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Datafied Brains and 
Digital Twins:  

Lessons From Industry, 
Caution For Psychiatry 

Stephen Rainey, Ph.D.*

Abstract: This paper asks what sorts of ethical caution 
ought to attach to increasingly data-driven approaches 
to understanding the brain. This is taken to be an im-
portant question especially owing to a likely near future 
of neuromonitoring and neuromodulation devices with 
applications in psychiatry. The paper explores this by 
i) sketching the concept of ‘digital twin,’ ii) drawing 
a schematic picture of ‘brain datafication’ in general, 
and iii) developing a means of understanding some 
challenges present in datafication through the lens of 
digital twins. One central concern arises from the role 
algorithmic processing of neural recordings plays in 
terms of neuroscientific objectivity, with knock on ef-
fects for psychiatric ethics. Essentially, this is owing to 
a way in which algorithmic processing in brain data 
construction appears to be deductive in character, but 
is in fact based on a particular scheme of inductive 
inference. The challenges explored urge ethical caution 
as they concern epistemological gaps in data-centered 
neuroscientific progress, as well as knock-on effects 
for psychiatry.

Keywords: Brain data, digital twin, neurorecording, 
deep learning, algorithms, psychiatry, ethics

In a context of growing technological com-
plexity in recording and processing brain sig-
nals, ‘brain data’ is increasingly available for 

use in neurology, psychiatry, wellness applications, 
and recreational activities. Brain data can control 
devices and ground predictions about brains 
and behavior. It can steer interventions in brain 
activity, modulating it to some desired level. But 
what do brain data represent? Are they a clearer 
means of seeing the brain’s activity, or that of the 
mind? A data-centric approach to the brain raises 
distinctive philosophical and ethical challenges 
engendered by the datafied, neurofunctional ac-
count of cognitive and behavioral performance.

Among the variety of techniques for recording 
and processing the bioelectric activity of the work-
ing brain, electroencephalography (EEG) stands 
out as especially accessible and useful. With this 
technique, there is large scope for computational 
processing of recorded signal into varieties of data. 
EEG appears in clinical contexts, as well as in the 
consumer market. Though EEG has limitations 
because of poor spatial signal resolution and the 
effects of recording through the skull, it is the 
most widely used technology for recording brain 
activity. This is especially so in a non-clinical set-
ting. Recordings from the brain promise direct 
disclosures of neurofunctional constraints upon 
an agent’s cognition, emotions and behavior. 
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The disclosures are ‘direct’ in not requiring any 
intentional discussion with the agent involved. 
But brain recordings do not thereby ‘speak for 
themselves.’ They must be processed in order to 
create usable data, and be used according to some 
rationale.

Especially when combined with contextual 
data, brain data may reveal sensitive personal 
information. EEG recordings of electrical activity 
across large areas of the brain can be processed 
in order to diagnose diseases, such as epilepsy, 
but increasingly also to find other distinct brain 
states including neural correlates of alertness, 
and attention. These predictions, and a variety of 
others like them, are made on the basis of brain 
data. But exactly how predictions relate to the data 
on which they are based, to the brain, or to the 
person about whom they are made, is not clear. 
For instance: what do these data capture? Are 
we dealing with an image of the brain mediated 
in data, or with the brain itself as inferred from 
those data? Or ought we to consider the data as 
relating more widely to the person about whom 
we are to make predictions? A useful concept to 
explore these questions is that of a ‘digital twin.’

The term ‘digital twin’ as it is used here is a con-
cept borrowed from manufacturing and process-
management contexts. A digital twin is a virtual 
version of a physical system (Kritzinger, Karner, 
Traar, Henjes, & Sihn, 2018). The utility of such 
a twin is thought of in terms of accurately model-
ing in silico a physical object or system such that 
information about that object or system could be 
derived from inserting the digital twin in simulated 
contexts. In manufacturing, this helps to pre-empt 
potential points of failure, tolerances, and identify 
possible efficiencies prior to actual manufacture. 
This saves money, and time, while promoting good 
foresight about the likely behavior under different 
circumstances of the eventual object to be made 
(Grieves & Vickers, 2017, p. 87).

The idea of a digital twin that serves this pre-
manufacturing purpose appears very sensible. 
Resources need not be used in creating physical 
prototypes in order to discover problems. Instead, 
models can be made digitally that are accurate 
enough simulations of objects under various 
circumstances. Kritzinger et al. (2018) explore 

further distinctions within the digital twin concept 
that illuminate the data dimension. They distin-
guish the ‘digital model’ from ‘digital Shadow.’ 
A digital model is a digital representation of an 
object without any dynamic links to data on that 
object. The model remains static even if the object 
changes. Modeling changes in the object requires 
the production of a new model. The digital shadow 
by contrast has a one-way flow of data between 
the state of the physical object and the digital ob-
ject and so it updates dynamically with changes 
in the object (Kritzinger et al., 2018, p. 1017). 
This would most easily be imagined in terms of 
a digital model that responds to changes in the 
physical object, but does not affect the physical 
object when it changes. We could imagine a case of 
such a digital shadow as a monitoring application 
for a physical object: perhaps a digital shadow of 
a physical bridge, from which sensor data is re-
layed to the shadow in order to maintain real time 
monitoring of the stresses, movements, capacity, 
and so on, of that bridge.

A ‘digital Twin’ here is a further elaboration on 
this scheme, in that data moves bi-directionally 
between the digital twin and the physical object. 
Kritzinger et al. go on to suggest that,

The digital object might also act as controlling 
instance of the physical object. There might also 
be other objects, physical or digital, which induce 
changes of state in the digital object. A change 
in state of the physical object directly leads to a 
change in state of the digital object and vice versa. 
(Kritzinger et al., 2018, p. 1017)

If we stick with the bridge example, the digital twin 
for that bridge might include more than monitor-
ing. Were the physical bridge to be close to capac-
ity and stress tolerance, for example, the digital 
twin might modify traffic signals to decongest 
the physical bridge. This control could affect the 
physical bridge through data biases and thresholds 
built into the digital twin (i.e., without human in-
put). Moreover, a digital twin might affect further 
digital objects, like maintenance schedules for city 
council resources, in order to schedule checks fol-
lowing busy periods for the bridge. Digital twins 
connected with complicated data flows could be 
used to record detailed ‘service records’ for the real 
objects they twin, as well as predicting their likely 
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future performance (Grieves & Vickers, 2017, p. 
95). This kind of picture was the stuff of ‘smart 
cities,’ touted since the 1990s (Batty et al., 2012; 
Caragliu, Bo, & Nijkamp, 2011).

These ideas of digital model, digital shadow, 
and digital twin are of obvious use in manufactur-
ing and systems of process control, as illustrated 
with the bridge example and allusion to smart cit-
ies. It will be informative now to pivot discussion 
to the context of brain datafication and use these 
concepts to investigate some possible upshots from 
such datafication. Specifically, in what follows it 
will be asked which kinds of digital counterparts 
to brains—models, shadows, twins—best capture 
what is currently emerging in brain datafication. 
This is of particular relevance in terms of critically 
analyzing processes within neuroscientific discov-
ery, and in clinical practices in present and future 
psychiatry that can be expected to draw heavily 
upon neuroscience.

Data on the Brain

Brains are complex systems, but that nonetheless 
exhibit clear order. The promises of neuroscience 
in providing clarity on the brain are hoped to pro-
vide greater insights to human minds, rationality, 
behavior, and disease. In 2005, Thomas Insel and 
Remi Quirion wrote that, “clinical neuroscience 
must be integrated into the discipline of psychia-
try…” and that in the future, “psychiatrists and 
neurologists may be best considered “clinical 
neuroscientists”” (2005) With this, they were 
advocating a movement that sought to promote 
the concept of psychiatry as clinically applied 
neuroscience. The thought is that using the tools 
of neuroscience, like functional imaging, and EEG, 
dysfunctional neural circuits can be identified that 
underlie mental disorders. Conventional defini-
tions of mental illness have arisen heterogeneously 
over time, leading to vagueness and ‘fuzzy bound-
aries.’ Psychiatry, as compared with other medical 
sciences, lacks definitive diagnostic approaches, 
and treatment pathways. The evolution of various 
editions of The Diagnostic and Statistical Manual 
of Mental Disorders (DSM) and International 
Classification of Diseases (ICD) (see Regier, Kuhl, 
& Kupfer, 2013) has in large part been an attempt 

to remedy this anomalous relationship between 
psychiatry and medicine in pursuing, ‘consistent 
clinical descriptions of syndromes,’ and ‘specific-
ity, that is ability to distinguish different types of 
problems’ (Kirmayer & Crafa, 2014).

Using the DSM or ICD as a guide for structuring 
clinical interviews, psychiatrists can ensure clini-
cal consistency. Nevertheless, psychiatric models 
based on medical approaches in general encounter 
challenges. Whereas genetics, for instance, has 
served to improve approaches to cancer care, the 
kinds of genetic-environment-context-behavioral 
relations experienced by any individual make the 
discovery of genetic bases for psychiatric condi-
tions vastly complex. Social and cultural values, 
and personal and political histories and contexts, 
are relevant to characterizing mental illness in 
ways not seen in physical illness. Moreover, the 
DSM and ICD editions change, making for clinical 
practices that are dynamic over time. This prompts 
some, such as Insel and Quirion, to look to the 
brain itself to ground a robustly diagnostic and 
therapeutic psychiatry. In focusing on the brain 
as a homogenous substrate of mental illness, it is 
hoped to develop a precision medicine approach, 
divested of complicated historical heterogeneity.

With mental disorders identified as brain dis-
orders, and a raft of neuroscientific approaches 
at hand, psychiatric disease can be targeted and 
treated. The vagueness and ‘fuzzy boundaries’ 
among the syndromes of the DSM and ICD are 
replaced with scientifically grounded definitions 
of brain-based pathology as mental illnesses, in 
a context termed the ‘Research Domain Criteria’ 
(Insel et al., 2010). Given the unique challenges 
of psychiatry within medical science more gener-
ally, this appears promising. But psychiatry as 
clinically applied neuroscience is not without its 
own complexity.

As with any science, neuroscience raises episte-
mological, methodological, and conceptual ques-
tions. Epistemologically, neuroscientific knowl-
edge is not clear-cut as tools such like functional 
imaging relying upon choices among data curation 
techniques, and complicated statistical modeling 
(Poldrack, 2006; Vul, Harris, Winkielman, & 
Pashler, 2009). Methodologically, neuroscientists 
may consider their own lab-based work quite 
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removed from human behavior, where they are 
mainly concerned with close investigation of 
neural circuits in animal models, for example. 
Neuroscience in general might be thought of as 
being curiosity-driven, or driven by wide practical 
goals as laid down by research funding agencies 
(Baughman, Farkas, Guzman, & Huerta, 2006; 
Goering & Klein, 2020). Psychiatry may have 
something similar in its guiding principles, but it 
will also have a public health agenda, sensitive to 
sociopolitical values that neuroscience may not 
have pressing reasons to consider. This highlights 
the practical question of how to put the ‘applied’ 
in clinically applied neuroscience.

Increasingly, this involves the use of technolo-
gies that record and process brain signals, in or-
der to make diagnostic or predictive inferences 
about the entire range of human behaviors and 
dispositions, from the neuronal to the societal 
level. This in turn involves the use of machine 
learning algorithms, and sophisticated process-
ing of brain signals to produce usable data, with 
associated serious questions for clinical practice. 
In terms of clinical practice, technologies might 
increasingly come to dominate spaces of hitherto 
interpersonal clinical encounter, emphasizing in-
stead neuroelectrophysiology as a homogenous 
indicator of mental wellness. More widely, the 
use of technologies in recording brain signals, pro-
cessing these signals to produce brain data from 
which predictions might be made of a person will 
have implications for how humans see themselves 
individually and collectively. Reflection upon 
policy will be required in order to anticipate these 
anthropological and ethical implications, and to 
regulate where prudent.

Given the distinctions between models, shad-
ows, and twins, it would seem that in the context 
of neuroscience and brain data different instances 
might require different treatments (Table 1). For 
example, a brain atlas might be expected to be a 
digital model of a brain. The atlas would respond 
to changes in knowledge about the brain, but not 
in real time, and without a direct data link. A 
neurofeedback device, on the other hand, which 
provided a user with an account of their own 
neural activity might be considered as running in 
terms of a digital shadow. The state of the device 

would change in step with changes in the brain 
by means of a data link (e.g., EEG electrodes to 
monitor electrophysiological activity). A brain–
computer interface (BCI)-controlled prosthetic 
limb, or a neuroprosthetic device, might also be 
thought of as requiring a digital shadow in this 
sense. If we consider a neuromodulation device, 
such as a device that detects the onset of seizure 
and administers electro-stimulation to the brain 
in order to prevent fitting, this might operate on 
the basis of a digital twin. The device state would 
change in step with the brain, and in certain cases 
operate so as to change the activity of the brain 
based on pre-set parameters.

Recordings from the brain promise direct 
disclosures of neurofunctional constraints upon 
an agent’s cognition, emotions and behavior. The 
disclosures are ‘direct’ in not requiring any inten-
tional discussion with the agent involved. But as 
already mentioned above, brain recordings do 
not thereby ‘speak for themselves’ as they must 
be processed and used in specific ways. How pro-
cessing and use proceed inevitably raises questions 
about how recording technologies converge with 
technical questions (e.g., the nature of algorithms 
used to classify signals into kinds), and processing 
intentions (e.g., as fundamental research, or as 
clinical decision support).

Brain Datafication

Datafication provides an ordered view of the oth-
erwise hugely complex and inter-relating activity 
of the brain. We already know from neurophysiol-
ogy and neuropsychology that the brain is not, in 
Patricia Churchland’s words, a “bramble bush” 
of chaotic interconnections (1989, p. 99). A great 
deal has been discovered and codified about how 
the brain is organized, and about the variety of 
functional differentiations that can be drawn 
among the range of signals that can be derived 
from it. Indeed, this ever-growing knowledge is 
one motivation for the enterprise of neuroethics. 
With more sophisticated knowledge of how our 
brains constrain perception, judgment, memory, 
and so on, we ought to revisit philosophical ac-
counts of areas like knowledge, ethics, and char-
acter. This seems especially so where judgment and 
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ethics coincide, because if we can understand more 
about why certain decisions are made in given 
circumstances, accounting for the brain’s activity, 
then we may need novel accounts of responsibility 
for human action (cf. Levy, 2007).

The suggestion here is that, just in the same way 
neuroethics recognizes the potential for neurosci-
ence to prompt revisions to received wisdom in 
terms of perception and the rest, the datafication 
of neuroscientific knowledge prompts renewed 
questions for neuroethics. Datafication of the brain 
allows us to operationalize neuroscientific insights 
to the brain in new ways. This is especially the case 
where algorithmic processing of brain recordings 
and, perhaps especially, deep learning applications 
are in play. These might not only be seen to prompt 
revisiting philosophical questions, but also raise 
critical points about the practice of neuroscience 
itself, as well as related practices like psychiatry. 
Not least, this can be seen in terms of the ways in 
which data patterns are derived by deep learning 
that are not explicitly articulated, hence are not 
available for critical assessment. This is a complex 
area, which requires some further clarification 
before returning to the specifics of how analysis 
in terms of ‘digital twins’ can clarify. To that end, 
Figure 1 shows a simplified set of processes from 
research questions, through brain recording, data-
fication, and applications. Essential to staking out 
the areas of interest here, is discussion of how the 
loosely tagged areas A through E are inter-related.

(A) might be seen as the context of discovery 
for some enquiry. A research question, informed 
by neuroscientific data, shapes research design 
concerning some particular matter. A corpus 

TABLE 1. Summary of Some Instances of Brain Datafication and Their Potential as Digital Models,  
Shadows, or Twins for the Brain

Instance	 Digital Model	 Digital Shadow	 Digital Twin

Brain atlas	 X	 X	

Neurofeedback device	 	 X	

Neuroprosthesis	 	 X	

Electroceutical	 		  X

of knowledge and training in neuroscience and 
neuropsychology will steer what kinds of ques-
tions are settled, worth asking, worth revisiting, 
or are novel. This theoretical background sets 
the scene for (B), the context of justification for 
discoveries, which might be seen as the conjunc-
tion of physical requirements for addressing the 
question under investigation. Depending on the 
object or phenomenon of investigation, differ-
ent brain areas will be implicated. Depending on 
which brain areas are relevant, different types 
of recording techniques, types of electrodes, and 
recording sites, will be required in order to derive 
appropriate signals. Here, for simplicity’s sake, (B) 
is given as a generic EEG experimental paradigm, 
for the recording of neuroelectrical activity. In this 
arrangement, electrical signals are recorded from 
the brain by some means (e.g., external EEG, 
intracranial grid, intracortical probe). Electrical 
activity generated by the neurons of the brain are 
recorded as a research participant goes about a 
task. This enables researchers to correlate overt 
behaviors or perceptual cues with the timings of 
specific electrical activity. The recordings of brain 
activity might be thought of as ‘raw’ data in that 
they contain more information than the specific 
experimental paradigm requires. It must be pro-
cessed and sorted, here represented as phase (C), 
during which techniques are applied to extract 
relevant signals from the complicated raw signal. 
In Figure 1, this includes algorithmic processing, 
not excluding deep learning techniques.

Processing brain recordings using deep learn-
ing is less common than might be imagined. One 
reason that deep learning is not more ubiquitous 
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Figure 1. A set of inter-related processes attending cases of brain recording and datafication in 
general. (A) loosely labels the context discovery—theory and research question formation—it-
self constrained by wider context including research funding priorities, state-of-the-art science, 
political environment, etc. (B) gathers together the general experimental context, or context of 
justification, for the recording of brain signals given some specified research aim. (C) represents 
the core datafication stage, based in the processing of signals recorded in (B), which is especially 
salient given the growing technical complexity of neuroscientific experimentation. (D) groups 
together technological outputs from neuroscientific work, including devices developed on the 
back of discoveries, databases of neural data, and the commercial interests that can affect them. 
(E) signifies the phenomena of scientific interest to neuroscience in terms of the results gained, 
from which further theory and questions can be developed.
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in neuroscience already is that it requires a huge 
amount of data in order to be trained (Lotte et 
al., 2018). Given that data is being created in 
large amounts continually, it might be predicted 
that deep learning will become more prominent, 
and quickly. Artificial deep neural networks have 
the potential to learn from raw signal features for 
classifying the content of recordings according to 
the requirements of the experimental design. This 
creates brain data which can, minimally, be used 
to predict cognitive and behavioral activity, or 
control devices of various sorts (Bell, Shenoy, Cha-
lodhorn, & Rao, 2008; Birbaumer, 2006; Blain, 
2019). In (D) the control of devices is salient, as 
this can include medical devices, like BCI-driven 
prostheses, as well as consumer applications, like 
‘brain typing’ devices or ‘mind’ controlled toys. 
For this reason, (D) includes an element relating to 
market forces. These cluster together devices that 
can represent commercial opportunities, as well as 
the databases derived from brain signal processing. 
Dealing in data is a growing area of interest for 
many technology companies, and brain data seems 
especially apt for marketability (Kellmeyer, 2018).

Finally, (E) represents a cluster of potential 
applications for data derived from the brain 
especially relevant to advancing knowledge of 
human thought and action. Where data can serve 
to simplify processes of correlating neural activ-
ity and overt behavior or cognitive activity, there 
is potential for making advances in neuroscience 
and related fields like psychiatry (Churchland & 
Sejnowski, 2016). Especially where brain signals 
are processed by deep learning applications, for 
instance, the capacity for making strides in these 
kinds of areas is increased owing to the speed at 
which algorithms can process huge volumes of 
data. Moreover, deep learning applications are apt 
at discovering obscure patterns in ways humans 
are not. This can lead to a discovery approach in 
brain data, wherein hypotheses are not produced 
and tested, but are instead derived from discovered 
inter-relations among otherwise disparate data (cf, 
Toga et al., 2015).

With these short characterizations of A through 
E made, it remains to be seen how these areas 
do and how they ought to relate. (A) and (B) are 
unproblematic in themselves, as they constitute a 

standard picture of how science works. Essentially, 
theory informs research questions that entail the 
construction of testing paradigms, from which 
specific results or falsifications are sought. In a 
simplified sense, the combination of (A), (B), and 
(E) represents a schematic scientific whole. The 
results of (B) might be correlated with the out-
comes in (E) and hypotheses verified or falsified 
on that basis. But the increasing complexity of 
our understanding of the brain, and the advances 
made in recording techniques alone make step 
(C) a practical necessity, and likely prompt a near 
future of deep learning within it. Yet this is an 
area of difficulty.

The data derived from processing can be seen 
to feed into databases, which themselves go on to 
inform and optimize the algorithms that process 
brain recordings. This opens the risk that we 
come to expect interesting characteristics of brain 
recordings to be deduced by algorithms, though 
they are themselves inductive engines through and 
through. Introducing a pseudo-deductive loop 
into an inductive system, obscured through the 
technical complexity of deep learning, could serve 
to foreshorten experimental sensitivity to novelty, 
hence to scientific advance. This would also be a 
risk encountered by an under-examined relation 
between (C) and (A), wherein pseudo-deductive 
operations become codified, through constituting 
the data derived from experiment, in the theories 
constraining research questions.

The data resulting from neural recordings, 
sorted and processed in the pursuit of address-
ing a research question, can become part of the 
corpus upon which algorithmic processing itself 
goes on to rely. It may be training data for future 
neural nets, for instance. It may be used in testing 
of experimental results from one lab to another, 
assessing reproducibility of results. The sharing 
of data, especially in contexts of ‘open science’ 
means not only that different research groups 
can test one another’s results, but also that new 
questions can be asked using existing and grow-
ing datasets (Choudhury, Fishman, McGowan, 
& Juengst, 2014). But recalling the relationships 
among theory, experience, and curiosity that drives 
the process of research question formation in (A), 
there is a potentially fuzzy line between experimen-
tal result and settled facts in theory.
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There is data curation at work owing to these 
interconnected steps that is not overt. It is not 
concealed, in some intentional sense, but it is just 
not available. It may come about by way of, say, 
the operations of a deep convolutional neural 
network whose layers are not open to scrutiny. 
If the way the relevant patterns are derived from 
the data with deep learning cannot be explicitly 
articulated, it cannot be critically assessed as one 
might critically assess a set of propositions con-
stituting an argument. Instead an evaluative ap-
proach is required, that must draw upon a wider 
set of more general, data-ecological parameters 
such as the processes illustrated in Figure 1. This 
means that examining brain data is not a straight-
forward matter of interpreting data, but a matter 
of evaluating a complex chain of data curation, 
selection, processing (i.e., data construction), and 
then interpreting in a frame of reference itself con-
ditioned somewhat by the same data (the A, B, C, 
D) complex in the diagram, roughly).

Put differently: there is no transcription from 
brain activity to recording that can subsequently 
be read off and interpreted—the very nature of 
the recording, in using algorithmic steps based 
(like feature selection, classification, signal trans-
formation, themselves processes derived from and 
optimized via prior data) means the recording is 
already conditioned by contingent factors, includ-
ing information from prior datasets.

Hypotheses behind research questions, based 
in settled fact and prevailing wisdom, rely on 
robust experimental data. These data come about 
through the experimental activities illustrated in 
(B) recorded in (C), and exhibited through results 
in (E). With the crypto-inductive operation of al-
gorithmic activity contributing both to experiment 
and to theory, this suggests a structural problem 
within the hypothetico-deductive structure of (A), 
through (B), to (C). This is no reason to suggest 
the experimental endeavors are flawed, but it does 
offer reasons to recognize limits. Critically apprais-
ing scientific practices and limits is exactly what 
researchers do (Poldrack, 2011; e.g., Poldrack & 
Farah, 2015). But in terms of digital twins, this 
will underwrite a point of concern to follow below.

How (C) and (D) relate is another dimension 
of risk to the robustness of scientific methods like 

that present (C) alone. The presence of commercial 
interests, in, for example, BCI devices, will pro-
duce market forces on device development. As an 
integral part of device function, this will include 
the databases derived from experiment. Brain data 
will thus be a focal point for commercialization, 
and industrial activity. The relation between this 
dimension of activity and (E) in which human cog-
nition and behavior are scrutinized is due scrutiny. 
The obvious focal point for commercial interests 
and human behavior comes in terms of marketing. 
Better insights into human behavior and cogni-
tion allow for the development of products and 
services more aligned with peoples’ wants and 
needs. This is not an unalloyed good, however, as 
the same mechanisms allow for better targeting of 
consumers and the manipulation desires in order 
to optimize marketing from the seller’s perspective.

On this somewhat dystopian note, the relation-
ship between (D) and (A) cannot be overlooked. 
With market forces and industrial activity at work 
in the arena of brain data, the power of money 
to sway research agendas cannot be ignored. In-
fluencing scientific curiosity toward better under-
standings of neural phenomena with marketable 
potential would be a retrograde step. To be sure, 
such interests do align with fundamental curiosity, 
and political agendas underlying research funding 
agency decision-making about grant structures 
contain economic imperatives. But the possibility 
for a direct influence of the consumer market upon 
science agenda-setting is not on the same level as 
these sociopolitical realities.

Using Brain Data in Psychiatry

Insel and Quirion’s picture of psychiatry as 
clinically applied neuroscience includes a central 
place for brain imaging as a means of identifying 
pathologies of the mind. The identification faulty 
brain circuits show the mechanisms of mental 
illness, on this view. But the above discussion 
suggests that brain datafication is an essential 
part of this endeavor. Data analysis by means of 
algorithms is not agnostic, or neutral, but comes 
laden with theory and prior data (Kitchin, 2014). 
This constitutes the loop described above, which 
appears to provide deductive inferences from data 
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to phenomena, but which is in reality a complex 
inductive process. A digital shadow is an in silico 
counterpart of a reality, dynamically connected 
via a one-way data stream. In Table 1, a neuro-
feedback device was considered such a shadow. 
But now, having considered the nature and role 
of brain datafication, the status of the device as a 
digital shadow of the reality might be due revision.

The idea of the digital shadow is passive. It is 
a representation of a reality on the basis of whose 
states the real object can be assessed, maybe 
changed. We can learn about the real object by 
looking at its digital shadow and decide about 
what we want to do with it based on the infor-
mation we gain. But the brain data constituting 
the shadow are not neutral, so in fact the digital 
shadow is of a brain model. A model is a digital 
representation without dynamic links to input 
data, or a set of parameters required to create a 
physical instance of that which the model mod-
elled. In this case, the neurofeedback device is a 
model for not the human brain, but the content of 
the pseudo-deductive loop as described between 
(B), (C), and (D) in Figure 1. This is a model, be-
cause there is no dynamic link to data—there is 
just the data. The dynamic links are those to the 
context of justification of (B), and to the optimi-
zation of processing via databases, represented in 
(D). Given the role of brain imaging in psychiatry 
as clinically applied neuroscience, this has some 
pressing ethical concerns.

What is uniquely ethically challenging here is 
the specific kind of inductive loop present where 
algorithms are used across the board in the sorting 
of signals from brains, and in their own optimiza-
tion, while at the same time furnishing databases 
with material that goes on to frame experimental 
paradigms and research questions. These in turn 
lead to further experimentation, which involves 
those algorithms, further optimization, further 
database furnishing, and so on. This is the loop, as 
illustrated in Figure 1, where (C) to (D) is seen as a 
loop, and in (A) wherein the context of discovery 
is described as containing neurophysiological/
neuropsychological data (i.e., the contents arising 
from (C) to (D)).

(C) is interposed in a complex of other processes 
which represent standard scientific practice (C) 

appears problematically as it draws from (B) and 
(E), and can characterize (A), meaning it appears 
on both sides of the discovery/justification divide. 
One clear potential here is for feedback loops, 
as discussed in terms of data by Cathy O’Neil 
in Weapons of Math Destruction (2016). The 
uniquely ethically problematic implication of a 
datafied loop within an otherwise clinical ap-
proach to mental illness is that the loop appears to 
use technological means to detect dysfunction, or 
to designate brain activity as disordered. But the 
loop is classifying data here and now according 
to past data themselves constructed by that very 
same loop—it is not patient centered, but model 
centered.

In a paper investigating the use of EEG to distin-
guish brains of alcoholics from non-alcoholics in a 
small cohort of 20, Bae, Yoo, Lee, and Kim (2017) 
use graph theory to model relations among brain 
areas in their subjects. Their approach is explic-
itly data-focused, seeking causal relations among 
data patterns derived from brain activity. They 
acknowledge the nature of the models developed 
from brain data as not conventional models of 
brains, as they explore network connectivity and 
activity abstracted from brain signal recordings 
(2017, p. 770). The constructed model is differ-
ent from a conventional physiological model in 
that it takes brain data and reconstructs patterns 
derivable from the processed signals captured from 
the specific regions of the brains, according to the 
physical and technical parameters of the recording 
methods and experimental intentions. In the case 
of Bae, this is external EEG, but in other cases, it 
might be intracranial probe, intracortical probe, 
and so on. The explicit acknowledgement here is 
that the model gained from the data is different 
from a normal model in terms of representational 
content. It represents the properties of networks 
observable among the data, themselves derived 
from brain signal recordings.

If imaging is thought to be a core means of 
identifying faulty neural circuits as the underly-
ing pathology of mental illness, the imaging had 
better identify clearly the brain and what’s gone 
wrong with it, for example, developmentally, or 
via injury. With the identification of this pseudo-
deductive, crypto-inductive, data-to-data loop, it 
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is less clear that imaging per se is sufficient to do 
this. It is probably not the hope of many neuro-
scientists or psychiatrists that imaging would take 
on this role without a serious helping of critical 
and expert analysis anyway. Multi-disciplinary, 
expert teams will often be involved in exploring 
diagnoses of mental illness or neurodevelopmental 
disorder and imaging plays a role within a wider 
diagnostic decision-making process. Insel and 
Quirion themselves acknowledge, “that psychiatry 
presents to the rest of medicine a unique blend 
of interpersonal skills and behavioral expertise 
that will be increasingly needed in this era of care 
dominated by technology” (2005, p. 2221). In this, 
the loop being described does not present a terrible 
problem. But it is important to recognize it, espe-
cially where technology can seem to offer neutral, 
objective, answers. It ought to be emphasized that 
what seems a digital shadow of the human brain, 
via neural recording, is really a digital shadow of 
a digital brain model. The question ought not to 
be whether it is a good or bad model, but how 
the difference in representational content might 
make a difference.

The ethical import of digital twins is of greater 
ethical concern. A digital twin was thought of as 
an in silico representation of a real object, dynami-
cally connected with a bi-directional data flow. 
This corresponded with an ability for the twin to 
alter the state of the real object, and vice versa. An 
example would be a psychiatric ‘electroceutical,’ 
which would monitor brain states and provide 
electrical or magnetic stimulation in order to cor-
rect unwanted states, and induce desired states. 
This area is certainly expected to expand (Famml, 
Litt, Tracey, Boyden, E& Slaoui, 2013). This might 
be conceivable on an analogy with electroceutical 
devices aimed at preventing severe epileptic fits 
(Kavehei, Hamilton, Truong, & Nikpour, 2019). 
Upon detection of a brain state characteristic on 
the onset of a fit, the electroceutical device delivers 
stimulation to the brain that arrests the fit. The 
neuromonitoring dimension of such a device can 
include artificial intelligence to predict onset of sei-
zure, based on a model of brain function. Similar 
technology could detect and remedy psychiatric 
events. Extending this, on the idea of psychiatry 
as clinically applied neuroscience, neuromonitor-

ing and neuromodulation for treating psychiatric 
disorders is a likely step.

The epilepsy electroceutical would use an in-
stance of a digital twin. The idea of a psychiatric 
electroceutical, as an instance of a digital twin, 
is ethically difficult. As with the ‘digital shadow’ 
relating to the model of a brain, and not an actual 
brain, so too the twin. In the case of epilepsy, a 
physical process within the brain can be predicted 
in which electrical activity overwhelms normal 
function, causing a seizure. The causality being 
detected in such a case is that of action potentials 
in neurons, and their cascading out of control. 
But the activity to be detected in, say, an instance 
of attention deficit hyperactivity disorder, or of 
obsessive compulsive disorder, or of depression 
seems significantly different to this. While it might 
be argued that the basis for each is neural, so 
they have that much in common, the step from 
brain altering to mind altering is significant. If an 
electroceutical were to be deployed to counteract 
serious depression, for instance, this would involve 
a neuromonitoring device recording brain activity. 
This would be processed, and the data compared 
with a (statistically) normal set of brain activity. 
At some threshold, a depressive episode would 
be detected and a neuromodulatory stimulus 
produced to arrest it. This would be the dynamic, 
bi-directional data flow in action.

Because of the loop discussed above, this rep-
resents an ethical concern because a psychiatric 
electroceutical would be based on a digital twin 
whose correlate in reality was not a human brain, 
nor the brain of the actual patient/device user, 
but that was a data model of a brain. In terms 
of a concrete person, modulating their brain to 
better approximate a fit with a model might not 
respect their clinical need, dignity, or rights. It 
might improve their experience, in that it might 
arrest a depressive episode, but it would represent 
an intervention upon their mind according to a 
model, not a specific diagnostic procedure. This 
dimension of digital twins is not a problem in their 
industrial context. In that context,

Digital Twin Instances could be interrogated 
for the current and past histories. Irrespective 
of where their physical counterpart resided in 
the world, individual instances could be inter-
rogated for their current system state: fuel 
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amount, throttle settings, geographical location, 
structure stress, or any other characteristic that 
was instrumented. Multiple instances of products 
would provide data that would be correlated for 
predicting future states. For example, correlating 
component sensor readings with subsequent fail-
ures of that component would result in an alert of 
possible component failure being generated when 
that sensor pattern was reported. The aggregate 
of actual failures could provide Bayesian prob-
abilities for predictive uses. (Grieves & Vickers, 
2017, p. 95)

Here, the lens provided by data provides a basis 
for statistical evaluation of component failures 
such that reasonable hypotheses about likeli-
hood of future failures. This allows planning for, 
say, maintenance and repair schedules. But what 
would the equivalent be in a psychiatric context? 
Personal, social, political, historical, economic 
conditions might all serve to prompt specific be-
haviors and attitudes in a person. All such factors 
would represent context for their modes of activity 
in the world at large, including on the neural level. 
Bayesian probabilities reconstructed from models 
of brain activity might not adequately capture 
the detail of a person’s behaviors, in that person’s 
context. Yet this is what the digital twin can offer, 
and as an instance of such a twin, an electroceuti-
cal for psychiatry would be limited. The ethical 
dimension is acute here because, unlike the digital 
shadow case, the digital twin has that dynamic, bi-
directional data flow and can act as a controlling 
instance of the physical object. The digital twin 
is active, and so must be regarded cautiously in a 
context of decision support.

It would be an exciting development in psychia-
try to herald new generations of diagnostic and 
therapeutic devices that could act on the brain. 
Considering such devices in terms of the brain 
data on which they would run ought to prompt 
reflection on the possibilities for such devices. 
The nature of brain datafication generates models 
of brain activity upon which subsequent devices 
operate. In developing devices that would oper-
ate as digital shadows, their basis in relating to 
models ought to be borne carefully in mind, and 
their role in decision support considered closely. 
In future developments of devices that would act 
as digital twins, this relation to models rather than 

individual person’s brains, ought to be paramount. 
To be ethically sound, such devices might require 
novel, and very detailed, consent procedures. Their 
potential use might require serious restriction. Or, 
technically, such device might need novel architec-
tures in order that brain data models feature as a 
part of a wider, more patient-specifically trained 
device.

Wider Ethical Concerns

This characterization of brain datafication in 
general highlights areas of ethical concern where 
digital models, shadows, and twins are consid-
ered. Beyond these, specific issues also attend the 
broader scheme especially in terms of databasing 
and the role of commercial interests (C, D, and 
E in Figure 1). These can be seen in terms of the 
following:

1. Freedom of choice

Where the presence of commercial interests in-
tervenes in how (C), (D), and (E) relate. Unlike 
the kinds of manipulation we are used to with 
marketing in general, those of neuromarketing 
would seek to operate on a sub-choice level, con-
ditioning preferences rather than servicing them, 
and operating on a range of data unknown to the 
individual targeted (Dijck, 2014). This behavioral 
level concern is underpinned by deeper issues as 
follows.

2. Consent, and autonomy

Williamson (2019) sounds a note of caution about 
the already developing desire to connect brain data 
with diagnosis of disorders such as attention defi-
cit hyperactivity disorder, to ‘sculpt’ educational 
performance, and to promote desirable brains 
states through the use of brain datasets and real 
time brain recording in non-clinical settings like 
classrooms. How practices like these could be 
developed ought to be carefully scrutinized as, 
similarly to 1, they provide an outline for influenc-
ing the basis for desire and perceived need prior 
to consideration.

Especially with respect to digital twins, the 
theoretical possibility of far-reaching neuro-
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manipulation through electrostimulation ought 
to be considered carefully. This is especially the 
case where interests beyond those of health, well-
being, or fundamental research are at play. While 
the rationale of science aiming at technology 
development might well be control of the natural 
world and the processes it consists in, this rationale 
could be detrimental when applied to human be-
ings. Control of the human brain, and thereby to 
some extent the human mind, ought to be some-
thing approached with utmost care and caution. 
Academic research continues on the concept of 
mental liberty, or the right to mental integrity (cf. 
Lavazza, 2018). That notwithstanding, the role 
of technology research into devices like electro-
ceuticals ought not to prompt a crisis for these 
ongoing ruminations. Until more is understood, 
and understood more deeply, development of such 
technologies ought to draw upon wide discussion 
of what’s at stake, rather than narrowly upon what 
can be done technically.

3. Monetization of scientific data for 
private profit

While 1 and 2 refer to the potential for capital 
to gain instrumental influence over human desire 
in some respect, there is a symmetrical systemic 
risk. If science in general has among its aims the 
better understanding of nature, and this manifests 
in capitalist systems as a technology industry 
centered on manufacturing devices to control that 
better understood nature, this could represent a 
privatization of that drive. It would be a sort of 
asset-stripping approach to otherwise public inter-
est science. The assets include not just intellectual 
property, but research capacity and infrastructure 
in terms of scientists and their labs.

Whereas fundamental curiosity is thought of as 
a major driver for scientific research, as already 
noted, sociopolitical and private aims also play a 
role especially via grant funding mechanisms. But 
an increasing distortion of financial incentives in 
favor of private companies, and especially private 
technology companies, represent a matter for 
ethical concern. The interests of ‘big tech’ closely 
align with those of fundamental brain research. 
But the motivation of curiosity is here replaced 

with instrumental control for market gain. The 
swaying of fundamental research according 
to political aims as encoded in public research 
funding calls (e.g., the Grand Challenges of the 
European Commission’s Framework Programme) 
has at least some democratic legitimacy. Those of 
private funding agencies are regulated too, as per 
charitable giving, or rules regarding trusts, and 
so on. The operations of private companies are 
often more opaque in being answerable really 
only to shareholders, and in terms of the bottom 
line. With booming power based in vast profits, 
the capture of fundamental research capacity is a 
genuine possibility. Especially where data is the 
lifeblood of brain research, this possibility makes 
neuro-research particularly vulnerable.

Dealing with these wider issues will require 
concerted sociopolitical efforts especially regard-
ing research governance. Detailed plans for sci-
ence–policy interfaces would be helpful, as those 
modelled on ‘co-responsibility,’ for example and 
championed by von Schomberg (2020). Addition-
ally, the social value of research may be in need of 
detailed discussion where novel forces including 
big tech come into play (cf, e.g., Ganguli-Mitra, 
Dove, Laurie, Taylor-Alexander, 2017). Which 
kinds of intellectual property organizations ought 
to be considered entitled to may become a salient 
point of reflection too, given the wider sorts of 
interests and the stakes discussed here and the 
intimacy of the human sciences at stake.

Conclusions

The central concern motivating this discussion 
was the role played by the algorithmic process-
ing of neural recordings, especially in terms of 
neuroscientific objectivity and its knock-on ef-
fects for psychiatric ethics. The topography of 
brain datafication as sketched in Figure 1 served 
to illustrate this by suggesting the ways in which 
data was implicated in the construction of the 
data it then went on to use. This highlighted an 
issue for the ways in which algorithmic processing 
appears to be deductive in character, but is in fact 
based on inductive inference from datasets itself 
curates. This presented unique ethical issues for 
brain datafication in clinical application. This is 
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because where datafication might be seen as desig-
nating disordered brain function, it might be seen 
as detecting mental illness as part of a diagnostic 
strategy. Moreover, where a putative psychiatric 
electroceutical were at stake, the state toward 
which a brain would be stimulated would itself 
be based in data with this loop of construction/
curation present. Such a state would not necessar-
ily be clinically justified, but rather endorsed by 
a somewhat opaque technical system. For human 
sciences, this is ethically problematic.

There are questions in need of further investi-
gation regarding the role of data in neuroscience, 
and its clinical application in psychiatry. This 
is most clearly the case where deep learning, or 
other algorithmic processing of brain recordings, 
becomes more central. Using ideas borrowed from 
manufacturing, some of the context for these 
questions has been highlighted. It remains to be 
seen how relationships among digital models, 
shadows, twins, human brains, cognitive activity, 
and physical behavior, can be made sense of. Help-
ful lessons can be drawn from other disciplines in 
which datafication has already played a major role, 
including genomics and sociology. There may not 
be a blanket answer to the questions of relations 
among data and what is datafied, with specific 
applications needed case-by-case evaluation. In 
general, where uncertainties exist and risks can 
be imagined there is a prima facie case for careful 
governance. This involves careful description of 
the uncertainties present in the field, normative 
analysis in order to map out the kinds of good 
we want to promote and challenges we wish to 
avoid, and a translation of the norms produced 
into actionable policies for the field. Given it is 
still relatively early days in the datafication of 
brains and the use of that data in practice, now is 
a good time to invigorate the kind of wide-ranging, 
inter-disciplinary, and multi-stakeholder scrutiny 
that can produce good governance. In doing this, 
development of critical evaluation can co-evolve 
with the datafication of relevant practices in neu-
roscience and its applications.
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