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A Supervisory Approach to Microgrid Demand Response and Climate
Control

Christos D. Korkas, Simone Baldi, Iakovos Michailidis, Yiannis Boutalis and Elias B. Kosmatopoulos

Abstract— Microgrids equipped with small-scale renewable-
energy generation systems and energy storage units offer
challenging opportunity from a control point of view. In fact, in
order to improve resilience and enable islanded mode, micro-
grid energy management systems must dynamically manage
controllable loads by considering not only matching energy
generation and consumption, but also thermal comfort of
the occupants. Thermal comfort, which is often neglected or
oversimplified, plays a major role in dynamic demand response,
especially in front of intermittent behavior of the renewable
energy sources. This paper presents a novel control algorithm
for joint demand response management and thermal comfort
optimization in a microgrid composed of a block of buildings,
a photovoltaic array, a wind turbine, and an energy storage
unit. In order to address the large-scale nature of the problem,
the proposed control strategy adopt a two-level supervisory
strategy: at the lower level, each building employs a local
controller that processes only local measurements; at the upper
level, a centralized unit supervises and updates the three
controllers with the aim of minimizing the aggregate energy
cost and thermal discomfort of the microgrid. Comparisons
with alternative strategies reveal that the proposed supervisory
strategy efficiently manages the demand response so as to
sensibly improve independence of the microgrid with respect
to the main grid, and guarantees at the same time thermal
comfort of the occupants.

I. INTRODUCTION

Increasing energy demand and stricter environmental reg-
ulations have enabled the transition from traditional electric
grids, in which centralized power plants transmit energy to
the users directly, to smart electrical microgrids where the
existing power grid is enhanced by distributed, small-scale
renewable-energy generation systems such as photovoltaic
(PV) panels, wind turbines, and energy storage units. Mi-
crogrids can be seen as miniature versions of the larger
utility grid except that, when necessary, they can disconnect
from the main grid and can continue to operate in ‘islanded
mode’ [1]. Despite their potential advantages, the use of
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renewable sources inserts uncertainty into the system, due to
their output profile which strongly depends on local weather
conditions: in some cases the lack of monitoring and control
of these energy sources might contribute to the instability of
the electric grid [2], [3]. For these reasons, one of the main
challenges in the development of microgrids is to deploy a
control system to manage controllable loads and guarantee
grid stability with minimum the energy cost.

However, energy cost is not the only variable to be consid-
ered: a critical factor in determining the energy consumption
optimization in a microgrid is the end-user (building occu-
pant) thermal comfort which, according to EN15251 standard
[4] should not be violated except for small intervals during
the building operation. In the current state-of-the-art, most
microgrid control systems consider only matching energy
generation and consumption, while thermal comfort of the
occupants is often neglected. Thermal comfort constraints
should be satisfied by all acceptable control strategies. While
dry-bulb temperature tracking has been used as a comfort-
maintaining criterion [5], neglecting humidity and radiant
temperatures can lead to insufficient estimation of actual
thermal comfort. The Fanger index [6] or adaptive thermal
comfort models [7] can yield a realistic estimate of thermal
comfort.

This paper presents a novel control algorithm for joint
demand response management and thermal comfort opti-
mization in microgrids composed of a block of buildings,
a photovoltaic array, a wind turbine, and an energy storage
unit. The proposed control uses a simulation-based opti-
mization procedure, with a model built using EnergyPlus
[8]. Differently from other simulation-based control strategy
for energy-efficient control of microgrids [9], [10], [11],
the proposed one aims at solving iteratively the optimal
control problem defined by the Hamilton-Jacobi-Bellman
equation. In contrast with Model Predictive Control (MPC)
strategies [12], [13], the resulting solution is a closed-loop
solution, which is shown, via extensive simulations, to be
robust to different weather conditions. Comparisons with
alternative strategies reveal that the proposed supervisory
strategy efficiently sensibly improve independence of the
microgrid with respect to the main grid, and guarantees at
the same time thermal comfort of the occupants.

The paper is organized as follows: Section II describes
the problem setting, the control objectives along with the
performance index, the microgrid and its attributes. Section
III presents the proposed supervisory control strategy and
Section IV presents the simulation results.
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Fig. 1: Microgrid setting

II. PROBLEM DESCRIPTION

In this section we present the setting of the joint de-
mand response and thermal comfort control problem. A
grid-connected microgrid, shown in Fig. 1, is composed of
N buildings and equipped with renewable energy sources
(photovoltaic panels and wind turbine) and an energy storage
unit for electricity (battery). For simulation purposes we will
consider three buildings, even if the proposed methodology
can be generalized to N buildings.

The emphasis of the work is thus on the development of
a control strategy for joint optimization of energy cost and
thermal comfort. The solution to the problem must take into
account the fact that renewable energy is available depending
on weather conditions.

Given the two control objectives, the performance index
to be optimized takes into account two terms: the energy
cost and the thermal comfort of the occupants. At time t the
aggregate performance index of a microgrid with N buildings
is defined as

TC(t) =
N

∑
i=1

(k ∗ESi(t)+(1− k)∗CSi(t)) (1)

where ESi is the energy score and CSi the thermal comfort
score of building #i. The energy and the comfort score are
typically scaled, so as to be of the same order of magnitude
and contribute fairly to the total score. According to the
importance that the designer wants to give to one term with
respect to the other the summation can be weighted using
the scaling factor 0 < k < 1.

A. Microgrid Attributes

An EnergyPlus model [8] simulates the complex energetic
and thermal behavior of each building composing the micro-
grid. The focus is on controlling the HVAC during summer,
in order to cool-climate the rooms in an energy-efficient
manner to a user comfort satisfying level. In the EnergyPlus
model each one of the three buildings is composed of ten
thermal zones, and each thermal zone is equipped with an
HVAC unit. We consider the scenario where each building
has different size and thus different energetic needs: every
HVAC is opportunely dimensioned according to the size of

the thermal zone. The operation of the each HVAC unit has
one manipulable input that is the temperature set point (in
oC) with which each unit is operating. In our specific case,
the daily energy consumption of the aggregate microgrid is
of the order of 80-130 kWh, while the PPD is a percentage
from 0 to 100%. Due to the similar order of magnitude, the
weight factor k in (1) is chosen equal to 0.5, so that energy
cost and thermal comfort contribute equally in the total cost.
In the following, more details of the EnergyPlus model are
given.

In order to make the joint demand response and thermal
comfort optimization tasks more realistic, the three buildings
are assumed to have different occupancy schedules, which
are shown in Table I: this heterogeneous occupancy schedule
might arise for example from the different use of each
building.

B. Renewable Energy Sources

The EnergyPlus simulator adopts historical weather data
from summer 2009. The data have been taken from the
EnergyPlus website [14] and refer the city of Athens. The
4th of July was selected, as a typical Greek summer day. The
EnergyPlus data provide us with all the necessary weather
information as solar radiation and wind speed in order to
calculate renewable energy. The amount of PV generation Ps
can be calculated by:

Ps = ηSIa(1−0.005(Tamb−25)) [kWh] (2)

where, η is the conversion efficiency of PV array (%), S is
the array area (m2), Ia is the solar radiation (kW/m2), Tamb is
the outside air temperature (oC). In this paper, it is assumed
that sum of total insulation are falling on the PV array,
and the angle of incidence is not considered. Conversion
efficiency η is equal with 20% which is a typical value and
the array area S is equal with 200 m2.

The wind turbine produces energy PM based on the fol-
lowing equation:

PM = 1/2ρπR2V 3CP(λ ,β ) [kWh] (3)

where V is wind speed in [m/s], ρ is the air density in
[Kg/m3], R is the blades radius in [m] and CP the power



TABLE I: Occupancy Schedule

No. of Thermal Zones Occupancy Schedule
Building 1 10 thermal zones 7am - 6 pm
Building 2 10 thermal zones 6am - 2 pm and 5pm - 10pm
Building 3 10 thermal zones 0am - 8am and 2pm - 5pm and 9pm - 12pm

coefficient. We assume ρ = 1.1839Kg/m3, which is the
common value of air density at sea level and 25oC, R = 20m,
and a constant CP = 0.4.

Finally, the battery is charged when there is excess of
energy coming from the renewable resources and discharged
when the energy coming from the renewable resources is
not enough to satisfy the energy demand of the microgrid.
The capacity of the battery unit is set to 150 kWh. The above
equations and parameters were adopted from [15], [16], [17],
[18].

III. CONTROL STRATEGY

A. PCAO Algorithm

The problem consists in finding an optimal strategy for the
HVAC set points such that the combined performance index
defined in (1) is minimized. The problem is thus formulated
as an optimal control problem aiming at minimizing the
index

J =
∫ Tf

0
Π(x(t))dt (4)

s.t.

ẋ = f (x)+Bu, B = [0 I]′ (5)

where Π(·) is the analytical expression of the performance
index (1), where x is an augmented, with state and control
variables, vector of the transformed system dynamics while
u is the time derivative of the actual control signals, as
demonstrated in 5. The function f (x) represents the micro-
grid dynamics, which are implemented inside the EnergyPlus
model, but that are unknown for our purposes. Finally Tf
is a control horizon over which we have reliable weather
forecasts (typically 2-3 days). Using dynamic programming
arguments, we know that the optimal strategy u∗ satisfies the
Hamilton-Jacobi-Bellman (HJB) equation

min
u

{
∂V ∗

∂x
( f (x)+Bu)+Π(x)

}
(6)

The difficulty in solving the HJB equation in large-scale
systems (like our microgrid) was known to Bellman itself,
which coined the term ‘curse-of-dimensionality’ [19]: in
order to overcome such difficulties, the PCAO (Parametrized
Cognitive Adaptive Optimization) algorithm parametrizes the
solution of the HJB equation (6) as V ∗(x) = z′(x)Pz(x) and
the optimal control strategy via u∗=− 1

2 B′ ∂V ∗
∂x , P is a positive

definite matrix. More details for the function z(·) can be
found in [20], [21]: in our specific microgrid case we found
that a linear transformation z(x) = x is sufficient to achieve
important improvements (as demonstrated in Section V).
With such parametrization, the problem of solving the HJB

equation is recast as the problem of finding the matrix P
(and thus the strategy u) that better approaches the solution
of the HJB equation. The PCAO algorithm defines the close-
to-optimality index (mutated for the principle of optimality
[19])

ε(x,P) =V (x(k+1))−V (x(k))+
∫ k+1

k
Π(x(t))dt (7)

The solution of the HJB equation (6) brings (7) to zero: the
PCAO algorithm, whose steps are presented in [22], [20],
[23] updates at every time step the strategy parametrized by
P̂ in an attempt to minimize the close-to-optimality index
ε(P̂) and to make P̂ converge as close as possible to the
solution of the HJB equation.

B. Feedback vector

Each local P-CAO algorithm employs a controller based
on a local feedback vectors. The structure of each local
feedback vector is the following:
• 3 measurable external weather conditions: outside tem-

perature, outside humidity and solar radiation.
• 6 forecasts for the mean outside temperature in the next

6 hours.
• 6 forecasts for the mean solar radiation over the next 6

hours.
• The n temperatures of the thermal zones (n is the

number of thermal zones).
• The n humidities of the thermal zones.
• A constant term (since the equilibrium of the system is

not in the origin).
• The n set points of the HVAC devices in the thermal

zones.
• The n detectors of occupancy in the thermal zones.
Hereafter we explain with more details the choice of the

feedback vector: the zone temperature and humidities are a
natural choice for the thermal state of the building; outdoor
weather conditions both in the present and the future help to
achieve a pro-active control strategy. Finally, the information
about the occupancy of a thermal zone is provided as a
feedback component to the control strategy.

C. Simulation based Optimization

Using the PCAO algorithm, as presented above, a double
feedback loop procedure runs in each building (cf. Fig. 2a).
The primary feedback loop runs in real-time, with actions
applied to the actual building and measurements collected. In
parallel with the primary loop, a secondary simulation-based
loop interacts with the EnergyPlus model of the building, in
order to find better strategies at the next time step. With
the term ‘simulation-based’ design we refer to a method



where the optimization of the cost function involves an
iterative process of system simulation/controller redesign.
At this point is crucial to introduce and explain two time
metrics. The control horizon and the simulation horizon.
By control horizon we refer to the time interval of HVAC
management. For example in our test case, the HVAC set
points are changed by the algorithm every 10 minutes. On
the other hand, as a simulation horizon we refer to the
whole duration of the experiment. Usually, as a simulation
horizon we refer to one day or more. This two-loop design
is implemented in each building separately. The secondary
loop, which is implemented based on the EnergyPlus model,
operates in order to find a better controller for the real
system. Simultaneously, the primary loop/system, uses the
best so-far controller to manage the HVAC. The above two-
loop procedure can be investigated better in Figure 2a.

Remark 1: The proposed control strategy differs from
the classical rolling (or receding) horizon philosophy. In
particular, the objective is to update at every time step a
feedback controller, rather then solving at every time step an
open loop control problem. After convergence, it was verified
via simulations that the proposed feedback solution provides
robustness to the resulting HVAC controller, also in the
presence of different weather conditions than the one used for
the design (cf. the results in Table II). As a result, simulation
results reveal that one can realistically assume keep the same
control strategy over long horizons (indicatively, one week)
without the need of redesign the control and without sensible
loss of performance.

D. Supervisory Logic

The purpose of this work is to provide a control archi-
tecture that that be scalable to an arbitrary number N of
buildings: for this reason, a centralized control architecture
was discarded and the following bi-level supervisory strategy
was implemented for the control and manipulation of each
building/HVAC unit of the microgrid. The two levels can
be identified as: a local building level and an aggregate
microgrid level. As compared to a fully centralized strategy,
the computational and communication requirements of the
proposed control architecture are reduced. In Figure 2b
the logic behind the supervisory strategy that we adopt is
presented. In each building one local controller and one local
optimization (PCAO Algorithm) is operated. The goal of
each optimization algorithm is to optimize the performance
of the building by taking into account only local informa-
tion such as the thermal state of the building, occupancy
information, and weather conditions. Each local controller
communicates with the central node and offer information
about the cost that the proposed control strategy is achieving
and achieved in the past. The central node concentrates this
information from each different building, calculates the total
cost and decides if the ‘team’ of controllers achieved the
best aggregate performance. The central node, informs the
local levels with a binary signal, if the the best performance
was achieved. Based on the Figure 2a the supervisory logic
interacts only in the red circle (memorization of the best

strategy). This simple strategy has been shown to be effective
in achieving a good global performance: in particular, section
V will show that, when a centralized architecture can be
implemented, the performance of the centralized and of the
proposed supervisory architecture (denoted as Supervisory
PCAO) are comparable.

Fig. 4: Energy absorbed from the main grid and Mean PPD

IV. SIMULATION RESULTS

This section describes the simulation results for the pre-
sented microgrid test case. The results of the optimization
of the demand response and of the thermal comfort achieved
via the Supervisory PCAO algorithm will be exhibited as
compared with 2 rule-based control strategies: RBC1 and
RBC2.

A. Rule-based demand response programs

For comparison reasons, two Rule Based Controllers
(RBC) implementing simple but common demand response
programs are adopted. The RBCs employ a simple control
strategy, which consists of keeping the HVAC set points
of each thermal zone constant to 24oC (RBC1) or to 25oC
(RBC2) during occupancy hours. Such control strategies, yet
simple, provide acceptable (but far from optimal) perfor-
mances in terms of the total score. In order to achieve some
energy savings (especially during night), the HVAC set point
manipulation of RBC1 and RBC2 is combined with control of
windows. Every time that HVAC units operate, windows are
closed. When the HVAC unit are switched off, the window
control is as follows:{

open window if Tamb < Tz and Tz > 20
close window otherwise (8)

where Tamb is the outside temperature and Tz the temperature
of the thermal zone. Taking into account that we want to
cool-climate the buildings, rule (8) is meant to exploit the
natural ventilation effect occurring typically at night. The



(a) Local simulation-based optimization (b) Supervisory control strategy

Fig. 2: Simulation based Optimization Procedure and Supervisory Control Logic

(a) Building 1 (b) Building 2 (c) Building 3

Fig. 3: (a)-(b)-(c): Energy Consumption during the day, for the three buildings of the microgrid test case

upper bound of 20oC is set in order to guarantee thermal
comfort.

B. Comparison results

Figure 3 shows the energy consumption and PPD un-
der three control strategies (RBC1, RBC2 and Supervisory-
PCAO). The distribution of solar and wind energy under
the Supervisory-PCAO control strategy is also shown (the
distribution of renewable energy under RBC1 and RBC2 is not
shown for better readability of the plots). As mentioned, the
renewable energy is distributed proportionally to the energy
of each building. It can be noted how the Supervisory-PCAO
algorithm is actively and dynamically managing the demand
response side via HVAC regulation. In particular, note that
in the third building the RBCs do not switch off the HVAC
between 2 pm - 5 pm: this action has been implemented on
purpose, and it emulates the fact that people usually do not
switch off HVAC if they leave the building for short periods
of time. The Supervisory-PCAO algorithm, on the other
side, realizes that by (almost) switching the HVAC off, the
energy consumption of the microgrid can be reduced without
sacrificing the PPD index. Finally, Figure 4 demonstrates
the ability of Supervisory-PCAO to request 25% less energy
absorbed from the main grid as compared scenarios RBC1,
while achieving at the same time time a better PPD (more
than 20% improvement). On the other hand, if Supervisory-
PCAO requests similar levels of energy absorbed from the
main grid as scenarios RBC2, the PPD is improved by more
than 35%.

Figure 5 examines the exploitation of the renewable energy
resources and the charging/discharging of the battery. One
can notice that both RBC2 and Supervisory-PCAO algorithm

Fig. 5: Battery evolution during the day

perform better than RBC1. In fact, RBC2 and Supervisory-
PCAO manage to charge the battery to a greater extent, so
as to exploit this energy in the evening when no PV energy
is available. In this respect, Supervisory-PCAO outperforms
RBC2, as it achieves a higher charging peak and uses the
battery for a longer time (notice in particular the charging
phase at around 3pm). As a result, Supervisory-PCAO ex-
ploits better the renewable energy resources and with reduced
energy consumption.

To evaluate the robustness of the proposed solution in
front of different weather conditions, 7 different sets of 3
summer days are used for validation, with different envi-
ronmental conditions (external temperature, humidity, solar
radiation, and wind) than July 4th. The controller obtained
for July 4th was used for all scenarios and Table II shows
the improvement of such controller with respect to the 2
rule-based controllers. In each case, the Supervisory-PCAO



TABLE II: PCAO Improvement (Total Cost) with respect to
RBC1 and RBC2 (results validated over 7 different sets of 3
days)

Case Improvement wrt RBC1 Improvement wrt RBC2
Building 1 20-25% 15-20%
Building 2 23-27 % 18-21%
Building 3 27-32 % 22-25%
Microgrid 21-25 % 18-22%

strategy attain relevant improvements, from which we derive
the consistency and robustness of the proposed results.

C. Comparisons against a centralized architecture

As a final comparison, the proposed supervisory strategy
is compared with a PCAO centralized strategy, proposed in
[22], using information stemming from the entire microgrid.

TABLE III: Comparison (Total Cost) between supervisory
and centralized PCAO strategy with respect to RBC2 (results
validated over 7 different sets of 3 days)

PCAO-Strategy Improvement wrt RBC2 Iterations
Supervisory 18-22 % ≈ 250
Centralized 22-26 % ≈ 550

In Table III the comparison between the two strategies
is presented. The Centralized-PCAO strategy offers better
performance than Supervisory-PCAO, but at the expense of
slower convergence. It is to be expected that, with data
stemming from the entire microgrid, the Centralized-PCAO
is not scalable to microgrids with an increasing number of
buildings.

V. CONCLUSIONS AND FUTURE WORK

This paper presented a novel control algorithm for joint
demand response management and thermal comfort opti-
mization in a microgrid composed of a block of buildings,
a photovoltaic array, a wind turbine, and an energy storage
unit. In fact, thermal comfort plays a major role in dynamic
demand response, especially in front of intermittent behavior
of the renewable energy sources. Comparisons with alterna-
tive strategies revealed that the proposed supervisory strategy
efficiently manages the demand response so as to sensibly
improve independence of the microgrid with respect to the
main grid, and guarantees (and improves) at the same time
thermal comfort of the occupants.

Future work will include comparison with more advanced
demand response programs (e.g. obtained via global op-
timization algorithms), and inclusion of plug-in electrical
vehicles acting as an additional load and additional storage.
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