 0.05 for some folds. On the other
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Figure 8: Model performance under different normalization techniques. The reported accuracies are shifted by the accuracy of no

normalization.

Metric percentage

Single exon genes 36.83%

Ratio of 1 5.60%

Ratio of 0 39.10%

Ratio 0<x<1 55.30%

Ratio 0 without SE genes 2.27%

Table 2. Table of characteristics of the count ratios.

hand, our observation that there are genes found unique to the

exonic, intronic or total counts (Figure 7A) does provide further

motivation to investigate if these found genes contain the same

or different signal for a machine learning prediction task. The full

results of the analysis are illustrated in Supplemental Figures 4, 6,

and 7, and Supplemental Table 1.

Statistical Analysis of the Ratios Also Identifies Unique Genes

We analyzed the general properties of the computed ratios

(Table 2). Notably, our dataset contains 14751 single exon genes

(SE). SE genes are characterized by the absence of intronic regions,

resulting in a ratio of zero. Excluding single-exon genes, the

percentage of zero ratios is very small. We further inspected the

obtained ratios by plotting the per-gene average and the per-

sample average, see Figure 9 A and B. We see that the per-sample

averages are normally distributed around 0.35. The gene averages,

on the other hand, show an almost uniform distribution from zero

to one, albeit with one spike at zero attributed to the SE genes.

Our DGE analysis does not select a SE gene for any label or test

fold. If we exclude the SE genes the intronic average becomes 0.43.

Figure 9: A: histogram of the ratios averaged by per gene. B:

histogram of the ratios averaged per sample.

Interestingly, there is also a considerable number of occurrences

where the ratio is one, implying an absence of exonic read counts.

We included the ratio genes found by our statistical tests in

Supplemental Figures 4, 6, and 7. We find a very similar number

of genes compared to exonic, intronic and total counts for every

label and every fold (Supplemental Figure 6). Even the number of

genes that overlap across the folds is very similar (Supplemental

Figure 7). Therefore, a surprising observation is that the actual

genes found, overlap very little with the three other sets. See for

example dementia test fold 1, there is almost no overlap between

the ratio and the other three sets (Supplement Figure 4). To some

extent, this is expected. Given that we don’t observe any opposite

fold change, any gene that is both differentially expressed in the

exonic and intronic reads will only exhibit a slight to no change

in the ratio. Consequently, these genes will not be significantly

different between conditions when performing our statistical tests.

Nonetheless, it is still striking to see that the number of found

genes is so similar but the actual genes are not.

Model Performance Is Comparable Between Library Size

Normalization and Combined Size Normalization

We investigated if combined library size (exonic and intronic

counts) normalization would outperform own library size

normalization (only exonic or intronic counts). We trained

our models using two normalization methods (CPM, TPM)

using both library size options. This resulted in four different

ways of normalizing. We also evaluated the performance of no

normalization. We shifted the results of the obtained performance

by subtracting the performance of no normalization, to better

visualise the difference. The first clear observation is the relatively

high variability in the accuracies within a label across the folds

(Figure 8). We see some clear improvements but also some

occurrences where the performance is worse than no normalization.

We attribute this to two factors. First, the dataset is relatively

small thus a single flip of a prediction already has quite a

significant influence on the results. Furthermore, the models are

also somewhat sensitive to random initiation. The hyperparameter

search is randomly initiated as well as the weights upon fitting the

final model. Combined these two factors can make it so that in

some cases the normalized version underperforms compared to the

unnormalized ones. As far as our interest goes in a performance

difference between self and combined normalization, we can not

observe a substantial difference. This is not unexpected as brain
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Figure 10: Boxplots of model performance using different model architectures and input data. The first column depicts validation

performance. The second column depicts the test performance. The rows correspond to the prediction labels. The largest class of a label

is indicated by the grey line, which indicates a guessing performance.

regions have a high percentage of intronic read counts to the total.

We observed this when looking at the per-sample averages, where

the mean is roughly 35% (Figure 9B). Other organs exhibit a

lower intronic to total percentage, as found by Lee et al. [6].

Their mean of intronic to total reads in total RNA-seq is 21%.

There the choice of normalization might be more pronounced.

Thus, for further research, we suggest investigating if our observed

indifference also holds for samples from a lower intronic percentage

region. Since we observe no substantial difference we use TPM

combined library size normalization for our experiments, as TPM

should theoretically contain less bias than the CPM normalization.

Exonic, Intronic and Total Counts Show Similar Performances

To investigate the difference in performance between the different

count sets, we trained logistic regression models to predict different

labels. In Figure 10 we plotted the results of the validation and test

performance of our models using exonic counts (LR-exon), intronic

counts (LR-intron) and total counts (LR-total). From the results,

we can make observations regarding trends and patterns of the

general performance and we can make observations regarding the

difference between the different inputs of the three aforementioned

models. Firstly, regarding general performance. We see for sex

nearly perfect performance, structure also has good performance

but dementia and NIA-Reagan perform just slightly better than

learning to classify everything as the largest class, or guessing.

Notably, for every label except sex we see quite a high variance

between the folds for both validation and test performance.

Furthermore, we see for dementia and especially NIA-Regan a

large discrepancy between the validation performance and the

test performance. Our hypothesis that the NIA-Reagan would

not generalize well defined in the DGE analysis section partly

holds. We see very good validation performance that does not

generalize at all for some folds. However, for other folds, the model

is able to learn beyond just learning the largest class. This can be

explained by our DGE analysis observation. We saw almost no

overlap between the genes found in the different folds. From this,

we assume that the differences that get picked up during DGE

analysis are differences specific to the validation set. As we take

the intersection between the cross-validation folds we preselect

on genes that are coincidentally donor-specific to the whole train

set. This results in excellent validation performance and poor test

performance. Now we consider the relative difference between the

three aforementioned models. An immediate observation is that

intron, exon and total all seem to perform very similarly. Once

again confirming the finding by Lee et al. [6] that the intronic reads

contain relevant biological signal. Hereby further substantiating

the invalidity of the assumption that intronic reads result from

experimental noise. Since we are only comparing fifteen accuracy
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scores (3 fits times 5 folds) per model per label, and considering

the random initialization, with these high variability between the

folds we cannot with confidence conclude that one outperforms the

other. Dementia and NIA-Reagan both have a higher validation

performance using exonic reads, but for test performance, the

intronic reads perform better. For sex intronic reads seem to

perform slightly worse than exonic reads. For structure, both are

very similar. Testing for significance confirms that none of the

intronic and total count models are significantly different from the

exonic models for all labels (Supplemental Table 4).

Ratio Performance Holds Up To Exon, Intron and Total Counts

Model Performance

Considering that we select very different genes for the ratios

compared to DGE analysis of exonic, intronic and total counts, it is

interesting to see if the signal for the prediction task is also present

in the ratios. The performance of the logistic regression models

using the ratios is plotted in Figure 10 (LR-ratio). For NIA-Reagan

and structure we see a clear drop in validation performance, which

is not the case for the validation performance of dementia and

sex. The test performance is substantially impaired for NIA-

Reagan and structure, less so for dementia and not at all for sex.

Testing for significance confirms that NIA-Reagan and structure

are significantly worse than the exonic read count performance

(Supplemental Table 4). However, sex and dementia are not

significantly different. Despite totally different genes being used

to make the prediction we still observe that the model is able to

learn. However, our suggestion that the ratios might suffer less

from outliers and that they are normalization-independent does

not translate to improved performance.

Concatenting Count Sets Does Not Improve Performance

We established that model performance is comparable between

the exonic, intron, and total read counts and somewhat to the

ratios. However, we also observed different genes are being selected

from the DGE analysis. The models could be learning different

decision boundaries, hereby classifying different samples as correct

or wrong. We do observe differences in correctly predicted samples

(Supplemental Figure 8, 9). Although subtle, this difference

could potentially be exploited to increase the performance above

an individual model’s performance. The most straightforward

approach to potentially exploit different information contained

within the different datasets is to simply concatenate the features,

in our case transformed gene counts. The results from our

concatenation models are depicted in Figure 10 (concat-EI, concat-

EIR, concat-EIRT). We observe that for NIA-Reagan we improve

the average validation performance to around 0.9. However, this

increase does not translate to improved test performance. We

do see a substantial reduction in the test variance of concat-

EIRT. The validation performance for dementia is very similar

to the exonic count performance. The test score has slightly

deteriorated for all concatenation models. For structure we

observe a deterioration in the test performance and sex is very

similar to previously obtained scores, for both validation and test

performance. None of the models are able to realize an average

accuracy increase over the best base model, and none of the results

are significantly different from the base models (Supplemental

Table 5, 6, 7 and 8). Considering all these observations we

conclude that, for our dataset, there is no clear improvement

on the performance made by concatenating the counts or ratios

in this way. We inspect the feature importances to assess the

contribution of the different input sets in the concatenation models

(Supplemental Figure 10). We observe that overall the models do

not disregard any of the sets by fully focusing on one, instead we

generally see the feature importance are relatively evenly divided

over the different input sets. Except when predicting structure.

The ratios seem to be much more important both in LR-EIR and

LR-EIRT. This observation is surprising as we saw that only ratio

as input performs significantly worse. It is in agreement with the

observation that concat-EIR and concat-EIRT both have reduced

test performance.

Custom Linear Models Do Not Resolve Overfitting

We observe that no features are disregarded in the concatenation

models (Supplemental Table 10). In the absence of an

improvement, the models could suffer from the increased feature

space. To this end, we try our custom linear models. Much

like the concatenation we generally observe an increase in the

validation performance for NIA-Reagan and Dementia but the

test performance does not seem to improve over previous models

(Figure 10). We observe the more features we add the more the

performance is deteriorated (i.e. LR-EIRT is worse than LR-EIR

etc.). We also observe this dropped performance in the test set

for structure. Sex does see a slight test improvement for A-EIRT

but this is not significant (Supplemental Table 5). Again, none

of the results are significantly different from the base models

(Supplemental Table 5, 6, 7 and 8).

Non-linear Architecture Does Not Provide A Benefit

The addition of a non-linear activation function enables the model

to learn non-linear relationships in the data. Across all labels,

except sex we observe that applying activation functions to model

A causes a drop in validation performance compared to the

model without activation function. We do not observe a clear

improvement in either stability or predictive performance in the

test set across all models and all labels. However, the average

accuracy for dementia does increase from 64.8% for LR-intron to

65.4% for act-B-EI, however, this is not significant (Supplemental

Table 7). Considering the variation between the folds this increase

is arguably negligible. Moreover, this model is not the best

performing on the validation set. In a practical setting, this model

would therefore not have been selected as the final model.

Reducing Multicollinearity by PCA transformation Does Not

Provide Performance Improvement

When we inspect the per-gene exonic-intronic correlation of

the selected genes we generally observe a high correlation

(Supplemental Figure 11). The drop in performance observed

in our custom models could be due to the increased correlation

between the input features. Using uncorrelated principal

components reduces multi-collinearity. However, by transforming

our validation and test set with the principal components

calculated from the training set we assume that taking the

linear combination in this way also captures the variation of

the validation and test set. This poses a potential drawback

for data with high heterogeneity. We trained logistic regression

models with the exonic and intronic data combinedly transformed

(pca-EI), exonic intronic and ratios combinedly transformed (pca-

EIR) and exonic, intronic ratios and total counts combinedly

transformed (pca-EIRT) (Figure 10). The performance for sex
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Figure 11: Predictive performance of our base models and their ensembles. The first column depicts validation data. The second column

depicts test data. The rows correspond to the prediction labels. The largest class of a label is indicated by the grey line, which indicates

a guessing performance. The models are ordered from left to right based on their mean accuracy.

remains excellent. For structure we see a substantial decline in

both validation and test performance, which can be attributed

to the aforementioned drawback. The effect for dementia mainly

seems to be an increase in variation. The validation performance

for NIA-Reagan increases further with pca-EIR above the previous

best, but again no apparent test performance increase. None of the

models is significantly better than the base models (Supplemental

Table 5, 6, 7 and 8). As the training accuracy is very good to

excellent for all labels (Supplemental Figure 12)), we conclude

that the heterogeneity in the data causes the PCA transformation

to have an adverse effect on the model performance.

Model Ensembles Fail to Improve Performance and Robustness

Our ensemble approaches only yielded an increase in validation

performance for NIA-Reagan (Figure 11). Nevertheless, this did

not result in an increased test performance. For the other labels, it

is the other way around. They all have a base model with the best

validation performance but do have an ensemble approach as the

best test performance, albeit very marginal. We also don’t observe

a clear improvement in stability. Hence, we conclude that these

ensemble approaches are not beneficial. This further indicates that

the information, relevant to the prediction task, contained within

the different datasets is largely the same.

Limitations & Further Research

Our ability to benefit from including intronic read counts is

constrained by our initial step of feature selection by our

DGE analysis. This constrains us in two ways. Limma-Voom

considers genes in a univariate fashion hereby not considering

gene interactions or genes that are only differentially expressed

in a combination with another gene. Furthermore, in subsequent

steps, we are limited to the information contained within the

selected genes. We limit ourselves to the top thousand most

differentially expressed genes. Although, this is a viable approach

when performance is the goal. It could be that the first thousand

differentially expressed genes within exonic and intronic reads

contain the same signal and that the differences only occur in

less differentially expressed genes. We suggest further research

to explore other ways of feature selection, or if time and

computational resources allow it, take all genes into consideration.

Another constraint of our approach is that we limit ourselves

to the use of relatively simple models. We employed logistic

regression and other simple model architectures. Recent work

has shown the successful application of complex deep learning

architectures, such as graph networks, convolution neural networks

and autoencoders to RNA-seq data [42, 43]. Our results did not

directly warrant the implementation of these complex networks

as we saw that increasing the number of learnable parameters
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did not result in improved performance. However, it may be

that these models are better able to extract differences between

exonic and intronic reads. More complex models might be

better in modelling the complex relationships between exonic

and intronic counts or more advanced regularization techniques

used in these architectures might be better equipped to handle

the high dimensionality. Furthermore, graph convultion networks

for example can incorporate additional gene-gene interaction

information, which may also relate to the exonic-intronic

difference. These model architectures are already being used for

RNA-seq-based prediction tasks. Given the ease of obtaining the

intronic read counts when one is obtaining the exonic read counts,

we would advise trying the combination of exonic and intronic

reads as input for these complex deep learning networks.

Additionally, we suggest exploring different datasets related

to other diseases or originating from other tissue types. Our

findings are exclusive to our dataset’s brain regions, as highlighted

before we have a relatively large percentage of intronic to total

reads. Apparently to such an extent that the information relevant

for the prediction task is largely the same in the exonic and

intronic reads. However, this might be different for other tissue

types. Existing literature supports the possibility that aberrations

may only manifest in intronic read counts. Now that we have

confidently established that intronic reads do contain biologically

relevant signal, it is worth exploring the vast number of existing

RNA-seq datasets.

Shortcommings of Related Work

We were not able to get a good predictive performance for

the dichotomized NIA-Reagan label. Nonetheless, good to even

excellent predictive performance is obtained in the literature for

predicting AD from gene expression data [32, 44, 31]. We note that

some of these studies perform one or more steps of their workflow

in such a way that information leakage is present. Dag et al. [44]

(92.9% accuracy) performs trimmed mean of M values (TMM)

normalisation on the entire dataset at once. This normalization

technique uses information from all the samples to scale individual

samples. In this way, the test set is too optimistically normalized.

Another questionable approach is to perform DGE analysis on the

training and validation set combined. Alamro et al. [32] does this

and obtains a near-perfect validation score (0.979 AUC). However,

testing it on an independent test set (0.75 AUC) reveals a large

discrepancy. Mahendran et al. [31] even perform DGE analysis

on the entire dataset at one, achieving a test score of 96.78%

accuracy. Considering that we already observed severe overfitting

with our intersection approach, their model will probably perform

substantially worse on a fully independent test set.

Conclusion

In this work, we found that intronic reads do contain strong

biological signal for RNA-seq-based prediction tasks. For all

our labels intronic and total read counts performed similarly

with respect to the traditional approach of using exonic read

counts. The count ratios, however, did perform significantly

worse for NIA-Reagan and structure. Our DGE analysis identified

overlapping and uniquely expressed genes for every count set. We

investigated a number of ways to extract additional information

from these different genes to realize a predictive performance

gain above the base models. Despite these different genes, we

were not able to realize a statistically significant improvement.

Furthermore, we made three observations by analyzing our results.

First, the PCA plots of exonic and intronic read counts showed

a very high degree of similarity. Second, we observed high

correlations between the exonic and intronic read counts of our

DGE selected genes. Lastly, we saw that when combining the

intronic and exonic counts in our concatenation models, the

relative feature importances of both sets are approximately the

same. From these observations, we conclude that the relevant

biological signal in the different count sets is largely the same

and that for our dataset there is no trivial way to leverage the

inclusion of intronic read counts to obtain an increase in predictive

performance.
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Supplementary Materials

Supplemental Tables

Label Set Method Fold 0 Fold 1 Fold 2 Fold 3 Fold 4 STD CV

Sex exon top 1000 intersection 193 241 141 151 184 39.52 0.22

p <0.05 829 987 457 434 471 255.21 0.40

padj <0.05 80 89 40 42 41 24.05 0.41

intron top 1000 intersection 216 216 191 181 199 15.44 0.08

p <0.05 1314 1103 736 527 782 313.16 0.35

padj <0.05 121 94 67 49 58 29.44 0.38

total top 1000 intersection 225 226 178 154 197 30.94 0.16

p <0.05 1132 1099 593 478 627 306.22 0.39

padj <0.05 122 104 56 49 61 32.50 0.41

structure exon top 1000 intersection 748 748 735 771 743 13.40 0.02

p <0.05 11265 12560 11479 11495 11851 509.41 0.04

padj <0.05 10817 12260 10999 11002 11471 583.75 0.05

intron top 1000 intersection 714 708 712 709 697 6.60 0.01

p <0.05 11522 12600 12082 11550 11982 442.75 0.04

padj <0.05 11127 12305 11698 11152 11627 482.22 0.04

total top 1000 intersection 769 745 728 756 727 18.10 0.02

p <0.05 12110 13317 12413 12373 12729 462.78 0.04

padj <0.05 11759 13073 12064 12026 12445 509.53 0.04

Dementia exon top 1000 intersection 215 236 238 268 421 83.45 0.30

p <0.05 3818 3899 4164 4357 5187 547.84 0.13

padj <0.05 2190 2449 2593 2728 3927 672.85 0.24

intron top 1000 intersection 268 245 277 306 428 72.25 0.24

p <0.05 3400 3873 3925 3736 4610 442.14 0.11

padj <0.05 1718 2349 2526 2188 3226 550.18 0.23

total top 1000 intersection 234 230 248 270 411 75.65 0.27

p <0.05 3959 4331 4505 4471 5313 495.44 0.11

padj <0.05 2356 2880 3015 2947 4104 638.89 0.21

NIA-Regan exon top 1000 intersection 118 106 118 99 62 23.06 0.23

p <0.05 213 544 317 740 131 249.97 0.64

padj <0.05 1 8 0 30 0 12.85 1.65

intron top 1000 intersection 97 126 78 130 98 21.82 0.21

p <0.05 158 470 211 805 205 272.34 0.74

padj <0.05 1 3 0 37 1 16.02 1.91

total top 1000 intersection 118 108 104 106 83 12.81 0.12

p <0.05 186 565 295 869 158 300.63 0.73

padj <0.05 0 4 0 39 1 16.96 1.93

Supplemental Table 1. Table of differentially expressed genes identified by DGE analysis, along with the standard deviation (STD) and the coefficient of

variation (CV), which is the standard deviation divided by the mean. For each test fold, genes are selected by taking the intersection of genes identified

from the corresponding cross-validation folds.
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Hyperparameter Minimal value Maximal value

Learning rate 1e-7 1e-2

Batch size 15 128

Weight decay 1e-5 1e2

Supplemental Table 2. Table of hyperparameters searched and their search range.

Package Version

pandas 1.5.2

numpy 1.24.3

pytorch 1.13.1

sklearn 1.2.0

scipy 1.9.3

optuna 3.1.1

Python 3.11.0rc1

R 4.1.2

index 1.0

edgeR 3.36.0

GenomicFeatures 1.46.5

eisaR 1.6.0

QuasR 1.34.0

Supplemental Table 3. Table listing software packages and their versions.

Label Model Mean Accuracy P-value

sex LR-exon 0.9963 1.0000

sex LR-intron 0.9863 0.1150

sex LR-total 0.9945 0.9339

sex LR-ratio 0.9963 1.0000

structure acronym LR-exon 0.8211 1.0000

structure acronym LR-intron 0.8211 0.6783

structure acronym LR-total 0.8307 0.5897

structure acronym LR-ratio 0.7668 0.0161

act demented LR-exon 0.6392 1.0000

act demented LR-intron 0.6480 0.4807

act demented LR-total 0.6468 0.6482

act demented LR-ratio 0.6048 0.1198

nia grouped LR-exon 0.6109 1.0000

nia grouped LR-intron 0.6452 0.0971

nia grouped LR-total 0.5921 0.6482

nia grouped LR-ratio 0.5284 0.0362

Supplemental Table 4. Table with accuracies and significance tests per model. We test if the obtained test accuracies for our models using intronic

read counts, total read counts and the count ratios are significantly different compared to the traditional approach of using exonic read counts for

RNA-seq-based prediction tasks. Significance is tested by the Wilcoxon ranked-sum test.
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Label Model Base Model p-value statistic mean accuracy delta mean std delta std

Sex A-EIRT LR-exon 0.7557 0.3111 0.9973 0.0009 0.0055 -0.0006

Sex LR-ratio LR-exon 1.0000 0.0000 0.9963 0.0000 0.0061 0.0000

Sex concat-EIR LR-exon 1.0000 0.0000 0.9963 0.0000 0.0061 0.0000

Sex concat-EI LR-exon 0.9339 -0.0830 0.9953 -0.0011 0.0086 0.0026

Sex concat-EIRT LR-exon 0.6936 -0.3940 0.9936 -0.0027 0.0110 0.0050

Sex pca-EIR LR-exon 0.6334 -0.4770 0.9918 -0.0046 0.0140 0.0079

Sex pca-EIRT LR-exon 0.6334 -0.4770 0.9918 -0.0046 0.0140 0.0079

Sex B-EI LR-exon 0.2717 -1.0992 0.9909 -0.0055 0.0119 0.0058

Sex pca-EI LR-exon 0.3837 -0.8710 0.9908 -0.0055 0.0139 0.0078

Sex A-EI LR-exon 0.6936 -0.3940 0.9890 -0.0073 0.0270 0.0210

Sex A-EIR LR-exon 0.6334 -0.4770 0.9881 -0.0082 0.0228 0.0168

Sex act-B-EI LR-exon 0.0225 -2.2813 0.9871 -0.0093 0.0107 0.0047

Sex act-A-EIRT LR-exon 0.0815 -1.7421 0.9834 -0.0130 0.0199 0.0138

Sex act-A-EIR LR-exon 0.0401 -2.0532 0.9388 -0.0576 0.1642 0.1582

Sex act-A-EI LR-exon 0.3837 -0.8710 0.9132 -0.0831 0.2089 0.2029

Supplemental Table 5. Significance testing for label Sex. The base model is the best-performing logistic regression model with a single data input set. We

test if the obtained test accuracies for each model are significantly different than the base model. The p-value is calculated using a Wilcoxon rank-sum

test, if the null hypothesis is rejected (p<0.05) then the samples are significantly different. Delta mean is the difference between the mean accuracy of

the model and the mean accuracy of the best base model.

Label Model Base Model p-value statistic mean accuracy delta mean std delta std

Structure concat-EI LR-total 0.9010 -0.1244 0.8292 -0.0015 0.0432 0.0015

Structure A-EI LR-total 0.6482 -0.4563 0.8220 -0.0086 0.0437 0.0020

Structure B-EI LR-total 0.2998 -1.0370 0.8153 -0.0154 0.0389 -0.0028

Structure pca-EI LR-total 0.3507 -0.9333 0.8104 -0.0202 0.0558 0.0141

Structure A-EIR LR-total 0.1585 -1.4103 0.8089 -0.0218 0.0430 0.0013

Structure pca-EIRT LR-total 0.1198 -1.5554 0.8067 -0.0240 0.0428 0.0011

Structure concat-EIR LR-total 0.1300 -1.5139 0.8060 -0.0247 0.0517 0.0101

Structure A-EIRT LR-total 0.0620 -1.8665 0.8051 -0.0256 0.0348 -0.0068

Structure concat-EIRT LR-total 0.1198 -1.5554 0.8033 -0.0274 0.0486 0.0069

Structure act-A-EI LR-total 0.0649 -1.8458 0.8023 -0.0284 0.0440 0.0024

Structure pca-EIR LR-total 0.0649 -1.8458 0.7966 -0.0340 0.0485 0.0069

Structure act-A-EIRT LR-total 0.0079 -2.6546 0.7752 -0.0554 0.0612 0.0195

Structure act-B-EI LR-total 0.0070 -2.6961 0.7736 -0.0571 0.0542 0.0126

Structure act-A-EIR LR-total 0.0051 -2.7998 0.7732 -0.0575 0.0559 0.0143

Structure LR-ratio LR-total 0.0070 -2.6961 0.7668 -0.0639 0.0643 0.0226

Supplemental Table 6. Significance testing for label Structure. The base model is the best-performing logistic regression model with a single data input

set. We test if the obtained test accuracies for each model are significantly different than the base model. The p-value is calculated using a Wilcoxon

rank-sum test, if the null hypothesis is rejected (p<0.05) then the samples are significantly different. Delta mean is the difference between the mean

accuracy of the model and the mean accuracy of the best base model.
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Label Model Base Model p-value statistic mean accuracy delta mean std delta std

Dementia act-B-EI LR-intron 0.5476 0.6014 0.6543 0.0063 0.0408 -0.0007

Dementia B-EI LR-intron 0.4679 -0.7259 0.6410 -0.0070 0.0381 -0.0033

Dementia A-EI LR-intron 0.6187 -0.4977 0.6353 -0.0127 0.0525 0.0110

Dementia concat-EI LR-intron 0.5476 -0.6014 0.6335 -0.0145 0.0476 0.0061

Dementia act-A-EI LR-intron 0.7716 -0.2903 0.6325 -0.0155 0.0805 0.0390

Dementia pca-EIR LR-intron 0.3401 -0.9540 0.6309 -0.0171 0.0595 0.0180

Dementia pca-EIRT LR-intron 0.3615 -0.9125 0.6267 -0.0213 0.0625 0.0210

Dementia pca-EI LR-intron 0.2372 -1.1821 0.6235 -0.0245 0.0487 0.0072

Dementia act-A-EIRT LR-intron 0.3195 -0.9955 0.6186 -0.0294 0.0645 0.0231

Dementia concat-EIR LR-intron 0.0890 -1.7006 0.6172 -0.0308 0.0617 0.0202

Dementia concat-EIRT LR-intron 0.1300 -1.5139 0.6155 -0.0325 0.0665 0.0250

Dementia A-EIRT LR-intron 0.1914 -1.3066 0.6155 -0.0325 0.0613 0.0199

Dementia A-EIR LR-intron 0.0712 -1.8043 0.6088 -0.0392 0.0677 0.0263

Dementia act-A-EIR LR-intron 0.0971 -1.6591 0.6080 -0.0400 0.0811 0.0397

Dementia LR-ratio LR-intron 0.0362 -2.0946 0.6048 -0.0431 0.0524 0.0109

Supplemental Table 7. Significance testing for label Dementia. The base model is the best-performing logistic regression model with a single data input

set. We test if the obtained test accuracies for each model are significantly different than the base model. The p-value is calculated using a Wilcoxon

rank-sum test, if the null hypothesis is rejected (p<0.05) then the samples are significantly different. Delta mean is the difference between the mean

accuracy of the model and the mean accuracy of the best base model.

Label Model Base Model p-value statistic mean accuracy delta mean std delta std

NIA-Reagan A-EI LR-intron 0.3725 -0.8918 0.6298 -0.0154 0.0633 0.0176

NIA-Reagan concat-EI LR-intron 0.1466 -1.4517 0.6223 -0.0229 0.0609 0.0152

NIA-Reagan pca-EI LR-intron 0.1354 -1.4932 0.6154 -0.0298 0.0482 0.0024

NIA-Reagan act-B-EI LR-intron 0.3401 -0.9540 0.6153 -0.0299 0.0802 0.0344

NIA-Reagan concat-EIR LR-intron 0.1711 -1.3688 0.6093 -0.0359 0.0766 0.0308

NIA-Reagan B-EI LR-intron 0.0745 -1.7836 0.6076 -0.0376 0.0579 0.0121

NIA-Reagan A-EIRT LR-intron 0.1013 -1.6384 0.6069 -0.0384 0.0761 0.0304

NIA-Reagan concat-EIRT LR-intron 0.1249 -1.5347 0.6039 -0.0413 0.0745 0.0288

NIA-Reagan A-EIR LR-intron 0.1466 -1.4517 0.6012 -0.0440 0.0754 0.0296

NIA-Reagan pca-EIR LR-intron 0.0465 -1.9909 0.5996 -0.0456 0.0724 0.0266

NIA-Reagan act-A-EIRT LR-intron 0.0712 -1.8043 0.5916 -0.0536 0.0755 0.0297

NIA-Reagan act-A-EI LR-intron 0.0037 -2.9035 0.5821 -0.0631 0.0496 0.0038

NIA-Reagan pca-EIRT LR-intron 0.0213 -2.3020 0.5802 -0.0650 0.0762 0.0305

NIA-Reagan act-A-EIR LR-intron 0.0017 -3.1316 0.5797 -0.0655 0.0539 0.0081

NIA-Reagan LR-ratio LR-intron 0.0007 -3.3805 0.5284 -0.1168 0.0928 0.0470

Supplemental Table 8. Significance testing for label NIA-Reagan. The base model is the best-performing logistic regression model with a single data input

set. We test if the obtained test accuracies for each model are significantly different than the base model. The p-value is calculated using a Wilcoxon

rank-sum test, if the null hypothesis is rejected (p<0.05) then the samples are significantly different. Delta mean is the difference between the mean

accuracy of the model and the mean accuracy of the best base model.
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Supplemental Figures

Supplemental Figure 1: PCA pairs plot of the first 10 principal components of the transformed exonic read counts. The samples are

coloured by brain region; Hippocampus (HIP), frontal white matter (FWM), parietal cortex (PCx) and temporal cortex (TCx). The row

and column indices represent the specific principal components being plotted against each other. The labels include the percentage of

explained variability of that principal component.
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Supplemental Figure 2: PCA pairs plot of the first 10 principal components of the transformed intronic read counts. The samples are

coloured by brain region; Hippocampus (HIP), frontal white matter (FWM), parietal cortex (PCx) and temporal cortex (TCx). The row

and column indices represent the specific principal components being plotted against each other. The labels include the percentage of

explained variability of that principal component.
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Supplemental Figure 3: PCA pairs plot of the first 10 principal components of the transformed total read counts. The samples are

coloured by brain region; Hippocampus (HIP), frontal white matter (FWM), parietal cortex (PCx) and temporal cortex (TCx). The row

and column indices represent the specific principal components being plotted against each other. The labels include the percentage of

explained variability of that principal component.
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Supplemental Figure 4: Grid of Venn diagrams of the overlap in genes identified by performing differential gene expression (DGE) analysis

for exonic, intronic, and total read counts, and the count ratios. The Venn diagram illustrates the overlap between the different count

sets. Genes are selected by taking the 1000 most differentially expressed genes per cross-validation fold and subsequently taking the

intersection of the cross-validation folds (Section Differential Gene Expression Analysis Gene Selection). The p-values are corrected for

multiple testing using the False Discovery Rate (FDR) procedure. The rows of this grid indicate the different labels, and the columns

are the different test folds. Note that the area of the overlap is not relative to the number inside it.

Supplemental Figure 5: Venn diagrams of the overlap of the genes in the different count sets, obtained by taking the intersection (int.)

over the test folds. The number of genes for each count set has a corresponding ellipse in Supplemental Figure 7.
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Supplemental Figure 6: Grid of bar charts of the number of genes selected by DGE analysis per label, test fold and data set. The grid

rows indicate the prediction labels and the grid columns indicate the data sets. Genes are selected by taking the 1000 most differentially

expressed genes per cross-validation fold and subsequently taking the intersection of the cross-validation folds (Section Differential Gene

Expression Analysis Gene Selection). The p-values are corrected for multiple testing using the False Discovery Rate (FDR) procedure.
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Supplemental Figure 7: Grid of Venn diagrams of the overlap in genes identified by performing differential gene expression (DGE) analysis

for exonic, intronic, and total read counts, and the count ratios. The Venn diagram illustrates the overlap in genes between the different

test folds. Genes are selected by taking the 1000 most differentially expressed genes per cross-validation fold and subsequently taking

the intersection of the cross-validation folds (Section Differential Gene Expression Analysis Gene Selection). The p-values are corrected

for multiple testing using the False Discovery Rate (FDR) procedure. The rows of this grid indicate the different labels and the columns

indicate the different count sets. Note that the area of the overlap is not relative to the number inside it.



27

Supplemental Figure 8: Grid of Heatmaps illustrating correctly predicted samples. The rows of the heatmap grid correspond to the test

folds. The columns of the heatmap grid correspond to the prediction label. Each model is fitted three times using the three validation

folds. Three correct predictions is indicated by the darkest green colour, the slightly less green is twice correct and the fadest green is

once correct. Three wrong predictions is portrayed in white.
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Supplemental Figure 9: Grid of Heatmaps illustrating correctly predicted samples. This figure contains the same data as Supplemental

Figure 8, but in this figure, every total agreement between the models is made white. This visualizes where the models are in disagreement.
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Supplemental Figure 10: Bar charts of relative feature importance of the feature concatenation logistic regression models. The rows depict

the different models, exonic and intronic counts concatenation (LR-EI), exonic and intronic counts and the count ratios concatenation

(LR-EIR) and exonic, intronic, and total counts and the count ratios concatenation (LR-EIRT). The left column of the charts is the

relative feature importance, split per data set. More elaborately, the weights are obtained by taking the sum of the absolute normalized

weights. Subsequently, the weights are split in accordance with their originating count sets. The right column is the same approach but

shows the number of genes instead of the weight values. Thus, the relative feature importance in the left column originates from the

number of genes in the right column. The height of the bar is the mean over the test folds and the error bars show the standard deviation.
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Supplemental Figure 11: Histogram of Pearson correlation coefficients of the correlations between each gene’s exonic and intronic read

counts. The correlation coefficients in this plot are from genes found for both exonic and intronic reads during the DGE analysis.

Corresponding to the intersection of the Venn diagram of the exon and intron ellipses in Supplemental Figure 4. The correlation

coefficients of the different folds are aggregated into a single histogram.
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Supplemental Figure 12: Boxplot of train accuracies per prediction label. Train accuracies of the models in Figure 10.
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