
Dealing with conflicting trains
Effectively avoiding and resolving conflicts during shunting

Mees Gribnau1

Supervisor(s): Sebastijan Dumancic1, Issa Hanou1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Mees Gribnau
Final project course: CSE3000 Research Project
Thesis committee: Sebastijan Dumancic, Issa Hanou, Rihan Hai

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
A shunting yard is used to store trains between ar-
rival and departure. A conflict arises in a shunting
yard when one train obstructs another from leav-
ing. Resolving a conflict is done by re-allocating
the trains obstructing the departing train to other
tracks in the shunting yard. However, these re-
allocations complicate the problem at hand and in-
cur high costs for train operators. Therefore, it is
desirable to avoid conflicts whenever possible. The
aim of this paper is to find an effective manner to
deal with conflicts in a train shunting yard in an
existing planner system. We propose the split into
a portfolio planner, which first tries to find a so-
lution without any re-allocations, and if that does
not yield a solution will look for a solution with
re-allocations. For both planners, a model is de-
fined. Furthermore, the paper explores techniques
to increase the speed of the first planner, namely
heuristic search, a set partitioning approach, and
constraint programming. An implementation of the
latter approach has exhibited excellent performance
across problems of all sizes.

1 Introduction
In 2019 the Dutch rail network facilitated more than 1.3 mil-
lion journeys a day. An overwhelming majority of those jour-
neys happen during the day, resulting in a big difference be-
tween the number of trains active during the day and during
the night. This excess of trains is stored in shunting yards at
train stations. To ease the strain on the train station workers,
plans detailing where and how to park the trains are created
in advance. As the size of the shunting yard and the number
of trains requiring shunting increases, the manual formulation
of such plans becomes progressively more challenging. Con-
sequently, the development of algorithmic planners becomes
necessary.

Space, time, maintenance, cleaning, and routing con-
straints all have to be considered during the planning stage.
One of those constraints concerns the order in which the
trains can be parked over the different shunting tracks. A
conflict occurs when one train obstructs another from leav-
ing. One of the main concerns during the creation of a shunt-
ing plan is the avoidance of conflicts, as they can be hard
to resolve, costly for train operators, and can result in de-
lays. A conflict can often be resolved by re-allocating previ-
ously parked trains to a second parking spot, however, this is
a costly endeavor and should be avoided if possible.

There are two main types of shunting yards, namely shuf-
fleboards and carousals. This paper only considers shuf-
fleboards which consist of a multitude of Last-In-First-Out
(LIFO) tracks, which operate similarly to a stack; the trains
enter and exit on the same side of the track, and the other side
is a dead end. These tracks are connected to each other in a
tree-like structure.

The objective of this paper is to answer the following re-
search question: How can conflicts effectively be avoided and

resolved during the creation of a train shunting plan?. The
following sub-questions will be answered to accomplish this:

• How can conflicts be detected?
• How can a plan with minimal conflicts effectively be

found?
• How can conflicts be resolved effectively?
Multiple approaches are taken within this research, includ-

ing a heuristic, set partitioning, and constraint programming.
The structure of the paper is as follows. Chapter 2 con-

ducts a literature review focusing on related work in the field.
Chapter 3 provides a description of the specific problem ad-
dressed in this paper. The contributions of this paper are out-
lined in chapters 4 and 5, while chapter 6 presents the eval-
uation of the obtained results. For a more in-depth under-
standing of replicating the findings, chapter 7 offers a detailed
explanation. Chapter 8 provides a discussion, and finally, in
Chapter 9, the conclusion and avenues for future research are
presented.

2 Related work
For this paper, there are two areas of research of importance,
research into planning and research into this specific problem.

2.1 Planning
Planning Domain Definition Language (PDDL) introduced
by Ghallab et al. (1998) is a language that can be used to
define planning problems. A complete planning problem in
PDDL consists of two parts: a domain file and a problem file.
In the domain file, the type of problem is defined, whereas
the problem file is used to define the specifics of the problem
instance. The most important parts of a PDDL domain are ob-
ject types, predicates, and actions. A predicate is a Boolean
value and applies to a set of objects given as an argument,
for example, the predicate hasParked in the example below
keeps track of which trains have been parked. An action can
only be performed if its precondition evaluates to true, and it
effects are expressed by changing the value of predicates. In
the problem file the object instances, the initial state, and goal
conditions are defined.

1 ...
2 (:types
3 train
4 )
5 (:predicates
6 (hasParked ?t - train)
7 )
8 (:action park-train
9 :parameters (?train - train ...)

10 :precondition (and (not (hasParked ?train
))

11 :effect (and (hasBeenParked ?train))
12 )

Listing 1: Example PDDL domain

PDDL was created to standardize planning problem def-
initions in the International Planning Competition (IPC), a
competition whose goal is to promote planning research. In
the competition a multitude of planners compete to find so-
lutions, consisting of a set of actions with their arguments,



to a collection of problems as quickly as possible. For this
research, one of the participants in the satisfying track of
the classical part of the IPC2018 will be extended. Planners
which entered into the satisfying track of the classical part of
the IPC2018 include Saarland, Freelunch-Madagascar, Seri-
alized Iterative Width, and BFS(f).

Saarland uses Star-Topology Decoupled State Space
Search as described in Gnad and Hoffmann (2018). To com-
bat the explosive nature of search spaces in planning prob-
lems it tries to split the domain into conditionally independent
components.

Freelunch-Madagascar translates the problem to a Boolean
satisfiability problem (SAT) and then uses an existing SAT
solver to solve the problem.

Serialized Iterative Width, or SIW, is an algorithm that uses
blind search. Its efficiency depends on heavy pruning which
is done through a novelty test; if a newly generated state has
gone too many actions without making a new combination of
atoms true, it is pruned. In PDDL an atom translates to a sin-
gle predicate in the goal definition. SIW might have trouble
with domains that include dead-ends and larger size problems
where it takes a higher quantity of actions before the value of
atoms is changed, as it might prune too early and it has next
to the novelty test no other means of distinguishing states.

BFS(f) is a best-first planner which uses lazy evaluation
and multiple heuristics to decide which node to expand upon.
The most important heuristic score nodes similar to the nov-
elty test above. In the case of ties, a helpful action heuristic
is used, which on beforehand analyses the problem to gener-
ate landmarks that every solution has to pass through to reach
the goal state. Then to evaluate a state it counts the num-
ber of landmarks it has reached. If the nodes are still tied a
third heuristic is employed, which either estimates the cost of
achieving the most expensive atom or the combined cost of
achieving every unachieved atom independently, depending
on the configuration of the planner.

2.2 Train Unit Shunting Problem
Freling et al. (2005) introduced the Train Unit Shunting Prob-
lem (TUSP), with a given set of arriving train and departing
trains, composed of a time and a train unit, where each train
unit has a type and sub-type. The arriving trains have to be
mapped to the departing trains such that the sub-types match.
Because of the large size of the domain, they propose a two-
step solution, where first each arriving shunt unit is matched
to a departing shunt unit and then each train unit is assigned
to a shunt track, the latter problem being referred to as the
Track Assignment Problem (TAP). It is formulated as a Set
Partition Problem. Every track is assigned a set of blocks,
consisting of multiple train units. It is assumed that before the
first departure all the arrivals take place and all the trains have
to be parked. Assignments that result in a conflict are con-
sidered unfeasible, thus it does not allow for re-allocations.
In this study, there is also a constraint where trains can only
be moved to specific tracks suitable for their sub-type. Sub-
sequent research often disregards this limitation. The Train
Assignment Problem (TAP) bears a resemblance to the initial
problem we are about to present. However, because the costs
associated with parking a train on a track are taken into ac-

count, it transforms into a cost minimization problem, where
our objective is to seek any conflict-free solution.

Gilg et al. (2018) introduces the Train Assignment Problem
without this limitation and provides an integer programming
approach to solve it. LIFO, FIFO, and FREE tracks are all
included.

Stefano and Koči (2004) provide a graph theoretical ap-
proach for a similar problem without any length constraints.
An online algorithm is provided that assigns a sequence of
incoming trains to the minimum number of FIFO tracks in
polynomial time. Although the fact that there are no length
constraints, which will be part of our problem, completely
transforms the nature of the problem, but some insights in
this paper can still be used in our research to create feasibility
checks.

Cornelsen and Stefano (2007) contribute a polynomial col-
oring algorithm for FREE tracks in instances of the problem
with a timetable for departures and arrivals, both with and
without re-allocation.

In the work of van den Akker et al. (2008) re-allocations
are being considered in a version of the problem where de-
partures can happen before the last arrival. A greedy al-
gorithm and a dynamic programming solution are proposed.
The greedy algorithm assigns trains to tracks in a round-robin
manner, or according to a form of priority. The dynamic pro-
gramming solution considers all the possible actions in all
possible states. As the search space can be very large a few
suggestions are given to exclude nodes from the search, such
as removing symmetries and upper bounding the solution.

Wolfhagen (2017) introduces the Train Unit Shunting
Problem with Re-allocation (TUSP-R) and formulates it as
a Mixed Integer Programming Problem (MIP).

3 Problem Description
This study aims to investigate how to adapt an existing PDDL
domain and planner to effectively avoid and resolve conflicts.
Re-allocations are expensive for train station operators and
heighten challenges in seeking a solution, as they let the size
of search space explode. For this reason, we propose the use
of a portfolio planner, where the first planner tries to find a
solution to the problem without re-allocations and the sec-
ond planner tries to find a solution to the problem with re-
allocations. The first planner should find a solution quickly
if one exists because it has a relatively small search space. If
no solution can be found the second planner can be run for a
longer time period.

Both problems involve moving the trains from arrival to a
shunting track to departure; in a valid solution, every train
must have been parked before they depart. The problems also
have properties similar to the TAP as described in Freling et
al. (2005). Arriving trains have been matched to departing
trains already, so the problem input contains a set of trains
for which the arrival and departure order is known. We will
refer to the position of a train in the arrival order as its arrival
time. Furthermore, we adhere to the midnight constraint as
introduced by Winter and Zimmermann (2000), which states
that the first departure happens after the last arrival. In this
paper we do not make a distinction between trains and train



Figure 1: Example problem instance with three tracks.

units; every train has exactly one train unit. The shunting
yard consists of track-parts, each of them fitting exactly one
train. A shunting track, or track, consists of a number of con-
nected track parts. Trains can be parked on tracks, but not
on any other track-parts in the yard. A conflict or crossing
refers to the scenario in which two trains are both stationed
on the same track, where the train scheduled for an earlier de-
parture cannot proceed unless the other train departs first. In
a shuffleboard yard, a conflict arises when any two trains are
parked on the same track, where the train which is parked on
the track earlier is also the with a lower departure time. In our
problem instances, it is impossible for a train parked on one
track to obstruct a train on any of the other tracks.

To find a solution without re-allocations every train should
move through exactly one track. A train moving through
more than one track would indicate that a re-allocation has
taken place, and no tracks would indicate the train has not
been parked. In our problem with re-allocation, every train
can only be re-allocated once. Thus in our problem with re-
allocation, every train should move through either one or two
tracks.

3.1 Formal problem definition

We can represent the shunting yard as a tree, with every node
representing one track part. The tracks can be represented as
set of sets of vertices. We define a move as transferring a train
from its current position to an adjacent unoccupied vertex.

The Train Unit Shunting Plan Problem (from now on re-
ferred to as the TUSPP) consists of finding a sequence of
moves which on a given tree T moves each of k trains num-
bered 1, 2, ..., k from its source vertex to its destination ver-
tex. With a given set of sets of vertices R, each train moves
through at least one element of in any of the sets in R and does
not move through any two vertices such that both vertices are
elements of different sets in R.

The Train Unit Shunting Plan Problem with Reallocation
(from now on referred to as the TUSPP-R) consist of finding
a sequence of moves which on a given tree T moves each
of k trains numbered 1, 2, ..., k from its source vertex to its
destination vertex. With a given set of sets of vertices R, each
train moves through at least one element of in any of the sets
in R and does not move through any three vertices such these
vertices are elements in different sets in R.

Note that the TUSP and TAP only concern assigning every
train to a track, while the TUSPP and TUSPP-R also include
moving the trains over the shunting yard.

4 Conflict without reallocation
Extension of a provided domain is discussed in chapter 4.1,
and improvements to an existing planner are explored in 4.2.

4.1 Extending the domain
The first part of this research entails transforming a provided
domain. This section will give an overview of the changes
made in this domain. The changes are made for two reasons:
to disallow a conflict to occur and to reduce the search space.

Within the confines of the original domain, there exist three
object types, namely trackpart, track, and trainunit. These re-
main unchanged. There are four actions, each of them de-
scribing a move of the train between track parts in different
parts of the train station. For example, move-on-arrival is
used to move the trains from the train station to a switch,
whereas move-to-tree moves the trains from a switch to one
of the tracks.

Without re-allocations, a valid solution cannot contain a
crossing at any point in time. To avoid expanding states which
can never lead to a solution, we disallow trains from entering
a track if that will lead to a conflict. We introduce a numeric
fluent, departure, which specifies the departure time of every
train. A numeric fluent in PDDL works similarly to a pred-
icate, but instead of a Boolean value, it contains a number.
Using this we check if the train conflicts with any of the trains
already on the track by comparing the departure times. If the
incoming train departs later than any of the trains already on
the track, entering the track is not allowed, as it would lead to
a conflict.

Trains can only move to track parts directly adjacent to
the track part they currently occupy. The nextTo predicate,
which specifies if two track parts are connected, is used to
enforce this. It takes two arguments of the trackpart type,
first the track where the train is moving from and the second
where it is moving to. Due to the tree-like structure of the
shunting yard, an efficient solution strictly involves moving
trains toward the leaf nodes upon arrival and toward the root
node upon departure. To reduce the search space of the prob-
lem this predicate can be split into two different predicates:
nextToOnArrival and nextToOnDeparture. During the arrival
phase, trains are only allowed to move in the nextToOnAr-
rival direction, and vice versa for departure. The difference
of the nextTo predicates between the original domain and the
improved problem in figure 1 is shown in listings 2 and 3 be-
low.

1 (nextTo t0 t1)
2 (nextTo t1 t0)

Listing 2: nextTo predicates in original domain

1 (nextToOnArrival t0 t1)
2 (nextToOnDeparture t1 t0)

Listing 3: nextTo predicates in improved domain

In the original domain, there exist no limitations for the or-
der in which trains can be moved. In reality, one train should
be parked before another can be moved, as there are limited
workers who can drive the trains. We make the assumption
that there is only one driver. To account for this we add a



Figure 2: Improved domain of example problem 1.

driver predicate to the domain, which specifies which train
the driver currently occupies. A driver can move between
trains only directly after the train it is currently in is parked.
A driver should move to the next train arriving or departure,
so we add a nextTrainArriving and nextTrainDeparting predi-
cate which details which train is next in line, functioning sim-
ilarly to a linked list. To switch from the last arrival to the
first departure, we also add two predicates detailing which
trains these are, and add a driver switch action that checks
for these trains in particular. This switch also sets the depart-
ing predicate to true, indicating that the departure phase has
started. Where first only moves in the nextToOnArrival direc-
tions where allowed, now trains can only move using tracks
connected by the nextToOnDeparture predicate.

The original domain considers a train parked as soon as it
enters a track, and after parking the train can still be moved
around. A problem arises when implementing the above-
described improvements, as the driver switching trains as
soon as it enters the first track-part in a track would block the
rest of the track. To resolve this we add a canPark predicate,
which describes for every track which track-part the trains
can currently park on. It is set to the deepest free track-part
in every track and moves one track-part up whenever a train
is parked. An additional action is created to park the trains,
which checks if the canPark predicate holds true for the track-
part the train is currently occupying, and allows the driver to
switch trains.

Finally, the track parts where the trains are located at the
start of the problem are used as a means to establish the arrival
and departure order. With the introduction of the driver, this
has become redundant, as it is already guaranteed that the
trains will be parked and depart in order. At the initial state,
we place all the trains on a singular track part, which we will
refer to as the train station. To make sure all trains are able to
reach the train station when departing, we introduce a depart-
train action, which removes the train from the domain and
sets a new hasDeparted predicate. In the goal state we now
only have to check if every train has departed. By doing this
we eliminate track parts that in reality might not exist and
keep solutions concise.

4.2 Improving the planner
The second part of this research entails improving an existing
planner. Three different approaches have been taken. First, a
heuristic which estimates the chance a conflict will occur in

a given state. Second, a set partitioning which reasons over
the combination of possible complete track assignments. At
last, a constraint programming approach which constricts the
assignments to neighboring track parts.

Approach 1: Heuristic
The nature of PDDL results in most planners using forward
search to find a solution. As it defines a start state, a goal state,
and a set of actions to transform from one state to another,
without further knowledge about the problem this is the most
natural, if not only approach. To increase the performance
of a planner, we can build a heuristic to judge the generated
states.

Typically in heuristic search, the heuristic estimate the dis-
tance to a goal state, but in this problem it is also important to
estimate the chance that a goal state is reachable from a cur-
rent state. To balance between exploitation and exploration,
both of these notions must be included. Generally, we do not
want to expand states if we are almost certain that a conflict
will occur, but if almost all trains have been parked already,
we might as well check if we can reach a solution. To include
the latter notion, we need to estimate how likely it is a con-
flict will pop up in a given state. Thus our heuristic function
can be written as f(S) = h(S) − c(S), with S being a state,
f the heuristic score function, h the function which estimates
the distance the goal and c being the function estimating the
chance of a conflict.

A first intuition to create a heuristic might come from the
fact that trains departing at a later stage should in general be
parked deeper into the shunting tracks because this allows a
larger amount of trains to park in front of it. Similarly, trains
departing earlier should in general be parked closer to the be-
ginning of the track. To translate this into a heuristic, we
create a sorted array with the depth of every track. We map
this to an array of all trains sorted on departure order to get
the expected depth of every train. The closer a train is parked
to its expected depth, the less likely it is that this train will be
part of a conflict.

Our h function is the amount of unparked trains multiplied
by a constant. The c function checks for all parked trains the
difference is between its actual depth and expected depth. If
this difference is low, the heuristic decreases, as a well-placed
train decreases the likelihood that a conflict will occur. When
the train is parked in a bad spot, we increase the heuristic.

Approach 2: Set partitioning
The aforementioned approach suffers from one major flaw: it
fails to exploit the knowledge about the order in which the
future trains will arrive. Before parking any train we can al-
ready tell if a combination of trains will be able to park on the
same track.

To find a solution for the TUSPP it might be easier to first
figure out on which track to park every train, and only then
look at how to route the trains over the train station from ar-
rival to parking to departure. We add a new predicate to the
domain as described in 4.1. In the new domain, trains are only
allowed to enter one track, the track for which this predicate
is set. We create a preprocessor that finds a track assignment
and transforms the problem definition by adding this predi-
cate accordingly.



After finding the track assignment for each train. Instead
of dividing the trains over the parking spots one by one, we
can also reason over the possible sets of trains that can be
assigned over any track for every length. We can generate
all the possible combinations of assignments for every track,
and then select one assignment for every track such that all
the assignments together contain all the trains.

Obviously, all trains can be parked on a track by them-
selves without causing a conflict on that track. To generate
all the possible combinations of a pair of trains on the same
track one train has to arrive earlier and depart later than the
other train. Now a dynamic programming approach can be
used to generate possible combinations for the sets of higher
cardinality; the generate the possible track configurations of
three trains we combine two sets of length two where the last
arriving train from one set is equal to the first arriving train
of the other set. We do this until we have covered the track
length for every track inside of the problem instance.

Now we can find out on which tracks the trains should be
parked by selecting one of the sets for every track, such that
the chosen sets for all tracks together contain all the trains.
Assuming that the amount of parking spots is exactly equal
to the number of trains to be parked, we are looking for a
combination of sets such that no train is part of multiple sets.
Thus the union between any of the chosen sets should be the
empty set in a valid solution.

In some instances, we can fill in entire tracks before we
have to make any decision. For example, take a problem in-
stance with exactly as many trains as parking spots. If some
track has a length of 5, and there exists only one combination
of five trains that can fit together on the same track, if a valid
solution exists it will always involve parking this combination
on that track.

To effectively search for a solution, we want to find con-
flicts as soon as possible. To do this we represent every pos-
sible track assignment as a node. For every combination of
two tracks, we create an edge between a node in both tracks
if the union is empty. This represents a valid combination of
assignments. To reduce similarities, for tracks of equal length
we can remove any combination where the index of the sec-
ond node is higher than the index of the first node.

To find the track we will pick an assignment for first, we
look at the coverage for each of the tracks onto each other.
The track of length 1 fully covers the tracks of length 1,
whereas the second track of length 2 only covers 1/3 of the
nodes in the other set of length 2.

This approach for as now only works when the number of
trains is exactly equal to the number of parking spots. To also
be able to use this approach in problems in instances where
there are more parking spots than trains to be parked, we in-
troduce the notion of ghost trains. A ghost train is a train that
does not exist in the actual problem but is included during the
set partitioning. To reduce the former problem to the latter
problem, we add a ghost train for every empty spot. These
ghost trains are added to the end of the arrival order and the
beginning of the departure order. They will never create a
conflict.

Figure 3: Possible assignment combination between tracks of length
[2,2] and track of length [2,1] of problem in figure 1.

Figure 4: Constraints between track-parts in a [3,3,3] shunting yard.

Approach 3: Constraint programming
Instead of analyzing all the possible sets of allocation for ev-
ery track, it is also possible to let a constraint programming
solver intrinsically find out if a combination of allocations is
possible. To do this we define the array, where each cell rep-
resents a track part. The element a cell contains represent the
train that will be parked on this track part. Each element must
hold an integer value between 1 and the number of trains. To
make sure the solver does not assign the same trains to mul-
tiple track parts, we define an all-different constraint over the
entire array. To make sure there are no conflicts in the assign-
ments, we add two constraints for each connected shunting
track part in a track:

1. arrival time of the train on the deeper track part is lower

2. departure time of the train on the deeper track part is
higher

To break symmetries we can add a constraint between
tracks of equal length which ensures that the arrival time of
the train parked at the last position of the first track is always
lower than the arrival time of the train parked. An overview
of the entire model is shown in figure 4.



5 Conflicts with reallocation
To create a model which allows for reallocation, we build on
top of the model proposed in 4.1, without the constraint that
a train can only enter a track if it does not directly result in
a conflict. In order to keep track of whether a train has been
reallocated or not, we introduce a hasReallocated predicate.
Now we create an extra action that allows drivers, to switch
to any of the trains which have not been reallocated yet and
do not have any trains ahead of them. To allow the train to
move to another track we introduce a isReallocating and real-
locatingToStation predicate. The isReallocating simply tells
us if a driver is currently reallocating a train. A reallocation
consists of two phases, the first phase moves the train back
toward the train station, and the second phase then moves it
into another track. The predicate reallocatingToStation will
be used to denote which phase of the reallocation the driver is
currently in. To be able to go to the next train in order after a
reallocation, it is also necessary to explicitly keep track which
train the driver should go to after it is done with reallocating.

5.1 Detecting unsolvable conflicts with reallocation
We define an unsolvable conflict as a conflict that can not
be resolved with any number of re-allocations. Unsolvable
conflict occurs when a train has to leave and the trains ahead
on the track are unable to re-allocate themselves over the
other tracks. By the pigeonhole principle, if the number of
trains ahead of a departing train ta is higher than the number
of free spaces on other tracks sf , there exists an unsolvable
conflict, as for the train to leave ta + to trains have to fit into
su + sf spaces, with:
ta being the number of trains ahead of the departing train,
to being the number of trains on other tracks,
su being the number of other track spaces in use on other
track,
sf being the number of other track spaces free on other tracks.

Because su = to, with to > sf , finding a solution is infea-
sible, as one track part now should have more than one train
for the train to be able to depart. If we find out that state will
lead to an unsolvable conflict, it can be pruned.

6 Experimental Setup and Results
This chapter explains the experimental setup and results. Due
to time limitations, the implementation of the model and plan-
ner for the TUSSP-R was not possible. Consequently, the
entirety of this section focuses on TUSSP.

6.1 Planner comparison
The proposed improvements will be implemented in an exist-
ing planner to test their effectiveness. This planner is picked
from IPC2018 participants in the classical satisfying track.
To decide which planner should be extended they have been
compared on beforehand. Most of them failed to run on the
given domain and problem. The most promising candidates
were Saarland, Freelunch-Madagascar, SIW and BFS(F). A
small explanation of how these planners work is given in sec-
tion 2.1.

The domains used in these tests include one disallowing
conflicts with numeric fluents as described in section 4.1, one
which disallowed conflicts with a predicate, and the original
domain which does allow conflicts. The other described im-
provements were not included in these tests.

Saarland did not perform well on the tested domains, possi-
bly because the only dynamic objects are trains it was not able
to split the domain effectively. Freelunch-Madagascar was
overall the fastest planner, but is difficult to extend because
it completely transforms the domain and SAT solvers them-
selves are already very efficient. SIW performs the fastest on
small problem instances but has problems with finding solu-
tions in bigger instances.

The BFS(f) planner performed decently in smaller prob-
lems and was the fastest in bigger problems, and due to its rel-
atively easy-to-understand underlying algorithm and mecha-
nisms most likely the easiest to extend. For these reasons, I
choose to improve this planner for our domain.

6.2 Implemented improvements
I build a heuristic that replaces the existing heuristics inside
of BFS(f) planner. The improved planner in some instances
performs a little bit faster than the base planner, but the result
was not significant. The heuristic implemented entailed as-
sessing whether the projected depth matched the actual depth,
resulting in a deduction of 5 from the heuristic value in cases
of exact correspondence, whereas an addition of 3 was made
in instances of disparity. In problem 1 it was about twice
as fast as the original planner, I did not test it on any other
problem. It is likely that as is it would not improve speed
in large domains, a small difference in depth is expected in
larger tracks.

The final version of the planner employs the constraint pro-
gramming approach to construct a preprocessor responsible
for the allocation of trains to tracks. The model was defined
using MiniZinc. To accomplish this, a Python script was
utilized to extract pertinent details from the original PDDL
problem file, generating a MiniZinc data file representing the
problem instance. Even when dealing with substantial in-
stances (50+ trains) featuring numerous potential conflicts,
this approach consistently yielded solutions within a second.

6.3 Generating problem instances
The implemented improvements were tested on five problems
with a varying amount of trains. The first problem is problem
1 as shown in figure 1. The other problems have been gener-
ated by a script that takes the length of each of the shunting
tracks as input. It uses descending arrival order and gener-
ates a random departure order. The MiniZinc model to check
if this combination of shunting tracks and departure order is
feasible. If it does not yield a solution, it starts over and goes
through a maximum of 25 iterations. I started out with large
tracks, splitting them semi-arbitrarily into more tracks until a
feasible problem could be found. An overview of the prob-
lems is shown in table 1.

6.4 Final results
A full overview of the results is shown in table 2. The BFS(f)
planner is an unchanged version of the planner. BFS(f) 1 uses



Trains Tracks
Problem 1 5 [2,2,1]
Problem 2 15 [1,2,5,7]
Problem 3 25 [1,2,5,7,5,5]
Problem 4 40 [5,5,5,5,2,8,3,3,3,1]
Problem 5 50 [5,5,5,5,2,8,3,3,3,1,10]

Table 1: Problem instances used to test improvements

a version of the domain which does not allow for conflicts,
BFS(f) 2 uses the full improvements of the domain. CP refers
to the final planner, CP:Pre is the preprocessor part of the
planner, and CP: Plan is the part of the planner which finds
the plan.

7 Responsible Research
All code has been executed on a shared server of the TU
Delft, the performance of planners during the tests could
have slightly been affected by the current load on this server,
however, it is unlikely that big differences in execution time
will be found when reproduced as difference in performance
between different planners and improvements was order of
magnitudes. All code used during the project has been up-
loaded to the TU Delft Repository.

The present state of the code should not be used to gener-
ate shunting plans in for real-life use without thorough exam-
ination, as the absolute assurance of plan validity cannot be
guaranteed with complete certainty.

8 Discussion
PDDL offers notable advantages in terms of quickly formu-
lating problem definitions, and the decoupling between prob-
lem definitions and planners allows for seamless extensions
of existing problems without disrupting the solvers’ function-
ality. However, the standardization of the problem definition
also comes with limitations which result in the fact that us-
ing PDDL to solve a specific problem is often not the most
expeditious approach.

9 Conclusions and Future Work
In this paper, a technique is given to identify conflicts for both
examined problems. A methodology has been provided to
avoid conflicts whenever possible. An introduced model of-
fers a means of resolving conflicts, although further research
is required to explore how to effectively use this model in a
planner.

P BFS(f) 1 BFS(f) 2 CP: Total CP: Pre CP: Plan
1 1238 4 201 199 2
2 DNF 204 215 212 3
3 DNF 57152 228 218 10
4 DNF DNF 708 249 459
5 DNF DNF 1064 258 806

Table 2: Execution time in milliseconds of different planner config-
urations

During the exploration of conflict detection techniques
that detect conflicts earlier in time in the context of heuris-
tic search, I determined that set-partitioning and constraint
programming offer more efficient approaches for resolving
parking space assignments when we do not allow for re-
allocations.

As a result, I have approached the problem from a lot of
different angles. It could be possible that one of the insights
in one of the approaches could also be beneficial in one of
the other approaches. For example, it is possible to reduce
the domain of possible trains which can be assigned to each
track part before starting the running of the constraint pro-
gramming solver, the generation of possible. Or the track as-
signment combinations could be translated into a constraint
programming problem or SAT.

After finding the parking track allocation in the preproces-
sor, with the current set of limitations, the rest of the problem
has effectively been reduced to multiple path-finding prob-
lems. Using a path-finding algorithm instead of the PDDL
solver could greatly increase the speed of the planning part in
the constraint programming approach.

References
Cornelsen, S., & Stefano, G. D. (2007). Track assignment

[Cited by: 29; All Open Access, Bronze Open Ac-
cess]. Journal of Discrete Algorithms, 5, 250–261.
https://doi.org/10.1016/j.jda.2006.05.001

Freling, R., Lentink, R. M., Kroon, L. G., & Huisman, D.
(2005). Shunting of passenger train units in a rail-
way station. Transportation Science, 39. https://doi.
org/10.1287/trsc.1030.0076

Ghallab, M., Knoblock, C., Wilkins, D., Barrett, A., Chris-
tianson, D., Friedman, M., Kwok, C., Golden, K.,
Penberthy, S., Smith, D., Sun, Y., & Weld, D. (1998).
Pddl - the planning domain definition language.

Gilg, B., Klug, T., Martienssen, R., Paat, J., Schlechte,
T., Schulz, C., Seymen, S., & Tesch, A. (2018).
Conflict-free railway track assignment at depots.
Journal of Rail Transport Planning and Manage-
ment, 8. https://doi.org/10.1016/j.jrtpm.2017.12.004

Gnad, D., & Hoffmann, J. (2018). Star-topology decoupled
state space search [Cited by: 18; All Open Access,
Bronze Open Access]. Artificial Intelligence, 257,
24–60. https://doi.org/10.1016/j.artint.2017.12.004

Stefano, G. D., & Koči, M. L. (2004). A graph theoretical
approach to the shunting problem. Electronic Notes
in Theoretical Computer Science, 92. https : / / doi .
org/10.1016/j.entcs.2003.12.020

van den Akker, J. M., Baarsma, H., Hurink, J. L., Model-
ski, M. S., Paulus, J. J., Reijnen, I. C., Roozemond,
D. A., & Schreuder, J. (2008). Shunting passenger
trains : Getting ready for departure (O. Bokhove,
J. L. Hurink, G. Meinsma, C. C. Stolk, & M. H.
Vellekoop, Eds.). Proceedings of the 63rd European
Study Group Mathematics with Industry (SWI 2008,
Enschede, The Netherlands, January 28-February 1,
2008), 1–19.

https://doi.org/10.1016/j.jda.2006.05.001
https://doi.org/10.1287/trsc.1030.0076
https://doi.org/10.1287/trsc.1030.0076
https://doi.org/10.1016/j.jrtpm.2017.12.004
https://doi.org/10.1016/j.artint.2017.12.004
https://doi.org/10.1016/j.entcs.2003.12.020
https://doi.org/10.1016/j.entcs.2003.12.020


Winter, T., & Zimmermann, U. T. (2000). Real-time dispatch
of trams in storage yards [Cited by: 61]. Annals of
Operations Research, 96(1-4), 287–315. https://doi.
org/10.1023/a:1018907720194

Wolfhagen. (2017). The train unit shunting problem with re-
allocation.

https://doi.org/10.1023/a:1018907720194
https://doi.org/10.1023/a:1018907720194

	Introduction
	Related work
	Planning
	Train Unit Shunting Problem

	Problem Description
	Formal problem definition

	Conflict without reallocation
	Extending the domain
	Improving the planner
	Approach 1: Heuristic
	Approach 2: Set partitioning
	Approach 3: Constraint programming


	Conflicts with reallocation
	Detecting unsolvable conflicts with reallocation

	Experimental Setup and Results
	Planner comparison
	Implemented improvements
	Generating problem instances
	Final results

	Responsible Research
	Discussion
	Conclusions and Future Work

