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Summary

This thesis introduces the relevance of radar systems in the realm of human activity
recognition (HAR) in Chapter 1. The study touches upon the complex understanding of
continuous human activities and the existing challenges and gaps in current
methodologies, hinting at the innovative technical approaches that are to be detailed in the
following chapters.

The technical foundation of the research is given in Chapter 2 by introducing
distributed ultra­wideband (UWB) radar systems. These systems, especially when
spatially distributed, bring a depth of information by integrating data from multiple radar
nodes and spatial perspectives. There is a significant emphasis on how different fusion
techniques, both late and early, play a crucial role in harnessing data effectively,
particularly in the context of HAR.

A critical contribution in the study is the potential to deviate from conventional radar
data domains, such as micro­Doppler spectrograms for activity recognition. The research
in Chapter 3 highlights an alternative approach, rooted in the radar phase information from
a high­resolution range­time map, which bypasses the limitations of common FFT­based
radar data domains. This methodology, paired with the histogram of oriented gradients
(HOG) algorithm, showcases promising results that can be particularly interesting for real­
time applications with computational constraints.

The research in Chapter 4 underlines the efficacy of employing a network of spatially
distributed UWB radars for continuous HAR. These networks address the downsides of
using a single sensor, like unfavorable aspect­angle observations. The study delves into
fusion methodologies and their implementation in classifying activities, particularly using
recurrent neural networks. To assess these continuous recognition systems, novel evaluation
metrics are proposed, offering a deeper insight into the practicality and effectiveness of such
systems with temporal classification capabilities.

Indoor radar networks often face multipath challenges. The study in Chapter 5 not
only identifies this challenge, but also uses the multipath components by leveraging these
typically unwanted phenomena to enhance classification capabilities. Through a pipeline
that isolates, determines, and analyzes different propagation pathways, there is an evident
boost in the network’s perception. This novel approach showcases a significant
performance upward trend, especially when employing convolutional neural networks.

Chapter 6 of the research focuses on the complexities of HAR in crowded
environments. The study introduces the challenges of differentiating the activities of
walking versus standing idle for multiple individuals simultaneously. The investigation
shows initial promising results by using synthetic data generated from experimental
recordings, by employing a regression­based approach and leveraging diverse techniques
such as LSTM, CNN, SVM, and linear regression.

In conclusion, the research offers a reflective glance at the breakthroughs achieved in
the domain of radar­based HAR in Chapter 7. The significant contributions and
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advancements of the study are highlighted. Looking ahead, the chapter identifies research
areas for exploration and further improvement.



Samenvatting

In dit proefschrift zal de relevantie van radarsystemen met betrekking tot human activity
recognition (HAR) worden geïntroduceerd in Hoofdstuk 1. De studie raakt aan het
complexe begrip van continue menselijke activiteiten en de bestaande uitdagingen en
tekortkomingen van huidige methodes en verwijst naar de innovatieve aanpakken die in
volgende hoofdstukken aan bod zullen komen.

De technische basis van het onderzoek wordt gegeven in Hoofdstuk 2 door de
introductie van gedistribueerde ultrabreedband (UWB) radarsystemen. Deze systemen,
met name wanneer zij ruimtelijk gedistribueerd zijn, bieden diepgaande informatie door
middel van het integreren van data van verscheidene sensoren en perspectieven. Extra
nadruk wordt gelegd op hoe verschillende fusietechnieken, zowel laat als vroeg, een
cruciale rol spelen in het effectief benutten van beschikbare data, met name in de context
van HAR.

Een cruciale bijdrage van de studie is het potentieel om af te wijken van conventionele
radardatadomeinen zoals micro­Doppler spectrograms voor activiteitenclassificatie. Het
onderzoek in Hoofdstuk 3 belicht een alternatieve aanpak, geworteld in de fase­informatie
in een afstand­tijdweergave met hoge resolutie, welke de beperkingen van gebruikelijke
FFT­gebaseerde radardatadomeinen omzeilt. Deze methodologie, in combinatie met het
histogram of oriented gradients (HOG) algoritme, toont veelbelovende resultaten die met
name interessant kunnen zijn voor realtime toepassingen met rekenkrachtbeperkingen.

Het onderzoek in Hoofdstuk 4 onderstreept de effectiviteit van de benutting van een
netwerk van ruimtelijk gedistribueerde UWB radars voor continue activiteitenclassificatie.
Zulke netwerken bieden uitkomst voor de nadelen van het benutten van individuele
sensoren zoals observaties onder ongunstige aspecthoek. De studie verdiept zich in
fusiemethodes en hun implementatie bij het classificeren van activiteiten, met name bij
recurrente neurale netwerken. Ter beoordeling van deze continue classificatiesystemen
worden nieuwe evaluatiemetrieken voorgesteld, welke een dieper inzicht bieden in de
geschiktheid en effectiviteit van zulke systemen met tijdsafhankelijke
classificatiemogelijkheden.

Overdekte radarnetwerken hebben vaak te kampen met uitdagingen op het gebied van
multipath. De studie in Hoofdstuk 5 identificeert niet alleen deze uitdagingen, maar benut
de doorgaans ongewenste componenten van het multipath­signaal ter verbetering van het
classificatievermogen. Door een verwerkingsmethode die verschillende propagatieroutes
isoleert, herkent en analyseert, is er een duidelijke vooruitgang in de perceptie van het
netwerk te zien. Deze nieuwe aanpak toont een significante opwaardse trent in prestaties,
met name bij het gebruik van convolutionele neurale netwerken.

Hoofdstuk 6 van het onderzoek legt de aandacht op de complexiteit van HAR in
drukbezochte omgevingen. De studie introduceert de uitdagingen omtrent het
onderscheiden tussen lopen en stilstaan voor meerdere personen tegelijkertijd. De
veelbelovende eerste resultaten van de studie zijn behaald met een aanpak gebaseerd op
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regressie, waarbij synthetische data, gegenereerd uit experimentele opnamen, is gebruikt
en waar gebruik is gemaakt van diverse technieken zoals LSTM, CNN, SVM en lineaire
regressie.

Concluderend biedt het onderzoek in Hoofdstuk 7 een terugkijkende blik op de
doorbraken die behaald zijn op het gebied van radargebaseerde HAR. De belangrijkste
bijdragen en vorderingen van het onderzoek worden benadrukt. Vooruitkijkend worden in
dit hoofdstuk relevante onderzoeksthema’s voor verkenning en verbetering
geïdentificeerd.
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1
Introduction to Distributed

Radars for Activity
Recognition

This chapter provides an overview of the context and motivation behind the utilization of
radar systems for human activity recognition (HAR). It introduces the concept of a human
ethogram which is related to the characterization of continuous sequences of human
activities. Additionally, the chapter discusses various challenges, open problems, and the
chosen research approach that will be addressed in subsequent chapters. Finally, the
chapter concludes by presenting an outline of the upcoming content of the entire thesis.

Parts of this chapter have been published in:

R. G. Guendel, F. Fioranelli, and A. Yarovoy, “Derivative Target Line (DTL) for Continuous Human Activity
Detection and Recognition”, in 2020 IEEE Radar Conference (RadarConf20), 2020.
I. Ullmann, R. G. Guendel, N. C. Kruse, F. Fioranelli and A. Yarovoy, “A Survey on Radar­Based Continuous
Human Activity Recognition”, in IEEE Journal of Microwaves, 2023.
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2 1. Introduction to Distributed Radars for Activity Recognition

1.1. Radar Systems for Human Activity Recognition
Radar technology has emerged in recent years as a prominent and transformative force in
diverse industries beyond the traditional domains of defense and security, such as
automotive, human­machine interaction, and contactless healthcare provision. This
significant progress can be attributed to the development of compact and cost­effective
radar systems, which are more and more equipped with software­defined capabilities
increasing their flexibility. As a result, radar applications have expanded beyond
traditional domains, now encompassing crucial areas like medical radar, automotive radar,
human­computer interaction, and smart environments. These noteworthy characteristics of
modern radar devices, including their accessibility, reliability, portability, and
affordability, make them highly suitable for seamless integration within living
environments such as residences, educational institutions, and healthcare facilities,
amongst others [1–4].

At its core, radar operates by emitting electromagnetic waves and analyzing the return
signals to estimate the position of targets in the scene of interest. By measuring frequency
shifts in consecutive radar waveforms caused by the Doppler effect, which occurs due to
targets’ motion, radar enables accurate estimation of targets’ velocity. Direct Doppler &
velocity estimation measurements play a crucial role in radar systems and have extensive
applications in various domains [5]. Notably for this thesis, Doppler and micro­Doppler
(µD) measurements with radar systems are essential in the context of human activity
recognition (HAR), whereby µD defines the time­varying frequency shift over slow­time
that can be extracted from the complex radar return signal by typically applying the
short­time Fourier transform (STFT) [6–8].

The broad scientific literature has proposed a wide variety of approaches and sensing
technologies for HAR. Nevertheless, based on the author’s current knowledge, none of
these approaches have succeeded in achieving optimal performance while simultaneously
addressing crucial challenges such as standardization, universal adoption, and system
robustness, resulting in the absence of a clear frontrunner. For all intents and purposes, the
selection of a suitable sensing system for HAR depends on several factors, including
budget constraints, user preferences, and the user’s living situation. In essence, existing
HAR approaches can be broadly categorized as wearable or contactless (non­wearable)
devices, where the latter can be further categorized into ambient sensors and camera
systems [9, 10].

Wearable solutions, such as those based on accelerometers, gyroscopic and
magnetometer sensors, emergency buttons, or smart clothing, potentially involving
smartphones, offer a certain ease in deployment. Positioned on anatomical sites like the
chest, waist, armpit, or back, or even carried residing inconspicuously within pockets, their
primary advantage lies in the minimization of interference from extraneous sources such
as other individuals or pets. Yet, the limitations are apparent and in their intrusive nature,
potential for physical damage, and the imperativeness of consistent usage or carriage
render them less than ideal. Specifically, for populations grappling with cognitive
impairments, the utility of emergency­button­based systems remains questionable given
the potential oversight in their deployment during exigent situations [11–13].

Then, ambient sensors, such as pressure sensors and acoustic sensors, have established
themselves as reasonable alternatives to the previously mentioned solutions. However,



1.1. Radar Systems for Human Activity Recognition

1

3

pressure sensors cannot easily distinguish between pressure resulting from a person’s
weight and other factors, such as pressure caused by domestic animals. On the other hand,
acoustic sensors are sensitive to loud or environmental noise. It is also important to note
that the effectiveness of these sensors relies on the individual’s consistent and proper use
[14].

Remote/contactless sensors, given their non­intrusive nature, are often the choice for
individuals who prefer an independent lifestyle even when aging. Their main advantage is
that they do not depend on the user’s direct interaction or compliance, thus facilitating
uninterrupted daily routines. When faced with interference from multiple sources or
subjects, strategically placing several sensors, each with its unique perspective, can
effectively address this challenge. Among these, cameras stand out, offering
high­resolution visuals, but not without their set of complications. They often confront
problems like excessive details in the scene, occlusions, and variable light conditions. Not
to mention, the inherent risk of breaching privacy is attached to camera­based solutions.
Although some contemporary models use human body outlines for preserving privacy
during motion detection, it is still a concern for many. Similarly, other sensor variants,
whether they operate based on vibration detection or sound recognition, come with their
specific sets of challenges. For instance, infrared sensors demand precise temperature
configurations to deliver reliable results [15, 16].

In the sphere of contactless monitoring, radar systems, especially those that operate on
microwave or millimeter­wave frequencies, present a distinctive proposition. Their
defining feature revolves around their capability to detect subtle motions, respiratory
patterns, and sometimes even heartbeats. What sets radar systems apart is their ability to
detect through some obstructions, ensuring the detection of presence or motion even if
hidden [17]. Unlike cameras, which may inadvertently infringe on privacy by capturing
distinguishable images, radars sidestep this issue altogether. They are resilient to light
variations, providing consistent monitoring whether in darkness or well­lit conditions.
However, they are not devoid of challenges. Differentiating between closely placed
objects or dealing with electronic disruptions, including radio interference by other radar
or communication systems, often requires detailed calibration and adjustments. Yet, their
diverse use­cases, from detecting falls to comprehensive health assessments, highlight
their transformative potential in the realm of indoor monitoring [18–20].

Radar technology offers unique advantages that can complement other prior mentioned
sensor modalities as a sensor network or operate on its own. For example, radar, being a
non­contact device, remains unaffected by external lighting conditions, including
darkness. Moreover, depending on the specific radar system, such as its operating
frequency, resolution in ranges, and Doppler capabilities, it can even penetrate opaque
objects like tables or walls. Furthermore, radar­based solutions ensure complete privacy
protection for individuals under monitoring, as the backscattering signals of radar can
detect human motion irrespective of clothing, making them particularly suitable for
sensitive environments like hospitals, assisted living facilities, restrooms, and bedrooms,
where the use of video cameras might cause discomfort [21]. Deploying radar­based
in­home systems for HAR is an integral aspect of the ”aging­in­place” paradigm, offering
enhanced security and safety for residents and their family members. Although wearable
devices capable of identifying movements, especially falls, do exist, they are reliant on
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battery operation and user compliance, whether they are push­button devices or based on
accelerometers. In contrast, radar provides a non­obstructive motion sensor technology
that can promptly alert caregivers and first responders to critical events related to the
health and well­being of the individual under observation. Moreover, radar­based sensing
for smart environments and gesture recognition for device control has the potential to
revolutionize our way of life and improve global quality of life by transforming
interactions with our surroundings. While radar’s applications in civilian domains started
approximately two decades ago with life­sign detection, ongoing research encompasses a
wide range of applications, including monitoring of daily activities within smart
environments, home security, assisted living, remote health monitoring, and
human­computer interfaces. Notably, non­contact measurements of heart rate and
respiration, including the detection of related conditions such as sleep apnea or sudden
infant death syndrome, as well as fall detection, have been the primary focus in assisted
living and remote health applications [22, 23].

The development of radar­based remote health monitoring technologies can have direct
benefits for the aging population, which is projected to reach one billion worldwide by
2030. This can help mitigate the risks of critical events such as falls, but also provide a
more general technology framework to monitor the well­being of vulnerable individuals.
More in detail, according to the World Health Organization (WHO), falls are defined as
“events that result in a person inadvertently coming to rest on the ground or at a lower
level.” Falls frequently lead to fatal injuries. In 2012, a report from the Centers for Disease
Control and Prevention (CDC) revealed that 24,190 U.S. (United States) adults aged 65 and
older died due to falls [24]. Similarly, concerning incidence rates are reported in Western
Europe, with 13,840 falls per 100,000 people among those aged 70 years and older. The
Netherlands has an average rate of 13,623 cases per 100,000 people and 145.5 deaths per
100,000 people. Notably, the Netherlands has a concerning case fatality rate ( Incidence rate

Death rate
) of

0.011, ranking third after Switzerland and Norway in terms of higher case fatality rates [25].
TheNational Vital Statistics System also highlights the financial impact of falls. In 2015, the
direct medical costs amounted to $637.5 million for fatal falls and $31.3 billion for non­fatal
fall­related injuries among U.S. adults aged 65 or older [26]. Falls significantly contribute
to morbidity and disability among the aging population. Another shocking statistic indicates
that more than one­third of individuals aged 65 years or older experience falls annually, with
half of these cases involving recurrent falls [27].

It is evident that prompt interventions following a fall can play a pivotal role in reducing
subsequent complications and improving the autonomy and well­being of the elderly. This
understanding has led to the ascent of fall detection as a crucial facet of health monitoring
research. This rise is in tandem with advancements in sensing technologies tailored for
telemedicine and the design of intelligent living spaces [11].

Recreating genuine fall scenarios for research and data acquisition presents its own set
of challenges, as induced falls might not truly mirror real­life incidents, with fall events
being rare and much less frequent than other activities. Recognizing this gap, a
comprehensive study by Rantz et al. [28] was undertaken. The researchers incorporated
stunt actors who were trained to mimic realistic fall patterns observed among seniors.
They followed two meticulously crafted protocols: the first represented 21 diverse fall
types, and the second portrayed 14 motions that could be potentially misinterpreted as
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falls. Devised with clinical insights, these protocols aimed to encapsulate the myriad ways
seniors might experience falls, from simple missteps to intricate scenarios such as
unintentional descents from furniture. It is noteworthy to mention that these
demonstrations spanned beyond the confines of clinical settings, extending to the natural
living spaces of the elderly. Such an approach ensured the system’s aptitude in accurately
identifying authentic falls, fostering timely alerts for medical personnel.

The need to streamline healthcare expenses, coupled with aspirations to extend
medical provisions to underserved rural territories, has kindled interest in the adoption of
radar­driven gait analyzes. Such analyses find utility in diverse medical realms, from
predicting fall susceptibilities, gauging recuperation post­injuries, tracking neuromuscular
ailment trajectories, appraising therapeutic outcomes, conducting post­stroke evaluations,
to deciphering anomalies in gait for therapeutic and rehabilitative intents [29].

Furthermore, broader applications of HAR are being explored in the context of security
and energy­efficient smart home systems. For example, occupancy sensing, or alternatively,
vacancy sensing, can be employed to intelligently control home systems, such as lighting
or heating, ventilation, and air conditioning (HVAC) units [30]. In addition to conventional
motion detectors that are triggered by fine­scale motion, such as turning the pages of a
book, radar Doppler sensors can detect and classify even larger­scale activities and vital
signs. The unique µD signature patterns exhibited by individuals can also be exploited to
identify specific individuals [31].

Building upon these foundational applications, radar sensing in HAR extends beyond
basic home automation, delving into advanced realms of data classification and
monitoring models. These applications of radar sensing in the context of HAR require
some form of classification algorithm to assign the measured/processed radar signature to
a class of interest. Initially, such algorithms were typically chosen amongst the many
options proposed within the supervised learning framework, such as nearest neighbor
(NN), support vector machine (SVM), and classification trees, among others [32]. In
recent years, there has been significant advancement in deep neural networks (DNNs),
particularly in their applicability to state­of­the­art radar data domains. Specifically, these
advancements have enabled the exploitation of the µD signature to enhance classification
performance [15]. They allow precise tasks such as counting individuals in a room,
recognizing individuals within groups, and even enabling vital sign monitoring at the same
time [33], and identifying intruders based on known signature profiles [34]. Notably, the
µD signature also captures distinctive characteristics when an individual carries a potential
weapon, such as a rifle. This may allow for active shooter recognition and differentiation
between armed and unarmed personnel, amplifying security capabilities [35, 36].

In summary, this initial section highlighted the importance of radar systems and their
applications, particularly in the field of HAR. It emphasized the significant number of falling
events and their dire consequences among individuals aged 65 years and above in the U.S.,
as well as among those aged 70 years and above in Europe. These statistics served as a
compelling reminder of the potential impact that modern contactless sensing technology
can have on enhancing the independent living lifestyle of the aging and most vulnerable
segments of the population.



1

6 1. Introduction to Distributed Radars for Activity Recognition

1.2. The Human Ethogram
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Figure 1.1: The Human Ethogram illustrates continuous two­way sequence recognition, detailing how sequential
activities correspond to states like Standing, Walking, Sitting, and Laying. Certain pathways are highlighted as
mutually exclusive. For instance, from a Laying state, one cannot transition into a fall, and consecutively sitting
down does not establish a Sitting state. On the other hand, continuous bending leads to the Standing state. It is
important to note that the Sitting state away from the radar is excluded in this study due to concerns about radar
penetration through the chair’s back [37].

This section introduces the Human Ethogram, also known as the human motion state
representation, which represents a Markov chain of possible movements based on activity
sequences for human activity recognition (HAR). Human activities can be typically
categorized into states, namely, Walking, Standing, Sitting, and Laying, amongst others,
where the latter state also corresponds to the status after falling. An example of a state
diagram illustrating these activities can be found in Fig. 1.1, which focuses on two­way
gross­motor activities, where the individual is either facing the radar or turned away from
it [38, 39].

The ethogram can be used to model transitions between different human activities in a
sequence. For instance, a person can transition from walking to falling and subsequently
stand up after a fall. However, it is not possible to stand up while already walking and being
in a standing posture. Similar situations apply to in­place activities. For example, a person
can transition from a sitting position to a standing position by performing a standing up
action or vice versa from a standing position to a sitting position by a sitting down action.
However in this regard, sitting down can only occur from a standing posture, while other
postures are mutually exclusive.

These concepts found novel applications where possible activities are limited according
to a­priori observed information, beneficial for classifying activity sequences. Furthermore,
the aforementioned Human Ethogram enables the system to limit the options of possible
classes for classification, which can boost its perception performance. An example can be
found in Fig. 1.2 and more insights in [40].

The Human Ethogram, a Markov chain representation of a person’s activity pattern, is
deemed crucial for comprehensive monitoring. These patterns serve as measurements for
logical sequences of activities outlined in theHuman Ethogram, enabling the determination
of (1) States and (2) Actions. States represent longer­lasting conditions, such as the Standing
state, whileActions are transitions to another state or the same state, such as standing up from
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(a) Example of a continuous sequence of human activities performed by a participant
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(b) Flowgraph with restricted classifiers based on the Human Ethogram

Figure 1.2: (a) shows a continuous sequence of critical and non­critical activities: walking, falling, standing up
from falling, sitting down, standing up from sitting, and walking again. (b) demonstrates a restricted classification
process using multiple classifiers that can only be applied after specific states. The system includes a tracker to
determine the person’s Translation state (Walking state), with more insights provided in [40].

sitting or bending from standing, respectively. For example, the action of standing up from
sitting entails a transition from a Sitting state to a Standing state. Conversely, the action
of bending from standing involves starting and ending in a Standing state. Furthermore,
statistical analysis of human behavior over a defined time span, including the duration of
individual activities, centroid frequency (velocity), and tracked ranges, plays a significant
role in evaluating and monitoring an individual’s well­being. All these quantitative aspects
can indeed contribute to forming a picture of the level of activity, fitness, and engagement
that a person has with their own environment.

This novel technique has been utilized in [40] using a tracker named the Derivative
Target Line (DTL), triggering a state reset when detecting an acceleration of an individual.
This reset leads to the determination of the person’s Translational state. Subsequently, the
following classifier comprises two classes: walking stopping and walking falling, as
depicted in the flowchart in Fig. 1.2b, with a potential sequence example of a person
walking – falling – laying – standing up – sitting down – standing up – walking shown in
Fig. 1.2a.



1

8 1. Introduction to Distributed Radars for Activity Recognition

Summarizing this section, the Human Ethogram introduces a valuable action­state
representation for HAR inspired by the Markov chain. It categorizes activities into states,
such as Walking, Standing, Sitting, and Laying. The action­state diagram illustrates
possible transitions, highlighting mutually exclusive actions. The generic examples in
Figs. 1.1 and 1.2 focus on two­way gross­motor activities with the individual facing or
turned away from the radar. These concepts find applications in classifying activity
sequences and improving perception performance. Monitoring a person’s activity pattern
is crucial, providing insights into states, actions, and well­being. Statistical analysis of
behavior, including duration, velocity, and tracked ranges, plays a significant role. The
Derivative Target Line (DTL) is an example of a tracker that triggers a state reset based on
acceleration, determining the Translational state, and starts the classification procedure
always using a binary classifier.

1.3. Challenges, Open Problems, and Approaches
This section introduces the challenges and open problems addressed in the conducted
research, along with a brief overview of possible alternative methods and the chosen
approaches discussed in subsequent chapters.

Advanced Radar Data Domains: The appropriate representation of radar data to
effectively infer healthcare­related insights is paramount. In the state­of­the­art literature,
studies predominantly rely on the use of micro­Doppler (µD) representations derived from
the Short­Time Fourier Transform (STFT) [8, 41]. This approach enables the analysis of
temporal Doppler patterns caused by different body parts in motion. By leveraging the
direct relationship between Doppler modulations and body part velocities, algorithms
operating on radar data can effectively characterize human movements, ranging from
subtle vital sign­related motions to distinct gait patterns or complex activities. These µD
patterns are indispensable inputs for classification pipelines, which can leverage machine
learning techniques, including various architectures of neural networks, to extract and
learn the relevant information. Alternatively, research conducted by different groups such
as Li et al. [42], Liu et al. [43], and Zhang [44] have ventured into time­frequency
methods apart from µD spectrograms generated by the STFT. These methods introduce the
Gabor dictionary, before time­frequency features were extracted via the orthogonal
matching pursuit (OMP) algorithm, suitable for sparse radar signal representations, then
the mel­frequency cepstral coefficients (MFCC) for Doppler radar­based automatic fall
detection was utilized, followed by the use of a pseudo­smooth Wigner­Ville distribution
(WVD) based on the energy distribution for human gait analysis, respectively. Others
avoid radar data domain investigations and rely on the capabilities of deep convolutional
neural networks (DCNN) or other Deep Learning methods to extract information,
requiring less emphasis on radar data domain exploitation [45]. However, alternative radar
data domains beyond the µD signature are rarely explored in a systematic manner, so that
non­time­frequency­based domains, and their distinctive characteristics remain
unexplored [3, 9, 29]. Unlike the mentioned time­frequency domains, which necessitate
frequency analyses, which often use a form of Fourier transform, this work presented in
Chapter 3 deliberately avoids such time­frequency analysis altogether. Instead, it directly
analyzes the complex phase of a range­time map, for which various challenges and
opportunities were investigated.
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Data Fusion for Distributed Radar Networks: The exploitation of radar networks in
indoor scenarios remains a sparsely explored area in the current literature [46]. Challenges
such as interference, synchronization issues, and cost considerations have limited their
adoption [47]. Similarly to observations made by previous studies, employing a radar
network introduces variations in the signal to noise ratio (SNR) conditions across the radar
nodes due to factors such as target distance and radar cross section (RCS). However,
deploying a distributed network of radar nodes offers unique advantages, including the
ability to observe targets simultaneously from different aspect angles, and the capability to
detect hidden targets or body parts obstructed by objects or multiple individuals within the
room. By strategically designing the network layout, occlusions can be minimized or
completely avoided, ensuring comprehensive coverage. Additionally, the inherent strength
of radar lies in its ability to estimate the relative velocity from the Doppler shift, which can
vary for different aspect/observation angles and, consequently, across radar nodes. This
presents a specific challenge when dealing with extended targets, as observed in this work,
where different body parts exhibit distinct scattering points with their own Doppler values.
Addressing this challenge, the thesis focuses on developing advanced and robust fusion
methods for distributed radar sensors that have not been adequately explored in the current
literature on human activity recognition (HAR). Moreover, the fusion process extends
beyond node­level fusion and delves into the investigation of fusing radar data across
different domains, including signal level, feature level, and decision level. This research
addresses this multi­level fusion problem throughout, with specific reference to Chapter 4.

Advanced Evaluation Metrics for Continuous HAR: The utilization of distributed
radar networks in conjunction with continuously recorded data poses significant
challenges. In particular, the analysis of continuous radar data for HAR that encompasses
sequences of mixed activities remains an open problem in current research. Existing
radar­based HAR approaches often focus on analyzing isolated motions and actions,
treating them as windowed “snapshots”, disregarding the continuous nature of human
activities [3, 48, 49]. In reality, human activities unfold as seamless sequences with
undefined transitions and duration between different motions. These sequences exhibit a
diverse range of activities, including full­body actions such as walking, stationary
movements involving limb motions (e.g., sitting, bending to pick an object from the floor),
and even life­threatening scenarios such as falling. Also, in an evaluation process of such
continuous sequences, conventional metrics, such as simple accuracy, account very little
for such crucial interruptions, when, i.e., a sequence of walking is interrupted by any
random prediction outliers. Again, the characteristics of such sequences vary significantly
depending on factors such as the gender, age, and physical condition of the subject, and
environmental constraints imposed by surrounding furniture and objects. Such complexity
introduces additional challenges in capturing the salient information relevant to the
performed activities. This was investigated briefly by Chen et al. [50], for recorded radar
sequences, whereas with a focus on ensemble learning algorithms, a different aim than
presented in this work. Consequently, treating radar data for HAR as isolated snapshots
fails to reflect real­world scenarios and hinders progress in areas such as utilizing
distributed radar networks for continuous data stream monitoring. Furthermore, the
analysis of such data streams is well suited for classifiers with temporal capabilities,
commonly referred to as recurrent neural networks (RNNs), with architectures like long
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short­term memory (LSTM) being widely adopted [51, 52]. However, evaluating the
performance of these classification algorithms with temporal capabilities necessitates the
use of novel, proposed evaluation metrics that effectively capture temporal relations.
Therefore, the evaluation problem of continuous radar sequences is addressed in the
subsequent Chapter 4.

Exploiting Multipath for HAR: Multipath and clutter are well­established
phenomena in radar systems. Multipath occurs when radar signals encounter reflections
from multiple pathways beyond the radar­target line of sight, resulting in potential signal
distortion and ambiguity. Conversely, clutter refers to undesirable radar echoes caused by
stationary objects in indoor scenarios or environmental factors, significantly interfering
with target detection and tracking processes. To mitigate the effects of multipath in radar
systems, sophisticated signal processing techniques, such as adaptive beamforming, are
commonly employed to suppress unwanted reflections and enhance the desired target
signal [53, 54]. Additionally, the use of multiple antennas or antenna arrays with
appropriate spacing and diversity techniques can aid in mitigating the adverse impacts of
multipath propagation. However, the exploration of the potential benefits of multipath in
radar remains limited, with most research focusing primarily on point­targets [55]. As
such, the aim is to exploit multipath effects for extended targets. By harnessing the
coherent signals reflected from various aspect angles thanks to multipath, a novel approach
was formulated to generate artificial radar nodes that facilitate the observation of targets
from diverse perspectives [56]. Furthermore, compelling evidence has been presented,
demonstrating that even a single radar node, using only a single­input single­output
(SISO) system when coupled with strategically positioned reflectors, can effectively
capture an extended target from multiple aspect angles, resulting in significantly improved
perception and classification performances, as presented in Chapter 5.

Multi­People Monitoring: Multi­people perception tasks using radar entail the
challenging objective of accurately identifying and differentiating multiple individuals
within the radar sensing field, relying on their distinctive radar signatures. State­of­the­art
research has successfully shown vitals in combination with spatial tracking of people
groups [33], and others have applied group classification to distinguish between walking
and running groups [57]. However, none of the abovementioned work used a
comprehensive sensor network with up to five radar nodes. In fact, this complex task
necessitates the utilization of robust signal processing techniques, advanced machine
learning algorithms, and effective feature extraction methods to overcome the inherent
intricacies arising from overlapping radar echoes and the diverse nature of human
movements and orientations. However, to the best of the author’s knowledge, the literature
has yet to explore the concept of treating this problem as a regression task, which offers
the advantage of estimating approximate occurrences of human activities. Consequently,
the formulated regression problem presents the potential benefits of providing continuous
estimates, as opposed to discrete predictions offered by classifiers. Such an approach
proves particularly valuable in scenarios where precise and discrete predictions are
unnecessary, such as obtaining a rough estimation of individuals walking within a crowded
environment [58]. The problem has been addressed by employing both conventional and
temporal regression approaches, with scenes involving up to five individuals walking or
standing stationary in an indoor environment, as addressed in Chapter 6.
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1.4. Outline of the Thesis and Chapter Abstract
The research was organized into distinct work packages, each addressing specific
challenges. Each of these work packages corresponds to a dedicated chapter in this thesis.

Chapter 2: Fundamentals of Distributed Radar Networks
This chapter serves as an introduction to the utilized pulsed ultra­wideband (UWB) radar
system, which forms a spatially distributed system of monostatic operating radar nodes.
A radar signal model is presented, followed by the description of the human locomotion
model. Additionally, it introduces common state­of­the­art data fusion concepts, which play
a pivotal role in integrating data from multiple radar nodes and diverse radar data domains.
These fusion concepts find applications in the thesis from Chapter 3 onward.

Chapter 3: Radar Data Domains for Indoor Monitoring and
Classification
The chapter describes research focused on human movement recognition, specifically
targeting human activity recognition (HAR) and gesture detection. A novel method, which
utilizes radar phase information directly extracted from a high­resolution range map (RM)
is proposed, eliminating the need for traditional µD spectrograms. This alternative
approach overcomes the limitations of time­frequency trade­offs and computationally
intensive processing, offering comparable or superior classification results. The histogram
of oriented gradients (HOG) algorithm is employed to extract distinctive shape and pattern
features from the wrapped phase domains. The effectiveness of the method is validated on
independent datasets, achieving a consistent classification accuracy exceeding 92%.
Additionally, feature fusion techniques that combine different data domains, such as the
modulus of RM with the RM phase information, enhance robustness and accuracy in
activity recognition tasks. These findings highlight the potential advantages of the
proposed approach for low­latency, real­time applications, and computationally
constrained scenarios.

Chapter 4: Data Fusion in Distributed Radar Systems for HAR
This chapter describes the application of a network of five spatially distributed pulsed
UWB radars for continuous HAR. By employing multiple sensors, the network addresses
challenges such as occluded perspectives and unfavorable aspect angles. Two fusion
techniques are investigated: signal level fusion on range­time maps (RT) and radar node
selection based on target location and velocity derived from multilateration processing and
tracking. Recurrent neural networks (RNN) with and without bidirectionality are
employed for activity classification using µD spectrograms obtained through sensor
fusion. Novel evaluation metrics are proposed to account for the continuous nature of
activity sequences and dataset imbalances, providing a comprehensive assessment beyond
conventional accuracy metrics. The findings highlight the importance of considering these
metrics for a more thorough evaluation of continuous HAR.
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Chapter 5: Multipath Effect Exploited for Human Activity
Recognition
This chapter addresses radar sensor multipath problems in indoor radar networks, which
are often seen as unwanted phenomena to mitigate. Existing research has mainly focused
on single radars and non­extended targets, neglecting the potential benefits of utilizing
multipath components to enhance classification capabilities. In this chapter, a pipeline is
proposed that isolates a target’s line of sight (LOS), determines its position, and analyzes
higher­order multipath components. The pipeline also accounts for edge cases, such as
extended targets observed across multiple range bins and various aspect angles, even when
using only one radar. By exploiting the advantages of higher­order multipath components
along with LOS observations, the network’s perception is improved. The pipeline is
validated by comparing classification results to those obtained with a single radar and the
radar network’s LOS only. For perception tasks, the multipath components and LOS
components are fused and fed into a 12­layer Convolutional Neural Network (CNN). The
results are compared to a simple multi­layer perceptron (MLP) classifier that uses features
extracted using Principal Component Analysis (PCA). The use of a multi­radar network
with LOS & multipath demonstrates a significant improvement in test performance of
approximately +11% for continuous and consecutive recorded human activities.

Chapter 6: Multi People Monitoring using Regression
This chapter focuses on radar­based HAR in crowded environments, specifically
addressing the challenge of continuous activity recognition involving multiple individuals
moving in arbitrary directions within an indoor area. To tackle this problem, a
regression­based approach is proposed, aiming to create robust and accurate systems for
monitoring human activities. Novel techniques using LSTM or CNN regression models,
along with linear regression (LR) and SVM regressors, are compared. These approaches
leverage extracted features from radar data using methods such as HOG and PCA. The
evaluation employs a rigorous Leave­One­Group­Out method, with performance assessed
using common regression metrics such as root mean square error (RMSE). Promising
results are observed for crowds of three and five individuals, with RMSE values around
0.4 and 0.6, respectively. These outcomes are achieved primarily by using the µD
spectrogram or range­Doppler data domain.

Chapter 7: Conclusions and Further Work
In the concluding chapter, the key results of the research presented in this thesis are
summarized, offering a comprehensive reflection on the achieved outcomes. The achieved
results and significant contributions made throughout the thesis are highlighted,
showcasing the advancements and added value brought to the field of study. Additionally,
the author identifies untapped potential and areas for improvement, presenting intriguing
opportunities for future research and the prospect of novel contributions.
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Fundamentals of Distributed

Radar Networks

This chapter provides a discussion of the technical intricacies surrounding distributed ultra­
wideband (UWB) radar systems employed in this thesis, thereby setting the stage for the
subsequent chapters. Additionally, it introduces the human locomotionmodel before it offers
a detailed overview of the data fusion principles in the context of distributed radar networks.
These fusion techniques, applied in a human activity recognition (HAR) context, span from
late fusion techniques (decision­fusion) to the early fusion concept known as signal­level
fusion, which involves the collaborative utilization of data from all radar nodes.

Parts of this chapter have been published in:

R. G. Guendel, M. Unterhorst, E. Gambi, F. Fioranelli, and A. Yarovoy, “Continuous human activity recognition
for arbitrary directions with distributed radars”, in IEEE Radar Conference (RadarConf21), 2021.
I. Ullmann, R. G. Guendel, N. C. Kruse, F. Fioranelli and A. Yarovoy, “A Survey on Radar­Based Continuous
Human Activity Recognition”, in IEEE Journal of Microwaves, 2023.
R. G. Guendel, N. C. Kruse, F. Fioranelli, and A. Yarovoy, “Exploiting Radar Data Domains for Classification with
Spatially Distributed Nodes”, in SET­312 Research Specialist Meeting Distributed Multi­Spectral/Statics Sensing,
Bled, Slovenia., 2022.
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2.1. Applications: Pulsed Ultra­Wideband (UWB)
vs. mm­Wave Radars in Human Activity
Recognition

Radar systems utilized for human activity recognition (HAR) have undergone marked
advancements due to the incorporation of new technologies. Pulsed ultra­wideband
(UWB) radars and mm­wave radars stand out as primary candidates in this arena. Notably,
mm­wave radars operating in the V­band (60GHz) and W­band (77GHz), associated with
indoor monitoring and the growing automotive sector, respectively, have seen an
enhancement in market value, a decrease in hardware costs, and consequently, rising
interest from researchers. This section presents a comparative analysis of these radar
modalities and applications, highlighting their significance for HAR and related sectors.

Pulsed Ultra­Wideband (UWB) Radars: Pulsed UWB radars are mainly
distinguished by their extensive bandwidth, which offers high­resolution capabilities. This
feature enables the precise detection of human movements, making these radars
indispensable in HAR scenarios where subtle motion differentiation is vital [59]. The
adaptability of UWB radars, especially when combined with software­defined radios
(SDRs), makes them a top choice for various HAR tasks and vital sign monitoring
applications. In [60], Lazaro et al.’s research group employs Acconeer’s pulse coherent
radar [61] for seat occupancy detection, leveraging the 60GHz frequency band. This radar
can detect submillimeter movements, allowing for the recognition of human presence by
slight body movements. The system differentiates between a human and other objects on a
seat by evaluating the standard deviation of peak amplitude variations. Moreover, it can
measure breathing rates by examining changes in peak amplitude, using digital filters to
eliminate noise. The system’s ability to measure breathing rates is not compromised by car
vibrations. However, it can be affected by pronounced body movements. Practical uses for
this system encompass monitoring driver fatigue, identifying child seat occupancy, and
potentially evaluating sleep quality and potential sleep apnea.

mm­Wave Radars: These radar systems, particularly those operating in the V­band
and W­band, present a compelling case for a myriad of applications. These radars,
provided by commercial players in the radar sector such as NXP [62], Infineon [63], and
Texas Instruments [64], are renowned for their compactness, making them ideal for
seamless integration into a diverse range of systems. This includes not only embedded
monitoring systems, but also advanced driver assistance systems (ADAS) that require
high­resolution, real­time data to function effectively [1, 65]. With the capability to
achieve fine range and Doppler resolution, including fine angular resolution (depending on
antennae pairings), they can detect subtle human activities, from small hand gestures to
intricate body movements [66]. This precision is especially crucial in environments where
the differentiation between activities depends on nuanced motion details. When
considering the realm of HAR, the potential of these radars becomes even more evident.
The 60GHz radars, for instance, can be particularly effective in indoor monitoring
scenarios, capturing detailed point cloud data and facilitating accurate activity
classification. On the other hand, 77GHz radars are often optimized for dedicated
automotive use and can be more suited for outdoor or vehicular applications, providing a
wider field of view and longer detection range including angular detection capabilities.
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Moreover, the adaptability and versatility of these radars, combined with advancements in
signal processing and machine learning algorithms, position them as front­runners in the
evolution of HAR systems [67]. As research progresses, it is anticipated that the
integration of these radars will pave the way for more sophisticated, reliable, and holistic
HAR solutions, expanding their application beyond traditional domains.

Both pulsed UWB and mm­wave radars present distinctive advantages for HAR.
While UWB radars are preferably selected for their very fine range resolution,
adaptability, and comprehensive data representation, mm­wave radars are advantageous
for their compactness, sensitivity, and potential for real­time monitoring. As the field of
HAR continues to advance, the integration and synergy of these radar technologies are
expected to lead to more sophisticated and effective HAR systems.

This section has briefly compared pulsed ultra­wideband (UWB) radars with
frequency­modulated continuous­wave (FMCW) V/W­band radars and has shown some
HAR and automotive applications. The Section 2.2 introduces the used radar from
Humatics (former: Time Domain) of the type PulsON P410, together with the open dataset
and the room layout where the experiments were conducted with multiple radar nodes
employed. In the following, Section 2.3 shows a generic radar signal model assuming
point­like scatterers. Then, in Section 2.4, human locomotion models are introduced with
the extension of the generic signal model for point targets to the more comprehensive
representations applicable for extended targets. Additionally, suitable radar data domains
of the PulsON P410 radar are introduced in Section 2.5, and these domains are used
throughout the subsequent chapters. The chapter ends with Section 2.6, a data fusion
section introducing fusion modalities for combining data from different radar nodes, and
finally, conclusions are provided in Section 2.7.

2.2. Introduction to Pulse Ultra­Wideband Radars

(a) Humatics PulsON P410 UWB radar node. (b) Laboratory radar layout with 5 nodes.

Figure 2.1: (a) The Humatics (former: Time Domain) PulsON P410 ultra­wideband (UWB) radar with a center
frequency of 4.3GHz and 2.2GHz bandwidth. (b) TU Delft laboratory of the Microwave Sensing, Signals &
Systems Group (MS3) with a radar network setup consisting of five nodes marked by red circles. This setup was
used for most of the research performed in this thesis.

This research focuses on continuous activity recognition beyond a single radar
application case. To address this, a distributed radar network was introduced to capture
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continuous activities in [68], and publicly available data was released [69]. The utilization
of this distributed radar network confers various advantages, notably the ability to observe
the person from multiple perspectives. Such multi­aspect observations are crucial for
capturing a comprehensive representation of a person’s kinematic, specifically
encompassing the velocity components of different body parts in various spatial directions.
Furthermore, the experiments are not restricted in terms of an individual’s movement
directions, aiming to represent real­world scenarios where people can move and perform
activities in any direction and arbitrary trajectory. At the same time, this distributed layout
also introduces the challenge of appropriately fusing the network’s data. In this thesis, the
distributed radar network consists of pulsed UWB radar nodes, as depicted in Fig. 2.1,
with a single node presented in Fig. 2.1a and the typical room layout with 5 distributed
radars placed in a semicircle shown in Fig. 2.1b. The PulsON P410 radar hardware from
Humatics (previously Time Domain) was chosen due to its ability to synchronize the nodes
within the network incoherently (or in a loosely coupled manner), according to Class II of
the Classification Scheme for Distributed Radar Systems by Gottinger et al. [70].

2.3. Generic Radar Signal Model
Inspired by the mathematical derivation of Deudon et al. [71] and He [59], a simplified radar
signal model for a single point­like scatterer will be derived in this section. Without any
limitations on the radar type, it can be assumed that the transmitted signal can be represented
as,

𝑆𝑡𝑥(𝑡) =
𝑀−1

∑
𝑚=0

𝑝 (𝑡 − 𝑚𝑇𝑟) 𝑒𝑗2𝜋𝑓𝑐𝑡 (2.1)

with 𝑡 denoting the fast­time, 𝑝(𝑡) is the complex signal envelope, 𝑇𝑟 is the pulse repetition
interval (PRI), and 𝑓𝑐 is the center frequency of the𝑀 pulses in the sequence corresponding
to a coherent processing interval (CPI).When the transmitted signal is reflected by a moving
point scatterer, a delayed, attenuated, and frequency­modulated signal follows as,

𝑆𝑟𝑥(𝑡) = 𝛼𝑆𝑡𝑥 (𝑡 − 𝜏(𝑡)) (2.2)

where 𝛼 is the complex amplitude response of the target, and 𝜏(𝑡) the round trip time delay,
assuming a constant radial velocity 𝑣 of a target during the CPI. The round trip time is
computed as,

𝜏(𝑡) = 𝜏0 −
2𝑣
𝑐 𝑡 =

2𝑅0
𝑐 − 2𝑣𝑐 𝑡 =

1
𝑐 (2𝑅0 − 2𝑣𝑡) (2.3)

with 𝑅0 and 𝜏0 the target radial range and the constant round trip delay, respectively.
Substituting Eqs. (2.1) and (2.3) into Eq. (2.2) leads to,

𝑆𝑟𝑥(𝑡) = 𝛼
𝑀−1

∑
𝑚=0

𝑝 (𝑡 − 𝜏0 +
2𝑣
𝑐 𝑡 − 𝑚𝑇𝑟) 𝑒

𝑗2𝜋𝑓𝑐(𝑡−𝜏0+
2𝑣
𝑐 𝑡) (2.4)

and with the constant phase terms 𝜏0 being absorbed into the complex amplitude 𝛼′ as,

𝑆𝑟𝑥(𝑡) = 𝛼′
𝑀−1

∑
𝑚=0

𝑝 ((1 + 2𝑣𝑐 ) 𝑡 − 𝜏0 −𝑚𝑇𝑟) 𝑒
𝑗2𝜋𝑓𝑐(1+

2𝑣
𝑐 )𝑡 (2.5)
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The derived equation shows the radar echo signal in fast­time domain, with more insights
provided in the following references [59, 71].

2.4. Human Locomotion Model
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(a) x­,y,­z­range change of the human locomotion model. (b) Human locomotion model, showing random radar scatterers.

Figure 2.2: (a) shows the x­,y,­z­range change of a human locomotionmodel which represents the action of walking
continuously in the y­direction with some small variations in the x­direction and a sinusoidal change in the z­
direction. (b) shows an example of the position of arbitrary scatter points related to a human body walking in a 3D
Cartesian space [72].

This section yields an introduction of literature for further reading on human kinematic
models, also known as human locomotion models, with models having their origin in the
computer vision society. Furthermore, it is meant to illustrate the total radar scatter points
that can be extended as a sum ofmultiple single­radar scatterers to serve for extended targets,
such as a human with target sizes much larger than a range resolution cell, by using ultra­
wideband (UWB) radar technology.

Numerous human locomotion models were presented in the literature with fundamental
investigations provided by Chen et al. [6], Geisheimer et al. [73], Dorp et al. [74], or
Vignaud et al. [75], where some authors underline the advantages of using the more realistic
Thalmann model [76]. The latter model was modified by He et al. [77] to introduce a
novel range­Doppler surface (RDS), a radar backscatter model designed for extended human
targets. In addition to the aforementioned fundamental approaches, Erol et al. [78] proposed
a kinect­based human micro­Doppler simulator, an advanced video­based motion capture
(MOCAP) model. Both, He and Erol, have used the Motion Capture Library of Carnegie
Mellon University (CMU) for their studies to reconstruct a human locomotion model [79],
and from this the full target backscatter of coherent radar echoes is constructed.

Furthermore, a human motion analysis model from Wang et al. [72] has been modified
to provide a visual example, as depicted in Fig. 2.2. In Fig. 2.2a, the range changes as a
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function of time for the three spatial coordinate axes (x, y, z) are illustrated for a few
randomly selected backscatter points. The entire human model, i.e., including all the
assumed radar backscatter points of the human body, is presented in Fig. 2.2b. It is
noticeable from these figures that in the y­direction there is a straight line over time, as the
individual walks predominantly in that direction. Additionally, there is a minor shift in the
x­direction orthogonal to the direction of the walking motion, and of particular note is the
sinusoidal oscillation in the z­direction as the person moves forward.

As in Section 2.3, the simple radar model of a point target was introduced. It can be used
by considering the extended nature of a human body with multiple backscattered signals
from each scatter point, as illustrated in Fig. 2.2b. Thus, the total echo of such human body
surfaces can be computed as,

𝑆𝑡𝑜𝑡𝑎𝑙(𝑡) =
𝐾−1

∑
𝑘=0

𝑆𝑟𝑥(𝑡) (2.6)

with 𝑆𝑟𝑥(𝑡) from Eq. (2.5) and 𝑘, 𝐾 indicating the backscatter points of a human body, with
each providing a different radar cross section (RCS) [80].

Such point cloud concepts are the fundamental basis for applications of representing
humans that can be further used for various usages, including perceptron­based recognition
from gesture, posture, or finger motions. As an example of applications of this subject,
the work of Lee et al. [81] is considered. They introduced a HAR model that leverages
point cloud data, specifically addressing the challenge of radar data sparsity. The model
utilizes 3D human joint coordinate estimates derived from a pre­trained model using radar
data, with a Kinect serving as ground truth. It was determined that 25 joints offer optimal
feature representations for human activities, and the extracted 3D human joint coordinates
provide reliable features for sparse radar data. The proposed model using spatial­temporal
graph convolutional networks (ST­GCN), a graph neural network (GNN), and the 3D joint
coordinate estimates, achieves a classification accuracy exceeding 95%.

2.5. Humatics PulsON P410 Radar and its Data
Domains

Pulsed ultra­wideband (UWB) radar sensors from Humatics (former: Time Domain) of the
type PulsON P410, as shown in Fig. 2.1a, were utilized in the thesis to form a distributed
radar network. They were arranged in a semicircular baseline with a 45∘ separation,
positioned 1 meter above the ground. The network consisted of five simultaneously
operating monostatic nodes. The experiments were conducted in a circular space with a
diameter of 4.38 m, as depicted in Fig. 2.1b, with the nodes highlighted in red [68]. The
aforementioned open­source dataset [69] collected for this research comprises data from
15 subjects, with training and test data sequences split and activities performed in different
orders compared to the training set.

The PulsON P410 radar can be used for monitoring human activities performed in
realistic continuous streams. As a visual introduction, Fig. 2.3 showcases the common
data domains utilized throughout the thesis, applied to a single­input single­output (SISO)
radar. These domains include the (II,IV) range­time (RT), (III) range­Doppler (RD), and
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Figure 2.3: The flowgraph shows HAR radar data domains extracted from a (I) PulsON P410 radar node with,
(II) the range­time obtained by windowing over (IV) the full range­time map, (III) the range­Doppler map by
computing the FFT over slow­time of (II), (V) the observed range­phase map with a magnified view, and (VI) the
micro­Doppler (µD) spectrogram obtained using the STFT.

the (VI) micro­Doppler (µD) spectrogram. Furthermore, Fig. 2.3.V illustrates the less
common but potentially interesting phase information, a domain extracted directly from
the RT map. This, in turn, necessitates feature extraction methods capable of capturing
information from the fine line segments in such data, as depicted in the zoomed plot.
Therefore, investigations were conducted using the histogram of oriented gradients (HOG)
on phase data, which is a method capable of extracting features from the aforementioned
contours in images. A comprehensive discussion of the data domain, specifically
regarding the phase information, can be found in [82] and Chapter 3.

The following paragraphs discuss the radar’s return signal of the Humatics (formerly
Time Domain) P410, following up from the simple radar model, introduced in Section 2.3.
This system is the primary radar used in this work and provides the range­time (RT) map
immediately, denoted as 𝑆mn, as depicted in Fig. 2.4a. A recorded RT map of a person
performing a 2 min sequence of in­place and translation activities is shown in Fig. 2.4b
with the same notation applied as in Fig. 2.4a. The matrix 𝑆mn is the discretized and
reshaped version from the radar model Eqs. (2.5) and (2.6) for single or extended targets,
respectively, with the columns being the fast­time bins observed within the CPI. The
matrix 𝑆mn is provided by the radar system after the following internal processing steps of
an optimal linear filter, coherent pulse integration for enhancing the SNR, time­interleaved
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Figure 2.4: The matrix representation for the received radar signal from the Humatics P410 radar is shown in (a),
and (b) provides an example of one of these matrices of data depicted as an image. Specifically, this represents a
2min range­time (RT) sequence of a real recorded participant performing in­place and translation activities.

fast­time sampling, and RT map reshaping, whereas the user has limited freedom to
engage in the preprocessing steps apart from modifying the desired number of coherent
pulse integrations. Furthermore, 𝑠mn represents the real samples (in­phase components) for
each fast­time bin and slow­time bin with indices m and n, respectively. The backscattered
signal is obtained through filter banks, and the quadrature component is generated using
the Hilbert transform [82].

The time­of­flight separation, 𝜏, between consecutive range bins in the m­direction is
61.024 ps [83]. The corresponding sampling resolution, 𝑟, is calculated as 𝑟= 𝜏⋅𝑐2 , resulting
in a resolution of 9.153mm. With this setting, the radar’s coverage area, R, is 4.39 m with
480 received range bins, given by m=1,⋯ ,M for the open data provided [69]. The
slow­time samples are denoted as n and spanning over the total time T [84]. To enhance
the moving signature of human targets, cleaning steps such as MTI filtering, mean
subtraction, and adaptive thresholding can be applied. The pulse repetition frequency
(PRF), denoted as 𝑓PRF, is typically set to 122Hz, resulting in a pulse repetition interval
(PRI) of 8.2ms. This choice ensures unambiguous Doppler frequency results within
±61Hz (equivalent to ±2.2 m/s). The theoretical range resolution (𝑟res) achieved using a
bandwidth of 𝐵=2.2GHz is 68mm, as determined by 𝑟res=

𝑐
2⋅𝐵 . For the chosen setting, the

theoretical radar detection ranges up to 354 m [5, 84]. However, the data sheet [85] Note 5
(Detection ranges) mentioned that the theoretical detection range depends on the antennae
used, the ambient environment, clutter, target size, and movement characteristics.

2.6. Introduction to Data Fusion and its Constraints
This section provides an overview of radar fusion concepts employed in this thesis, where
different fusion techniques are investigated in conjunction with a distributed radar
network. Radar data fusion can be categorized into three approaches: signal fusion (or
pixel­level fusion), feature fusion, and decision fusion. Signal fusion occurs early in the
process, before any feature extraction. Feature fusion involves concatenating feature
samples from all nodes into a single feature vector, allowing fusion across data domains
and sensor nodes. Decision fusion entails classifying for each node and combining the
predictions, often through methods such as majority voting [86].

Drawing inspiration from the general concepts of information fusion in the context of a
classification task, the author’s work in [69, 87] proposes the following fusion approaches
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(a) Scheme for multi­domain classification with four data domains extracted from each radar.

(b) Classifier block placement for feature fusion and decision fusion.

Figure 2.5: (a) displays four data domains extracted from each radar in the network, accompanied by a flowchart
illustrating the prediction process for both feature fusion and decision fusion. (b) illustrates the classifier block
placement in the processing pipeline for two fusion concepts.

for HAR, as shown in Fig. 2.5, within a distributed radar network:

Signal level fusion: This method involves summing the range­time (RT) maps of all radar
nodes to form one signal fused RT map, then computing a micro­Doppler (µD)
spectrogram from the fused RT map, and using the µD spectrogram for
classification.

Feature level fusion: This approach involves utilizing the extracted features, such as the µD
spectrogram features of each radar node, which are subsequently concatenated.

Weighted radar selection over time: Only one radar node’s data is used for classification.
At each time step, one radar node is selected out of the five based on the most suitable
aspect angle and received power. To determine the most suitable node, multilateration
processing followed by a tracking filter is implemented to determine the position,
velocity, and acceleration of the target.
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Orthogonal radar fusion: This method explores the theoretical capability of capturing
arbitrary movement in space using two radars with orthogonal line of sight. Two
different setups were investigated. The first setup involves combining two
orthogonal radars through feature fusion, processing each one individually and
concatenating the two spectrograms. The second setup first combines radar nodes 1
and 5 (which face each other as depicted in Fig. 2.1) through signal level fusion (i.e.,
summation), and then fuses the result with orthogonal node 3 (see Fig. 2.1). Fusing
the orthogonal nodes is performed through feature fusion. Both approaches yield a
two­dimensional spectrogram, displaying the x and y components of the
two­dimensional velocity vector in space.

The classification performance of the fusion approaches was evaluated using several
RNN architectures, with the simple signal fusion approach yielding the best results (with
details presented in Chapter 4). Orthogonal radar fusion using radars 1, 3, and 5 achieved
similar performance. All fusion approaches outperformed the use of a single, fixed radar.
Given the success of signal­level fusion with the Bi­LSTM classifier, this fusion method
was further employed to evaluate other types of classification networks. Gated recurrent
units (GRU) were tested in both mono­ and bi­directional modes, as well as mono­ and
bi­directional LSTM. All classifiers performed well with an F1 score exceeding 84.4%.
Additionally, the author explored alternative evaluation metrics such as intersection over
union and Jaccard index, which may be more suitable for assessing performances in
scenarios with imbalanced classes, such as a higher frequency of walking compared to
instances of in­place activities or falls. This aspect is also discussed with more details in
Chapter 4.

2.7. Conclusion
This chapter introduced some common applications of pulsed ultra­wideband (UWB)
radars versus frequency­modulated continuous­wave (FMCW) radars applied to HAR and
related fields, such as the automotive sector. Following, the Humatics (former: Time
Domain) of the type PulsON P410 is introduced. It outlines the gathered dataset and the
experimental setup of this thesis, highlighting the deployment of multiple radar nodes in a
semicircular arrangement. Afterward, a generic radar signal model is presented assuming
point­like scatterers with the mathematical derivation inspired by Deudon et al. [71] and
He [59]. Furthermore, an overview of human locomotion models is introduced with the
mathematical extension to a radar signal model for extended targets when the radar’s range
resolution cells subceed the target size. Subsequently, an examination of radar data
domains that can be extracted from the used pulsed SISO radar node is shown, with radar
data domains ranging from the simple range time (RT) map to time­frequency
representations extracted using the short­time Fourier transform (STFT), up to the phase
information with its fine line segments. The following sections show data fusion concepts
for combining different data domains extracted from various radar nodes as a counterpart
to using only single radar sensors with only one domain. These concepts of the
aforementioned radar domains and fusion models are used throughout the subsequent
chapters.
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Radar Data Domains for
Indoor Monitoring and

Classification

Micro­Doppler spectrograms are a conventional data representation domain for
movement recognition such as Human Activity Recognition (HAR) or gesture detection.
However, they present the problem of time­frequency resolution trade­offs of short­time
Fourier transform (STFT), which may have limitations due to unambiguous Doppler
frequency, and the STFT computation may be onerous in constrained embedded
environments. We propose an alternative classification approach based on the radar
phase information directly extracted from high­resolution range­time map (RM). This
novel approach does not use the aforementioned micro­Doppler processing, and yet
achieves equivalent or even superior classification results. This shows a potential
advantage for low­latency, real­time applications or computationally constrained
scenarios. The proposed method exploits the histogram of oriented gradients (HOG)
algorithm as an effective feature extraction algorithm, specifically its ability to capture the
unique shapes and patterns present in the wrapped phase domains, such as their contour
intensity and distributions. Validation results consistently above 92% demonstrate the
effectiveness of this method on two independent datasets of arm gestures and gross­motor
activities. These were classified with three algorithms, namely the Nearest Neighbor (NN),
the linear Support Vector Machine (SVM), and the Gaussian SVM classifiers using the
proposed phase information. Feature fusion of different data domains, for example, the
modulus of the RM fused with the RM phase information, is also investigated and shows
classification improvement specifically for the robustness of activity performances, such as
the aspect angle and the speed of performance.

Parts of this chapter have been published in:

R. G. Guendel, F. Fioranelli, and A. Yarovoy, “Phase­based Classification for Arm Gesture and Gross­Motor
Activities using Histogram of Oriented Gradients”, in IEEE Sensors, 2020.
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3.1. Introduction to Radar Data Domains
The amount of research on human activity recognition (HAR) with radar sensors has
increased tremendously over the past decades, with significant progress made in almost
every area related to activities of daily living (ADL) [37, 88]. Closely associated are the
areas of gesture and arm motion recognition, which attracted interest for their potential for
remote control of smart devices [42, 89, 89, 90]. This field has seen the development of
many different classification approaches, including those inspired by deep learning
techniques, such as recurring neural networks (RNN) with their bidirectional
implementations known as bidirectional long short­term memory (BI­LSTM) [51],
frameworks for generating synthetic radar signatures via Generative Adversarial Networks
(GANs) [4], and effective multi­frequency training for multiple radar sensors used for
HAR [91]. These techniques for HAR and gesture classification also include multimodal
frameworks where different sensing modalities can be combined with the radar. For
example, in recent studies, magnetic induction systems and, more generally, wearables are
also used for HAR in conjunction with radar applications [92, 93].

However, most of the research work on radar for HAR and gestures has focused on the
modulus (magnitude) of the micro­Doppler (µD) spectrogram and, in part, on the range­
time map (RM), the range­Doppler (RD), or the range­Doppler surface (RDS) as radar data
domains to start the classification process [20, 38, 94–96].

We propose a different and innovative approach based on the usage of the phase
information directly extracted from complex high­resolution RM matrices. To our
knowledge, this data domain has been very marginally explored for radar­based HAR and
gesture classification, while other researchers have, for example, applied phase
unwrapping techniques (PUT) on the phase of the µD spectrograms [97]. Other research
groups exploit both the wrapped and unwrapped phases of a radar’s raw signal. These
phases are often fused with other radar data domains, and novel masking techniques and
adaptive thresholds are used before classification networks are utilized [98–102]. In this
work, we compare conventional radar data domains, such as the µD spectrogram and the
RM, with different formats of the proposed phase­based domain information, namely the
phase of the µD spectrogram and the phase of the RM. In both cases, their original form
(which includes all recorded range bins) and a “cropped” form (which only considers a
spatial window, e.g., of approximately 1 m around the detected target for the RM) are
considered.

Different features to be extracted from the aforementioned data domains are
investigated. We tested that conventional, well­performing features extracted by the
Two­Dimensional (2­D) Principal Component Analysis (PCA) were not able to capture the
relevant information for HAR and gesture classification from the unique shapes in the
phase of the RM matrices. On the contrary, the features derived from the histogram of
oriented gradients (HOG) technique proved to be suitable when applied to phase matrices,
as they are capable of capturing the salient patterns in terms of strength and orientation of
the typical “line structures” in such plots, while still maintaining a relatively simple
mathematical formulation compared to less easily explainable convolutional neural
networks.

The remainder of the chapter is organized as follows. In Section 3.2, the radar signal
model is presented along with the HOG feature extraction method and the data domains.
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In Section 3.3, the experimental setup is outlined together with the detailed results on the
gross­motor activities and the arm gesture datasets. Finally, the final remarks are provided
in Section 3.4.

3.2. Data Domain Representation and Feature
Selection

In this section, the different radar data domains will be introduced. In particular, the phase
domain information is exploited, and its features are extracted using the histogram of
oriented gradients (HOG) for the classification of human activities and arm gestures. Prior
to this section, Chapter 2 has provided fundamental insights on the radar signal of the
Humatics (former Time Domain) P410 system. Cleaning steps, such as moving target
indication (MTI) filtering, mean subtraction, and adaptive thresholding, are applied to
generate the RM, indicated as RM­O in Fig. 3.1.

3.2.1. Range­Time Map and Phase Angle Representation
The radar provides only the in­phase components, as presented in the matrix 𝑆mn in Fig. 2.4.
A common practice for reconstructing the complex signal along the range (R) is the Hilbert
transform. The process is repeated across all column vector [𝑠1𝑛 , 𝑠2𝑛 , ⋯ , 𝑠𝑚𝑛]𝑇 for n =
1,⋯ ,N [103]. The Hilbert transform creates a complex­valued causal function from the
purely real­valued range profile with the property of a phase shift 𝜋2 (90

∘), such that 𝑆̂mn =
𝐻𝑖𝑙(𝑆mn) = 𝑅𝑒(𝑆̂mn) + 𝑖 ⋅ 𝐼𝑚(𝑆̂mn) with 𝑖 = √−1. Now, 𝑆̂𝑚𝑛 represents the complex
signal matrix of the RMwith in­phase samples, 𝑅𝑒(𝑆̂mn), and quadrature samples, 𝐼𝑚(𝑆̂mn)
[104, 105].

From the Euler representation of complex numbers, the phase angle 𝜙mn of the signal
𝑆̂mn can be computed as 𝜙mn = ∠𝑆̂mn, with 𝜙mn in the value domain of 𝜙mn ∈ {R| − 𝜋 <
𝜙mn ≤ 𝜋}. In fact, the matrix 𝜙mn has the same range and slow­time resolution as 𝑆mn and
𝑆̂mn. The resulting RM phase plot can be seen in Fig. 3.1 indicated as, RM­PO, originating
from the phase angle block in the flow chart.

We introduce the “cropped” RM, since studies have shown that the arm span to body
height ratio is between 0.98 and 1.08, so that the range stretch of an arm toward the radar
is approximately 1/2 × bodyheight, which is roughly equal to 1/2 × armspan. For this, the
tallest test person in the dataset with 1.84 cm height can stretch their arms at a maximum
of about 92 cm towards the radar [106]. To effectively capture the span of all motions,
also including possible torso movements when performing fast gesture motions, we capture
20% beyond the expectedmaximum range, resulting in 1.10m. In other words, a “cropped”
version of the RMmatrices and their phases is considered using this spatial window centrally
placed in the target range. The location of the subject to perform the cropping operation is
provided by the derivative target line (DTL) [40] which can determine the person’s distance
from the radar (the DTL could also be replaced by other suitable target trackers [33]). This
cropped phase plot is shown in Fig. 3.1 as RM­PC, originating from the cropping block of
the flow chart. The cropped window of 1.10m is also applied to the original RM, with an
example shown in Fig. 3.1, denoted as RM­C.
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Figure 3.1: Schematic representation of the feature extraction by the histogram of oriented gradients (HOG)
algorithm for the individual data domains, with feature fusion shown in the yellow box.
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3.2.2. Spectrogram Representation
From the Hilbert transformed signal, 𝑆̂mn, the fast Fourier transform (FFT) across each
scan is computed. Then, the short­time Fourier transform (STFT) is applied to the vector
of the 4GHz frequency for the computation of the µD spectrogram [107, 108]. Using a
𝑓PRF of 121.95Hz yields to an unambiguous Doppler frequency of ±60.97Hz. Thus, the
unambiguous velocity is ±2.17m/s and is calculated as ±𝑣𝑢𝑛 = 𝑐0 ⋅ 𝑓PRF/(4 ⋅ 𝑓𝑜), with,
𝑐0, the speed of light and, 𝑓0, the center frequency of 4.2GHz (operational frequency
band: 3.1–5.3GHz) [94]. An example of the µD is shown in Fig. 3.1 as µD­O. The phase
angle and the cropped phase angle of the µD are computed from the RM explained in
Section 3.2.1. The phase information of the micro­Doppler (µD) spectrograms is also
computed. The original phase angle and the cropped phase angle of the µD can be seen in
Fig. 3.1 as µD­PO and µD­PC, respectively. The selected phase map, denoted as µD­PC,
captures only 25% of the original unambiguous Doppler frequency, resulting in a Doppler
frequency extent of ±15.24Hz. Using this method, the fine Doppler shifts near the
Doppler center are more discernible. This increased level of details in the region of interest
leads to improved classifiers’ performance due to enhanced feature extraction capability.

In summary, the data representation domains in Fig. 3.1 are:
RM­PC Cropped phase of the range­time map
RM­PO Phase of the range­time map
RM­O Original range­time map
RM­C Cropped range­time map
µD­O Original micro­Doppler
µD­PO Phase of the micro­Doppler
µD­PC Cropped phase of the micro­Doppler

3.2.3. Histogram of Oriented Gradients (HOG)
The histogram of oriented gradients (HOG) is a powerful tool for edge and contour detection
and has been widely used in the computer vision and optical character recognition fields due
to the ability to characterize strength and regularities of line patterns and contours in images
[109]. This method first determines the gradients, 𝑔𝑥, and 𝑔𝑦, by the partial derivative as,
𝜕𝑓
𝜕𝑥 and

𝜕𝑓
𝜕𝑦 , so that the gradient vector is defined as,

∇𝑓(𝑥, 𝑦) = [𝑔𝑥𝑔𝑦] = [
𝜕𝑓
𝜕𝑥
𝜕𝑓
𝜕𝑦

] = [𝑓(𝑥 + 1, 𝑦) − 𝑓(𝑥 − 1, 𝑦)𝑓(𝑥, 𝑦 + 1) − 𝑓(𝑥, 𝑦 − 1)] (3.1)

for a matrix 𝑓(𝑥, 𝑦), where x and y represent the individual samples or pixels. From the
∇𝑓(𝑥, 𝑦) two important attributes are extracted:

� The magnitude of the vector by computing the 𝐿2­norm as,

𝑔 = ‖∇𝑓(𝑥, 𝑦)‖2 = √𝑔𝑥2 + 𝑔𝑦2

� The directional orientation as, 𝜃 = arctan (𝑔𝑦𝑔𝑥 )
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It is noted that 𝑓(𝑥, 𝑦) defines only an area of the whole image matrix, where in our
experiments the HOG sizes are [16, 16] or [32, 32] pixels. Examples of the visualized
HOG features are shown in Fig. 3.2 at the bottom, where the top shows the related RM­PC
matrices. Specifically, the contours in the RM­PC appear to be mainly horizontally
orientated with an approximate variance of up to ±45∘. Therefore, vectors that are
vertically oriented have almost zero length, which relates to the magnitude of 𝑔. The
extracted features are represented by histograms, examples are shown in the flow chart of
Fig. 3.1 for RM­PC and RM­O and denoted as “HOG feature vector”. Then, the “HOG
feature vectors” are the input of the classifiers [109–112].

(a) Normal
speed & extent (b) Small extent (c) Large extent (d) Slow speed (e) Fast speed
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Figure 3.2: The impact on the HOG features illustrated for the extent and speed variation for the push and pull
arm activity.

In Fig. 3.2, we show the HOG feature for the activity of push and pull arms. Here, we
illustrate the differences in performing the motion with (b) small arm extent, (c) large arm
extent, (d) slow speed, (e) fast speed, and compare those with the (a) normal performed
motion. Specifically, two regions were deliberately selected, the red and green circled
areas to characterize the features. Body movements occur typically in the middle regions,
as those marked with the red rectangles. It can be seen that the small extent leads to little
body movements, since the torso is mainly static on a fixed position, thus resulting in
mostly horizontal HOG vectors. Furthermore, the green­framed areas contain HOG
vectors mostly originating from the arm movement towards the radar. As a result by
performing the activities with large extents, the HOG feature vectors become more steeply
orientated and diagonal in contrast to the small extent case. Another important difference
can be seen by performing the motion with fast speed, where the inertia of the torso and
the arms inevitably lead to a larger backward movement of the torso than for slower speed.
As a result, the HOG features emphasize the backward movement of the torso in a very
distinctive way.

3.2.4. Feature Selection and Classification
In the previous section, the HOG feature extraction was explicitly described. Now, the
orientated gradients are extracted for the 2D detection windows ([16, 16] or [32, 32] pixels)
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Figure 3.3: Validation and test performance of gesture experiments for the different 𝑓PRF related to Table 3.1. Red,
yellow, green data labels for testing performance match in color those in Table 3.1.

to provide the histograms and the feature vector, while the orientation is discretized in the
angular bins of the histogram of 20∘ from 0∘ to 160∘. It is noted that vectorial gradients
are proportionally split into the histogram bins if their orientation value is between the bins’
nominal values. Furthermore, HOGonly considers gradients from0∘ to 180∘ since a contour
in an image is non­directional. Furthermore, the histogram bin of 180∘ does not exist since
it is equivalent to the 0∘ bin. This processed feature vector is then used for classification.

We tested our proposed method with a few of the most common yet effective supervised
learning classifiers, the Nearest Neighbor (NN), the Linear Support Vector Machine (linear
SVM), and the Gaussian SVM classifier. Specifically, the NN classifier was used with a
number of neighbors of five with a Euclidean distance computation. For the linear SVM
and the Gaussian SVM classifier, we apply the multi­class setting one­versus­one.

The yellow square box in Fig. 3.1 shows that we also apply feature fusion for
classification. For this, individual feature vectors from individual radar data domains are
joined into a concatenated feature vector, e.g., 𝜅Fuall , which is expressed as
𝜅Fuall=[𝜅TRM­PC, 𝜅TRM­PO, ..., 𝜅TµD­PC]T. We show that concatenating all possible feature
vectors from different radar domains does not lead to the best classification results. In this
regard, the best accuracy was achieved by using a subset of features, namely, the cropped
phase of the RM (RM­PC), the cropped RM (RM­C), and the µD spectrogram (µD­O), so
that the concatenated feature vector is formed as 𝜅Fubest=[𝜅TRM­PC, 𝜅TRM­C, 𝜅TµD­O]T.

On the other hand, very promising results were achieved by excluding the
µD spectrogram and focusing deliberately on the RM which is directly provided by the
radar, so that an additional STFT calculation or even more complex time­frequency
distributions can be omitted. Computing the µD spectrogram requires some computational
resources and time. Considering the STFT as the simplest approach to calculating
spectrograms via time­frequency analysis, a measure of its complexity as the number of
floating­point operations (FLOPS) can be computed as,

𝑘 ⋅ 𝑙𝑜𝑔2(𝑛𝑛)

with: 𝑘 = 𝑁 − 𝐿
𝑛 − 𝐿

(3.2)
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Figure 3.4: The revealing scheme to extract the features from the range only as, 𝜅Furange , and with containing the
µD spectrogram feature as, 𝜅Fubest , which implies the STFT.

with n the STFT window function length, L the overlap length, and N the signal length.
By using the STFT with the discrete Fourier transform (DFT), the FLOPS from Eq. (3.2)
changes to 𝑘𝑛2 [113, 114]. It is noted, the simplified FLOP calculation does not consider
additional smoothing window multiplication, i.e., the Hamming window. In this respect,
avoiding the STFT leads to the concatenated feature vector consisting of
𝜅Furange=[𝜅TRM­PC, 𝜅TRM­C]T, and includes only the cropped RM and the cropped phase of the
RM. The scheme is illustrated in Fig. 3.4.

3.3. Experimental Results
Two datasets were collected in the radar laboratory at the Delft University of Technology
(TU Delft), consisting of a comprehensive number of classes for the gesture and the
gross­motor experiments that are presented in this section. Both sets were recorded with
Humatics P410 pulsed radar systems. Four participants were involved in the experimental
data collection, with a height between 1.65m and 1.84m, and a weight between 65 kg and
86 kg. The number of data samples for the training sets is 280, 282, and 300 samples per
class for the gross­motor activities with a 𝑓PRF of 12.2Hz, and gesture activities with a
𝑓PRF of 12.2Hz and 122Hz, respectively.

In the analytical experiment presented in Fig. 3.5, phase maps are derived from a
sequence that shows walking and stopping activities. These maps utilize a PRF of 122Hz
and a synthetically reduced PRF of 12.2Hz to provide an example. The magnified
inserted regions visually capture the actions of an individual walking, stopping, and then
resuming the walk. This is demonstrated for both the initial PRF (Figs. 3.5a and 3.5c), and
the 10­times reduced PRF (Figs. 3.5b and 3.5d) over a data collection span of 2 min. The
findings indicate that despite a 10­times reduction in the sampling rate of the data over
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(d) Phase map 12.2Hz

Figure 3.5: The figures display the phase map derived from a range time (RT) profile of a human walking sequence,
collected at PRFs of 122Hz (RT map: Fig. 3.5a, phase map: Fig. 3.5c) and 12.2Hz (RT map: Fig. 3.5b, phase
map: Fig. 3.5d)

slow­time, there is no noticeable aliasing or degradation in these data domains. This
minimal aliasing effect is further corroborated by the classification results obtained.

The test set for gross­motor activities includes 120 samples by considering an aspect
angle of 45∘. The number of test data for gesture activities for both 𝑓PRF amounts to 94, 78,
and 84 samples for the aspect angle of 45∘, the slow speed, and the small extent, respectively.

Each of the considered radar data domain (e.g. RM­O,RM­PC, or µD­O) was resized to a
matrix size of 128x128, fromwhich further processing extracts the HOG feature vectors (𝜅i),
with, i, the seven different domains listed in Section 3.2.2. Collecting training/validation
data for a 20­fold cross­validation was performed under controlled aspect angle, spatial
extent, and speed of movement. For further evaluation, we collected a separate test set for
the gesture activities with (1) an aspect angle (AA) of about 45∘, (2) a slower speed, and (3)
a smaller extent, as shown in Table 3.1.

Training/validation data for a 20­fold cross­validation of gross motor activities was
collected with the same conditions, while the test set (hold­out) contains only data with an
aspect angle of 45∘, since a slower speed or a smaller extent can be difficult for some
gross­motor activities, e.g., falling. It should be noted that the training/validation set does
not include data samples that reflect the conditions of the test set (AA, slower speed or
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Figure 3.6: Pictures of the activities and related cropped phase matrices: six gestures (top, green­shaded), and
eight gross­motor activities performed bidirectionally (bottom, yellow­shaded).

smaller extent). In fact, the classifier is requested to classify data without being explicitly
trained in those conditions. In this work, the training/validation was performed using
20­fold cross­validation, and it refers to [115]; essentially:

� Training set size = 19
20 (or 95%) of the dataset.

� Validation set size = 1
20 (or 95%) (or 5%) of the dataset.

3.3.1. Arm Gesture Results
The first dataset consists of six gesture activities, namely, (a) push and pull arms, (b) close
arms, (c) open arms, (d) rolling arms, (e) stop sign, and (f) clap hands. The individual
gesture activities and the related RM­PC are shown in the green­shaded box in Fig. 3.6.
The movements were performed facing the radar with a distance of 3.20m from the radar.
For performance comparison, we collected two subsets with 𝑓PRF of 122Hz and 12.2Hz.

The validation and test performance of the gesture activities can be found in Table 3.1.
Specifically, the test dataset includes three different cases, namely (1) a higher aspect angle
(AA), (2) a slower speed, and (3) a smaller spatial extent compared to the training/validation
data. The results are visualized in Fig. 3.3 related to Table 3.1. In the table, we show the
test performance of the gesture activities only for the Gaussian SVM classifier, which gives
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Figure 3.7: Validation and test performance of gross­motor experiments for two different HOG sizes related to
Table 3.2. Red, yellow, green data labels for testing performance match in color those in Table 3.2.

the best results and outperformed the kNN and the linear SVM classifier.
Remarkably, we illustrate that our proposed method of the phase of the RM (RM­PC)

and HOG features is still capable of classifying gestures with sufficient accuracy when the
unambiguous Doppler frequency of the µD spectrogram decreases by a factor of 10x using
the lower 𝑓PRF=12.2Hz instead of the 𝑓PRF=122Hz. As expected, due to the resulting
ambiguity in micro­Doppler, the classification accuracy decreases when using the µD­O
domain by more than 9% with the best performing classifier, Gaussian SVM
(99.76% → 90.27%). The RM and especially the RM­PC is almost unaffected by
lowering the radar 𝑓PRF by such a significant amount. Regarding the extraction of HOG
features, the highest classification results were obtained using a HOG cell size of [16,16]
samples. Other HOG cell sizes of [8,8] or [32,32] have also been tested, but have provided
lower classification results.

3.3.2. Gross­Motor Activities Results
The second dataset contains an even larger number of classes, while the activities were
performed away from the radar in addition to facing the radar. The activities are (g)
bending from standing, (h) bending from sitting, (i) kneeling down, (j) kneeling up, (k)
sitting down, (l) standing up, (m) falling, and (n) standing up from falling. Taking into
account the bidirectional orientation, 16 classes were collected and considered for
classification. The activities can be seen in Fig. 3.6 in the yellow­shaded box, together
with the relevant bidirectional RM­PC plots.

We show the average classification results for gross­motor activities in Table 3.2 and
visualize the results in Fig. 3.7. In this case, the dataset was collected with only a 𝑓PRF of
122Hz, but two HOG cell sizes of [16,16] and [32,32] are compared. These are shown in
Table 3.2 by the gray­shaded and yellow­shaded boxes, respectively. The results show that
doubling the HOG cell size does not lead to a drastic classification performance reduction
and both results are rather comparable. In the HOG descriptor, three parameters are pivotal:
cell size, block size (typically by default 2x2 cells), and block overlap (by default 50% of
the block size). By increasing the cell size, while keeping the other parameters constant, the
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Figure 3.8: Evaluating the HOG versus the 2D­PCA feature extraction methods, paired with the Gaussian SVM
classifier. This comparison considers HOG cell sizes of 8, 16, and 32, and principal component vectors (PC) of 2,
4, and 8.

computational load decreases. This is due to the reduced size of the resulting input feature
vector, 𝜅𝑖 [116].

For training/validation accuracy, it can be seen that the Gaussian SVM classifier gives
slightly higher accuracy for the proposed method based on the RM­PC data domain. When
feature fusion is considered, the advantage of using the Gaussian SVM classifier with the
HOG cell size of [32,32] is less dominant compared to the NN or the linear SVM classifier.
Additionally, for classification based on a single data domain, the proposed method of RM­
PC yields a performance improvement of+1.71% compared to the bestµD­O classification
(µD­O [kNN] 91.61%→RM­PC [Gauss SVM] 93.32%). Although small in absolute terms,
this improvement can be considered significant due to the large number of classes (16).

The test performance in Table 3.2 shows the results for the AA of 45∘ when using the
three different classifiers of kNN, linear SVM, and Gaussian SVM. This is different from
Section 3.3.1 where gesture activities were performed at slower speed and with a smaller
spatial extent. Specifically, the Gaussian SVM classifier outperforms the other tested
classifiers in almost every category, except for the Fusion all case, which will be discussed
in the next section.

3.3.3. Comparative and Noise Analysis
In this section, a comparison between the investigated method of the HOG classification
and the 2D­PCA classification is demonstrated, as well as a noise performance analysis on
the gesture dataset. Regarding Table 3.3 and Fig. 3.8, it can be seen that the phase domains,
such as RM­PC, RM­PO, µD­PC, µD­PO, as well as their fusion are better classified by the
HOG algorithm. The typical µD­spectrogram (µD­O) classification performs almost equal
with both methods. This leads to the conclusion that 2D­PCA cannot capture phase­related
patterns as well as is done by the HOG algorithm.

Fig. 3.9 illustrates the impact of reducing the SNR by −3.010 dB, −10.42 dB, and
−20.04 dB using additive white Gaussian noise. The alteration in the phase pattern is
evident in Fig. 3.9b for the push and pull arms. Decreasing the SNR by −3.010 dB in the
original signal yields classification results that are nearly comparable, especially for the
proposed method (RM­PC). A more significant reduction in SNR results in an anticipated
decline in classification for most feature domains, as detailed in Table 3.3.
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(a) Performance by adding noise for the HOG algorithm.

(b) Visualization by of the cropped phase­based RM (RM­PC) and µD­
spectrogram (µD­RC), respectively, for push and pull arms.

Figure 3.9: Gesture validation performance at a SNR decrease of (II) ­3.010 dB, (III) ­10.42 dB, and (IV ) ­20.04 dB
using additive white Gaussian noise. Data were collected at 𝑓PRF = 122Hz. See Table 3.3 for results.

3.3.4. Discussion on the Results
The introduced method of classifying the RM­PC showed very promising results, which
can be further improved by using feature fusion (early fusion) along with the RM­C, or
RM­C together with µD­O. However, we do not suggest using all available domains,
which can be seen for the Fusion all case, as the classification accuracy can drastically
decrease due to overfitting. Nevertheless, the use of our phase­based classification
framework is suitable to avoid the calculation of the STFT completely, and omit any form
of µD computation and related feature extraction, and instead focus on the range only.
This can be a potentially interesting advantage to reduce complexity in view of real­time
applications and computationally constrained environments, as demonstrated in Eq. (3.2)
together with Fig. 3.4.

The RM­PC plots in Fig. 3.6 (yellow­shaded box) for facing the radar can be compared
with those recorded for movements away from the radar, and also with gesture activities
(green­shaded box in the same figure). Here, the changes in contour patterns of the phase
plots are dominant and still visible, although the differences are less clear and intuitive
than those typically visible in spectrograms. However, the HOG algorithm can capture
well and distinguish changes in contour patterns in the angular direction and intensity. For
comparison, Fig. 3.2 shows the HOG feature change for (push and pull arms) but
performed at different speeds and spatial extents. Specifically, the red­framed HOG
features represent the torso movement and are more dominant for a larger spatial extent or
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faster speed. Also, the green­framed HOG features are distinguishable in strength and
orientation, which represents mainly the arm movement. Here a difference can easily be
seen between small and large extents.

In the analysis, it was observed that the use of HOG features is sensitive to noise.
Existing literature indicates that as noise levels escalate, the effectiveness of HOG
decreases. This underscores the importance of a thorough investigation of the effects of
noise on both the HOG and PCA approaches [117, 118]. The analysis is pertinent to the
conventional range time map (RM­C) and the magnitude of the µD spectrogram (µD­O)
representations. It does not pertain to phase maps derived from the full range time map
(RM­PO), the cropped range time map (RM­PC), including the phase of the µD
spectrogram (µD­PO) or its cropped version (µD­PC). For these domains, it should be
noted that PCA was not able to extract fine line and contour patterns. Moreover, when
using features directly derived from the phase information, it is crucial to employ in­phase
and quadrature balancing techniques either during data collection or in post­processing [6].

3.4. Conclusion
We propose a novel approach for classification of human gross­motor activities and arm
gestures based on the phase information directly extracted from high resolution range­time
maps (RM). This approach is an alternative compared to the more conventional use of the
magnitude of the micro­Doppler (µD) spectrograms for classification. We investigated the
wrapped phase of RM and µD spectrograms, whereas the phase­based RMprovides superior
results over the phase­based µD spectrograms. However, the unique shape of those wrapped
phases in terms of intensity and complexity of the line patterns requires a suitable feature
extraction algorithm to capture the relevant information, different from the features typically
used on a conventional µD spectrogram. For this, we exploited the histogram of oriented
gradients (HOG) algorithm to capture suitable features toward a phase­based classification
by using three commonly known classifiers, namely the Nearest Neighbor (NN), the linear
Support Vector Machine (SVM), and the Gaussian SVM.

We demonstrate this approach on two experimental datasets, namely one for
gross­motor activities (e.g. sitting, standing, bending, kneeling, etc.), and the second for
arm gestures (e.g. pushing and pulling arms, waving hands, or pointing, etc.). The latter
dataset is recorded with two different Pulse Repetition Frequencies (𝑓PRF). We have shown
that the proposed method can be applied to arm gesture recognition measured with a
10­times lower 𝑓PRF – which can be beneficial by using low­cost hardware – without any
noticeable decrease of performance, while a conventional µD­based approach suffers with
such data due to Doppler ambiguities. The method has shown to be robust with respect to
the test scenario variables: e.g., the aspect angle to the radar line of sight, the velocity, and
the extent of arm movements are also characterized.

Promising validation results consistently above 92% are demonstrated for arm
gestures and gross­motor activities using HOG features extracted from the proposed
phase­based RM. These results based on phase domain classification can even be
improved by fusing features from different radar data domains, such as the original RM
and/or the µD spectrograms, which show a more robust performance under different
operational conditions (e.g., different aspect angles, extent, or movement velocity).
Superior performance was attained by fusing the proposed phase­based RM together with
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the magnitude of the RM. Regarding the fusion of the RM domain mentioned previously
for the slow 𝑓PRF of 12.2Hz of the gesture dataset, a validation accuracy improvement of
greater 10% compared to the conventional µD spectrogram classification was achieved.
Furthermore, the proposed method may suit radar systems that provide complex in­phase
and quadrature signal components directly without resorting to the Hilbert transform, as
well as for different operational frequencies and bandwidths.



4
Data Fusion in Distributed

Radar Systems for HAR

Continuous human activity recognition (HAR) is investigated in arbitrary directions using
a network of five spatially distributed pulsed Ultra­Wideband (UWB) radars. While
activities performed continuously and in uncontrolled trajectories, which provides a more
realistic and natural scenario for HAR, the network of radar sensors is proposed to
address the issue of unfavorable or occluded perspectives when using only a single sensor.
Different techniques to combine the relevant information from the multiple radars in the
network are investigated, focusing on signal level fusion directly applied on range­time
maps (RT), and the selection of radar nodes based on location and velocity of the target
derived from multilateration processing and tracking. Recurrent neural networks (RNNs)
with and without bidirectionality are used to classify activities based on micro­Doppler
spectrograms (µD) obtained for sensor fusion techniques. To assess classification
performances, novel evaluation metrics accounting for the continuous nature of the
sequence of activities and inherent imbalances in the dataset are proposed and compared
with existing metrics. It is shown that the conventional accuracy metric may not capture
all the important aspects for continuous HAR, and the proposed metrics can be considered
for a more comprehensive evaluation.

Parts of this chapter have been published in:

R. G. Guendel, F. Fioranelli, and A. Yarovoy, “Distributed radar fusion and recurrent networks for classification
of continuous human activities”, in IET Radar, Sonar and Navigation, 2022.
R. G. Guendel, F. Fioranelli, and A. Yarovoy, “Evaluation metrics for continuous human activity classification
using distributed radar networks”, in IEEE Radar Conference 2022 (RadarConf22), 2022.
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4.1. Introduction to Data Fusion
Monitoring activities of daily living (ADL) by radar has gained attention for safe and
independent aging­in­place of older and vulnerable subjects. This includes recordings of
critical events such as falls, monitoring abnormalities in movements and activities, and in
general, providing an assessment of well­being in terms of cognitive and physical state
[4, 49, 88].

As human activity recognition (HAR) by radar typically exploits micro­Doppler (µD)
signatures of human movements, distributed networks with multiple cooperating radars
have attracted significant interest to address the issue of reduced µD signatures recorded at
unfavorable aspect angles [38, 46, 119–122]. However, the focus has often been on the
classifier’s architectures, i.e., neural networks [4], including in our work [123]. To the best
of our knowledge, there are only limited experimental studies on the most suitable number
and topology of the different radar sensors for HAR, and on the most effective fusion
techniques to combine their data [46, 124]. Therefore, such questions remain widely open
in HAR.

Griffiths et al. [125, 126] investigated drone payload classification using 3 multistatic
radar nodes and achieved superior results by voting­based decision fusion among
independent classifiers (named as ‘binary voting’ and ‘threshold voting’). The same
authors [36, 127] also investigated the usage of handcrafted features of µD spectrograms
(e.g., their centroid and bandwidth) for other classification tasks based on the same
multistatic radar network of 3 nodes. These tasks included gait analysis of individuals
alone and in pairs to identify whether they were armed or unarmed in outdoor surveillance
scenarios. Even in this case, decision fusion appeared to provide the best classification
results, but little investigation was devoted to lower­level signal fusion approaches.

Unlike the aforementioned studies, this work investigates novel lower­level fusion
approaches applied to a network of five spatially distributed monostatic radars
simultaneously observing a surveillance area. The proposed fusion schemes aim to
combine data from a selection of the different radar nodes prior to the generation of the µD
spectrogram used for classification. Specifically, a fusion method based on incoherent
fusion of the range­time (RT) domain data from each radar node is investigated. Although
rather simple in terms of computation, this approach proves to be the most effective in
terms of overall classification results, with the following potential advantages given:

� Minimizing the number of classifiers to be defined and trained in the pipeline to one.

� Avoiding complex methods to combine the partial decisions from separate classifiers.

� Using one single µD spectrogram representation for the entire network, containing
information from all nodes with computational simplicity.

In addition, two approaches are evaluated to select a subset of the available radar nodes
for the subsequent fusion process. The first approach is the orthogonal radar selection,
whereby two radar nodes with orthogonal lines of sight are selected to capture the
signatures of D µalong the radial and tangential directions. While this selection is static
and done once and for all, with the second approach, a dynamic selection of the radar
nodes is performed. In this weighted radar selection, the location, velocity, and heading of
the target are first estimated by multilateration processing [128] combined with a simple
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alpha­beta­(gamma) – 𝛼, 𝛽, (𝛾) tracking filter. Then, a weighting function is implemented
to select at any given time the most suitable radar for classification, i.e., the closest radar to
the target (thus assuming the highest SNR), or the one radar with most favorable aspect
angle to the trajectory (thus assuming the richest micro­Doppler information).

The different radar data fusion methods mentioned above are explored in the context of
classifying continuous sequences of human activities, as opposed to the more conventional
classification of artificially separated activities [46, 52, 129]. These continuous activities
represent more realistic and natural scenarios for evaluating radar­based HAR algorithms,
where the transitions between different activities can happen at any time and in undefined
instants. If performed along unconstrained trajectories and directions, the classification
of such activities can clearly benefit from the multi­perspective views of distributed radar
networks.

However, as discussed in our preliminary results in [130], HAR applied on continuous
sequences requires alternative performance evaluation metrics beyond simple accuracy or
quantities directly extracted from confusion matrices, regardless of the nature of the radar
used for recording, i.e., monostatic or distributed/multistatic. Specifically, four aspects of
Continuity, Misalignments, Interruptions, and Imbalance: for continuous HAR data must
be considered.

Continuity: The activities are performed in a natural way with continuous sequence
recordings, where transitions between activities occur at arbitrary times and with various
activities in the dataset that occupy different times by nature. For example, ‘falling’ is
typically a short­term action, whereas ‘walking’ can be perfromed over an extended time.
Therefore, it is difficult to precisely pinpoint the time instant where one activity ends and
the following activity starts, even in the ground truth. Misalignments: As a consequence of
the difficulty in accurately estimating the time instant of activity transitions, misalignments
between ground truth and prediction labels can occur, i.e., time offsets between ground
truth and predictions. Depending on the overall goal of the HAR system, one needs to
establish the importance of such misalignments in terms of the performance evaluation for
classification algorithms. Interruptions: As an activity will occupy an extended number of
slow­time bins, a dedicated classifier (predictor) can provide a prediction output where a
few samples are associated with the wrong classes and are, in fact, false predictions. Such
“short­term” false predictions or temporal fluctuations of the predicted class (i.e., outliers)
occur only in a few, isolated slow­time bins. Such “jumps” in the prediction label vector
are often not encountered when classifying human activities as artificially separated
“snapshots”, and not captured when using conventional evaluation metrics for
continuous­time sequences. In summary, conventional metrics hardly account for temporal
fluctuations in a continuous prediction vector. Imbalance: Finally, when evaluating
realistic sequences of activities, imbalances in the dataset will naturally appear due to
different occurrences and time spans of activities during an observation period. A typical
example can be the prevalence of the ‘walking’ class while participants move about in the
room to perform single instances of other in­place activities. Furthermore, another typical
situation is the small amount of available samples for critical activities, such as ‘falling’.

To account for the continuous nature of human activities and provide a more insightful
performance analysis based on the aforementioned aspects, this work discusses a collection
of 10 possible evaluation metrics with their advantages and disadvantages. These metrics
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are used to evaluate the different radar data fusion methods on an experimental dataset with
five radar nodes, 15 participants, and 9 labeled activity classes. The presented methods are
validated for single human target cases. Although more complex scenarios exist, such as
multiple individuals in the field of view or individuals with domestic animals, these are left
for future research work.
To summarize, the main contributions are:

� Novel fusion methods to combine data from radars in a spatially distributed network
are investigated, focusing on signal level fusion and selection of a subset of nodes to
improve HAR performances.

� The original classification performance metrics are shown to account for the
continuous nature of human activities. These metrics are used to evaluate an
experimental dataset containing data from five radar nodes, with 15 participants
performing continuous and unconstrained sequences of 9 activities.

� Four recurrent neural networks (RNNs) are used as classifiers for HAR, namely
gated recurrent unit (GRU) and long short­term memory (LSTM), including their
bidirectional implementation. These architectures are considered very suitable for
HAR based on continuous sequences, as they can directly take the µD sequence as
input.

The rest of the chapter is organized as follows. Section 4.2 describes the experimental
setup, the collected dataset, and the class set distribution plus their separability, followed
by Section 4.3 showing the multilateration tracking approach. Section 4.4 presents the
proposed fusion schemes for distributed radar sensors. The evaluation metrics are
introduced in Section 4.5 and afterward the hyperparameter tuning for the used RNN in
Section 4.6. The experimental results are presented in Section 4.7, and the final remarks
are given in Section 4.8.

4.2. Experimental Setup and Dataset
The section introduces the experimental dataset containing the distributed radar node layout
with the statistical characteristic of the unbalanced class set.

4.2.1. Experimental Setup
Five ultra­wide band (UWB) radar nodes by Humatics P410 (former PulsON) are
simultaneously employed with coded waveform capabilities minimizing interference
between nodes. The radar nodes are deployed in a circular baseline, with a spacing of
approximately 45∘ between them, and cover a surveillance area of about 4.39m as shown
in Fig. 4.1.

4.2.2. Dataset and Class Distribution
Continuous sequences of activities are recorded with 15 participants available in a public
dataset1 [69]. The test and training data procedure is performed by excluding one
1Dataset DOI: https://doi.org/10.4121/16691500

https://doi.org/10.4121/16691500
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Figure 4.1: Distributed radar network with five radars observing a surveillance area of about 4.39m in diameter
at the MS3 laboratory, TU Delft.

participant from the training data for testing. The procedure is well known as
leave­one­person­out (LOPO). For all participants, each collected recording has a total
duration of 2min, and all activities were carried out at predefined locations (sequence type
A), and at freely chosen locations within the surveillance area (sequence type B). It should
be noted that the participants were free to move in unconstrained directions between
performing each activity and to face random directions in terms of aspect angles to the five
radars.

Although nine activities were recorded, these were grouped into 5 classes, namely: (I)
‘translation’ activities (i.e., essentially walking); (II) ‘stationary’ activity (i.e., essentially
the position of standing between two other activities without performing any specific
movement); (III) ‘in­place’ activities (namely, sitting down, standing up from sitting,
bending while sitting and standing); (IV) ‘falling’ (including both falling from standing or
walking); and (V) ‘standing up from falling’.

This decision in terms of grouping activities together into ‘macro­classes’ came from
limited practical benefits gained by too fine­grained separation of very similar in­place
classes such as ‘bending from walking’ and ‘bending from standing’, or by distinguishing
‘falling from walking’ and ‘falling from standing’. This also reduces in part the imbalance
or skewness of the dataset by grouping together minority classes of activities for which
few samples were available, especially the ‘in­place’ activities. The t­distributed
Stochastic Neighbor Embedding (tSNE) representation for the features extracted from the
µD domain of the original 9 classes and for the grouped 5 ‘macro­classes’ are presented in
Fig. 4.2 after feature scaling is performed.

Furthermore, the pie diagram in Fig. 4.3 illustrates the sample distribution for the
collected dataset after the class grouping. As mentioned in the introduction, continuous
activities recorded in semi­natural conditions may lead to imbalanced datasets where
walking is predominant compared to in­place activities or critical activities such as fall
events. This is visualized with the ‘walking’ class being about 50% of the dataset.
Without resorting to generate synthetic data to correct for the imbalance [131], its effect in
performance assessment is addressed by the parameter optimization process shown in
Section 4.6, where the dispersion using the standard deviation of the 𝐹1 score across
classes has been included in the metrics evaluation process by minimizing the 𝐹1 score
fluctuation as shown in Eq. (4.31).
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Figure 4.2: The figure shows the t­SNE distribution of 9 initial classes and the t­SNE distribution after class
merging. Therefore, the in­place label was assigned to: [sitting down, standing up, and bending] and the falling
label to: [falling from walking, and falling from standing].

Walking
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Figure 4.3: The pie diagram shows the imbalance of classes with the minority and majority classes of ‘falling’ and
‘walking’ below 5% and above 50%, respectively.
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4.3. Multilateration and Tracking Approach
This section introduces multilateration­based localization to determine the target’s position
and is followed by an alpha­beta­(gamma) – 𝛼, 𝛽, (𝛾) filter that is applied to estimate the
smoothed target’s location, velocity, and acceleration. These are then used in the selection
of the radar nodes that will be involved in the data fusion process prior to classification.
The multilateration processing and the tracking approach with the 𝛼, 𝛽, (𝛾) filter can be
considered as subsequent processing ‘blocks’ one after the other. Specifically, while the
target’s location can be estimated directly from the multilateration processing, the tracking
filter is used for smoothing the location and additionally extracting the single target’s
velocity and acceleration. Although more advanced methods such as various
implementations of the Kalman filter may be applied, in this work the simpler 𝛼, 𝛽, (𝛾)
filter provides satisfactory results for the next stage of selection of radar nodes based on
the target’s state, which is described in Section 4.4.3.

4.3.1. Multilateration Positioning
Multilateration processing is applied to estimate the target’s location in a multi­sensor
system. The system is an over­determined equation system, as can be seen in Fig. 4.4. The
peak power of the range pulse as in [68] provides the radial range, 𝑟𝑛𝑥 of the n­th radar
with known radar node location (𝑥𝑛𝑥 , 𝑦𝑛𝑥). The target’s estimated position (𝑥̃, 𝑦̃) can be
expressed as follows,

⎧⎪
⎨⎪⎩

(𝑥̃ − 𝑥1)2 + (𝑦̃ − 𝑦1)2 = 𝑟21
(𝑥̃ − 𝑥2)2 + (𝑦̃ − 𝑦2)2 = 𝑟22
⋮ ⋮ ⋮ ⋮
(𝑥̃ − 𝑥𝑁𝑥)2 + (𝑦̃ − 𝑦𝑁𝑥)2 = 𝑟2𝑁𝑥

(4.1)

Eq. (4.1) is linearized for five radars such as,

⎧⎪
⎨⎪⎩

(𝑥̃ − 𝑥1)2 + (𝑦̃ − 𝑦1)2 − (𝑥̃ − 𝑥5)2 − (𝑦̃ − 𝑦5)2 = 𝑟21 − 𝑟25
(𝑥̃ − 𝑥2)2 + (𝑦̃ − 𝑦2)2 − (𝑥̃ − 𝑥5)2 − (𝑦̃ − 𝑦5)2 = 𝑟22 − 𝑟25

⋮ ⋮ ⋮ ⋮
(𝑥̃ − 𝑥4)2 + (𝑦̃ − 𝑦4)2 − (𝑥̃ − 𝑥5)2 − (𝑦̃ − 𝑦5)2 = 𝑟24 − 𝑟25

(4.2)

Then, Eq. (4.2) can then be rewritten in matrix notation as follows:

A = [
2(𝑥1 − 𝑥5)
⋮

2(𝑦1 − 𝑦5)
⋮

2(𝑥4 − 𝑥5) 2(𝑦4 − 𝑦5)
] (4.3)

b = [
𝑥21 − 𝑥25 + 𝑦21 − 𝑦25 + 𝑟25 − 𝑟21
⋮ ⋮ ⋮

𝑥24 − 𝑥25 + 𝑦24 − 𝑦25 + 𝑟25 − 𝑟24
] (4.4)

The over­determined equation system is solved by an ordinary least squares (OLS)
estimation that minimizes the error. Thus, the target coordinates can be calculated as
follows,

x̃𝑛 = [
𝑥̃
𝑦̃ ] = (A

𝑇A)−1A𝑇b (4.5)
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Figure 4.4: The distributed layout for the radar network uses five nodes. The target’s location is estimated by the
intersections of the determined ranges of each node using multilateration processing.

Table 4.1: The notation of Section 4.3.2 Alpha Beta (Gamma) Filter equations [134].

Δ𝑡 Time between instantaneous measurements (referring to PRI)
x𝑛 Ground truth value
x̃𝑛 Measured value at time 𝑛
x̂𝑛,𝑛, ̂ẋ𝑛,𝑛, ̂ẍ𝑛,𝑛 Estimate of x, ẋ, ẍ at time n
x̂𝑛+1,𝑛, ̂ẋ𝑛+1,𝑛, ̂ẍ𝑛+1,𝑛 Estimate made at time 𝑛 of the future state (𝑛+1) of x, ẋ, ẍ
x̂𝑛,𝑛−1, ̂ẋ𝑛,𝑛−1, ̂ẍ𝑛,𝑛−1 Prior prediction at time 𝑛, i.e., pred. made at time (𝑛−1) of x, ẋ, ẍ

where (A𝑇A)−1A𝑇 is the Moore–Penrose inverse and (⋅)𝑛 is the discrete­time instant index
[128, 132, 133].

4.3.2. Alpha Beta (Gamma) Filter
The output of 𝛼, 𝛽, (𝛾) filter is used to estimate location, velocity and acceleration of the
single target in the scene, respectively. The tracking filter is jointly used for track smoothing,
essential for slow performing movements as those in HAR.

The estimated and unfiltered location is indicated as x̃𝑛=[𝑥̃, 𝑦̃]𝑇 obtained from Eq. (4.5)
in Section 4.3.1. Additional technical insight about the 𝛼­𝛽­𝛾 filter is provided by Becker
in [134], with notation in Table 4.1.
The filter model is given by,

X𝑛+1,𝑛 = FX𝑛,𝑛 (4.6)

with the prediction state X{⋅},{⋅}, while F defines the target kinematic. The kinematic
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dependencies are expressed such as,

x̂𝑛+1,𝑛 = x̂𝑛,𝑛 + ̂ẋ𝑛,𝑛Δ𝑡 + ̂ẍ𝑛,𝑛
Δ𝑡2
2 (4.7a)

̂ẋ𝑛+1,𝑛 = ̂ẋn,n + ̂ẍ𝑛,𝑛Δ𝑡 (4.7b)
̂ẍ𝑛+1,𝑛 = ̂ẍ𝑛,𝑛 (4.7c)

with ̂ẋ and ̂ẍ the velocity and acceleration, respectively. The target states in Eq. (4.7) can be
formulated in matrix notation such as,

X𝑛+1,𝑛 = [
x̂𝑛+1,𝑛
̂ẋ𝑛+1,𝑛
̂ẍ𝑛+1,𝑛

] = [
1 Δ𝑡 Δ𝑡2

2
0 1 Δ𝑡
0 0 1

] [
x̂𝑛,𝑛
̂ẋ𝑛,𝑛
̂ẍ𝑛,𝑛
] = FX𝑛,𝑛 (4.8)

The extended version of Eq. (4.8) can be rewritten as,

X𝑛+1,𝑛 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑥̂𝑛+1,𝑛
𝑦̂𝑛+1,𝑛
̂𝑥̇𝑛+1,𝑛
̂𝑦̇𝑛+1,𝑛
̂𝑥̈𝑛+1,𝑛
̂𝑦̈𝑛+1,𝑛

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0 Δ𝑡 0 Δ𝑡2
2 0

0 1 0 Δ𝑡 0 Δ𝑡2
2

0 0 1 0 Δ𝑡 0
0 0 0 1 0 Δ𝑡
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑥̂𝑛,𝑛
𝑦̂𝑛,𝑛
̂𝑥̇𝑛,𝑛
̂𝑦̇𝑛,𝑛
̂𝑥̈𝑛,𝑛
̂𝑦̈𝑛,𝑛

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(4.9)

where the variable x̂{⋅},{⋅} is the 2𝑥1 vector [𝑥̂{⋅},{⋅}, 𝑦̂{⋅},{⋅}]𝑇, and this applies equivalently for
̂ẋ{⋅},{⋅}, ̂ẍ{⋅},{⋅}. The track update equations enclosing the present measurement, x̃𝑛, are given
by,

x̂𝑛,𝑛 = x̂𝑛,𝑛−1 + 𝛼 (x̃𝑛 − x̂𝑛,𝑛−1) (4.10a)

̂ẋ𝑛,𝑛 = ̂ẋ𝑛,𝑛−1 + 𝛽 (
x̃𝑛 − x̂𝑛,𝑛−1

Δ𝑡 ) (4.10b)

̂ẍ𝑛,𝑛 = ̂ẍ𝑛,𝑛−1 + 𝛾(
x̃𝑛 − x̂𝑛,𝑛−1

1
2Δ𝑡

2
) (4.10c)

with the (residual) error included as x̃𝑛 − x̂𝑛,𝑛−1. Δ𝑡 is the time between instantaneous
measurements and refers to the PRI. The location, velocity and acceleration parameters of
the tracking filter, 𝛼, 𝛽, and 𝛾, respectively, are empirically found [135]. The prediction
states of the tracking filter are used for the selection of radar nodes and subsequent data
fusion, as described in Section 4.4.3.

4.4. Proposed Radar Data Fusion Approaches
This section presents the proposed signal and feature fusion approaches for the network
of five UWB radars for HAR. The notation in this section is defined as in Table 4.2, and
the length of the feature vector obtained from one µD spectrogram is defined by k with
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Figure 4.5: Sketches of the proposed fusion approaches of ‘signal fusion’, ‘feature fusion’, ‘weighted radar
selection’, and ‘orthogonal radar selection’ (in two forms) compared with ‘single radar’ classification applied
for HAR in a distributed radar network.

Table 4.2: Notation for radar data fusion approaches in Section 4.4.

k / K individual / total feature vector length
nx / Nx individual / total radar nodes with {#1,… , #5}
𝜒𝑛𝑥 / 𝑋 individual / combined range­time (RT) map
𝜓𝑛𝑥 / Ψ individual / combined µD spectrogram feature map
𝑚 / 𝑡 RT map fast­time index, and slow­time index
𝑚′ / 𝑡′ µD spectrogram frequency bin –, and the slow­time index

feature scaling performed. Furthermore, Fig. 4.5 shows schematically the proposed fusion
approaches presented in this work and compared to the case where a single radar sensor is
used.

4.4.1. Signal Level Fusion
The received radar echoes in fast­time provide the target’s radial range. The main lobe is
typically associated with the target’s position and the sidelobes defining the noise floor,
assuming sufficient SNR conditions. The PulsON P410 radar nodes are incoherently
synchronized, referring to the Class II of the Classification Scheme for Distributed Radar
Systems by Gottinger et al. [70], with additional information provided in Section 2.2.
Consequently, summing up the range­time (RT) matrices of all radar nodes yields an
incoherent signal level fusion method as,

𝑋(𝑚, 𝑡) = 1
𝑁𝑥

𝑁𝑥

∑
𝑛𝑥=#1

𝜒(𝑚, 𝑡)(𝑛𝑥) (4.11)

The obtained RT matrix, 𝑋(𝑚, 𝑡), contains information from all radar nodes, as shown in
the pipeline in Fig. 4.6. This resulting matrix is further used to calculate a µD spectrogram
to be fed as input to the classifier of choice after feature scaling.

The STFT is applied on the RT, 𝑋(m,t), as in [82]. The resulting µD spectrogram,
Ψ(m’,t’), contains the Doppler/velocity information of the target from all nodes, where m’
refers to the frequency bins of the µD spectrogram and t’ indicates the slow­time bins,
respectively. A variety of short­time Fourier transform (STFT) window sizes and overlap
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Classifier

Time [sec]

Figure 4.6: Pipeline of incoherent signal fusion, from individual range­time (RT) maps to one µD spectrogram
used for the recurrent neural network (RNN) classifier.

values were tested for the best performance between clutter suppression and clarity of limb
motions. Clutter cancelation is performed by subtracting the average Doppler frequencies
from the µD spectrogram, with a satisfying classification achieved with the STFT overlap
of 10 samples (82ms → t’), and a Hanning window size of 150 samples (1.23 s)
[68, 136].

Afterwards, the proposed method uses directly the slow­time bins of the resulting µD
spectrogram as feature vectors for classification based on recurring neural networks
(RNN) [51], rather than using sliding windows or other techniques to segment the flow of
continuous activities.
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4.4.2. Feature Level Fusion
Feature level fusion is applied on the individual µD spectrograms, indicated as 𝜓𝑛𝑥(m’,t’).
Subsequently, the STFT is applied on the individual RT map of each radar node,
𝜒𝑛𝑥(𝑚, 𝑡), as computed in [82], where (⋅)𝑛𝑥 indicates the radar. Feature fusion
concatenates the individual µD spectrograms from each radar node as,

Ψ(m’,t’) = [𝜓1(m’,t’)𝑇 , 𝜓𝑛𝑥(m’,t’)𝑇 , … , 𝜓𝑁𝑥(m’,t’)𝑇]
𝑇

(4.12)

with, t’, the slow time bins of the µD spectrogram. It should be noted that the slow­time
sampling t of the RT map, 𝜒𝑛𝑥(𝑚, 𝑡), depends on the PRF of the radars, whereas the
slow­time sample t’ of the µD spectrogram, 𝜓𝑛𝑥(m’,t’), depends on the STFT window and
overlap parameters.

Both the proposed feature fusion and the signal level fusion presented in Section 4.4.1
use information from all the radar nodes in the network. However, with feature fusion, the
length of the resulting feature vector is 𝑁𝑥 × 𝑘, thus Nx times compared to signal level
fusion (where in our case Nx is equal to five, the total number of radar nodes in the
network). Hence, an advantage of signal level fusion may be the dimensionality reduction
of the resulting feature vector.

4.4.3. Dynamic Weighted Radar Selection
As discussed in the previous section, feature fusion increases the dimensionality of the
feature vector by the number of radar nodes used. Hence, there could be an advantage in
reducing the number of radars used in the fusion process by only keeping those providing
relevant information for classification. In the proposed weighted radar selection, this
process is not done once and for all but dynamically adjusted on the basis of the target
behavior. The position and movement of the target are used to select the most suitable
radar with respect to (w.r.t.) the proposed weight function in Eqs. (4.13) to (4.15).

First, the prediction states of the alpha beta (gamma) – 𝛼, 𝛽, (𝛾) filter from Section 4.3.2
provides the location, velocity, and acceleration of the target [x̂𝑛+1,𝑛 , ̂ẋ𝑛+1,𝑛 , ̂ẍ𝑛+1,𝑛]. As the
position of the radar nodes x𝑛𝑥=[𝑥𝑛𝑥 , 𝑦𝑛𝑥]𝑇 is assumed to be known, the Euclidean distance
computes the length of the vector differences and defines the target’s distance to each node,
such as ‖𝜂𝑛𝑥‖𝑙2=‖x𝑛𝑥−x̂𝑛+1,𝑛‖𝑙2 . It should be noted that the discrete time index, (⋅)𝑛+1,𝑛,
will be neglected for convenience to improve the readability.

Then, a weighting function can be computed as,

w(𝜂) =

1
‖𝜂⃗𝑛𝑥‖

4
𝑙2

𝑁𝑥
∑

𝑛𝑥=#1
1

‖𝜂⃗𝑛𝑥‖
4
𝑙2

= 1
𝑁𝑥
∑

𝑛𝑥=#1
‖𝜂𝑛𝑥‖

−4
𝑙2

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
‖𝜂⃗1‖

4
𝑙21

‖𝜂⃗2‖
4
𝑙2
⋮
1

‖𝜂⃗𝑁𝑥‖
4
𝑙2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(4.13)

where the term 1/(⋅)4 is related to the SNR distance­power relationship inspired by the
radar equation [5]. The denominator, ∑𝑁𝑥𝑛𝑥=#1 ‖𝜂𝑛𝑥‖

−4
𝑙2 , is a normalization term such that

∑𝑁𝑥𝑛𝑥=#1𝑤𝑛𝑥(𝜂)=1, for w(𝜂)= [𝑤1(𝜂), 𝑤𝑛𝑥(𝜂), … , 𝑤𝑁𝑥(𝜂)]
𝑇. The radar associated with
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the maximum value of the weighting function at a given time is the one selected for the
subsequent classification process, typically the one physically closest to the target and
typically providing the highest SNR. Only its feature vector is forwarded to the RNN
classifier as sketched in Fig. 4.5.

Two further weight functions are formulated that account for the target’s aspect angle
𝑐𝑜𝑠(𝜙𝑛𝑥), and the radial velocity Υ𝑛𝑥, respectively. As previously shown, the first partial
derivative of the predicted state, ̂ẋ𝑛+1,𝑛 is the velocity. The projection of the velocity onto
the line of sight vector, 𝜂𝑛𝑥, is the radial velocity to each radar node such as,
Υ𝑛𝑥 =

̂𝑥̇⋅𝜂⃗𝑛𝑥
‖𝜂⃗𝑛𝑥‖

2
𝑙2
𝜂𝑛𝑥. The weight function of the person’s velocity to the radar nodes is

computed similarly to Eq. (4.13) such as,

w(Υ) =
‖Υ⃗𝑛𝑥‖𝑙2

𝑁𝑥
∑

𝑛𝑥=#1
‖Υ⃗𝑛𝑥‖𝑙2

(4.14)

with ‖⋅‖𝑙2 (the l2­norm) as the absolute velocity w.r.t. the radar nodes.
The target’s aspect angle to the radar nodes is determined by the angle between the

velocity vector, ̂ẋ𝑛+1,𝑛, and the line of sight vector, 𝜂𝑛𝑥 such as, 𝑐𝑜𝑠 (𝜙𝑛𝑥)=
̂𝑥̇⋅𝜂⃗𝑛𝑥

‖ ̂𝑥̇𝑛𝑥‖𝑙2 ⋅‖𝜂⃗𝑛𝑥‖𝑙2
.

The weight function of the target’s aspect angle to the radar nodes is then computed as,

w(𝑐𝑜𝑠 (𝜙𝑛𝑥)) =
|𝑐𝑜𝑠 (𝜙𝑛𝑥)|

𝑁𝑥
∑

𝑛𝑥=#1
|𝑐𝑜𝑠 (𝜙𝑛𝑥)|

(4.15)

with the angle term 𝑐𝑜𝑠 (𝜙𝑛𝑥) ranging between [­1,1] and 0 indicating a tangential
movement to the radar node (|⋅| denotes the absolute value). It should be noted that the
aspect angle of facing the radar, |𝑐𝑜𝑠(0)|=1, as well as facing away, |𝑐𝑜𝑠(2𝜋)|=1, are
expected to provide the highest Doppler response and RCS for HAR (i.e., directly facing
back or torso of the person). The radar node associated with the maximum value of the
weighting function w(Υ) or w(𝑐𝑜𝑠 (𝜙𝑛𝑥)) at a given time is the one selected for the
subsequent classification process, essentially the one perceiving the highest radial velocity
or located at the most superior aspect angle, respectively.

During this research, tests were conducted that combine the aforementioned weight
functions as follows: w=w(𝜂) ⋅ w(Υ) ⋅ w(𝑐𝑜𝑠 (𝜙𝑛𝑥)). However, these tests resulted in
limited performance improvement; thus, the results are not reported in this chapter.

4.4.4. Static Orthogonal Radar Data Fusion
It has been found that classification of unconstrained HAR using a single radar suffers from
the lack of recognition capabilities of orthogonal movements, i.e., tangential to the line of
sight. Hence, with orthogonal radar fusion a pair of 2 nodes are deliberately chosen in the
network with lines of sight along radial and tangential directions. As shown in Fig. 4.5,
this orthogonal pair of radars is separated by a quarter circle (90∘). The choice of this pair
of radars is static, that is, it does not change during the measurement. An example of a



4

54 4. Data Fusion in Distributed Radar Systems for HAR

Figure 4.7: The 2D orthogonal spectrogram spanning an x­and y­plane over time domain generating the 2D­µD
spectrogram.

resulting 2D­µD spectrogram is shown in Fig. 4.7, with velocity (Doppler) components in
principle covering all standard movement directions needed for unconstrained HAR.
Two possible selections are considered:

Orthogonal Radars 2&4 The chosen subset of radar nodes 𝑛𝑥={#2, #4} with the RT
maps 𝜒#2(𝑚, 𝑡), and 𝜒#4(𝑚, 𝑡) are used to extract the µD spectrograms by applying the
STFT. The resulting µD spectrograms 𝜓#2(m’,t’), and 𝜓#4(m’,t’) are combined through
feature fusion as Ψ(m’,t’)= [𝜓#2(m’,t’)𝑇 , 𝜓#4(m’,t’)𝑇]

𝑇
and then used for classification.

The feature vectors double in size compared to using a single radar or signal level fusion in
Section 4.4.1.

Orthogonal Radars 1/5&3 Here the orthogonal radar nodes #1 and #5 are first
incoherently fused at the signal level as in Section 4.4.1, as,
𝑋#1,#5(𝑚, 𝑡) ← 1/𝑁∑#5𝑛𝑥=#1 𝜒𝑛𝑥(𝑚, 𝑡). Then the STFT applied to the concatenated RT
domain (𝑋#1,#5(𝑚, 𝑡)) obtains the spectrogram as, 𝜓#1,#5(m’,t’) ← STFT (𝑋#1,#5(𝑚, 𝑡)).
Finally, feature fusion is performed together with node #3 needed to generate the 2D­µD
spectrogram of the target of interest such as
Ψ#1,#5,#3(2m’,t’)= [𝜓#1,#5(m’,t’)𝑇 , 𝜓#3(m’,t’)𝑇]

𝑇
. Thus, the concatenated features are

used for subsequent classification with a feature vector length of 2×k∶=2×len(m’).

4.4.5. Summary of Radar Data Fusion Approaches
This section introduced different fusion methods for combining data collected by
distributed radar nodes. Low­level signal fusion combines directly the RT data of different
radars and generates a single µD spectrogram for classification, hence a feature vector of
size equivalent to only using one radar. Feature fusion calculates and concatenates the
spectrograms from different nodes, thus enlarging the size of the feature vector. Rather
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Table 4.3: The overview of the fusion methods for distributed radar the relative feature vector length together with
the author’s objective notes.

Fusion method Feature size Notes

Signal fusion k Best case reference
Feature fusion 5×k Longest feature vector
Weighted radar fusion k Tracker needed
Orth. fusion {#2,#4} 2×k Not all nodes included
Orth. fusion {#1,#5,#3} 2×k Not all nodes included
Single radar k Not suitable for unconstrained HAR

than selecting all nodes at the same time for feature fusion, only pairs of orthogonal
radars have been considered. Furthermore, a weighted radar selection over time has been
formulated, whereby the most suitable radar node is selected at any given time based on a
criterion mapped to a weighting function (i.e. the closest radar to the target, the one with
the most favorable aspect angle, or velocity presented). The proposed methods are
summarized in Table 4.3, and their performances will be compared with the use of a single
radar for classification, as if there is no distributed radar network.

4.5. Performance Metrics

Table 4.4: Notation for metric definitions of Section 4.5.

𝑦, 𝐴 / 𝑦̂, 𝐴̂ ground truth / predicted label / area
𝑦 / 𝑦̂ mean ground truth / mean predicted samples
𝑠 / 𝑠̂ ground truth / predicted block
(⋅)𝑝, 𝑃 sample, set of samples
(⋅)(𝑐) class index (later neglected for readability)
𝑡𝑝; 𝑡𝑛; 𝑓𝑝; 𝑓𝑛 true/false positive/negative rate

In this section, evaluation metrics for continuous and unconstrained HAR introduced in
our earlier work [130] are described in detail using the notation in Table 4.4. These metrics
will be used in the following sections for performance assessment.

4.5.1. Accuracy
To compare predictions and ground truth labels the identity function for each class c
𝐼(𝑐)(𝑦̂𝑝, 𝑦𝑝) is introduced to measure incorrect predictions:

𝐼(𝑐)( ̂𝑦𝑝, 𝑦𝑝) = {
0 ← 𝑦̂𝑝 = 𝑦𝑝
1 ← 𝑦̂𝑝 ≠ 𝑦𝑝 (4.16)
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The number of misclassifications is provided by,

𝑀(𝑐) = 1
𝑃

𝑃

∑
𝑝=1

𝐼(𝑐)( ̂𝑦𝑝, 𝑦𝑝) (4.17)

with the resulting accuracy being equal to:

𝐴(𝑐) = 1 −𝑀(𝑐) (4.18)

When evaluating classification performances, the accuracy metric does not capture
inequalities of false negative (fn) and false positive (fp), and does not account for
imbalanced datasets. This may lead to overlooked performance drops [115].

4.5.2. F­score with Precision, Recall and Specificity
The F𝛽 score (𝐹1) provides a more concise metric accounting for fn and fp imbalances,
and consists of a combination of precision and recall. Together with precision, recall, and
F𝛽 score (𝐹1), the specificity can be also computed as,

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑡𝑝
𝑡𝑝 + 𝑓𝑝 (4.19a)

𝑇𝑃𝑅 = 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑡𝑝
𝑡𝑝 + 𝑓𝑛 (4.19b)

𝑇𝑁𝑅 = specificity = 𝑡𝑛
𝑡𝑛 + 𝑓𝑝 (4.19c)

𝐹𝛽(𝑐) = (1 + 𝛽2) ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝛽2 ⋅ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 (4.19d)

In the formula for the F𝛽 score, precision and recall are evenly treated if 𝛽 = 1, known as
the F1 score. Otherwise, the formula favors precision if 𝛽 > 1 [137].

4.5.3. Dice Index
The Dice similarity index (also named the Sørensen­Dice coefficient) normalizes the length
of the vector labels 𝑦̂ and ground truth 𝑦, and divides them by the total number of non­zero
entries. Multiplication by a factor of 2 scales the measurement range between [0, 1] and 1
which means label vectors identical to the ground truth [138]. It is expressed as,

𝐷𝑖𝑐𝑒(𝑐) = 2 × |𝐴̂ ∩ 𝐴|
|𝐴̂| + |𝐴| =

2𝑡𝑝
2𝑡𝑝 + 𝑓𝑝 + 𝑓𝑛 (4.20)

4.5.4. Jaccard Index
The Jaccard index or the Tanimoto coefficient defines the intersection divided by the union
of two label vectors.

𝐽𝑎𝑐(𝑐) = |𝐴̂ ∩ 𝐴|
|𝐴̂| + |𝐴| − |𝐴̂ ∩ 𝐴| =

𝑡𝑝
𝑡𝑝 + 𝑓𝑝 + 𝑓𝑛 (4.21)

It should be noted that the denominator denotes the union as |𝐴̂| + |𝐴| − |𝐴̂ ∩ 𝐴| = |𝐴̂ ∪ 𝐴|.
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4.5.5. Consecutive Block Detection (CBD)
This proposed metric considers and penalizes interruptions and misalignments in the
sequence of predicted samples, 𝑦̂𝑝, with respect to the corresponding ground truth labels,
𝑦𝑝. To the best of our knowledge, this aspect is not always well considered in the literature
when evaluating radar­based HAR for continuous activities.

Unweighted Consecutive Block Detection (CBD)
Firstly, the individual ground truth blocks and the prediction blocks are counted as shown
for the ground truth in Eq. (4.22) and the predictions in Eq. (4.23), respectively, as,

𝑠 (𝑦𝑝) =
1
2

𝑃−1

∑
𝑝=2

√(𝑦𝑝 − 𝑦𝑝−1)
2

(4.22)

and

𝑠̂ (𝑦̂𝑝) =
1
2

𝑃−1

∑
𝑝=2

√(𝑦̂(𝑦̂|𝑦𝑝 = 1)𝑝 − 𝑦̂(𝑦̂|𝑦𝑝 = 1)𝑝−1)
2

(4.23)

with the counter index, (⋅)p, in the sequence of a total length, P. The ratio of blocks, as
shown in Fig. 4.8, is computed as,

𝐸𝑑(𝑐) = 𝑠 (𝑦)
𝑠̂ (𝑦̂) (4.24)

with the range between [0, 1], where 1 indicates the same number of blocks found within
the ground truth sequence of a class and the prediction. It should be noted that block length
differences are not considered in Eqs. (4.22) to (4.24), and this can affect the result with a
solution provided in the following Section 4.5.5.

Weighted Consecutive Block Detection (CBD)
Due to the aforementioned concern of the block length differences, a corresponding penalty
factor can be computed as,

𝑤 = √|𝐴̂ ∩ 𝐴||𝐴| (4.25)

with the numerator indicating the intersection between the ground truth and the prediction,
|𝐴̂ ∩ 𝐴|, over the ground truth, |𝐴|. The non­linearity impact of the weight, 𝑤 = √(⋅), is
introduced to minimize penalization on small misalignments. The weighted Consecutive
Block Detection (CBD) is then computed by combining Eqs. (4.24) and (4.25):

𝐸𝑑𝑤(𝑐) = 𝐸𝑑 ⋅ 𝑤 =
𝑠 (𝑦)
𝑠̂ (𝑦̂) ⋅

√|𝐴̂ ∩ 𝐴|
|𝐴| (4.26)
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with

with

Ground Truth

Predicion

Figure 4.8: The intersection and union sequences are demonstrated and are used for CBD and IoU, as well as, the
penalization term of IoU as, 𝐻(𝑠̂, 𝑠) = 3/4, for this example.

4.5.6. Intersection­Over­Union (IoU)
IoU is another metric that penalizes interruptions and misalignments in the prediction
sequences to the ground truth sequence. It is a known technique for evaluating
camera­based object detection algorithms and is, under certain conditions, equivalent to
the Jaccard index. It defines the similarity of bounding boxes [139], which are generally
uninterrupted entities in vision­based detection methods. A modified expression can
account for interruptions in vectors of labels as,

𝐻(𝑠̂, 𝑠) = 1 − ( 2 ⋅ 𝑠̂𝑠̂ + 𝑠 − 1)
2

(4.27)

with 𝑠 and 𝑠̂ the concatenated sequence blocks for ground truth and predictions, respectively:

IoU(c) = 𝐽𝑎𝑐 ⋅ 𝐻(𝑠̂, 𝑠)

= (𝐴̂ ∩ 𝐴𝐴̂ ∪ 𝐴) ⋅ (1 − (
2 ⋅ 𝑠̂
𝑠̂ + 𝑠 − 1)

2
)

(4.28)

Eq. (4.28) penalizes interrupted sequences even if the predictions are broadly correct and
aligned with the ground truth [50].

4.5.7. Correlation Index or Matthews Correlation Coefficient
(MCC)

The correlation index or Matthews correlation coefficient (MCC) is less commonly used
for classification performance assessment. It is based on the Pearson correlation coefficient,
typically used to find linear similarities between vectors. This can also be used for sequence
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classification as,

𝑅(𝑐)(𝑦̂, 𝑦) =

𝑃
∑
𝑝=1

(𝑦𝑝 − 𝑦̄) (𝑦̂𝑝 − 𝑦̂)

√
𝑃
∑
𝑝=1

(𝑦𝑝 − 𝑦̄)
2 𝑃
∑
𝑝=1

(𝑦̂𝑝 − 𝑦̂)
2
, 𝑅 ∈ ℝ; [−1, 1] (4.29)

with 𝑦̂ and 𝑦 the means of the ground truth and prediction vector, respectively. Alternatively,
the equation can be expressed as,

𝑅(𝑐) = 𝑡𝑝 ⋅ 𝑡𝑛 + 𝑓𝑝 ⋅ 𝑓𝑛
√(𝑡𝑝 + 𝑓𝑝) ⋅ (𝑡𝑝 + 𝑓𝑛) ⋅ (𝑡𝑛 + 𝑓𝑝) ⋅ (𝑡𝑛 + 𝑓𝑛)

(4.30)

and is known as Matthews Correlation Coefficient (MCC) [140]. It should be noted that
𝑅(𝑦̂, 𝑦)= − 1 is equivalent to perfectly misclassified sequence and to a perfect classified
sequence with 𝑅(𝑦̂, 𝑦)=1, respectively, while 𝑅(𝑦̂, 𝑦)=0 is the expected value of an
unbiased “coin tossing classifier” for a balanced dataset.

4.6. RNN and Hyperparameters Optimization
Recurrent neural networks (RNNs), characterized by their recurrent layers comprising
neurons with connections that retain information about past states, are particularly
advantageous in capturing the temporal dynamics of input sequences. In various real­life
scenarios involving audio, speech, language, or videos with temporal contexts, the
expectation is to generate output values that are correlated with the history of
corresponding inputs. However, traditional classifiers (e.g., SVM, KNN) and several deep
learning networks (e.g., AlexNet, ResNet, MLP) lack the ability to incorporate temporal
information as they operate in a stateless manner. Consequently, researchers have turned
their attention to RNNs, specifically the widely recognized architectures such as long
short­term memory (LSTM) or gated recurrent unit (GRU), to address this limitation
[141, 142]. Gradually, these architectures have gained interest in applications like
continuous HAR, particularly in the context of continuously recorded radar data [52, 92].
However, the application of RNNs in distributed radar networks of the scale presented in
our work has been scarcely explored in the existing literature.

Therefore, with the aim of accounting for temporal relations in the continuous data
sequence structure, the following RNNs were chosen in this work:

� GRU Gated Recurrent Unit
� Bi­GRU Bidirectional Gated Recurrent Unit
� LSTM Long Short­Term Memory
� Bi­LSTM Bidirectional Long Short­Term Memory
Bi­RNN (Bi­LSTM or Bi­GRU) networks have received attention due to their

enhanced capabilities over standard RNN (LSTM/GRU) networks. One of the primary
distinctions of a Bi­RNN is its ability to process sequence data bidirectionally,
assimilating the context from both preceding and subsequent data points in a sequence.
This characteristic often results in greater accuracy and increased robustness in tasks such
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Table 4.5: Range of hyperparameters and their best performing values after Bayesian optimization

Descr. Range Bi­LSTM LSTM Bi­GRU GRU Default

optimizer ADAM
RMSprop
SGDM

best performing: ADAM –/–

epochs [10, 50] flatten growth after 45 –/–
hidden unit [3, 200] 168 60 199 189 –/–
Mini batch [32, 128] converging→128 128
initial LR [10­4, 0.1] 0.0076 0.0029 0.0015 0.0025 0.0010
LR drop fac. [0.1, 0.5] 0.2484 0.1361 0.1778 0.1039 0.1000
L2 reg. [10­7, 1] 0.0001 0.0001 0.0003 0.0039 0.0001

as sequence data processing and classification. Moreover, the bidirectional nature equips
Bi­RNN with the ability to capture asymmetric dependencies in sequences and address
long­term dependencies more effectively than standard RNNs. Additionally, by processing
data from both directions, Bi­RNNs can extract a more comprehensive set of features,
thereby constructing a more robust model. In the context of continuous text classification,
a Bi­RNN was exploited by Zhang et al. [143]. Their findings underscored the superiority
of Bi­LSTM over conventional LSTM algorithms in specific text classification scenarios.

Their key hyperparameters are optimized using the experiment manager of MATLAB
with Bayesian optimization, as this is the key to improving performances in classification
tasks [144]. The following hyperparameters are considered: number of epochs, hidden
units, mini batch size, initial Learning Rate (LR), LR drop factor, and the L2 regularization
factor [145]. The optimization ranges are mentioned, and the optimal parameters are logged
for each network and presented in Table 4.5. The epochs of the optimization algorithm have
been set to 50 for each RNN network. Hyperparameter optimization is evaluated using the
following metric:

max
∀Opti. Parameter

( 𝐹1𝑚𝑎𝑐𝑟𝑜
(1 + 𝑠𝑡𝑑(𝐹1𝑚𝑎𝑐𝑟𝑜))

2) (4.31)

with 𝐹1𝑚𝑎𝑐𝑟𝑜 being the macro 𝐹1 score, that is the mean of the 𝐹1 score for the individual
classes. The denominator, (1 + 𝑠𝑡𝑑(𝐹1𝑚𝑎𝑐𝑟𝑜))

2, ensures that the fluctuation across the
classes is minimized, while the numerator strives towards a high macro 𝐹1 score.
Furthermore, the 3 optimizers stochastic gradient descent momentum (SGDM), root mean
square propagation (RMSProp), and adaptive moment estimation (ADAM) were tested,
with the best results achieved using ADAM across all networks. Specifically, the output
function called stopIfAccuracyNotImproving() [146] was applied, which stops the training
of the network if the classification accuracy of the validation data (or other metrics, i.e.,
those presented in Eq. (4.31)) stagnates for a defined period of epochs. The stopping
function in combination with suitable hyperparameter tuning within the parameters’ limits,
shown in Table 4.5, is meant to optimize the network and avoid a high variance
(overfitting) of the network.
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Figure 4.9: Overview of classification performance metrics for all investigated radar data fusion methods in leave­
one­person­out (LOPO) test with Bi­LSTM network with default hyperparameters as classifier.

4.7. Experimental Results
In this section, the classification results for the four selected recurrent neural networks and
proposed data fusion methods for multiple radar nodes are reported.

4.7.1. RNN Results Utilizing Sensor Fusion Approaches
The section presents the results achieved by using the previously discussed radar fusion
methods, namely: signal fusion, feature fusion with all nodes, weighted radar selection,
orthogonal radar fusion of node {#2,#4} and of node {#1,#5,#3}. These results are
compared with those obtained when using only one single radar classification with a
Bi­LSTM classifier, implemented with the default parameters presented in Table 4.5. The
results are reported in Table 4.6 for the LOPO test and visualized in Fig. 4.9. Using the
LOPO test data exposes the classifier to unseen data from a different participant. This
individual participant may exhibit a distinct activity pattern and motion profile compared
to what the classifier was originally trained on, i.e., using a 70%/30% training and
validation split.

The appropriateness of performance metrics for the shown fusion methods,
highlighting the performances of one method over others can be analyzed by evaluating
the standard deviation across the tested methods. In this regard, the results show higher
dispersion (standard deviation) for metrics other than the more conventional accuracy or
F1 score, such as the Dice, Jaccard, and Correlation (MCC) indexes as block­based
metrics, such as CBD and IoU.

Regardless of these metrics, the best suitable fusion method is incoherent signal fusion,
followed by feature fusion and orthogonal radar fusion of nodes {#1,#5,#3}, which show
almost equivalent performance. Weighted radar selection and orthogonal radar fusion of
nodes {#2,#4} perform slightly worse than the other fusion methods. All presented radar
data fusion approaches improve their performance in contrast to single radar classification
and can be inspected in Fig. 4.9.

Focusing on block­based evaluation metrics, such as the CBD, weighted CBD, and the
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IoU, the low­level signal fusion approach appears to be the best performing approach with
a performance gain of more than +7% over the mean across all methods by analyzing IoU
and even more than +8% by using the weighted CBD. Performance­wise, feature fusion
approaches follow with about +1% better performance compared to the mean across all
fusion methods. Specifically, feature fusion, weighted radar selection, and orthogonal radar
fusion of nodes {#1,#5,#3} achieve an average IoU of approximately 0.5 (50%), whereas
single radar classification achieves 0.436 only.

4.7.2. RNN Results with Hyperparameter Tuning

0 20 40 60 80 100

Performance (%)

Accuracy

F1 score

TPR

TNR

Dice

Jaccard

CBD

Weighted CBD

IoU

Corr.

E
va

lu
at

io
n 

M
et

ric

Signal fusion GRU
Signal fusion LSTM
Signal fusion BiGRU
Signal fusion BiLSTM
Single radar BiLSTM

(a) Performance metrics without hyperparameter tuning
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(b) Performance metrics with hyperparameter tuning
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(c) Performance improvement (positive values refer to
performance improvements after hyperparameter tuning)

Figure 4.10: Overview of performance classification metrics for different RNNs without and with hyperparameter
tuning (from Table 4.7). Signal level fusion is considered in leave­one­person­out (LOPO) test.

The section presents performance results achieved with different RNNs as classifiers
when incoherent signal fusion is applied, as this was shown to be the best fusion approach.
Table 4.7 shows the results using default parameters in the rows indicated as [⋅]∗, whereas
the bold rows marked as [⋅]# show the obtained results after hyperparameter tuning. In all
cases, the LOPO approach meant that one test sequence was excluded while training the
classifier, and this is repeated and averaged across all participants. Moreover, these results
are also summarized in the bar graphs in Fig. 4.10, focusing on performance improvements
due to hyperparameter tuning, as shown in Fig. 4.10c.
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The accuracy metric provides an inconclusive evaluation of the macro results across
the tested network architectures, indicated by a low standard deviation of around 0.012.
Thus, the performance improvement after hyperparameter tuning is not too evident when
using standard metrics. Slightly better is the 𝐹1 score with about 0.036 (3%), which shows
the gain in performance for the Bi­GRU network with the optimized hyperparameters of
Table 4.5. The next metrics, the Dice and Jaccard index, provide even better evidence that
the hyperparameter tuning of the RNN yields an improvement in performance of
approximately 5% for the Bi­GRU, whereas the Bi­LSTM dropped slightly. It should be
noted that the slight decrease in performance is only given for the sample­based evaluation
metrics, such as accuracy, 𝐹1 score, Jaccard, Dice, or Matthews correlation coefficient
(MCC), and can be neglected. Instead, block­based evaluation metrics, such as CBD,
weighted CBD, and IoU, provide a more reliable evaluation, since interruptions and
outliers toward other classes will be taken into account. The results achieved after
hyperparameter tuning have increased compared to the default values for all network
architectures tested, with the most significant improvement for the Bi­GRU. Nevertheless,
Bi­GRU and Bi­LSTM provide nearly comparable results, as shown for the sequence
evaluation metrics, i.e., IoU or both CBD metrics. In addition, the weighted CBD and IoU
provide the highest standard deviation, indicating superior evaluation capabilities
compared to sample­based metrics, i.e., simply accuracy evaluation.

4.7.3. Class Evaluation using Spider Diagram

Figure 4.11: Spider graphs with performance metrics addressing the continuous human activity sequence
evaluation per class. (a) GRU, (b) Bi­GRU, (c) LSTM, (d) Bi­LSTM

The previous Sections 4.7.1 and 4.7.2 discussed the most suitable multi­sensor fusion
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methods and performance improvements by using various RNNs with optimized
hyperparameters. However, the discussion and conclusions were drawn on the ‘macro’
results across all classes of interest. In this section, class specific results (‘micro’ results)
for the individual classes are discussed for incoherent signal fusion using unidirectional
and bidirectional RNN architectures, namely, the GRU, LSTM, Bi­GRU, and Bi­LSTM.
These results are reported in Fig. 4.11 and discussed in this section for each considered
performance metric.

Accuracy
Accuracy appears to be very high for all the classifiers considered (macro accuracy
> 90%). However, it should be noted that accuracy as a single evaluation does not
capture the performances of datasets with class imbalances (e.g., fewer samples of
‘falling’ compared to other classes). By visual inspection of the other metrics, in addition
to accuracy, the GRU classifier in Fig. 4.11a suffers in detecting the falling class in the
lower left corner of each spider diagram, whereas both bidirectional classifiers, Bi­GRU
(Fig. 4.11b) and Bi­LSTM (Fig. 4.11d), outperform their unidirectional counterparts. This
will often remain unnoticed when using the accuracy metric only.

F1 score, TPR, TNR
Evaluating TPR (sensitivity or recall) and TNR (specificity) on their own is less effective
than using the F1 score, as this can provide a better global view of performance for each
specific class. An average of the F1 score across all classes, macro F1 score, is also
possible. For this case study, the performance differences between individual classes
increase to approximately 12% for signal fusion using Bi­LSTM, specifically referring to
the ‘translation’ (91.6%) and ‘standing up from falling’ (78.9%) activity, as shown in
Fig. 4.11d. However, the drastic difference can be seen for unidirectional RNNs, e.g., the
LSTM where the differences between ‘translation’ and ‘standing up from falling’ rises to
more than 20%.

Dice Index
The Dice index is a more rigorous metric than the accuracy metrics or the F1 score shown
previously. Here, for example, ‘standing up from falling’ degrades to 58.8%
(F1 score: 78.9%) for the Bi­LSTM. Nevertheless, the bidirectional classifiers perform
almost equally high across the individual classes, whereas, i.e., LSTM (Fig. 4.11c) shows
a break down by detecting ‘falling’, which, in general, will be overseen by using the
previous more conventional metrics.

Jaccard Index
The Jaccard index is related to the Dice index, with performance always lower than the Dice
index, except at their extrema [130]. In fact, this metric will report even lower performances,
i.e., ‘standing up from falling’ degrades to 41.6% (Dice index:58.8%). In fact, the metric
is the most rigorous evaluation method for individual sample detection, apart from block
sequence based detection, such as the IoU.
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Consecutive Block Detection (CBD)
The CBD operates differently than the metrics shown above. Here, the interruption ratios of
the prediction label blocks to the ground truth label blocks have an impact, see Eq. (4.24).
In a particular example drawn, the activities ‘stationary’ and ‘in­place’ provide the best and
worst classification results, respectively, for incoherent fusion using the Bi­LSTM classifier
(see Fig. 4.11d) with 88.0% and 78.3%. Furthermore, both bidirectional RNNs (Bi­GRU
and Bi­LSTM) show good results that are equally distributed across all classes.

However, the simple CBD defined in Section 4.5.5 accounts for the number of detected
blocks only, while differences in block length are neglected. Instead, the weighted CBD,
as defined in Section 4.5.5, considers the detection length differences of the predictions
versus the ground truth labels. Specifically (see Fig. 4.11d for Bi­LSTM), the best and
worst classes become the activity ‘translation’ and ‘falling’ with 83.5% and 56.6%,
respectively. Correspondingly, bidirectional RNNs outperform unidirectional RNNs with
significant improvement provided for minority classes as ‘falling’.

Intersection­Over­Union (IoU)
The IoU metric is an alternative metric that accounts for the detected block ratio and the
differences in block length. The IoU is the most extreme evaluation metric for our dataset
since it is a product of the Jaccard index (a hard metric on its own) multiplied with a block
detection term [50]. Thus, the activity ‘standing up from falling’ degrades to 41.1%
(Jaccard index: 41.6%), and the ‘translation’ activity to 82.4% (Jaccard index: 84.7%) as
the best class. Likewise, using unidirectional classifiers (LSTM and GRU) has adverse
effects specifically on minority classes such as ‘standing up from falling’, ‘falling’, and
‘in­place’ activities.

Correlation Index or Matthews Correlation Coefficient (MCC)
The MCC is rather challenging to compare with the previously introduced metrics due to
its diverse definition. An advantage of this metric (MCC) is a distinct indication when a
classifier provides an output that results in 𝑅(𝑦̂, 𝑦) < 0. Such results immediately indicate
a mismatch between the ground truth and prediction samples. As a side note, it will be
mentioned that a coin tossing classifier would converge towards the limit 𝑅(𝑦̂, 𝑦) = 0 for
a balanced dataset. For the presented dataset, the activities ‘falling’ and ‘translation’
provide the worst and best results with 57.7% and 83.1%, respectively. Similarly to the
metrics introduced before, the unidirectional classifiers (LSTM and GRU) suffer for
minority classes as previously inspected, which can be seen for the macro results in
Fig. 4.10 and for the micro results in Fig. 4.11.

4.7.4. Performance w.r.t. Radar Nodes
A Monte Carlo simulation was set up to investigate the effect on the proposed
classification performance metrics of selecting a different number of radar nodes. The
Monte Carlo approach selects different nodes out of the possible combinations of 2, 3, and
4 nodes, respectively, but in all cases the verification is performed with the L1P0
approach. As shown in Fig. 4.12, the lowest performance for each metric is achieved by
using one single node only. This performance degradation is caused by the unfavorable
aspect angle when using one single node, and is compensated by considering multiple
nodes, which leads to a better performance.
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Figure 4.12: Performance metrics as a function of selected number of radar nodes (note that incoherent signal
fusion is used when two or more nodes are selected). Training/testing is performed using LOPO and Bi­LSTM
classifier.

It is important to note that this performance increase as a function of the number of
radar nodes is less pronounced for sample­based metrics like the accuracy metric, or the
F1 score metric (visualized by a flattening curve in Fig. 4.12), but more evident when using
block sequence­based metrics such as CBD, weighted CBD, or IoU are used. In the latter
case, the increase in performance with the number of radar nodes is more noticeable. From
this analysis, it appears that a higher number of radar nodes achieves better performances
when using incoherent signal fusion and the Bi­LSTM classifier, specifically for the metrics
proposed for continuous sequential activities.

4.7.5. Discussion on Performance Metrics
In the analysis of the results, the pros and cons of each evaluation metric were discussed
when applied to the different RNN architectures and radar data fusion methods. Some
considerations from this initial analysis follow:

� For balanced (equally­distributed) data evaluation: The conventional accuracy
metric provides satisfactory results, even if it does not describe where mistakes (e.g.,
missed detections or false alarms) occur for a given class. For that, precision/recall
or their combination into F1 score is more suitable.

� For unbalanced (skewed) data evaluation: The F1 score becomes a more
sophisticated metric than plain accuracy and is widely used. Its importance becomes
crucial as the accuracy metric can overestimate the performance of a network, as
seen in our case study. The same applies to the Dice and Jaccard indices. Both, Dice
and Jaccard, are the most drastic sample­based metrics, as seen in the results from
the considered dataset. In addition, the correlation index or Matthews correlation
coefficient (MCC) accounts for imbalances in the dataset and it is widely used in the
medical domain [50].
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� For the evaluation of continuous sequences of activities: The previous metrics
suffer from evaluating continuous sequences of activities with unconstrained and
seamless transitions. Therefore, the proposed CBD is preferable for such cases with
its modification such as the weighted CBD and the IoU. These metrics can account
for outliers (i.e., misalignments and interruptions) in the prediction label vector and
are well suited for HAR based on continuous sequences. When used at the output of
RNN classifiers, they can directly assess their sequential output predictions and
penalize instabilities/interruptions that propagate errors within the network’s
memory cells.

4.8. Conclusion
The chapter proposed a variety of approaches for data fusion in a network of five
distributed radar sensors in the context of human activities classification. The
implementation of signal level fusion applied on range­time (RT) maps has been
researched and is compared to state­of­the­art methods. Within the fusion process, the
selection of radar nodes based on a weighting function that accounts for the target location
and velocity/trajectory has also been investigated. RNN­based classification algorithms,
namely GRU, LSTM, Bi­GRU, and Bi­LSTM, were used to process the resulting µD
spectrograms derived from the fusion process.

The proposed techniques are evaluated on an experimental dataset with 15 participants
and 9 activities, combined into 5 macro­classes. Notably, the dataset contains continuous
sequences of activities performed in random locations and with arbitrary and unconstrained
trajectories and unfavorable aspect angles to the radar sensors. New evaluation metrics are
proposed and compared to account for the specific nature of continuous activities in radar­
based HAR, such as the presence of misalignments and interruptions (outliers).

The results emphasize the necessity for metrics beyond traditional accuracy or
precision/recall in evaluating continuous HAR. This is particularly relevant when
employing recurrent neural networks for classification, assessing performance over short,
continuous time intervals, or segments within the sequences. Specifically, evaluation
metrics that account for outliers in the prediction vector (i.e., misalignments, interruptions,
and fluctuations), such as the weighted CBD and IoU appear to provide a more
comprehensive performance evaluation than simple accuracy. For example, while the IoU
shows around 20% difference between imperfect and reasonably performing classifiers,
conventional accuracy evaluation gives only 2% discrepancy, and hence a too coarse
assessment. Classifiers with bidirectional capabilities are shown to provide slightly better
performance, especially for classes with few samples in the unbalanced dataset used for
evaluation. This imbalance is to some extent typical in continuous, realistic activities. For
example, there will be more walking samples than in­place activities, whereas critical
activities (e.g., falls) will be generally rare. For the radar data fusion, the incoherent signal
level fusion of the RT data from each node appeared to outperform other methods, with the
best results provided by using the full set of radars in the used network.

Future work can extend the proposed techniques and assess the evaluation metrics in
more realistic home environments and scenarios, such as multiple targets (e.g., multiple
people or a person including pets). This could be approached by implementing a multi­
target tracker with modified hypotheses for a dynamic radar selection in such scenarios of
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multiple targets in home environments. Moreover, the usage of various radar sensors in the
network could be considered (e.g., adding V/W­band MIMO nodes).



5
Multipath Effect Exploited for
Human Activity Recognition

Radar sensor multipath problems, a common phenomenon for indoor employed radar
networks and often an unwanted side effect, have been considered in this study. Limited
research, mainly focusing on nonextended targets using single radars, has demonstrated
the need to use multipaths and boost a radar’s network classification capabilities.
In this chapter, a pipeline is proposed from isolating a target’s line of sight (LOS) to
determining its position and concluding the higher­order multipaths. Furthermore, edge
cases are discussed, such as handling extended targets observed over multiple range bins
and various aspect angles, even when utilizing only one radar. The oftentimes unseen
advantages of the rendered higher­order multipath components are exploited in addition to
the LOS observations to leverage the network’s perceptions.
The pipeline has been verified by comparing results to only a single radar and the radar
network’s LOS. For perception tasks, the multipath components with the LOS components
are fused before exploiting a 12­layer convolutional neural network (CNN). Its results
were compared to a simple multilayer perceptron (MLP) classifier fed with features
extracted using principal component analysis (PCA). A significant test performance
improvement in the order of +11% is demonstrated by using a multi­radar network with
its LOS and multipaths for continuous and consecutive recorded human activities.

Parts of this chapter are coming from:

R.G.Guendel, N. C. Kruse, F. Fioranelli, andA.Yarovoy, “Multipath Exploitation for HumanActivity Recognition
using a Radar Network”, in IEEE Transaction on Geoscience and Remote Sensing [under review], 2023.
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5.1. Introduction to Multipath Effect
Radar sensor networks can increase the efficacy of perception by leveraging diverse
observations from multiple radar nodes. Applications of radar networks include
nonintrusive monitoring and activity classification, especially of vulnerable individuals,
such as falls or other potentially dangerous events among other daily activities [3, 29].

Existing literature on human activity classification using radar measurements primarily
characterizes the received signal with micro­Doppler (µD) or range­Doppler (RD)
signatures of a radar’s line of sight (LOS) signal. In principle, Doppler modulations from
micro­motions were found to have a substantial predictive impact on classification
performances, with the benefits of using networks over single radar observations
[36, 123, 147, 148]. Some studies have also introduced ensemble learning methods using a
sensor network with boosted, bagged, and stacked machine learning models exploited [50].

Recent literature has emphasized that continuous sequences naturally occur in human
kinematics. Thus, sophisticated classifiers are needed for it, with benefits from the
multi­perspective views intrinsically provided by radar networks [48]. Some work even
incorporates in the network RF­based illuminators of opportunities widely available in
consumer home environments, even if they may be affected by multipath and provide by
themselves lower performances compared to their active counterparts [149, 150].
Nonetheless, examples of high­quality µD signatures using passive WiFi in the context of
human activity recognition (HAR) and hand gestures are reported in the literature [151].

In the introduced literature on human activity classification, whether using single,
monostatic radars or radar networks, multipath is often viewed as an unwanted
phenomenon that degrades the system’s overall performance. This perspective is echoed in
other chapters of this thesis where multipath was not leveraged. However, in certain
scenarios, multipath components can enhance indoor localization, as demonstrated for
monostatic setups [152]. Inspired by this idea, in this work a novel processing pipeline is
introduced to enable the exploitation of multipath components by a radar network in the
overall classification process. The rationale of the proposed approach is that the LOS
signal (0th component) reflected by a target and its 1st order and 2nd order multipath
components are not only capturing the target’s signature from different aspect angles, but
the components are also coherent with each other as generated by the same radar. This
provides additional sources of information to characterize the target’s scattering behavior
and movement pattern, as if the multipath components were additional physical radar
sensors observing the target from different perspectives. Utilized in the context of a
physical radar network with different nodes, the proposed pipeline allows it to potentially
’augment’ the network by adding to the classification process related to each physical
radar node, which would be normally discarded in conventional processing.

The proposed pipeline consists in short of the following steps, which will be detailed in
the following sections:

� LOS determination via a hierarchical clustering algorithm to deal with the extended
nature of the human target due to the high spatial resolution of the radars used. This
enables one to isolate and track the LOS from the multipath components in the range­
time (RT) data.

� Determination of the location of the target via multilateration, as well as the location
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of the generated multipath components as the target moves.

� Extraction of features from range­Doppler (RD) images of each ’data domain’, i.e.,
the LOS and the 1st order and the 2nd order multipath components generated for each
radar in the network.

� Machine learning classifiers trained and tested on data for verification, which also
includes the upsampling of the data using synthetic minority over­sampling technique
(SMOTE) [153, 154].

� Rigorous leave­one­person­out (LOPO) test for final verification of the classifiers’
performance.

More specifically, the proposed pipeline has been verified with experimental data
collected with a network of 3 pulsed radar nodes. The data collection included 6 activities
performed by 14 volunteers, used to compare different classification algorithms, namely
support vector machine (SVM), multilayer perceptron (MLP), and convolutional neural
network (CNN). It is shown that F1 score classification performances can be increased by
+11% (with respect to using a monostatic radar node) thanks to the inclusion of data and
features retrieved from the multipath components using the proposed processing pipeline.

The rest of the chapter is organized as follows. The proposed pipeline is discussed in
Section 5.2 with its signal processing architecture, target tracking, and ML models. The
dataset with the participant’s statistics and the obtained results can be found in Section 5.3.
Finally, conclusions and comments for future work are given in Section 5.4.

5.2. Proposed Pipeline for Multipath Exploitation for
HAR

Multipath is often considered as an undesired effect to remove in indoor radar applications,
including human activity classification. However, research in wireless communication has
demonstrated the benefits of using multipath [152, 155] for improved localization. Thus,
a novel processing pipeline is proposed to locate multipath components related to human
movement in an indoor setting and exploit them in the classification process for human
activity recognition. The rationality of using multipath components for classification is that
they capture the target’s signature from different spatial perspectives (aspect angle), and
are coherent with the main LOS signal as generated by the same radar. This allows us to
consider the signature in the multipath components as if generated by additional physical
radar nodes in a network, thus enabling the exploitation of additional and diverse data for
classification. An essential task in the proposed pipeline is the identification of the LOS and
multipath components from the range­time (RT) data and their tracking over time while the
human target in the scene moves. The proposed processing pipeline is shown in Fig. 5.1
and is described in the rest of this section.

Nevertheless, it presents challenges with, first, an a priori isolation of the LOS signal
required to distinguish the target’s location with discarded multipath. Separation of the
LOS signal by means of multilateration processing, as introduced in the following sections.
Furthermore, Fig. 5.1 illustrates the intricacy of the methodologies needed to accurately
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Figure 5.1: Proposed processing pipeline for multipath exploitation in human activity classification with two
classifiers tested. The blocks of LOS ascertainment, and Multilateration processing & path determination are
explained in detail in Figs. 5.3 and 5.5, respectively.

define a target’s higher­order multipaths. Given that the full range provided by each radar is
typically not utilized for classification, there is no static control over the signal’s pathways.

In fact, utilizing the entire range of each radar arbitrarily may lead the network into a
high variance situation (i.e., overfitting to those data). A glance at Fig. 5.2b provides
insight into this. Hypothetically shifting a target closer to the reflection wall would result
in a notable change in its signature, presenting challenges for feature distributions and
subsequent classification. Analyzing the variances within the RD map reveals the
significant impact of such geometrical changes in the scenario on the expected
classification performances, even for identical activities. Hence, the necessity for a distinct
pathway separation becomes evident, rather than utilizing the entire range data in the
classification process.

5.2.1. LOS Isolation from Multipath Components
In this section, we introduce the proposed method for isolating the LOS from higher­order
multipath components, emphasizing that these multipaths typically follow a non­Gaussian
distribution.

Guided by the pipeline Fig. 5.1 and the layout Fig. 5.2, the person’s precise location
must be determined to conclude the pathways. Therefore, a hierarchical clustering
algorithm (also: agglomerative clustering) [156] was used to exclude a radar­target’s LOS.
Numerous alternatives up to a multiple target tracking approach [5] even for distinct
propagation paths [157] were considered. However, the applied hierarchical clustering
method has shown superior results for an extended target, as in the used case, with no
specified number of clusters required and feasible for arbitrary shapes. An optimization
method was created with an 𝑅2­score evaluation metric used to minimize the error of the
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Figure 5.2: (a) Sketch of the room layout with 3 radars of which two, R1 and R2, can benefit from multipath. R3
is placed at the reflection wall and provides the range to compute the target’s location x̃ using trilateration. (b)
Geometrical relationship for computing the travel paths needed for the multipath ranges, 𝑟1, 𝑟′1 , 𝑟2.

hierarchical clustering method by finding the optimal parameters. Alternatively, complex
methods, such as HOTA (higher order metric for evaluating multi­object tracking), might
equitably assess the algorithm’s performance [158].

Mini Optimization Problem Isolating LOS
The data recorded from two radar nodes (Fig. 5.2a) provide the person’s LOS and higher­
order multipath components. Higher­order components are considered 1𝑠𝑡, 2𝑛𝑑, and higher­
order multipaths. In turn, multipath is a time­delayed signal return, and a reiterative signal of
the same target at a far­off location. In most cases, the multipath signal, which is generally
the backscatter from a different target’s reflection perspective, captures the target from a
different angle of arrival (AoA).

Problematically as seen in the range­time (RT)Mmap in Fig. 5.3, the target’s backscatter
does not follow a normal Gaussian distributed 𝒩(𝜇, 𝜎2) with mean, 𝜇, and variance, 𝜎2,
because of intentional multipaths. Hence, ordinary filters, such as the standard Kalman
filter, failed due to the multiple pathways (in a case study tested as constant­velocity and
constant­acceleration filters). Therefore, a problem of isolating the most dominant pathway
was formulated. This dominant pathway is, in theory, the closest path and must be the
person’s LOS path. Then, the target’s LOS range of each radar determines the person’s
location thanks to the synchronizedmulti­radar setup, while trilateration processing resolves
the unknown position.

Hierarchical Clustering Algorithm Hierarchical clustering requires the creation of
clusters from the initial RT map, a matrix M=X𝐿𝑂𝑆+X𝑚𝑢𝑙𝑡𝑖𝑝𝑎𝑡ℎ𝑠+N including the signals
X and the noise term N. Therefore as a first step, the 𝑘­strongest range bins of the RT map
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Figure 5.3: The flowgraph with insights from Fig. 5.1a. It is shown in (a) the initial range­time (RT) map including
LOS plus multipath components, followed by (b) the selection of the 𝑘­strongest range bins, (c­f) the clustering
steps to separate the LOS cluster from noise and multipath, and finally (g) the new RT map with the LOS signal
including its centroid.

are selected as,

M̃𝑖𝑗 = {
argmax

𝑘 ∀ 𝑖
M𝑖𝑗 , 𝑘­strongest

0, otherwise
(5.1)

with, 𝑖 and 𝑗 the row and column elements, respectively, of the matrices M𝑖𝑗, forming the
sparse matrix M̃𝑖𝑗 with mainly LOS components and some fractions of multipath remaining,
as shown in Fig. 5.3.

Sliding slow­time windowing is performed with a window length of 3𝑘, with 𝑘 the
parameter Eq. (5.1) denoted as 𝑘­strongest. It is the empirically optimal sample number
mitigating arbitrary connections between LOS and multipath clusters, as in Fig. 5.3 with 3𝑘
being 90 slow­time sample bins (≈0.74 s).

The hierarchical clustering (also: agglomerative clustering) method is applied
(Fig. 5.3e) with the following advantages:

� Requires specified number of clusters: No
� Arbitrarily shaped clusters: Yes

The hierarchical structure of the clusters is often visualized using a dendrogram, which
specifies the distances between clusters and shows how they merge at each level [159]. The
cutoff parameter, one of the two optimization parameters, provides the distances between
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the clusters, with the Euclidean distance linkage method chosen by default [156]. It is noted
that myriad cluster algorithms are available, and others may compete with the implemented
algorithm.

Furthermore, the clusters found are selected w.r.t. to the range in the RT profile, as
shown in Fig. 5.3e, denoting that the closest cluster most likely belongs to the LOS path.
An empirical condition is specified excluding smaller cluster clouds, as shown in Fig. 5.3e
(Outlier cluster). If the condition does not meet, the algorithm selects the next farthest
cluster and then moves the sliding window in slow­time. The found cluster with its centroid
is recorded and provides the RTmapwith the LOS signal return only (Fig. 5.3g). Throughout
the investigation, the two parameters, the cutoff distance and 𝑘­strongest samples, were
defined in the mini optimization problem introduced in the next section to meet the system
requirements.
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(c) LOS path 𝑘­strongest=60 and cutoff=20
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Figure 5.4: The R2­scores results using the clustering algorithm are provided in (a). (b) and (d) provide the best
results obtained using the optimized parameters with 𝑘­strongest=30 and cutoff=10 (R2­score of 93.72%). (c)
and (e) show an example of non­optimal parameters obtained by 𝑘­strongest=60 and cutoff=20 (R2­score of
25.58%).
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Parameter Optimization for Hierarchical Clustering Algorithm The parameters for
the hierarchical clustering algorithm are optimized using the following parameter ranges:

� Cutoff distance: ∈ [ 3, 10, 20, 100]
� 𝑘­strongest obtaining M̃: ∈ [15, 30, 60, 120]

The performance metrics R2 was applied, with the propertyℝ∈ (−∞, 1], a metric typically
used to evaluate similarities in regression problems. It is used to optimize argmax R2,
which is s.t. cutoff, 𝑘­strongest. Therefore, a brute force optimization approach is chosen
to tune the parameters for each iteration and monitor its results [m,n]:=[𝑘­strongest, cutoff]
of R2, defined as,

𝑟𝑖 = 𝑦𝑖 − 𝑦̂𝑖 , ∀ 𝑖 ∈ (0, 𝑁 − 1)

𝑅2𝑚,𝑛 = 1−
∑𝑖 𝑟2𝑖

∑𝑖(𝑦𝑖 − 𝔼[𝑦])2
(5.2)

with 𝑟𝑖 the residual between 𝑦𝑖 the ground truth, 𝑦̂𝑖 the predicted sample, and 𝔼[𝑦] the
expected value (mean of the ground truth) [160]. The LOS ground truth, as in Fig. 5.4a,
was hand­labeled, and finally, the optimum was found for the 𝑘­strongest sample number
of 30 and the cutoff distance of 10, as shown in Fig. 5.4a. These parameters are used
throughout the following analysis.

Furthermore, two examples are providedwith an achievedR2­score of 93.72% as for the
best case using the parameters of 𝑘­strongest=30 and cutoff=10, with the LOS centroid and
the cleaned RT map obtained, respectively. The generated results are shown in Figs. 5.4b
and 5.4d. A contrast example is illustrated in Figs. 5.4c and 5.4e with a slight off LOS path
obtained by the parameters 𝑘­strongest=60 and cutoff=20, and an evaluation R2­score of
25.58% only.

5.2.2. Motivation of the Multipath Model
After the LOS ranges are determined, multilateration (trilateration) processing was used to
discriminate a person’s location. The motivation for using multipath provides the following
advantages:

� Time­of­flight pulses returning from the (extended)­target at different times, resulting
to distinct range cells.

� The dominant range cells of the target’s LOS (0th order), 1st , and 2nd order multipaths
of one radar are representations of the same target (single target case).

� Each radar’s LOS, 1st , and 2nd order multipath capture the target from different aspect
angles.

It will be pointed out that, w.r.t. to a radar’s resolution and the target size, other
competitive investigations may consider an additional tracking filter, as proposed in the
previous Section 4.3, whereas it was neglected for that project presented in this chapter
since each block increases the complexity and is vulnerable to the pipeline’s error
propagation. This section provides techniques for exploiting the multipath model, as
illustrated in Fig. 5.2.
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Multipath Model
The model considers a multipath­assisted localization (MAL) from 0th to 2nd order
reflections, as in Fig. 5.2a. A priori knowledge of the reflector’s and radar’s location is
assumed. The MAL 0th order is the LOS seen by the radar, indicated by the one­way range
𝑟0. The dominant multipath reflected on the wall is separated in 𝑟1,𝑛𝑥 and 𝑟2,𝑛𝑥. By fictive
mirroring the radar on the reflector, the symmetrical equivalence of 𝑟1,𝑛𝑥 is 𝑟′1,𝑛𝑥 with the
radar location x𝑛𝑥 becoming x′𝑛𝑥, as in Fig. 5.2b shown for x1 and x′1, respectively.
According to the geometrical relations, the three predominant pathways can be determined
as,

Γ0,𝑛𝑥 =
2 ⋅ 𝑟0,𝑛𝑥
2 = 𝑟0,𝑛𝑥 (5.3a)

Γ1,𝑛𝑥 =
𝑟0,𝑛𝑥 + 𝑟′1,𝑛𝑥 + 𝑟2,𝑛𝑥

2 (5.3b)

Γ2,𝑛𝑥 =
2 ⋅ (𝑟′1,𝑛𝑥 + 𝑟2,𝑛𝑥)

2 = 𝑟′1,𝑛𝑥 + 𝑟2,𝑛𝑥 (5.3c)

with Γ half of the roundtrip ranges, equivalent to the target’s range in a typical RT maps and
the indices {⋅}0,…,2,{⋅} for the 0th , 1st , and 2nd pathway and {⋅}{⋅},𝑛𝑥 the radar node [54, 55,
152].

Target’s Location Finding
Multilateration processing is applied to estimate the target’s location in the radar network.
The full derivation can be found in Section 4.3, which solves the system of
overdetermined equations and includes graphical illustrations. Hence, the found LOS path
Section 5.2.1 provides the radar­target’s radial range, 𝑟0,𝑛𝑥 of the radar node with its
location x𝑛𝑥=[𝑥𝑛𝑥 , 𝑦𝑛𝑥]𝑇. The target’s estimated position is given by, x̃=[𝑥̃, 𝑦̃]𝑇, can be
formulated as,

⎧⎪
⎨⎪⎩

(𝑥̃ − 𝑥1)2 + (𝑦̃ − 𝑦1)2 = 𝑟20,1
(𝑥̃ − 𝑥2)2 + (𝑦̃ − 𝑦2)2 = 𝑟20,2
⋮ ⋮ ⋮ ⋮
(𝑥̃ − 𝑥𝑁𝑥)2 + (𝑦̃ − 𝑦𝑁𝑥)2 = 𝑟20,𝑁𝑥 , with 𝑁𝑥 = 3

(5.4)

Eq. (5.4) is linearized and optimized for 3 radars (𝑁𝑥), as in the used case, such as,

{(𝑥̃−𝑥1)
2+(𝑦̃−𝑦1)2−(𝑥̃−𝑥3)2−(𝑦̃−𝑦3)2 =𝑟20,1−𝑟20,3

(𝑥̃−𝑥2)2+(𝑦̃−𝑦2)2−(𝑥̃−𝑥3)2−(𝑦̃−𝑦3)2 =𝑟20,2−𝑟20,3
(5.5)

For simplicity, Eq. (5.5) can then be rewritten in matrix notation as,

A = [ 2(𝑥1 − 𝑥3) 2(𝑦1 − 𝑦3)
2(𝑥2 − 𝑥3) 2(𝑦2 − 𝑦3)

] (5.6)

b = [ 𝑥21 − 𝑥23 + 𝑦21 − 𝑦23 + 𝑟20,3 − 𝑟20,1
𝑥22 − 𝑥23 + 𝑦22 − 𝑦23 + 𝑟20,3 − 𝑟20,2

] (5.7)
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The equation system is solved by an ordinary least squares (OLS) estimation. Thus, the
target coordinates can be computed as,

x̃ = [ 𝑥̃𝑦̃ ] = (A
𝑇A)−1A𝑇b (5.8)

where (A𝑇A)−1A𝑇 is the Moore–Penrose inverse, and with more insights provided by
Zhou et al. [128]. Although the processing pipeline is designed not to have excessive
complexity, it can extend its capabilities with an additional filter. Specifically, it should be
noted that the pipeline can be extended by a tracking filter as presented in the previous
chapter, i.e., the Kalman filter or the alpha­beta­(gamma) – 𝛼, 𝛽, (𝛾) tracking filter (with
further information: in Sections 4.3 and 4.3.2). Such filters can smooth the target’s track
and may remove outliers. However, should this extension be pursued, the results would
necessitate further validation to ensure their accuracy and reliability.

As the radar’s location is known, the Euclidean distance between the dynamic target
location and the stationary radar location can be recomputed as, |x𝑛𝑥−x̃|=𝑟̂0,𝑛𝑥, with 𝑟̂0,𝑛𝑥
the LOS distance for the node 𝑛𝑥. In theory, |𝑟̂0,𝑛𝑥−𝑟0,𝑛𝑥|=𝜖→0 indicates the error of the
multilateration processing, and it is assumed to be close to 0 with 𝑟̂0,𝑛𝑥≈𝑟0,𝑛𝑥. Then, by
substituting the range 𝑟0,𝑛𝑥 in Eq. (5.3a), the round trip range is computed. It is
straightforward, without prior knowledge needed of the multipath’s angle of incidence and
reflection, the radar’s location can hypothetically be mirrored on the reflection wall
(𝑦𝑤𝑎𝑙𝑙=0). Mathematically, a reflection on the unit vector ̂ı𝑥=[1, 0]𝑇 will be computed,
since it is assumed that the reflection wall forms the coordinate system’s x­axis at ordinate
0. Thus, the angle 𝜃 between the radar location and the unit vector is needed for the
rotation matrix R(𝛽) to compute the mirrored radar location x′𝑛𝑥 as,

𝑐𝑜𝑠(𝜃) = x𝑛𝑥 ̂ı𝑥
|x𝑛𝑥|| ̂ı𝑥|

→ 𝜃 = 𝑐𝑜𝑠−1 ( x𝑛𝑥 ̂ı𝑥
|x𝑛𝑥|| ̂ı𝑥|

) (5.9a)

𝛽 = 2 (𝜋−𝜃) (5.9b)

R(𝛽) = [𝑐𝑜𝑠𝛽 −𝑠𝑖𝑛𝛽
𝑠𝑖𝑛𝛽 𝑐𝑜𝑠𝛽 ] (5.9c)

x′𝑛𝑥 = R(𝛽)x𝑛𝑥 = [
𝑐𝑜𝑠(𝛽)𝑥𝑛𝑥 − 𝑠𝑖𝑛(𝛽)𝑦𝑛𝑥
𝑠𝑖𝑛(𝛽)𝑥𝑛𝑥 + 𝑐𝑜𝑠(𝛽)𝑦𝑛𝑥] (5.9d)

such as the hypothetical radar location x′𝑛𝑥=[𝑥′𝑛𝑥 , 𝑦′𝑛𝑥]𝑇 is obtained. The sum of 𝑟′1+𝑟2
is then simply the Euclidean distance of the |x′𝑛𝑥−x̃|=(𝑟′1+𝑟2)𝑛𝑥, and can be substituted in
Eqs. (5.3b) and (5.3c), with a graphical illustration shown in Fig. 5.2b. Finally, the LOS, 1st ,
and 2nd order multipaths of the two radars that observe the reflection wall are determined.

Furthermore, due to the known scattering effects and the extended target concerns of a
human individual, a window of 50 cm width–the empirically defined shoulder dimension
of a person–was placed around the found centroid ranges and can be observed by the upper
and lower bounds of the Figs. 5.5 c, e, and f.

Path Discrimination for Further Processing
The previous Section 5.2.2 introduces the variables Γ0,𝑛𝑥, Γ1,𝑛𝑥, and Γ2,𝑛𝑥 that provide the
ranges associated to the 0th , 1st , and 2nd order pathways, respectively. It can be seen in
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Figure 5.5: Flowgraph with detailed insights on the multilateration approach to identify the location of the target
and related multipath components. It shows in (d) the target’s LOS from each radar needed for (a) multilateration
processing with its (b) LOS and multipaths extracted in the RT images (c,e,f).

Fig. 5.5 c, e, and f, the ranges of the pathways change over time, which is the result of the
movement of an individual. Therefore, the variable Γ must be computed dynamically for
each slow­time hop.

A sliding window with a height of 0.50 cm and a width of 0.82 sec (100 samples) in
slow­time is placed at the centroid range determined by Γ, as in Fig. 5.1c shown. Over
its window, the 1D­FFT in slow­time dimension computes the range­Doppler (RD) map
for seven domains. Finally, all domains are obtained that consider the 0th (LOS), 1st , and
2nd order pathways of radar R1 and R2, respectively, and the LOS domain for R3.

5.2.3. Machine Learning and Preprocessing
The measured radial velocities of the propagating paths are extracted using the RD FFT [5],
with seven domains obtained in total. Subsequently, two machine learning (ML) models are
used after converting the complex RD maps to image­like data and z­score normalization
[161]. The two compared models differ in their structure, with ML model 2 being a 12­
layer convolutional neural network (CNN) proposed by Vanschoren [162], which extracts
features due to its convolutional layers. MLmodel 1 requires prior feature extraction, where
a simple support vector machine (SVM) classifier with radial basis function (RBF) kernel
or a three hidden unit multilayer perceptron (MLP) classifier was tested on the principal
component analysis (PCA) feature, with the PCA being a powerful and nonparametric tool
used to discard irrelevant dimensions and keep the salient features [163].

After training the models, rigorous evaluation utilizing a leave­one­person­out (LOPO)
test assesses the classifier’s performance on unseen data. Throughout the project, two types
of classification pipelines are considered suitable, illustrated in Fig. 5.1e and 5.1d as ML
model 1, and ML model 2, respectively. The ML model 1 pipeline extracts the RD features
using PCA, followed by an SVM or MLP classifier. In contrast, the ML Model 2 pipeline
operates on the RD domains directly without separate feature extraction required due to its
use of a convolutional neural network (CNN) while the network learns its feature pattern.
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Data Preprocessing and Upsampling
Regardless of the applied machine learning pipeline, the RD data domains are preprocessed
before applying PCA feature extraction or forwarding the images to a CNN. Firstly, the
complex RD maps are converted to a logarithmic magnitude scale before resizing each RD
domain to a 64x64 image size. Furthermore, image normalization is applied to convert the
dynamic range to ℝ ∈ [0, 1].

Secondly, it should pointed out that the collected dataset exhibits class imbalances,
with the majority class 1–Walking without an object and the minority class 4–Standing up
from sitting comprising 42.4% and 3.4% respectively, as depicted in Fig. 5.8b. After
examining the method, synthetic minority over­sampling technique (SMOTE) was
selected [153]. SMOTE was applied to the feature vectors for ML model 1 and directly to
the RD images when using ML model 2. Although, the latter is not the typical scope of the
SMOTE algorithm, this proves to be feasible, as demonstrated by Bhattacharya et al. [154]
and Reza et al. [164] for CNN architectures. An alternative way can be the use of a
generative adversarial network (GAN), as demonstrated on µD spectrogram data [131].

ML Model 1
ML Model 1 consists of the following block operating on the preprocessed RD images:

� PCA feature extraction
� Feature vector concatenation
� SMOTE upsampling (if applied)
� Training, validation, LOPO test split
� Classifier (SVM, or MLP)→ prediction, result evaluation

with the flowchart shown in Fig. 5.1e.
Therefore, a prominent feature extraction tool, the principal component analysis

(PCA)–a powerful, nonparametric tool used to discard irrelevant dimensions and keep the
salient features [163]–was used to obtain human activity patterns from all RD data,
domain­independently. It means, PCA is used on the 0th , 1st , and 2nd order domains of all
the providing radars. Thus, the covariance matrix is computed as,

H = 1
𝐼

𝐼−1

∑
𝑖=0
(X𝑖 − X̄𝑖)

𝑇 ⋅ (X𝑖 − X̄𝑖) (5.10)

with X, and X̄ the images and the mean image, respectively, of the dataset, ∈ ℝ𝜂×𝜂 of the
dataset size 𝐼. Then the eigendecomposition of the covariance matrix H is used to compute
the eigenvalues 𝜆𝑖 and the eigenvectors contained in
Φ=[𝜈1, 𝜈2, … , 𝜈𝑘 , 𝜈𝑘+1, … 𝜈𝜂] = [Φ𝑘 , 𝜈𝑘+1, … 𝜈𝜂]. Then the five eigenvectors (k = 5)
associated with the highest ordered eigenvalues are selected before projecting the RD
images X on Φ𝑘 to compute the feature matrix, 𝜐 ∈ ℝ𝜂×𝑘 used for classification as,
𝜐=XΦ𝑘 [37]. The feature matrix 𝜐 of each domain is flattened to obtain the vector
𝜐̃ ∈ ℝ(𝜂𝑘×1). Succeeding, the PCA feature extraction is used on the seven domains to
obtain the total feature vector as,

Υ= [𝜐̃𝑇𝑅1|0th , 𝜐̃
𝑇
𝑅1|1st , 𝜐̃𝑇𝑅1|2nd , 𝜐̃

𝑇
𝑅2|0th , 𝜐̃

𝑇
𝑅2|1st , 𝜐̃𝑇𝑅2|2nd , 𝜐̃

𝑇
𝑅3|0th]

𝑇
(5.11)
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Figure 5.6: Details on the training and validation split after excluding one person’s data (3 recorded sequences
per person) for the LOPO test. This is repeated 14 times, i.e., for every participant in the dataset, with an average
metric calculated across the repetitions.

with 𝑅{⋅}|{𝐷𝑜𝑚𝑎𝑖𝑛} the indicated radar and domain. The feature vector has the length of
ℝ7𝜂𝑘×1. It will be noted, the feature vector Υ shortens accordingly, if domain selection is
used.

After obtaining the feature vector, the SMOTE upsampling technique can be applied
using the feature vector, Υ, with its associated label [153]. Regardless of SMOTE, the
subsequent step involves the selection of data from one of the 14 participants for the LOPO
test. The data of the remaining 13 participants is used for a 70/30 training/validation split.
The process is repeated for each participant, as shown in Fig. 5.6.

The training/validation data are forwarded to a SVM classifier with RBF kernel, after
training, the LOPO sequence is tested. Alternatively, by using the same data, a simple
MLP classifier was trained with 3 hidden units and 8 nodes each using ReLu activation
functions and an ADAM optimizer [165]. Both–the SVM and the MLP–are implemented
in Python using the scikit­learn environment [166] before the weighted average F1 score
and the accuracy for the validation data and LOPO test are computed.

ML Model 2
The pipeline of ML Model 2 consists of fewer blocks than ML model 1 Section 5.2.3 with:

� SMOTE upsampling (if applied)
� Training, validation, LOPO test split
� CNN classifier→ prediction, result evaluation

as the flowchart shows in Fig. 5.1d. Further, the network operates on the RD image data X,
and therefore no separate feature extraction is required. Next, a 3rd­order tensor is created
as the network’s input data using X of up to 7 testable domains. As for the tensor, note that
its composition can vary between ∈ ℝ𝜂×𝜂×{1,…,7}.

The aim was to use image­like RD domains directly fed into a CNN with few networks
tested, and the best results were achieved by a 12­layer network (input layer uncounted)
proposed by Vanschoren [162]. The Keras network [167] was modified to suit the input
data size with its architecture shown in Table 5.1 and Fig. 5.7.

Simple hyperparameter tuning is performed using ADAM optimizer [165] with a
learning rate found to be 0.001 (limits: [0.0001, 0.01]), an early stopping with patience
cycle of 10 epochs using the validation loss and a maximum of 250 epochs, whereas the
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Table 5.1: Modified CNN architecture proposed by Vanschoren [162] for a 6 class problem with the graphical
structure shown in Fig. 5.7. Notes: ∗Up to seven channels are utilized, contingent upon the number of input data
domains available.

Layer type Input Output

InputLayer (64, 64, 7)∗ (64, 64, 7)∗
Conv2D (64, 64, 7) (62, 62, 32)
MaxPooling2D (62, 62, 32) (31, 31, 32)
Conv2D (31, 31, 32) (29, 29, 64)
MaxPooling2D (29, 29, 64) (14, 14, 64)
Conv2D (14, 14, 64) (12, 12, 128)
MaxPooling2D (12, 12, 128) (6, 6, 128)
Conv2D (6, 6, 128) (4, 4, 128)
MaxPooling2D (4, 4, 128) (2, 2, 128)
Flatten (2, 2, 128) (512)
Dropout (512) (512)
Dense (512) (512)
Dense (512) (6)

network stopped training at around 100 epochs. Additionally, the Dropout layer was set to
0.5 (steps: [0.2, 0.35, 0.5]), with 0.5 as the general maximum probability for a typical
network [168].

5.3. Dataset Description and Results
In the subsequent sections, a dataset comprising recordings from 14 participants, obtained
through ultra­wideband (UWB) radar nodes, is detailed, emphasizing the dataset’s
distribution and inherent class imbalances. Methodologies employed are then discussed,
with particular attention to the application of upsampling techniques and the innovative
utilization of radar’s multipath propagation for enhanced classification performance.

Figure 5.7: Graphical structure for the network proposed by Vanschoren [162].
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Figure 5.8: The metrics for each participant are shown in Fig. 5.8a, and Fig. 5.8b provides the class distribution
within the dataset, with the majority class 1–Walking without an object and the minority class 4–Standing up from
sitting.

5.3.1. Dataset
Three continuous data sequences with all classes, including of 14 participants, were
recorded. The recordings have a length of 1min, with a gender­balanced occurrence of 7
female and 7 male participants with an average of age: 27.1 years (std: 4.7 years),
height: 171 cm (std: 10 cm), weight: 67.6 kg (std: 14.7 kg), with the individual’s statistics
shown in Fig. 5.8a.

As natural, the dataset is initially unbalanced with the majority class 1–Walking
without an object and the minority class 4–Standing up from sitting, as illustrated in
Fig. 5.8b. The data collection was carried out using 3 Humatics P410 UWB radar nodes,
which are capable of recording the participants’ actions simultaneously. The radars were
deployed in a triangle formation as shown in Fig. 5.2a, with more details about the UWB
radar provided by Guendel et al. [87] and He [59].

5.3.2. Proposed Methodology and Results
The section discusses, firstly, the impact of upsampling a dataset, a common practice among
others addressing unbalanced datasets and its impact on the classification. Secondly, the
more novel investigation includes the use of multipath propagations to boost classification
performances, with results provided on single radar classification (sR) and using the entire
radar network (aR) employing the classification pipelines Model 1 andModel 2.

Upsampling Results
Table 5.2 presents the results using the unbalanced dataset as it originates from the data
collection with the majority classes 0–Walking with an object, 1–Walking without an object,
2–Stationary condition, with a graphical illustration about the sample distribution provided
in Fig. 5.8b and of similar data from a different data collection in Fig. 4.3.

The investigation showed that unbalanced classes lead to poor prediction, as can be
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Table 5.2: The validation accuracy & F1 score together with LOPO results across 14 participants. The two top
rows show results for the initial unbalanced dataset (Upsampling: None), and the two bottom rows for a balanced
training/validation set using SMOTE. TheMLP and SVM classifiers were tested using PCA features from all radars
and all possible domains, including their multipaths.

Upsam­ Classif. Domains Valid. LOPO Valid. LOPO
pling Acc. Acc. F1­sc. F1­sc.

None MLP All domains 71% 52% 70% 51%
None SVM All domains 84% 61% 85% 60%

SMOTE MLP All domains 84% 58% 84% 59%
SMOTE SVM All domains 89% 63% 89% 64%
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Figure 5.9: Accuracy and standard deviation results from exhaustive feature selection, testing the performance
from using each individual domain to combining all 7 domains.

observed from the first rows of Table 5.2. In this regard, Haibo et al. [169] introduced
techniques to handle unbalanced classes and analyzes the proposed techniques. Thereafter,
throughout the project, the synthetic minority oversampling technique (SMOTE) was used.

The improvement of a balanced training/validation dataset is conclusive, as observed in
the last rows of Table 5.2 with +8% using MLP and +4% using SVM on the LOPO test
with the best results achieved of 64% using a simple yet effective SVM classifier.

Domain Investigation
Both Model 1 (PCA+MLP/SVM) pipeline and Model 2 (CNN) pipeline were tested to
exhibit the multipath’s impact, with an exhaustive feature selection (EFS) performed using
the less computationally complexModel 1. As presented, the radar layout can benefit from
up to seven domains, consisting of 3xLOS (3x0th ), 2x1st and 2x2nd order multipath
domains, respectively. Therefore, 127 domain combinations can be selected for
classification, with the sum of the binomial coefficient from one domain up to seven
domains (𝑚 = 7), computed using the following equation, 127 = ∑𝑚𝑖=1 (𝑚𝑖 ).
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Table 5.3: Performance metrics using different domains, namely 3 LOS domains and 4 multipath, and their
combinations. Performances are compared with using only LOS of single radars, as well as single radars with
only their own multipath components. ∗Classification with a single radar has a high training/validation variance
leading to low performances with unseen data, as for LOPO F1 score.

Classifier: CNN Upsampling: SMOTE Gain

Domains Valid. LOPO Valid. LOPO LOPO
Acc. Acc. F1­sc. F1­sc. F1­sc.

All domains (aR) 83% 83% 83% 70% +11%
All LOS (all radars (aR)) 81% 81% 81% 68% +9%
LOS+1𝑠𝑡+2𝑛𝑑 (sR) 82% 64% 82% 65% +6%
LOS+2𝑛𝑑 (sR) 85% 63% 85% 63% +4%
LOS+1𝑠𝑡 (sR) 87% 64% 87% 64% +5%
LOS (Single radar (sR)) ∗90% 59% ∗90% 59% 0%

Performance gain using Model 1 Exhaustive feature selection (EFS) was carried out
using the MLxtend [170] package. The MLP classifier was then applied to the principal
component vectors of each domain. By evaluating the accuracy results, the classifier is
trained on every domain combination with a 5­fold cross­validation split. The average score
with its upper and lower standard deviation is shown in Fig. 5.9, starting from 60% accuracy
for one domain up to 83% by using all seven domains. In addition, sequential feature
selection (SFS) was investigated, and conclusions were drawn equivalently with the best
performance achieved by using the full set of domains. It should be noted that, due to the
use of theMLxtend package [170], an indication of the specific details of each tested instance
out of the large combinatorics of the domains observed on the x­axis in Fig. 5.9 cannot be
provided. However, it has been shown empirically that the line of sight provides the most
relevant information.

Performance gain using Model 2 As introduced in Section 5.2.3,Model 2 (CNN model)
uses the domain inputs without prior feature extraction of up to seven domains and utilizes
the RD maps as images. Then, the input size of the network was adjusted according to its
number of domains.

Only one input domain is employed to evaluate the system’s performance on a single
radar (sR) using only the LOS domains with the results provided in Table 5.3 in the last row.
It will be noted, the model overfits and is rather incapable of classifying unseen data, as the
LOPO F1 score of 59% shows. Fortunately, observing the target from different directions
using just an sR LOS combined with its 1st order multipath has yielded an LOPO F1 score
of 64%, a gain of 5% compared to using only the sR’s LOS domain. Using an sR LOS with
its 2nd order multipath component results in a score of 63% and a gain of 4%. In fact, it is
shown that the SISO radar can therefore observe the target from various AoA and boost the
classification.

Feeding all domains into the classifier yields the best LOPO test results, averaging
70% across the 14 tested individuals. The training, validation and LOPO test
classification matrices can be seen in Fig. 5.10. Again, the results of the training and
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(a) Training (b) Validation

(c) LOPO Testing

Figure 5.10: The classification metrics of the best performing CNN classifier listed in Table 5.3 training/validation
data (Figs. 5.10a and 5.10b) using SMOTE and the LOPO test result (Fig. 5.10c). The average for 14 participants is
computed. The listed classes are: 0–Walking with an object, 1–Walking without an object, 2–Stationary condition,
3–Sitting down, 4–Standing up from sitting, and 5–Bending from standing.

validation data are balanced, as observed in the classification matrices Figs. 5.10a
and 5.10b, while the result of the LOPO test is Fig. 5.10c unbalanced. Furthermore, the
metrics provide the average computed across all participants, with 2–Stationary condition
the best class detected with low precision and recall. On the contrary, natural confusion is
given for 0–Walking with an object versus 1–Walking without an object by reason of the
similarity of its feature distribution. This was observed by analyzing its t­distributed
stochastic neighbor embedding (t­SNE) feature distribution [161].

The classes, including 3–Sitting down, 4–Standing up from sitting, and 5–Bending from
standing, represent minority classes in the dataset. They exhibit roughly balanced
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distributed outliers. This distribution underscores the inherent challenges of many HAR
datasets, which often skew towards walking and stationary activities rather than transient
actions or short­term actions such as sitting, standing up, or bending.

5.4. Conclusion
A seven­domain classification problem was proposed by utilizing only three radars and
deliberately exploiting the radars’ multipath. Correspondingly, the performance of
including the radars’ multipath was evaluated on a single node with +6% F1 score
improvement for a leave­one­person­out test (LOPO) and even +11% by testing the entire
radar network. Novel investigations show the separation of the line of sight (LOS) return,
with a complex clustering pipeline proposed and final multilateration processing
performed. The primary aim of this pipeline is to compute the person’s location and to
exclude the target’s multipaths from the LOS for further classification.

Two machine learning models are proposed, the first operating on prior principal
component analysis (PCA) feature vectors before a support vector machine (SVM) or
multilayer perceptron (MLP) is employed. The second pipeline uses a 12­layer
convolutional neural network (CNN) architecture, outperforming the previous pipeline,
without separate feature extraction required.

A gender­balanced dataset of 14 participants was recorded with the networks trained
with data from 13 participants. One person at the time was excluded for the LOPO test,
with the classifier being evaluated on unseen data, and the routine was repeated for each
person in the dataset. The data is continuously recorded with the person’s free movement
directions with no aspect angle limitations during the recordings. Notably, the classification
results benefit from balancing the dataset, due to a natural majority and minority occurrence
of classes of 42.4% for walking and 3.4% for standing up, respectively. Synthetic minority
over­sampling technique (SMOTE) was employed, which favors the class samples towards
the amount of the majority class.

The realization of using multipaths employing a synchronized radar network with
continuously recorded data has provided innovative advantages beyond state­of­the­art
methods that have ever touched any form of intended multipath investigation.

Future work may benefit from using more directive antennae that allow enlarging the
experimental area with an increased reflection wall, boosting the SNR and permitting a
more comprehensive dataset with perhaps the falling class included. Second, the proposed
methods might be used with MIMO radar nodes, whereas the angular detection capability
using multipath components needs to be investigated.





6
Multi People Monitoring

using Regression

Radar­based human activity recognition in crowded environments is addressed using
regression approaches. Whereas previous analysis has focused on single activities and
subjects, this problem of continuous activity recognition involving up to five individuals
moving in arbitrary directions in an indoor area is introduced. To treat the problem, a
regression­based approach is used, which offers innovative insights into creating robust
and accurate systems for monitoring human activities.
Novel approaches utilizing long short­term memory (LSTM) or convolutional neural
network (CNN) regression techniques with a linear regression (LR) and a support vector
machine (SVM) regressor are compared on extracted features from radar data through the
histogram of oriented gradients and principal component analysis. These approaches are
rigorously evaluated by a leave­one­group­out (LOGO) method, with performance
assessed using common regression metrics such as the root mean square error (RMSE).
The most promising outcomes were observed for crowds of three and five individuals, with
respective RMSE of approximately 0.4 and 0.6. These results were achieved primarily by
using the micro­Doppler (µD) spectrogram or range­Doppler data domain.

Parts of this chapter have been published in: R. G. Guendel, I. Ullmann, F. Fioranelli, and A. Yarovoy, “Continuous
People CrowdMonitoring defined as a Regression Problem using Radar Networks”, in 2023 20th European Radar
Conference (EuRAD), Berlin, Germany, 2023.
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6.1. Introduction to Multi People Regression
Monitoring

Human activity recognition (HAR) has emerged as a crucial research area, not only for
enabling vulnerable individuals to maintain an independent lifestyle, but also for ensuring
safety in self­determined living environments. A range of technologies, from contactless
sensors such as radio frequency (RF) based products to wearable sensors in the form of
smartwatches and other devices, have shown the capability to measure various vital metrics,
including location, pulse rate, body temperature, blood pressure, and motion characteristics
[9]. However, when it comes to monitoring multiple individuals simultaneously, wearable
sensors and contactless video­based approaches, such as cameras and lidar sensors, have
limitations in terms of usability and privacy concerns. As a result, radar has arisen as a
promising alternative due to its ability to overcome these restrictions [171].

The treatment of crowd monitoring as a discretized classification problem has been
discussed in the literature, and Bendali­Braham et al. [172] have provided further insight
into the complexities of crowd monitoring. For instance, a slight deviation in the
classifier’s prediction may result in significant classification accuracy errors, as illustrated
in the case where the ground truth provides 10 walking individuals, but a classifier predicts
only 9. In such cases, the accuracy becomes 0%, similar to the accuracy obtained if the
classifier predicts no walking. Furthermore, this issue is compounded by the possibility of
people starting or stopping walking within the sliding window used for classification,
leading to similar errors. Therefore, to address these limitations, this study aims to treat
the problem of predicting the number of people walking versus idling people as a
regression problem, rather than a classification problem. The contributions can be
summarized as follows:

� A regression problem was defined to predict the number of people walking in the
scene instead of a more conventional discretized classification problem.

� A variety of regressors including deep learning methods, such as the long­short­term
memory (LSTM) network, were applied on features extracted from continuous radar
recordings, and their results were evaluated using relevant metrics such as the root
mean squared error (RMSE). Other regressors included a convolutional neural
network (CNN) operating directly on the image domain.

� The proposed approach was validated with data collected with a five­node radar
network, synthetically combining the signatures of up to five people walking and
stopping to simulate crowd movements in an indoor area.

The rest of this chapter is organized as follows. Section 6.2 presents the data collection,
the dataset, and the proposed regression approach, with experimental results presented in
Section 6.3. Finally, Section 6.4 concludes the chapter.

6.2. Proposed Regression­based Method for Multi­
Person Monitoring

Accurate monitoring of multiple individuals in shared spaces challenges traditional HAR
methods. Recognizing the limitations of classification with a discrete number of classes,
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Figure 6.1: The flowchart of the proposed approach shows the synthetically merged data providing the RTmaps for
a group of five people recorded with a radar network consisting of five nodes. In terms of signal processing, three
data domains are extracted, namely the RT–, RD–, and µD spectrogram domain, followed by the feature extraction
chains of PCA and HOG, and the ML/DL­based regressors. Lastly, a leave­one­group­out (LOGO) test is shown
with its prediction error plot (top­right corner) and the four applied evaluation metrics (bottom­right corner).

this research adopts a regression­based approach for the continuous estimation of the
number of walking individuals in a scene. A typical example of this approach can be the
estimation of crowd activities using distributed radars. The methodology integrates
traditional regressors like linear regression (LR) and support vector machine (SVM) with
advanced models such as long short­term memory (LSTM) networks and convolutional
neural networks (CNN). These models are trained on features from continuous radar
recordings, capturing crowd movement dynamics. A key method is the synthetic fusion of
data, combining individual recordings to simulate real­world crowd scenarios. This
approach enriches the dataset, ensuring diverse training scenarios for the regressors.

Then, this section outlines the novel proposed methodology, emphasizing regression
techniques and synthetic data fusion for enhanced HAR in multi­person environments. It
delves into the radar data and examines the extracted domains, including feature fusion.
Additionally, the regression approaches of both conventional and deep learning regressors
are detailed, along with the typical evaluation metrics suitable for regression.
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Figure 6.2: The sketches depict the layout with (a) three and (b) five people, respectively, walking and remaining
idle facing arbitrary directions. The dotted line represents a generic random walking pathway, and the layout
represents a five­radar network indicated as R1 to R5.

6.2.1. Radar Data and Domains
The publicly available data [69] contains single human subjects; hence, multiple
recordings of different individuals were coherently fused to generate synthetic data with
multiple people, such that: 𝑅̄ = 1

𝐾 ∑
𝐾
𝑖=1 𝑅𝑖, with 𝐾 the maximum number of people, 𝑅 a

complex range­time (RT) sequence and 𝑅̄ the fused result. The generated output in a
logarithmic scale can be visually examined in the RT maps on the left side of Fig. 6.1, with
five subjects performing walking and standing in an unconstrained trajectory.
Additionally, a layout sketch depicting three and five people in a scene is presented in
Fig. 6.2. The dotted lines are intended to represent the walking motion in arbitrary
directions of some individuals within the measurement area, while others remain standing
in an idle position. More details and technical insights on the radar nodes can be found in
[68, 87].

Three radar data domains, the range­time (RT) map, range­Doppler (RD) map, and
micro­Doppler (µD) spectrogram, are obtained using a sliding window on continuously
recorded data, as illustrated in Fig. 6.1. As seen, the network consists of five radar nodes,
enabling unconstrained human activity recognition (HAR). A sliding window of 1 sec with
a hop size of 0.25 sec is applied. Furthermore, the row­wise fast Fourier transform (FFT)
was used over the same window to obtain the RD map.

Before using the same sliding window approach on the µD spectrogram, the short­time
Fourier transform (STFT) was applied to the RT signals, with a window size and hop­size
of 64 and 63 samples, respectively. Finally, downsampling to 28x28 pixels was applied on
all gathered domains of five nodes, with a few examples shown at the bottom of Fig. 6.1.

6.2.2. Feature Extraction
On the generated images for the three data domains, principal component analysis (PCA)
was applied, selecting the five strongest principal components associated with the five
strongest singular values; this resulted in a feature vector size of 140 samples for the given
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input images of 28x28 pixels. Similarly, as a comparative method to PCA, the histogram
of oriented gradients (HOG) is used with a cell size of 8x8, a block size of 2x2, 9 bins, and
50% block overlap, resulting in a feature vector size of 144 samples.

Before forwarding the extracted features to the regression algorithm, feature fusion was
employed to combine the information seen by all five radar nodes resulting in a total feature
vector length of 700 and 720 for PCA and HOG, respectively.

6.2.3. Regression Approach
This section describes the conventional regressors and the deep learning networks used in
this research.

Conventional Regressors
Several regression methods were tested with the best compromise between computational
load and performance provided by the LR and the SVM regression. These two regressors
are used throughout this study on the concatenated features described in Section 6.2.2.

Deep Learning Regressors
Furthermore, the following two deep learning based regressors were used. First, a modified
convolutional neural network (CNN) for regression, as proposed in [173], which operates
on image tensors of dimension 28x28x5 directly, and no feature fusion via PCA or HOG
required. Then, the recurrent neural network (RNN), proposed in [174] with its version of
the long­short­term memory (LSTM) network was modified, simply changing its last layers
(Softmax Layer, the Classification Layer) to a Regression Layer. Furthermore, we reduced
the network’s depth to 400 hidden units instead of the originally proposed 1500.

The ADAM optimizer was used to train both deep learning (DL) networks with 50
epochs and an initial learning rate of 10−3. It should be noted that additional
hyperparameter and network tuning may further improve performance, but this is left for
future work beyond the scope of this chapter.

6.2.4. Evaluation Metrics
The main evaluation metric throughout this work is the root mean squared error (RMSE),
by default the most popular metric when evaluating regression problems and defined as,

𝜖𝑅𝑀𝑆𝐸=√
1
𝑚 ∑

𝑚
𝑖=1 (𝑦̂𝑖 − 𝑦𝑖)

2 [161], with 𝑦̂𝑖, 𝑦𝑖 the prediction and the ground truth,
respectively, and 𝑚 the samples in the leave­one­group­out (LOGO) test set. The results
are reported in Table 6.1 and Fig. 6.3, with additional metrics such as the mean squared
error (MSE), the mean absolute error (MAE), and the R2 score.

6.3. Experimental Results
The reported results are for the DL models, namely a CNN and a LSTM, the latter using
PCA and HOG feature domains, respectively. Additionally, those features were tested by
the following conventional regressors, the LR and the SVM regression model. The CNN
regression model, by nature an image processing regression model [173], was modified for
the input data size of 28x28x5, where five represents the number of radars in the network;
thus, no prior feature extraction is required. An example of the attained performance can be
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Table 6.1: Leave three and five people out test results, known as leave­one­group­out (LOGO), using a CNN,
LSTM, and conventional regressors applied on the µD spectrogram, the RD map, and the RT map, respectively.
The RMSE results using a CNN are also shown in Fig. 6.3.

Regression Group size 3 People 5 People
model Classif./Ev. Metrics RMSE RMSE

DL CNN µD spec. 0.408 0.633
DL CNN RT map 0.703 1.035
DL CNN RD map 0.421 0.606
DL HOG LSTM µD spec. 0.471 0.642
DL HOG LSTM RT map 0.496 0.645
DL HOG LSTM RD map 0.469 0.634
Conventional HOG LR µD spec. 0.453 0.653
Conventional HOG SVM µD spec. 0.452 0.636
Conventional HOG LR RT map 0.490 0.671
Conventional HOG SVM RT map 0.489 0.651
Conventional HOG LR RD map 0.466 0.635
Conventional HOG SVM RD map 0.464 0.616
DL PCA LSTM µD spec. 0.541 0.795
DL PCA LSTM RT map 0.826 1.074
DL PCA LSTM RD map 0.708 0.960
Conventional PCA LR µD spec. 0.494 0.654
Conventional PCA SVM µD spec. 0.500 0.663
Conventional PCA LR RT map 0.828 1.111
Conventional PCA SVM RT map 0.846 1.128
Conventional PCA LR RD map 0.729 0.949
Conventional PCA SVM RD map 0.742 0.958

seen in Fig. 6.1 (top right corner) by comparing theGround Truth (blue) with the Prediction
curve (brown), and the Prediction error curve (yellow), here demonstrated for a group of
five people.

6.3.1. Group of 3 People
The associated results for a group of three people in the scene are shown in Fig. 6.3a with
ordered performance declining from left to right, as well as in the third column of Table 6.1.
The best overall performance for the leave­one­group­out (LOGO) test was achieved using
the CNN regressor applied on the µD spectrogramwith an RMSE of 0.4, closely followed by
the CNN architecture operating on RDmaps. Subsequently, conventional regressionmodels
such as the LR and the SVM were applied, achieving an RMSE of approximately 0.45.
The extraction of PCA features, when applied to the µD spectrogram with five principal
component vectors selected, yields satisfactory results. In that regard, the regression models
LR and SVM both achieve an RMSE of 0.50, while the LSTMmodel has an RMSE of 0.54.
Regardless of the chosen regression model, a drastic performance drop can be observed
using the RT map in combination with features extracted from the PCA.
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Figure 6.3: Regression results shown for different regression models and for three– and five­people groups in (a)
and (b), respectively. The considered evaluation metrics are the R2 score, RMSE, MSE, and MAE.

6.3.2. Group of 5 People
The performance results for groups of five individuals are presented in Fig. 6.3b and
detailed in the fourth column of Table 6.1. The observed regression performance trends
align with those discussed in Section 6.3.1. Notably, the µD spectrogram and the RD
domain consistently exhibit superior performance. The CNN regressor, when applied to
the RD map, achieves the best result with an RMSE of 0.6. This is closely followed by the
LSTM, SVM, and LR models using HOG­extracted features. Conversely, the RT map
combined with PCA yields less satisfactory outcomes.

6.3.3. Discussion
The poor regression performance using PCA­based features from 28x28 images of the RT
map may be due to its rotation­invariant feature extraction. For RT maps, the feature vector
may not convey information about the slope of the dominant signature of a walking human,
and the RT domain may not provide direct crucial velocity information, compared to the µD
spectrogram or the RD domain. Similarly, the CNN applied to the RT map also provided
poor performance, possibly due to similar concerns. It is also notable that, although theHOG
feature descriptor is not inherently rotation invariant, it has shown superior performance in
detecting the slopes of people within an RT map [109]. Finally, while such a small image
size is perhaps also not favorable, this choice was made to limit the computational runtime
and burden for the regression models.

These initial results suggest that domains incorporating velocity information are
essential, or alternatively, an effective feature extraction method like HOG should be
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employed. Although the LSTM does not compete performance­wise with the CNN, it
should be noted that the LSTM has more freedom for hyperparameter and network tuning,
and with finer tuning, it may outperform other models. However, it is worth noting that the
LSTM and conventional regressors (LR, SVM) operate on the HOG or PCA feature
vectors, whereas the CNN operates directly on the sample images, making a fair
comparison arguable.

6.4. Conclusion
In this chapter, the challenge of estimating crowd activities using distributed radars is
addressed by adopting regression approaches, with the objective of accurately predicting
the ratio of walking to standing individuals in various orientations. Conventional
regression models, specifically the linear regression (LR) and the support vector machine
(SVM) regressor, are compared with more advanced deep learning models.

Experimental data were gathered from 15 individual subjects, and synthetic datasets
for groups of three and five individuals were generated using synthetic signal fusion. This
synthetic data was segmented into training and a leave­one­group­out (LOGO) test set,
aiming to evaluate the performance of the trained regressor on unseen data. Three
different radar data domains were tested, namely the micro­Doppler spectrogram, the
range­time domain, and the range­Doppler domain. Both the principal component analysis
(PCA) and histogram of oriented gradient (HOG) feature extraction methods were applied
to these domains. Subsequently, LR, SVM, and long short­term memory (LSTM)
regressors were tested. Additionally, the convolutional neural network (CNN) regressor
was examined, with no prior feature extraction needed.

The results confirm that the CNN regressor, when applied to the micro­Doppler
spectrogram domain, achieved superior performance with an RMSE of 0.4 for crowds of
three people. Similarly, for crowd groups of five, the range­Doppler map yielded an
RMSE of 0.6 with the CNN operating directly on the image domain. On the other hand,
the LSTM, LR, and SVM regressors, when applied on HOG features, provided nearly
equivalent performance, registering an RMSE of 0.45 (for crowds of three) and 0.65 (for
crowds of five). In contrast, PCA often underperformed compared to its aforementioned
counterparts, especially in the range­time domain.



7
Conclusions and Further

Work

This chapter of the thesis summarizes the key research findings that have been discussed
throughout the previous chapters and proposes possible future research directions.
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7.1. Major Results, Novel Contributions, and Added
Values

� Novel Data Fusion Approaches for Distributed Radar Nodes (Chapter 4)
In order to improve the classification performance of human activity recognition
(HAR), a distributed radar network has been used in this research. Due to the
diversity of aspect angles for human observations, spatially distributed radars gather
more information on human activities, and different approaches were exploited to
fuse this information. In addition to feature and decision fusion methods previously
considered in the literature, a novel low­level signal fusion concept was proposed
combining data before extracting its features. Such a novel signal­level fusion
method applied on RT maps has been implemented and compared to state­of­the­art
methods, with benefits shown in terms of performance and robustness. With this
approach, the subsequent STFT applied on the combined RT map generates one
micro­Doppler (µD) spectrogram that contains the information from all radars in the
network, with the best results provided by using the full set of radars in the used
network.
Other novel fusion concepts were proposed that account for a person’s prior
information, such as the location or the velocity/trajectory. For this reason,
multilateration processing was exploited on each radar’s range pulses to determine a
person’s location. This was followed by the implementation of an alpha­beta
(gamma)–filter to estimate the target’s location, velocity, and acceleration direction.
With this information, a weight function computes the best suitable radar within a
network with respect to different criteria, such as the target’s location, steering
direction, and steering velocity.
With the proposed signal fusionmethod, an F1 score of 84% could be achieved, that is
an improvement of +6.7% compared to using a random single radar yielding 77.3%.
With the proposed signal fusion method when using only three radars, the F1 score
performance was 81.5%, marginally better than using conventional feature fusion
methods on all radar nodes, yielding 81.4%. In fact, two nodes were discarded, and
the same performance was achieved using our proposed fusion. The dynamic radar
selection using one radar with respect to the target­radar distance achieved 80.3%
and 3% better than choosing a random single radar for HAR.

� Novel method for Human Movement Detection and Classification (Chapter 3)
For the first time, the complex phase information extracted directly from
high­resolution range­time (RT) maps has been used for human movement detection
and classification. This approach is complementary to the conventional method,
which typically uses the µD spectrogram for classification. When extracting features
from the (wrapped) phase map for classification, traditional methods that work on a
conventional µD spectrogram are not suitable. The histogram of oriented gradients
(HOG) algorithm is proposed to capture the line pattern of a phase map and provide
features that can be classified. The proposed phase­based classification approach
has been validated by using three state­of­the­art classifiers, namely the nearest
neighbor (NN), linear support vector machine (SVM), and the Gaussian SVM.
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It has been shown that the proposed method can be applied to the problem of arm
gesture recognition measured with a 10­times lower pulse repetition frequency
(PRF)–which can be beneficial by using simpler hardware and lower data
throughput–without any noticeable decrease in performance, while a conventional
µD­based approach may suffer from Doppler ambiguities. Furthermore, the
robustness of the proposed approach with respect to the test scenarios was
investigated, e.g., the aspect angle to the radar line of sight, the velocity, and the
extent of arm movements were also characterized.

To summarize, these findings show a superior performance by fusing the proposed
phase­based range­time (RT) map with the magnitude of the RT. This approach is
beneficial for simpler, low­cost radars operating at a low PRF where the target
velocity exceeds the radar’s unambiguous velocity, with performances above
conventional µD spectrogram classification. The proposed method is suitable for
radars providing the complex I and Q signal components, and can leverage limited
hardware with finite resources, while additional Fourier transforms, e.g., for
obtaining the µD spectrogram, become no longer necessary.

� Novel Advanced Metrics for Continuously Recorded Human Activities (Chapter 4)

Continuously recorded human activities require advanced performance metrics.
Without such metrics, fluctuations in a classifier’s prediction can be overlooked
when evaluating human activities, e.g., by using artificially separated snapshot
images for continuous­time sequences. Furthermore, data imbalances may
complicate the evaluation of realistic sequences, specifically because such
prior­named imbalances will naturally appear due to different occurrences and time
spans of activities during an observation period. Typical examples can be the
dominance of a walking class while participants can move in a room to perform
single instances of other in­place activities. In contrast, a typical situation of a
critical activity is falling, which occurs almost never and is, in fact, a short­duration
action compared to walking or other typical in­place activities.

Therefore, new approaches have been studied to evaluate classifiers in the
circumstances mentioned above and new evaluation metrics were proposed. These
are compared to the state­of­the­art metrics to account for the specific nature of
continuous activities in radar­based HAR, such as the presence of misalignments
and interruptions (e.g., outliers) in the classifier’s prediction.

These novel metrics, such as the weighted consecutive block detection (CBD) and
the intersection over union (IoU), provided a more comprehensive performance
evaluation than simply accuracy or F1 score and were proposed for HAR tasks that
account for outliers in the prediction vector, such as misalignments, interruptions,
and fluctuations. Notably, the advantage of IoU has been demonstrated with 20%
difference between imperfect and reasonable performing classifiers, while
traditional accuracy evaluation gives only 2% discrepancy, hence a too coarse
assessment.
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� Novel Approach in Human Activities Classification Accounting for Temporal Relation
(Chapter 4)

Throughout the investigation, it has been found that classifiers accounting for
temporal relations can provide superior performance over non­temporal classifiers
operating on snapshot samples. Therefore, recurrent neural network (RNN)­based
classification algorithms, namely GRU, LSTM, Bi­GRU, and Bi­LSTM, were
investigated to process the resulting low­level µD spectrograms derived from the
aforementioned fusion processes. To the best of the author’s knowledge, such
families of networks remain largely unexplored for HAR using distributed radar
datasets, which address continuous activities and unpredictable transitions. This
investigation is distinct from conventional approaches, where convolutional neural
networks (CNN) are used on data with only one activity per sample or, at best, a few
predefined transitions. Furthermore, it is demonstrated that classifiers with
bidirectional capabilities (Bi­GRU and Bi­LSTM) exhibit superior F1 score
performance. By utilizing Bi­GRU, the F1 score improves by +7.5% compared to
unidirectional GRU, achieving 84.4% and 77.8%, respectively. Additionally, the
intersection over union (IoU), a proposed metric that accounts for interruptions in
continuous HAR predictions, provides a more comprehensive assessment. The
results show a score of 57.9% for Bi­GRU and 40.4% for GRU, highlighting the
clear difference in their performance.

� Novel Approach to Generate Additional Virtual Radar Nodes by Means of Multipath
(Chapter 5)

Rather than canceling multipath as conventionally performed for indoor
applications, it has been proposed for the first time to track the LOS and multipath
component of a target, as these multipath components are equivalent to virtual
radars observing the target from other aspect angles. With the knowledge of the
target location, its higher­order multipath components can be determined by
knowing the reflector and radar locations a priori. Therefore, information from the
multipath components (e.g., µD spectra) is extracted by leveraging on spatial
diversity and aspect angles in observations of the same target, rather than by using
only the LOS component. Importantly, as both the LOS and multipath target
observations are generated from the same physical radar node, the target’s multipath
signatures are coherent with the LOS signature.

Quantified results are provided in Table 5.3, where an F1 score for
leave­one­person­out (LOPO) of 70% was achieved by using only 3 physical radars
and generating 4 additional virtual radar domains, which led, in summary, to 7
extracted signal domains. This is a LOPO result improvement of +11% compared to
a single radar with 59% using only its LOS signal. The same has been validated by
comparing this single radar’s LOS domain result with all its possible three domains
of LOS, 1st , and 2nd order multipath. Finally, a LOPO result of 65% and
consequently a performance gain of +6% was obtained, and the need for utilizing
multipath for boosting HAR has been demonstrated.
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� Indoor Multi People Monitoring using Regression (Chapter 6)
To the best of the author’s knowledge, for the first time a regression approach was
developed to predict the number of multiple people walking in arbitrary directions
versus those standing in an indoor environment, exploiting a distributed 5­node
radar configuration. Unlike conventional approaches based on classification,
regressors can provide an approximate estimate which is often sufficient in
scenarios such as the analysis of crowds and occupancy in indoor environments
[175]. For this, state­of­the­art conventional regressors have demonstrated favorable
performance. Highlighting the importance of appropriate feature extraction
methods, the principal component analysis (PCA) shows its strengths when applied
to the µD spectrogram for feature extraction. On the other hand, the histogram of
oriented gradients (HOG) proves to be beneficial for RD or RT maps, as well as µD
spectrogram features, prior to employing linear regression (LR) or support vector
machine (SVM) regressors. Furthermore, the validation results were obtained using
groups of 3 and 5 individuals, achieving RMSE values of 0.452 (with µD
spectrogram features) and 0.616 (with RD map features) when utilizing an SVM
regressor with HOG­extracted features. Compared to conventional regressors, the
deep learning regressors that were tested marginally outperformed their
conventional counterparts. They yielded RMSE values of 0.408 for groups of 3
when using features of the µD spectrogram and 0.606 for groups of 3 when using
features of the RD map. Importantly, due to their inherent convolutional structure of
CNNs, there is no need to extract features using HOG or PCA prior to their use.
These findings highlight the benefits of regression tasks in HAR, particularly for
providing approximate estimations of crowd behavior and activities.

7.2. Recommendations for Future Work
Possible research directions can be thought of as a continuation of the work presented in
this thesis and are outlined below.

� Proposal: Bistatic/Multistatic Radar Setup
Bistatic or multistatic radar setups have already demonstrated their significance in
observing a target from various aspect angles and capturing hidden features that
monostatic radars may fail to detect. These beneficial features can arise from
bistatic and forward scatter mechanisms, which cannot be captured by simple
monostatic nodes.
However, bistatic/multistatic nodes may experience lower pulse repetition
frequencies (PRFs) compared to their monostatic counterparts. This limitation arises
due to challenges associated with over­the­air clock synchronization between nodes,
among other issues. In essence, to utilize low PRF data, the proposed solution
involves processing the complex­valued data of a bistatic/multistatic network using
a phase map applied to a low­resolution range­time (RT) map. This approach offers
a potential solution for addressing ambiguities that may arise in Doppler
measurements.
Furthermore, bistatic/multistatic nodes sometimes have the flexibility to operate as
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monostatic nodes as well. A potential approach involves concurrently fusing
information generated from both bistatic/multistatic and monostatic nodes, allowing
for enhanced data integration and analysis.

� Proposal: Coherent Radar Networks

Gottinger et al. [70] proposed a classification scheme for distributed radar systems,
ranging from Class I: Unsynchronized to Class IV: Carrier phase and phase noise
coherent. It has been suggested that coherent radar approaches, specifically those
operating in Class III and above, offer several advantages. These include a higher
integration gain, improved capability for bistatic/multistatic Doppler measurements,
enhanced suppression of stationary clutter, and reduced phase noise resulting from
range correlation effects. The utilization of such advanced systems is believed to
provide additional information on the velocity components of a humanwhen observed
by distributed and coherent nodes, as compared to an incoherent setup of distributed,
simultaneously operating monostatic nodes as the one used for this thesis.

� Proposal: Multi­Frequency Radar Network

Gurbuz et al. [91, 176] have successfully implemented a multi­frequency radar
system. They compared the degradation in multi­frequency training using various
approaches and deep neural network (DNN) architectures. For this comparison, they
used data from different radars, each operating at distinct frequencies, for training
and testing. These tested systems consist of three radars operating at frequencies of
77GHz, 24GHz, and 10GHz, respectively, each employing different frequency
modulation schemes. With regard to the fusion of nodes, an improvement in
classification performance for ASL sign language recognition and HAR tasks has
been observed using such systems.

It is believed that such multi­frequency radar setups can enhance the performance of
perception algorithms in network settings, where diverse radar systems are assigned
to specific tasks. For example, lower­frequency radars can provide a coarse return
signal, which is beneficial for conventional HAR tasks. On the other hand, higher
frequency nodes, even within the mm­wave range, with their finer resolution, are
suitable for recognition tasks involving weak Doppler returns or low SNR signals
caused by a small RCS, such as heart­rate/breath monitoring or gesture recognition.
However, mm­wave radars may have limitations in terms of longer ranges and
increased vulnerability to multipath reflections.

Taking into account these factors, the integration of a multi­frequency radar network
is believed to further enhance the permanence and robustness of classification
algorithms, as it offers a wider spectrum of applications, ranging from heart­rate
monitoring to HAR at the same time.
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� Proposal: Distributed Network Topology
Throughout the thesis, the concepts of distributed radar architecture were explored,
employing a semi­circular baseline with five radars, or using three radars from
which multipath and scatter behaviors were exploited. However, by incorporating
previously proposed ideas such as the Bistatic/Multistatic Radar Setup or the
Cross­Frequency Radar Network, the topology of a network becomes crucial in
maximizing information acquisition regarding the target’s behavior as well as the
environmental layout. For instance, when detecting a person’s fall, the radar node
that captures the highest Doppler response is ideally positioned in line with the
individual’s falling trajectory, enabling a top­down view. Conversely, for everyday
activities and monitoring of vital signs that depend on postures such as standing or
lying, a different node placement may be optimal.
Moreover, irrespective of the type of activities monitored, it is essential to design a
network topology that prevents interferences among nodes and mitigates unwanted
reflections, such as ground reflections. Research focusing on the adaptability of
sensors is exemplified by the utilization of space­time adaptive processing (STAP)
algorithms. These algorithms concentrate on events within specific spatial areas and
dynamically adjust the antenna position. Considering these aspects, the integration
of a distributed radar network topology within the context of HAR and assisted
living opens up novel proposals and contributions.

� Proposal: Complex Phase Maps for Multiple Radar Nodes
Throughout the thesis, the complex phase map was investigated for ultra­wideband
(UWB) radars, and its necessity has been demonstrated due to its benefits, such as
reduced computational steps by eliminating the need for a short time Fourier transform
(STFT). The features were extracted using the histogram of oriented gradients (HOG)
algorithm.
As part of further investigation, this method can be applied to data collected by a
distributed radar network, where the nodes are spatially distributed to address
potential concerns regarding aspect angles. This approach allows participants to
perform activities freely in all movement directions. It is believed that such spatial
freedom would result in consistent classification performance, even when utilizing
features from the proposed phase map only. However, it is necessary to ensure that
the participants are observed from all directions using all nodes in order to achieve
classification performance that is independent of the individual’s facing direction.

� Proposal: Network of Illuminators of Opportunity
Li et al. [177] proposed a method for utilizing any type of signal transmission from
standaloneWiFi devices and demonstrated their capability for human activity sensing.
TheseWiFi devices are typically referred to as illuminators of opportunity, as they can
leverage various signals such as digital radio, television signals, and WiFi signals for
sensing purposes. In the context of indoor monitoring, Li et al. successfully extracted
Doppler information from a continuous­time sequence of a walking human.
This concept is suitable for a distributed node setup, wherein nodes may operate
simultaneously as both bistatic/multistatic and monostatic nodes. Additionally,
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WiFi­based systems offer inherent synchronization capabilities by design, owing to
their primary purpose of network communications. As a result, these illuminators of
opportunity have the potential to serve as radars while fulfilling their
communication functions.
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