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Abstract

Optical fibers form the backbone of our global data transmission infrastructure. As demands
on global data transmission grow the capacity of these systems needs to be increased. The
behaviour of light waves through these optical fibers is described by the Manakov Equation
(ME), a system of nonlinear partial differential equations.

The ME is an integrable system, which can be solved analytically using Nonlinear Fourier
Transforms. Recently, fiber-optic communication systems based on the Nonlinear Fourier
Transform (NFT) of the ME have been proposed. Similar to the linear Fourier Transform,
which decomposes a signal in linear frequency components, the NFT decomposes a signal
in nonlinear frequency components. This nonlinear spectrum consists of a continuous and
a discrete part. The continuous spectrum in general constitutes the whole real line. The
discrete spectrum consists of distinct points in the complex plane which correspond to so-
called solitons, which are stable wave forms. The evolution of the nonlinear spectrum along
the fiber is trivial.

The nonlinear spectrum however cannot be computed analytically for most signals and there-
fore numerical methods are needed. The existing numerical methods have a high compu-
tational complexity of O(D2) for computing the continuous spectrum, with D the number
of time samples of the signal. For the Nonlinear Schrödinger Equation (NSE), a simplifica-
tion of the ME, more efficient numerical methods exist with a computational complexity of
O(D log2(D)). In this thesis we present an extension of these so-called fast NFT methods to
the ME. The resulting algorithms are second and fourth-order algorithms based on second
and fourth order exponential integration methods respectively.

We developed open source software implementing the fast NFT algorithms for the ME and
integrated them in the already existing Fast Nonlinear Fourier Transform (FNFT) software
library. We provide detailed documentation and examples which allow other researchers to
use the algorithms as tools or as a base for developing new algorithms. We furthermore test
the accuracy of the developed algorithms against analytic examples. Of these examples, the
rectangle signal and secant hyperbolic signal are new analytic examples for the ME to the
best of our knowledge.
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Chapter 1

Introduction

1-1 Introduction

We make video calls with friends far away, use streaming services to provide us with per-
sonalized entertainment and rely on cloud services to back up our files and access them at a
moments notice. These examples show us how dependent we are on global data transmission
systems, and we cannot deny the need for fast global data traffic in our society. Optical
fiber communication systems nowadays form the backbone of our global data transmission
infrastructure [3]. In optical fiber communication, information is carried by packets of light
travelling through an optical fiber.

Figure 1-1 shows a schematic representation of such a communication system. The optical
transmitter converts the electrical input signal to a light wave. It then passes through the
communication channel, passing through optical amplifiers on the way. At the end of the
channel the light waves are received and decoded by the optical receiver and the original
signal is recovered. The performance of such a system is limited by multiple different effects
in optical fibers [12]. The first of these effects is loss: the power of a signal deteriorates as the
light wave propagates through the fiber. The optical amplifiers placed along the fiber counter
this effect. These amplifiers however introduce their own noise which should be accounted for
[12, Sec. 2.2]. The second effect is the dispersion: wave components with different frequencies
travel at different speeds, which means that the signal is temporally broadened. Lastly, the
Kerr nonlinearity plays a role. This means that the refraction index of the fiber is dependent
on the intensity of the signal. The refraction index r = c/v indicates how fast light travels
through a medium, where c is the speed of light in a vacuum and v the speed of light through
the specific medium. If we increase the power of the signal, which we might want to do to
mitigate the effect of loss, this effect becomes more prominent [12, Sec. 2.2].

All these three effects on light waves travelling through an optical fiber are captured by the
Manakov equation, as introduced by S.V. Manakov in 1974 [20]. The equation also accounts
for birefringence of the fiber. In a birefringent material the refraction index depends on the
polarization of the light waves travelling through it. This property is often present in optical
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2 Introduction

transmitted signal

optical fiber

Optical
transmitter

Optical
receiver

optical amplifiers

received signal

light wave

Figure 1-1: Schematic representation of an optical fiber communication system

Figure 1-2: Schematic representation of polarization of light waves [43]

fibers [42]. The polarization of a transverse wave specifies the direction of the oscillation of
this wave. This is visualized in Figure 1-2. The blue wave and the red wave both have the
same amplitude, wave length, and velocity, but they oscillate in a different direction, albeit
both perpendicular to the travelling direction. Therefore their polarization is different.

We give the normalized form of the Manakov equation here [20, Eq. 4]:{
jq1x + q1tt + 2κ(|q1|2 + |q2|2)q1 = 0
jq2x + q2tt + 2κ(|q1|2 + |q2|2)q2 = 0 (1-1)

where q(x, t) =
[
q1(x, t) q2(x, t)

]T
is the potential function, the signal being sent through the

fiber (the two elements of q(x, t) capture the polarizations). The constant j is the imaginary
unit, j2 = −1, and κ = ±1 is called the dispersion constant with −1 denoting the defocussing
regime (normal dispersion) and +1 denoting the focussing regime (anomalous dispersion).
Dispersion is the phenomenon where the velocity of a light wave depends on its wavelength.
In the defocussing regime the velocity increases for increasing wavelength. In the focussing
regime the velocity decreases for increasing wavelength. The subscripts x and t are used to
indicate partial derivatives. The system of equations arises from the Maxwell equations when
using cylindrical coordinates and boundary conditions belonging to an optical fiber [25]. After
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1-1 Introduction 3

some intermediate steps (a change of variables, normalization to go from equations involving
physical units to dimensionless form, and replacing the space-varying envelope of the potential
function q(x, t) by the average envelope over the fiber) for which we refer the reader to [19,
Section 2], we arrive at Eq. (1-1).

As demands on global data transmission speed and volume keep rising, the current optical
fiber communication systems are rapidly approaching their limits [35, Introduction]. As these
systems are limited by among other things by the Kerr nonlinearity, incorporating this into
models might help to better mitigate those effects. Recently a new class of optical communi-
cation techniques have been introduced which seek to exploit the nonlinearities of the fiber.
The techniques falling under this new paradigm in the field of optical fiber communication
are collected under the umbrella term Nonlinear Frequency Division Multiplexing (NFDM)
[12, Sec. 4.1].

The downside of incorporating the nonlinearity of the fiber along with loss and dispersion
effects is that the Manakov equation that governs these effects is a complicated nonlinear
Partial Differential Equation (PDE). In general these type of equations lead to systems that
cannot be solved analytically and one has to resort to (often computationally expensive)
numerical approaches. However, while the evolution of q(x, t) described in the time domain
is complicated, it turns out that the evolution described in the nonlinear frequency domain
is quite simple [12, Chapter 3]. To take advantage of this, we need to use the so-called
Nonlinear Fourier Transform (NFT) to get the nonlinear spectrum of the signal q(x, t) from
its time-domain description.

q(x0, t) q(L, t)

nonlinear frequency
content of q(L, t)

nonlinear frequency
content of q(x0, t)

evolution according to
Manakov equation

Inverse
NFT

Forward
NFT

simple evolution

nonlinear frequency domain
time domain

Figure 1-3: Schematic representation of the NFT method for solving PDEs

Figure 1-3 gives a schematic representation of this, where we understand q(x0, t) to be the
signal at the beginning of the fiber and q(L, t) the signal at the end of the fiber. We can
draw parallels with the well-known Fourier Transform (FT) here. Where the FT can be used
to decompose a signal in terms of linear frequency components (sinusoids), the NFT does
something similar but decomposes the signal in nonlinear frequency components. The FT
technique used to solve linear PDEs also has a nonlinear analogue using the NFT: it turns
out that certain nonlinear PDEs, among which the Manakov equation, can be solved by mov-
ing to the nonlinear frequency domain where the evolution is simpler and going back to the
time domain after that.

Master of Science Thesis L. de Vries



4 Introduction

As noted earlier, a better understanding of the fiber nonlinearity through the Manakov equa-
tion and use of the NFT might help mitigate these effects. NFDM goes one step further.
Instead of trying to minimize the nonlinear effect and using compensation techniques, NFDM
exploits the nonlinearity and encodes information on the nonlinear spectrum. Figure 1-4 gives

DAC ADC

inverse
NFT

encoder

forward
NFT

decoder

time domain
samples

nonlinear frequency
spectrum of signal

transmitted
signal

received
signal

Figure 1-4: Schematic representation of Nonlinear Frequency Division Multiplexing

a schematic representation of such a communication system using NFDM. Before transmis-
sion we encode our message as a signal in the nonlinear frequency domain and use the inverse
NFT to get samples of the signal q(x, t). The Digital-to-Analog converter (DAC) generates
the optical signal from those samples. These steps together form the optical transmitter block
from Figure 1-1. The transmission of the data through the optical fiber is the same as shown
in Figure 1-1. After transmission of the signal we use an Analog-to-Digital Converter (ADC)
and the forward NFT to get the nonlinear frequency content at the end of the fiber. Because
the evolution of the nonlinear frequency content along the fiber is simple the decoder can
easily recover the original signal. These last three steps form the optical receiver block from
Figure 1-1. For more details on NFDM we refer to [12, Chapter 4].

Taking into account the polarization of the light waves offers an additional degree of freedom
in which information can be encoded within NFDM, effectively doubling the information
transmission rate through a channel with negligible performance degradation [11]. If the
polarization is not accounted for, the behaviour of light waves in an optical fiber is given by
the Nonlinear Schrödinger Equation (NSE). Its normalized form is given by [46]

jqx + qtt + 2κ|q|2q = 0. (1-2)

We mention this because a lot of literature is available for NSE. The papers [44] and [45]
provide the necessary background for optical fiber communication using the NFT in single
polarization fibers, i.e. in fibers where the lightwave behaviour is governed by the NSE. The
approach has been verified experimentally in [27] and [4] amongst others.

We turn our attention again to Figure 1-4 and Figure 1-3. In both of these scenario’s we need
to determine the nonlinear frequency spectrum from the time domain description of q(x, t).
In other words, we need to take the forward NFT of q(x, t). To use these principles in the
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1-1 Introduction 5

optical fiber communication systems of the future we will need numerical procedures for this.
We also need these methods to be fast: the lack of sufficiently fast and accurate algorithms is
currently one of the main obstacles in the development of dual-polarization NFDM systems
[14, Sec. VI], [11, Sec. 6]. A new group of forward NFT algorithms, called Fast Nonlinear
Fourier Transforms (FNFTs), has been introduced for the NSE by Wahls and Poor [38], [40].
Furthermore, Wahls et. al. have been working on a C-based open source software library
which makes these algorithms available for everyone to use easily [39]. In this thesis we aim
to do the same for the Manakov equation. This brings us to the problem statement of this
thesis:

In this thesis we aim to extend the first Fast Nonlinear Fourier Transform methods as proposed
for the Nonlinear Schrödinger Equation to the dual-polarization case of the Manakov equation.
We will develop these Fast Nonlinear Fourier Transform algorithms, integrate them in the
existing open-source software library and benchmark them.

We hope that this will make fast NFT algorithms accessible to anyone working with NFT’s
and possibly contribute to further development of NFDM schemes and other optical commu-
nication techniques.

This thesis report is structured as follows. In Chapter 2 we provide the necessary mathe-
matical foundation to determine the NFT of the Manakov Equation (ME). We also give the
evolution of the nonlinear frequency components, explain how to use the NFT to solve PDE’s
and draw parallels with the linear FT. We also explain what the continuous and discrete
spectra are. In Chapter 3 we give the steps to get a numerical approximation of the NFT.
We start with the general procedure, then provide the expressions of the methods used as base
methods for the fast forward NFT, introduce the general idea of the Fast Nonlinear Fourier
Transform (FNFT) and end the chapter by citing some results for the NSE. In Chapter 4 we
develop fast algorithms for the ME based on those for the NSE. Chapter 5 then explains the
structure of the library, which methods we implemented and how they were implemented. In
Chapter 6 we analyze the implemented methods by computing the NFT of various test signals
with the different methods and comparing the numerical solution to the exact solution. We
also compare the error-runtime trade-off of the different fast algorithms to each other. In
Chapter 7 we of by summarize the results and contributions from this thesis work, draw some
conclusions and give recommendations for future work.

Master of Science Thesis L. de Vries



6 Introduction

1-2 Notation

In this section we provide a summary of the notations used in this report. Scalars and
vectors are denoted by lowercase letters (e.g. a) and boldface lowercase letters (e.g. a)
respectively. Matrices and matrix operators are denoted by boldface uppercase letters (e.g.
A). To distinguish between continuous and discrete functions we will use round parentheses
for continuous functions (e.g. v(tn)) and block parentheses for indexing a sampled function
(e.g. v[n]). Partial derivatives are denoted by subscripts (e.g. qt = ∂q

∂t . For the imaginary
unit we use j; j2 = −1. Complex conjugation is denoted by an asterisk ∗ (e.g. a∗). For the
computational complexity of an algorithm, we use uppercase O: O(N2). We use exp to denote
exponentials, e.g. exp(a) = ea and expm to denote matrix exponentials, e.g. expm(A) = eA.
The symbols R, C and N are used to denote the set of real, imaginary and positive integer
numbers respectively.

Notation Definition
a Scalar
a Vector
A Matrix
v(tn) Function v(t) at time tn
v[n] Sample of function v(t) at time tn, index n
qt Partial derivative to t of q(x, t)
j Imaginary unit, j2 = −1
a∗ Complex conjugate of a
qx Partial derivative to x of vector q
expm Matrix exponential
O(·) Computational order of complexity
exp(a) Exponent of a, ea
expm(A) Matrix exponential of A, eA
R Set of real numbers
C Set of complex numbers
N Set of real positive integers

Table 1-1: Notations used in the report
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Chapter 2

Mathematical background

The first Nonlinear Fourier Transform (NFT) (also known as the Inverse Scattering Transform
(IST)) was introduced in 1967 by Gardner, Greene, Kruskal and Miura as a means of solving
the Korteweg-de Vries (KdV) equation, a Partial Differential Equation (PDE) describing the
behaviour of shallow-water waves [16], [17]. NFTs can be used to express a signal given in the
time domain in nonlinear frequency domains. We can draw a parallel with the linear Fourier
Transform (FT) here, which expresses data given in the time domain in the linear frequency
domain. In both the linear and the nonlinear case, the evolution of the spectrum is simpler
than the evolution of the time domain data. The spectrum also is complete in the sense that
the time domain data can be recovered from it and it gives information about the frequency
content of a signal that cannot easily be observed from the time domain expressions. At the
time of publication of the paper [16] and [17] however, it was not yet clear if this method could
be generalized to other PDEs. It was therefore a major breakthrough when Lax discovered
the underlying framework in the KdV equation that made this method possible [18]. The
KdV system is a so-called integrable system. We elaborate on this notion of integrability in
Section 2-1. Shortly after publication of the paper by Lax, Zakharov and Shabat discovered
that the Nonlinear Schrödinger Equation (NSE) is also an integrable system and applied
the concept of the NFT to the NSE [46]. In his 1974 paper, Manakov both introduced the
Manakov equation and outlined how to use the NFT to solve this equation. In the next
section we introduce the concept of integrability and Lax pairs, which are operators related
to a nonlinear PDE that play a key role in performing the NFT. After doing this in general
terms we will give the expressions for the Manakov equation. The sections after that will
introduce the NFT in a more precise mathematical manner.

2-1 Integrable systems and Lax pairs

Consider a system obeying a PDE of the form

qx = K(q(x, t)). (2-1)
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8 Mathematical background

Here and in the remainder of this thesis report x and t denote spatial and temporal variables
respectively, the subscript denotes a partial derivative (e.g. qx = ∂q

∂x ) and K(q(x, t)) is a
possibly nonlinear expression involving q(x, t) and its partial derivatives to t. The functions
q(x, t) andK(q(x, t)) can be vectors or scalars. The roles of x and t can be swapped depending
on the system described by the PDE. This system is called an integrable system if there exists
a Lax pair associated with the PDE:

Definition 1. A pair of operators L(x) and M(x) is called a Lax pair of the PDE if they
satisfy the Lax equation [44, Eq. 8]

dL
dx

= [M,L] = ML− LM, (2-2)

and this Lax equation evaluates to the PDE.

Both M and L are allowed to depend on q(x, t). There is no systematic method of finding
these Lax pairs that works for every signal q(x, t). However, the Lax pairs of the equations
mentioned in the introduction of this chapter are known. We refer to [17] or [12, Ex. 1] for
the Lax pair of the Korteweg-de Vries equation and [12, Eq. 3.6, 3.7] for the Lax pair of the
NSE. The Lax operators of the Manakov equation are given by [12, Eq. 3.15 - 3.16]

LManakov(x) = j


∂
∂t −q1(x, t) −q2(x, t)

−κq1(x, t)∗ − ∂
∂t 0

−κq2(x, t)∗ 0 − ∂
∂t

 , (2-3)

MManakov(x) =

−2jλ2 + jκ(|q1|2 − |q2|2) 2λq1 + jq1t +2λq2 + jq2t

−2λκq∗1 + jκq∗1t
2jλ2 − jκ(|q1|2 − |q2|2) 0

−2λκq∗2 + jκq∗2t
0 2jλ2 − jκ(|q1|2 − |q2|2)

 .
(2-4)

The variables x and t have been omitted from the second operator to save space. An important
property of the operator L(x) is that it is isospectral if q(x, t) solves the Manakov system
[44, Lemma 1]. This means that even though the operator itself changes with x, its spectrum
does not; the eigenvalues of L are independent of x. These constant eigenvalues are found by
solving the eigenproblem

Lv = λv, (2-5)

where v = v(λ, t) are the vector-valued eigenfunctions and λ is an eigenvalue of the operator
L(x). We can rewrite Eq. (2-5) as a first order evolution equation

vt = Pv. (2-6)

In the case of the Manakov Equation (ME), we can derive the expression for P from Eq. (2-5)
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by plugging in L = LManakov in Eq. (2-5):

j


∂
∂t −q1(x, t) −q2(x, t)

−κq1(x, t)∗ − ∂
∂t 0

−κq2(x, t)∗ 0 − ∂
∂t

v = λv (2-7)

⇔


jv1t − jq1v2 − jq2v3 = λv1
−jκq∗1v1 − jv2t = λv2
−jκq∗2v1 − jv3t = λv3

(2-8)

⇔


jv1t = λv1 + jq1v2 + jq2v3
jv2t = −jκq∗1v1 − λv2
jv3t = −jκq∗2v1 − λv3

(2-9)

⇔∂v
∂t

=

−jλ q1 q2
−κq∗1 jλ 0
−κq∗2 0 jλ


︸ ︷︷ ︸

PManakov

v. (2-10)

The system Eq. (2-10) is the vector version of the Zakharov Shabat (ZS) system, named after
the authors of [46] who introduced it for the NSE. The version in Eq. (2-10) is central in the
study of the NFT of the Manakov equation and we will refer to it as the Manakov Zakharov
Shabat (MZS) problem.
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2-2 The Nonlinear Fourier Transform

Suppose Eq. (2-1) is an integrable system and its Lax pair is known. Furthermore, impose
two assumptions on q(x, t) [44, assumptions 1]:

Assumptions 1.

q(x, t) −→ 0 as |t| −→ ∞,
q(t) ∈ L1(R).

(2-11)

Here L1(R) is the space of real functions bounded in the p-norm with p = 1. The second
assumption thus states that ||q(x, t)||1 =

∫ t=+∞
t=−∞ q(x, t)dt < ∞. These are reasonable as-

sumptions in our case of optical fiber communication applications. They simply say that the
magnitude of the signal goes to 0 asymptotically in time (first assumption), and that this
happens sufficiently fast for the signal to have finite energy (second assumption).

We will now look at Eq. (2-1) in a slightly more abstract way. Consider q(x0, t) to be an
input to the system defined by the PDE. Now we wish to look at the "output" of the system,
q(L, t), for some arbitrary but fixed L > x0. Figure 2-1 gives a schematic representation of
this viewpoint. The PDE is completely defined by its Lax pair. The evolution of the system
can thus be expressed either as the given PDE or as its Lax pair.

Evolution described by:
- PDE: qx = K(q(x, t))

or (equivalently)
- Lax pair: Lx = [M,L]

Input:
q(x0, t)

Output:
q(L, t)

Figure 2-1: Schematic representation of the evolution of q(x, t) from its initial conditions

We will discuss the NFT analysis for the Manakov Equation. The Lax pair of the Manakov
equation was given in Eq. (2-3) and Eq. (2-4), the corresponding P operator to form the ZS
system for the Manakov equation was given in Eq. (2-10). Because the evolution of q(x, t)
is completely defined by the PDE as well as the corresponding Lax pair, we can look at
only the Lax pair. We start by analyzing the spectrum of the operator L(x): this is the
nonlinear frequency content of the signal q(x, t) and is complete in the sense that q(x, t)
can be completely recovered from it. As the eigenproblem Eq. (2-5) is equivalently written as
Eq. (2-6), we choose to find the eigenfunctions v by analyzing Eq. (2-6). These eigenfunctions
are functions of t and the eigenvalue λ (we omit the dependence on the fixed value x = x0):
v(t, λ). We are going to look at the behaviour at large absolute values of t and find the
eigenfunctions spanning the eigenspace Eλ of L. Due to the first assumption of Assumptions
1, Eq. (2-6) becomes

vt =

−jλ 0 0
0 jλ 0
0 0 jλ

v for |t| → ∞. (2-12)

L. de Vries Master of Science Thesis
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This is a simple decoupled system which has the general solution

v =

α exp(−jλt)
β1 exp(jλt)
β2 exp(jλt)

 for |t| → ∞. (2-13)

For v(t, λ) to be a true eigenfunction of L the function both needs to be bounded and have
finite energy for |t| → ∞. We concentrate first on so-called generalized eigenfunctions, which
only require v(t, λ) to be bounded, and elaborate more on the different eigenfunctions and
their corresponding eigenvalues λ in Section 2-2-1. We try to find constants α, β1, β2 that lead
to bounded solutions v(t, λ). We first turn our attention to the behaviour at the boundary
t→∞ and consider all eigenvalues λ ∈ C+. In that case,

v→

α exp(−jλt)
0
0

 . (2-14)

The β1, β2 terms drop out because the combination of λ ∈ C+ and t→∞ yield an exponent
with negative real part that goes asymptotically to 0. The exponent of the α term has positive
real part in this case and blows up for t→∞; if we want the function v(t, λ) to be bounded
α needs to be 0. In that case we can choose any value for β1 and β2. Therefore, two possible
eigenfunctions are  0

exp(jλt)
0

 ,
 0

0
exp(jλt)

 , (2-15)

and so are linear combinations of these vectors. As the vectors are also linearly independent,
we have found two of the basis vectors for the eigenspace (the space of all eigenfunctions of
L) which we will call ΨP :

ΨP (t)→

0 0
1 0
0 1

 exp(jλt) for t→∞. (2-16)

This condition uniquely determines the eigenfunctions. It is known that the eigenspace is
symmetric in λ [44, Section IV B]: if λ is an eigenvalue, then so is λ∗. For these eigenvalues
λ ∈ C− we have

v→

 0
β1 exp(jλt)
β2 exp(jλt)

 for t→∞. (2-17)

Here the α term drops out because the combination of λ ∈ C− and t→∞ yields an exponent
with negative real part that goes asymptotically to 0. Analogous to the λ ∈ C+ case, we
now need β1 and β2 to be 0 for bounded v(t, λ) and we can choose any value for α. The
basisvector for this eigenspace is thus

Ψ̄P (t)→

1
0
0

 exp(−jλt). (2-18)
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The same can be done for the boundary t→ −∞ and this leads to the eigenfunctions

ΨN (t)→

1
0
0

 exp(−jλt) for t→ −∞, (2-19)

Ψ̄N (t)→

0 0
1 0
0 1

 exp(jλt) for t→ −∞. (2-20)

It is important to note here that the eigenfunctions evolve with time, while the eigenvalues
stay the same. We are after all analyzing the spectrum of operator L which is an isospectral
operator as we noted earlier. The equations for the eigenfunctions can be evaluated for all
λ. Whether the chosen λ is an actual eigenvalue however depends on the properties of v(t, λ)
for this value. We elaborate more in this in Section 2-2-1. We can now choose either the set
of eigenfunctions on the boundary t→∞, ΨP and Ψ̄P , or the set on the boundary t→ −∞,
ΨN and Ψ̄N , as the independent basis of the eigenspace and express the other set in terms
of this basis. We choose the eigenfunctions ΨP , Ψ̄P as the basis:

ΨN = Ψ̄Pa(λ) + ΨP b(λ),
Ψ̄N = ΨP ā(λ) + Ψ̄P b̄(λ),

(2-21)

with dimensions a ∈ C, ā ∈ C2×2, b ∈ C2×1 and b̄ ∈ C1×2. One set of these coefficients, a and
b or ā and b̄, is enough to describe the signal completely [10]. The coefficients a(λ) and b(λ)
are called the Nonlinear Fourier coefficients. They are dependent on λ (and the chosen x0),
but not on t. We can thus choose the basisvectors at any t we wish and use them to calculate
the nonlinear Fourier coefficients. Let us choose t→∞. The values of ΨP and Ψ̄P at this t
are already known from the boundary conditions we imposed in Eq. (2-15). We fill them in
for the first equation of Eq. (2-21):

lim
t→∞

ΨN = lim
t→∞

(
Ψ̄Pa(λ) + ΨP b(λ)

)

=

a(λ)
0
0

 exp(−jλt) +

0 0
1 0
0 1

[b1(λ)
b2(λ)

]
exp(jλt)

=

a(λ) exp(−jλt)
b1(λ) exp(jλt)
b2(λ) exp(jλt)


(2-22)

We can get ΨN at t → ∞ by letting the boundary condition at t → −∞ Eq. (2-19) evolve
in time according to Eq. (2-6). Then all eigenvectors appearing in Eq. (2-21) are known at
the same time instant, namely t→∞. We can now get the NFT coefficients by multiplying
both sides by exp(jλt) or exp(−jλt) for the a and b1,2 coefficients respectively and selecting
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the right entry of the results:

lim
t→∞

ΨN exp(jλt) =

a(λ) exp(−jλt)
b1(λ) exp(jλt)
b2(λ) exp(jλt)

 exp(jλt)

=

 a(λ)
b1(λ) (exp(jλt))2

b2(λ) (exp(jλt))2

 .
(2-23)

and

lim
t→∞

ΨN exp(−jλt) =

a(λ) exp(−jλt)
b1(λ) exp(jλt)
b2(λ) exp(jλt)

 exp(−jλt)

=

a(λ) (exp(−jλt))2

b1(λ)
b2(λ)

 .
(2-24)

The NFT coefficients are thus given by [12, eq. 3.24]

a(λ) = lim
t→∞

ΨN
1 exp(jλt), bi(λ) = lim

t→∞
ΨN
i+1 exp(−jλt). (2-25)

So finding the NFT coefficients comes down to solving the MZS system Eq. (2-6). This is
a scattering problem: in solving Eq. (2-6), we analyze how the eigenfunctions are scattered
from t→ −∞ to t→∞. The NFT coefficients are therefore sometimes called the scattering
coefficients. They capture the scattering data of q(x0, t) and can also be collected in the so-
called scattering matrix S(x, λ). We can express Eq. (2-21) in terms of the scattering matrix
as [

ΨN Ψ̄N
]

=
[
Ψ̄P ΨP

] [a b̄
b ā

]
︸ ︷︷ ︸
S(x,λ)

. (2-26)

2-2-1 Eigenvalues of the Manakov Zakharov-Shabat system

In the previous section we have found the eigenfunctions and nonlinear Fourier coefficients
as functions of the eigenvalues λ. However, we have not yet explained how to find these
λ’s. We already mentioned that v(t, λ) can only be a (generalized) eigenvector if it stays
bounded. From Eq. (2-21) it is clear that indeed bounded eigenfunctions are needed if we
want meaningful (bounded) values for a(λ) and b(λ). For true eigenfunctions we also need
the solution v(t, λ) to have finite energy.

The spectrum of L can consist of two parts: the continuous part and the discrete part. The
continuous part in general constitutes the whole real line; if the imaginary part of λ is 0, we
conclude from Eq. (2-13) that the entries of v(t, λ) oscillate for |t| → ∞ and thus the norm of
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this vector stays bounded. These solutions are the generalized eigenfunctions of L. For the
discrete part we consider only the upper half complex plane: the eigenspace is symmetric in
the real axis, so if λ ∈ C+ is an eigenvalue we know λ∗ ∈ C− is an eigenvalue as well [44, Sec.
IV B]. We look for eigenvalues such that ΨN in Eq. (2-21) stays bounded as t→∞. This is
only possible if a(λ) = 0. We see this by filling out the values in Eq. (2-21):

ΨN = Ψ̄Pa(λ) + ΨP b(λ)

→ 0 +

 0
b1 exp(jλt)
b2 exp(jλt)

 . (2-27)

Because λ ∈ C the exponent is negative and the second and third element of ΨN go to
0 exponentially, and ΨN thus stays bounded. Therefore the discrete part of the spectrum
consists of all λ for which a(λ) = 0 [44, Sec. IV B]. These zeros of a(λ) are isolated points,
hence the name discrete spectrum. Only the focussing ME has discrete eigenvalues in its
spectrum, the defocussing version does not [12, Proposition 4].

The discrete spectrum: soliton solutions

If a discrete spectrum exists, the potential function contains so-called solitons. A soliton
is a stable waveform that propagates at a constant speed and retains its shape even after
interacting with other solitons [46]. This is unlike the waves that can be found by analysis
of linear PDE’s, which are affected by interaction with other waves and which dissipate over
time. Each discrete eigenvalue then corresponds to one of those solitons.
The potential function which gives rise to a single soliton is given in [20, Eq. 13]. The b1,2
coefficients (and consequently the ρ1,2 coefficients, see Eq. (2-28)) are 0 for this q(x, t) and we
will therefor call it the single-soliton potential. In [34] the effects of multiple colliding solitons
of the ME are treated and an expression for the multi-soliton potential function is given.

2-2-2 Definition of the Nonlinear Fourier Transform

With the information from previous the sections we are ready to state the definition of the
NFT:

Definition 2. The NFT of q(t) w.r.t. the Lax operator L is given by the two spectral functions

ρ(λ) = b(λ)
a(λ) , ρ̃(λd) = b(λd)

aλ(λd)
, (2-28)

where λ ∈ R are the generalized eigenvalues which belong to the continuous spectrum, λd ∈ C
for d = 1, 2, ...N with N the number of eigenvalues are the eigenvalues of the discrete spec-
trum and aλ = da(λ)

dλ .
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2-2 The Nonlinear Fourier Transform 15

Starting with an initial condition q(t) = q(x0, t), ρ and ρ̃ describe the scattering data of
q(x0, t). By evolving the eigenfunctions in space from v(x0, λ) to v(L, λ), we can derive the
scattering data of q(L, t). The evolution from v(x, λ) is given by

vx = Mv. (2-29)

This is clear from combining the eigenproblem Eq. (2-5) and the Lax equation Eq. (2-2):

Lv = λv (Derivative to x)
⇔ Lxv + Lvx = λvx

⇔ (ML− LM)v + Lvx = λvx

⇔ λMv− LMv = λvx − Lvx

⇔ (λI − L)Mv = (λI − L)vx ⇒ vx = Mv

(2-30)

The spatial evolution of the NFT coefficients a(λ) and b1,2(λ) is even simpler [15, Eq. 9a,9b]:

a(λ, x) = a(λ, x0)
bi(λ, x) = bi(λ, x0) exp(−4iλ2(x− x0)).

(2-31)

From the scattering data of q(L, t), we can then derive the value of q(L, t) by using the
inverse NFT. These steps are schematically shown in Figure 2-2.

q(x0, t) q(L, t)

Scattering data S(L, λ)
of q(L, t)

Scattering data S(x0, λ)
of q(x0, t)

evolution according to
integrable nonlinear PDE

Inverse
NFT

Forward
NFT

simpler evolution
vx = Mv

a(λ, x) = a(λ, x0)
bi(λ, x) = bi(λ, x0) exp(−4iλ2(x− x0))

Figure 2-2: Schematic representation of the NFT method for solving PDEs

We see parallels with the linear FT here. If px = K(p(x, t)) is a linear PDE, we can use the
linear FT to first express p(x, t) in the linear frequency domain where the evolution of p(x, t)
is simpler and after that use the inverse FT to get the solution in the time domain. The NFT
can be used in a similar manner to solve integrable nonlinear PDE’s of the form Eq. (2-1).
Similar to the linear FT, performing the forward NFT results in the nonlinear frequency
content of the signal q(x, t). Just as with the linear spectrum, the nonlinear spectrum of a
signal is informative in itself.

This thesis project focuses on the first step in Figure 2-2, performing the forward NFT to
obtain the scattering data of q(x0, t). There are only a few signals q(x0, t) for which the
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Nonlinear Fourier Spectrum is known analytically, and thus for general signals we resort to
numerical procedures to compute the NFT. The next chapter introduces these numerical
methods.
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Chapter 3

Numerical methods for computing the
Nonlinear Fourier Transform

In the first section of this chapter, we introduce the standard numerical methods for the
Nonlinear Fourier Transform (NFT) that form the basis for the fast methods. Here and in
the remainder of this thesis we call those standard methods the slow methods. In Section 3-
2 we give the computational costs of these methods and make the notion of "slow" and
"fast" methods precise. Finally, Section 3-3 introduces the Fast Nonlinear Fourier Transform
(FNFT).

3-1 Slow Numerical Methods for the Forward NFT

The previous chapter introduced the notion of the NFT. In this thesis we focus on computing
the forward NFT, i.e., determining the nonlinear Fourier coefficients a(λ) and b1,2(λ) of initial
data q(x0, t). This is sufficient for finding the continuous spectrum of the signal and will be
the main focus of this thesis. Finding the discrete spectrum involves finding the roots λd of
a(λ), numerically determining the derivative of a(λ) and evaluating b(λd) for all roots (see
Eq. (2-28)). Especially evaluating b(λd) can be difficult numerically as we see from Eq. (2-25)
that the value in the limit might oscillate if λ has a nonzero real part. These steps offer their
own challenges, and developing and comparing different approaches for the Manakov equation
is an extensive topic in itself. We will however briefly discuss a simple method for finding the
discrete eigenvalues in the context of fast methods in Section 4-8. The FNFT algorithm offers
a benefit in this regard as well compared to the slow methods that we would like to highlight,
and I also implemented this method in the library for the Manakov Equation (ME).

For finding the continuous spectrum, the most important numerical step is to evolve the eigen-
vectors from their initial conditions according to Eq. (2-6) to get the eigenvectors spanning
the solution space. Solving this Manakov Zakharov Shabat (MZS) system is nothing more
than numerically solving an Ordinary Differential Equation (ODE). We restrict ourselves to
samples of q(x, t) on the interval t ∈ [T1, T2]. As long as we choose this interval sufficiently

Master of Science Thesis L. de Vries



18 Numerical methods for computing the Nonlinear Fourier Transform

large the truncation error is small because q(x, t) tends to 0 outside this interval by the first
assumption in Assumptions 1 from Section 2-2. We divide this interval into D − 1 subinter-
vals of length h, so D − 1 = T2−T1

h . Assume the potential function q(x, t) is sampled at the
gridpoints, and v(t) in the middle of these intervals and at T2 + 1

2h:

q[1] = q(x, T1),
q[2] = q(x, T1 + h),

...
q[n] = q(x, T1 + (n− 1)h),

...
q[D] = q(x, T2),

(3-1)

v[0] = v(λ, T1 −
1
2h),

v[1] = v(λ, T1 + 1
2h),

v[2] = v(λ, T1 + 11
2h),

...

v[n] = v(λ, T1 + (n− 1
2)h),

...

v[D] = v(λ, T2 + 1
2h).

(3-2)

We would like to stress that the time instances for the samples of v(t) and q(t) are not the
same: there is a half timestep difference between them. This is because most methods we
introduce in Section 3-1-1 require samples of q(x, t) halfway between samples of v(t). We will
use tn to refer to the time instances where the samples of q(t) are taken: q[n] = q(tn). For
the time instances of v(t) we have v[n] = v(tn+1/2)
For solving ODE’s many numerical integration schemes are available. In this survey we will
restrict ourselves to one-step schemes with equispaced samples as they are the basis for the
FNFT procedure. In a one-step scheme the following iteration scheme is used to propagate
v(λ, t) from its initial conditions:

v[n, λ] = Φ[n, λ]v[n− 1, λ]. (3-3)

The matrix Φ is called the transition matrix. It is specific to the chosen numerical integration
method and dependent on the sample q[n] (and possibly on the samples surrounding q[n]).
Once we have propagated v(λ, t) from the initial condition in Eq. (2-19) ΨN = limt→−∞ v(t) ≈
v(T1 − 1

2h) = v[0] to get an approximation of limt→∞ v(λ, t), we get the numerical approxi-
mations for the NFT coefficients in Eq. (2-25) from

â(λ) = v1(T2 + 1
2h, λ) exp

(
jλ(T2 + 1

2h)
)

= v1[D] exp
(
jλ(T2 + 1

2h)
)
,

b̂i(λ) = vi+1(T2 + 1
2h, λ) exp

(
−jλ(T2 + 1

2h)
)

= vi+1[D] exp
(
−jλ(T2 + 1

2h)
)
.

(3-4)
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We should keep in mind here that a(λ) and b(λ) are functions of the spectral parameter λ.
When carrying out numerical computations using a slow method however, we do not get these
coefficients as functions: we have to choose a specific value λ = ξ and do all computations for
this value, leading to a(ξ) and b(ξ): for each λ we wish to know the NFT coefficients for, we
have to carry out the computation again.

3-1-1 Expressions for the slow numerical methods

In this section we look at four slow methods: BO (Boffetta-Osborne, [7]), CF[4]
2 (Commutator-

Free method, [9]), TES4 (Triple Exponential Scheme, [24]) and RK4 (fourth-order Runge-
Kutta). The first three form the basis for the fast methods as implemented in the software
library for the Manakov equation. These are exponential methods. We elaborate more on
those in Section 4-1 but one of their properties that their transition matrices consist of (prod-
ucts of) exponential matrices which is key to the FNFT algorithm later on in Chapter 4.
RK4 has been used in [45] and [8] in higher-order (that is, higher than second order error
decay) NFT algorithms for the Nonlinear Schrödinger Equation (NSE). Although none of the
methods implemented in the library was based on RK4, we include it to serve as a reference
point for readers less familiar with numerical integration schemes as it is quite well-known.
All methods discussed in this section are one-step methods.
We note once more that any numerical integration scheme could be used to solve the MZS
system. Notably, the Crank-Nicholson scheme [45, Sec. III D] and the Ablowitz-Ladik dis-
cretization [45, Sec. III E] have been used in the past for the original Zakharov Shabat (ZS)
problem. The authors of [36] compare those two methods along with BO and RK4 in the
context of the ZS system. Crank-Nicholson and Ablowitz-Ladik offered a worse trade-off be-
tween number of samples and error in all their testcases, and as they do not form the basis
of any of the fast methods we developed for the ME either we chose not to include them in
our further discussion.

BO

Boffetta and Osborne applied this method to the NSE in their 1991 article [7]. The idea
behind the method is simple: we assume that the matrix P is constant on the interval
(tn − h/2, tn + h/2). We call this constant matrix Pn. Then P becomes a piecewise constant
matrix of which the solution is known:

vt(t) = Pnv(t) for tn−1/2 < t < tn+1/2 (3-5)
⇒ v(t) = expm(Pn(t− tn−1/2))v(tn−1/2) for tn−1/2 < t < tn+1/2. (3-6)

where expm is a matrix exponential. So this gives us

v[n] = expm (P[n]h)︸ ︷︷ ︸
ΦBO

v[n− 1], (3-7)

where we have

P[n] =

 −jλ q1[n] q2[n]
−κq∗1[n] jλ 0
−κq∗2[n] 0 jλ

 . (3-8)
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20 Numerical methods for computing the Nonlinear Fourier Transform

This method is a second order method [7, Sec. 4]. The expression given in Eq. (3-7) has
a third order local truncation error. That means that the error for each time step is v[n +
1]exact − v[n+ 1]BO = O(h3) if we assume that for time step n there are no errors: v[n]BO =
v[n]exact. If we perform D numerical integration steps with the BO method, the total error
will be DO(h3). This is called the global truncation error. Over the complete interval
t ∈ [T1 − 1

2h, T2 + 1
2h] we have h = (T2+ 1

2h)−(T1− 1
2h)

D and thus D ∼ 1
h . The global truncation

error is thus O( 1
hh

3) = O(h2). BO therefore is a second order method; if we halve the timestep
size in the BO method, the error will be 1

2
2 = 1

4 of the original error as long as other types of
errors do not dominate. If a relatively low error is desired, a high number of samples might
be needed. If the error can be a bit higher however this method might be a good choice as
the computational complexity is fairly low and it is faster than most higher order methods
for the same number of samples.

CF[4]
2

This method is similar to the BO method, but instead of assuming P(t) to be constant over
each interval it uses more samples to more accurately represent the matrix exponential. It
is based on the fourth-order commutator free method CF4 in [33] and was put forward as
a numerical method for the NFT of the NSE in [9]. We label this method as CF[4]

2 . The
subscript indicates the number of matrix exponentials and the superscript gives the order of
the method. For the Manakov equation the expression for the transition matrix is [10, Eq.
22]

Φ[n] = expm(h(a2A1 + a1A2))expm(h(a1A1 + a2A2)),

a1 = 1
4 +
√

3
6 , a2 = 1

4 −
√

3
6 ,

A1 =

 −jλ q1(tn −
√

3
6 h) q2(tn −

√
3

6 h)
−q∗1(tn −

√
3

6 h) jλ 0
−q∗2(tn −

√
3

6 h) 0 jλ

 ,

A2 =

 −jλ q1(tn +
√

3
6 h) q2(tn +

√
3

6 h)
−q∗1(tn +

√
3

6 h) jλ 0
−q∗2(tn +

√
3

6 h) 0 jλ

 .

(3-9)

We should notice that this method requires different samples than those taken at the grid-
points. Also, the required samples are not equidistant, so simply redefining v[n] and shifting
at which points this vector is calculated will not work. Sampling the potential function at
non-equidistant time instances might be impractical or even impossible and thus interpola-
tion techniques are used to acquire the samples. This should not be a problem however if the
signal is bandlimited. In [9] local cubic interpolation is used for these samples. The FNFT
library uses bandlimited Fourier interpolation. This is a fourth-order method, and thus more
suitable if a lower error is desired.
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3-1 Slow Numerical Methods for the Forward NFT 21

TES4

The third method of interest was introduced in [24]. The authors set out to develop a one-
step scheme to solve ODE’s. They derived a condition on the expansion of the transition
matrix Φ such that the resulting method is fourth order. This expansion should have the
form given in [24, Eq. 33]. In the symmetrical case, that is, if the points to evaluate v(t) are
midway between the samples of q(t), it turns out that the series expansion of the exponential
in Eq. (3-10) matches the form from [24, Eq. 33] exactly up until the fourth order term.
Therefore, using this matrix exponential as a transition matrix in a one-step scheme will
yield a fourth order method:

ΦTES4 = expm
(
h2

12P(1) + h3

48P(2)
)
expm(hP)expm

(
−h2

12 P(1) + h3

48P(2)
)
. (3-10)

Matrices P(1) and P(2) are numerical approximations of the element-wise first and second
derivatives of the matrix P. The authors of [24] used finite differences for those numerical
approximations. For each element of q(t) the finite difference approximations are

q
(1)
i [n] = qi[n+ 1]− qi[n− 1]

2h , (3-11)

q
(2)
i [n] = qi[n− 1]− 2qi[n] + qi[n+ 1]

h2 . (3-12)

For matrices, we apply these expressions element-wise. We note that the entries involving λ
do not change for different indices n and they cancel. Therefor we get

P(1)[n] =

 0 q1[n](1) q2[n](1)

−κq∗1[n](1) 0 0
−κq∗2[n](1) 0 0

 (3-13)

P(2)[n] =

 0 q1[n](2) q2[n](2)

−κq∗1[n](2) 0 0
−κq∗2[n](2) 0 0

 (3-14)

This scheme uses one more matrix exponential than the CF[4]
2 method. However, as the first

and third matrix exponential are independent of λ, the computation times for TES4 will be
lower than those for CF[4]

2 for identical numbers of samples.

RK4

The idea behind fourth-order Runge-Kutta (RK4) is to compute approximations k1, k2, k3, k4
of v(x, tn−1/2 + τ) for multiple values of τ where 0 ≤ τ ≤ h and combine them such that the
result is a higher-order approximation of v(x, tn+1/2). The approximations ki are dependent
on the previous approximations kj with j < i. [37, Sec. 6.5] gives the expressions for the
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22 Numerical methods for computing the Nonlinear Fourier Transform

RK4 method:

v[n+ 1] = v[n] + 1
6(k1 + 2k2 + 2k3 + k4),

k1 = hP[n+ 1
2]v[n],

k2 = hP[n+ 1](v[n] + 1
2k1),

k3 = hP[n+ 1](v[n] + 1
2k2),

k4 = hP[n+ 11
2](v[n] + k3).

(3-15)

We refer to [41] for more details. In Eq. (3-15), P[n+ 1
2 ] is the matrix P with values for q(t)

sampled at points tn+ 1
2
. These samples can either be attained by interpolation or one can

choose to determine v(t) at only half the discretization points. The method can be written
in the form Eq. (3-3) by plugging the expression for k3 in the expression for k4 etc. until only
v[n] and P are present. Rearranging yields the form Eq. (3-3).

3-2 Computational complexity of the slow methods

In Algorithm 1 we give the pseudocode for computing the continuous spectrum using a slow
numerical NFT method:

Algorithm 1 Computing the NFT using a slow method
Input: q[1], ...,q[D], T1, T2, desired λ-interval, M
Output: a[1], ...a[M ], b[1], ...b[M ]
Discretize λ-interval with M points
for i=1:M do
for n=1:D do

Φ = f(P (λ[i], tn))
v[n+ 1] = Φv[n]

end for
a[i] = v1[D] exp

(
jλ[i](T2 + 1

2h)
)

bk[i] = vk+1[D] exp
(
−jλ[i](T2 + 1

2h)
)

end for

This pseudocode clearly shows why the slow methods might have high computation times:
all calculations have to be repeated for all M values of λ. This is the key property of all slow
methods. Depending on how large the spectral parameter domain is that we are interested
in, the computation time can add up quickly. We assume that the computational cost for the
inner loop is dominated by the cost of one matrix-vector product. The cost of computing one
or more matrix exponentials to get the transition matrix Φ = f(P (λ[i], tn)) is dependent on
the chosen method and might be even higher than the cost of the matrix-vector product, so
wit this assumption we are determining a lower bound for the computational cost. For a 3×3
matrix and a 3× 1 vector we have 9 multiplications and 6 additions and thus a total of 15D
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3-2 Computational complexity of the slow methods 23

floating point operations (FLOPs) if we carry out the loop D times. Taking into account the
outer loop the total computational costs are 15DM FLOPs, which is O(MD). The evaluation
of the NFT coeffcients will add O(M) FLOPs so the total computational cost stays O(MD).
It is common to choose the same amount of samples in the frequency domain as in in the
time domain, M = D, so the computational costs for computing the continuous spectrum
are O(D2). Fast Nonlinear Fourier Transform methods are methods whose computational
cost is lower than O(D2). This does not mean that their runtimes are always lower than the
runtime of a slow methods: it just means that the runtime as a function of samples grows less
fast for fast methods. For lower numbers of samples, the actual runtime of a slow method
might be lower. Where exactly the crossover point lies depends on the specific methods,
implementations and computer architecture.
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3-3 The Fast Nonlinear Fourier Transform

Section 3-1 outlined how to numerically determine the NFT of an integrable system. In
Section 3-2 we highlighted why the slow methods can become relatively slow for high numbers
of samples. The development of faster numerical NFT methods is essential to study new
optical fiber communication techniques such as Nonlinear Frequency Division Multiplexing
(NFDM) and apply them in practice. In 2013, Wahls and Poor introduced the so-called Fast
Nonlinear Fourier Transform as a faster alternative to the slow methods and applied it to the
NSE [38].

They present a general approach which, starting from D samples of the potential q(t), com-
putes a numerical approximation of the continuous spectrum in O(Dlog2D) FLOPs and de-
termines a numerical approximation of the discrete spectrum in O(D2) FLOPs. The idea is
to use polynomial matrices as the transition matrices in Eq. (3-3). To understand the advan-
tage of polynomial transition matrices, we need to write v[D,λ], which is an approximation
of v(T2 + 1

2h, λ), as a function of all transition matrices Φ[n, λ] and the initial condition
v[0, λ] = v(T1 − 1

2h, λ):

v[1, λ] = Φ[1, λ]v[0, λ],
v[2, λ] = Φ[2, λ]v[1, λ] = Φ[2, λ]Φ[1, λ]v[0, λ],
v[3, λ] = Φ[3, λ]v[2, λ] = Φ[3, λ]Φ[2, λ]Φ[1, λ]v[0, λ],

...

v[D,λ] =
(
N∏
i=1

Φ[i, λ]
)

v[0, λ].

(3-16)

Instead of multiplying the vector v[n, λ] with the transition matrix for each timestep we
first multiply all polynomial transition matrices, which yields the total transition matrix∏N
i=1 Φ[i, λ] as a polynomial in λ. We then multiply the initial condition v[1, λ] directly with

the total transition matrix to get v[D]. Note that the total transition matrix is a function of
λ. It thus needs to be calculated only once and can then be evaluated for all desired λ. This is
different from the slow methods, which evaluate the transition matrix for all λ’s individually.
Moreover, because Φ[n] is a polynomial matrix in λ for all n, the product of these matrices
can be computed efficiently by multiplying the matrices in a tree-wise manner and using
fast polynomial multiplication [38, Sec. V]. If Φ[n, λ] is not a polynomial matrix a coordinate
transform z = f(λ) can be used to arrive at a transition matrix that is a polynomial in z. The
authors of [10] expand upon this idea by using exponential one-step methods as the starting
point, and use a combination of an exponential splitting from [28] and a coordinate transform
z = f(λ) to both to arrive at a transition matrix that is a polynomial in z and map z onto
the unit circle in the complex plane. The polynomial form of the transition matrix allowed
them to use the ideas put forward in [38]. The mapping onto the unit circle prevents some
numerical issues as the norm of zp is 1 for each p and this norm would either grow or decay
very fast if z were not on the unit circle. It also allows for the use of the chirp-Z transform
as a fast polynomial evaluation algorithm. In Chapter 4 we elaborate on all the steps and
summarize the fast NFT approach for the Manakov system in Section 4-11. The next section
cites some results of applying fast NFT algorithms to the NSE.
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3-3-1 Results of the fast NFT for the NSE

The FNFT approach outlined in the previous subsection has been successfully applied to the
NSE. In [10], the authors use both a fast implementation of BO (which they call CF[2]

1 , or
FCF[2]

1 for the fast version) and of the CF[4]
2 method (FCF[4]

2 ). In this article the authors
used bandlimited Fourier interpolation for (F)CF[4]

2 instead of the cubic spline interpolation
proposed in [9]. Both methods required a significantly lower execution time to achieve the
same error compared to the slow implementations as outlined in Section 3-1-1. The tests were
done using test signals for which the NFTs are known analytically.

In [22] a fast implementation of the TES4 method (FTES4) is presented and compared to
the slow implementation. The fast method is about an order of magnitude faster than the
slow counterpart when the number of samples in the frequency domain is kept constant at
M = 1025. However, the error is also an order of magnitude larger. When comparing the
execution time needed for the same error however the fast method needs less computation
time for the same error. [21] presents similar results, while also comparing (F)TES4 to the
(F)CF[4]

2 method.

All in all, the fast methods yield promising results for the 1D case. Currently, the transmission
rates for communication systems using polarization NFDM techniques are limited by the
numerical implementation of the NFT for the Manakov equation [12, Sec. 6.4]. The authors
of [14] and [11], amongst others, also stated the need for fast NFT algorithms for the Manakov
equation in order to make dual polarization NFDM techniques fully competitive with other
nonlinear communication techniques. In the remainder of this thesis I will therefore extend
these methods to the dual-polarization case, implement them in the open source FNFT library
and benchmark them in several testcases.
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Chapter 4

Fast NFTs for the Manakov equation

Section 3-3 gave the framework for the Fast Nonlinear Fourier Transform (FNFT) and cited
some results for the Nonlinear Schrödinger Equation (NSE). In this chapter we extend these
methods to the Manakov equation and develop fast NFT algorithms for Manakov equation.
We do this by first addressing the concept of exponential integrators upon which the algo-
rithms rely in Section 4-1. In Sections 4-2 - 4-4 we use coordinate transforms and exponential
splittings to bring the exponential integrator methods discussed in Section 3-1-1 in polynomial
form. We elaborate on these coordinate transforms in Section 4-5. We address polynomial
multiplication and polynomial evaluation in Section 4-6 and Section 4-7 respectively. In Sec-
tion 4-8 we give a method to determine the discrete eigenvalues. We derive the computational
costs for the fast NFT algorithms for the Manakov equation in Section 4-9. Section 4-10 ex-
plains how to use Richardson Extrapolation (RE) to further decrease the error of the fast
methods, and we close the chapter with a summary of the developed fast NFT algorithm in
Section 4-11.

4-1 Exponential integrators and exponential splittings

The methods from the articles cited in Section 3-3-1 and all other fast methods implemented
in the FNFT library are fast implementations of exponential integration methods. The basic
idea behind an exponential integrator method is to define for a Differential Equation (DE) a
related DE which has the same stiffness properties as the original DE and which can be solved
exactly [26]. This related DE is often found by linearizing the original DE around a certain
state. The exact solution of the related DE will involve one or multiple matrix exponential(s),
hence the name exponential methods. Exponential methods are of particular interest because
they offer a good trade off between accuracy and computational cost and are fairly easy to
implement [10], [6]. Most importantly, if combined with a suitable exponential splitting and
coordinate transform, some of them can be brought in polynomial form which in turn makes
them good candidates for fast NFT algorithms.
An exponential splitting can be used to approximate the matrix exponential expm(C) =
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28 Fast NFTs for the Manakov equation

expm(A + B) such that A and B each depend on only one variable. In the context of FNFT
specifically, exponential splittings are used to split the transition matrix Φ in terms involving
either the known samples of q(t) or the spectral parameter λ: expm(Φh) = expm(A(λ) +
B(q(t)). In [28, Eq. 17 - Eq. 24], expressions for exponential splittings are given that result
in suitable forms for the FNFT procedure.
In Sections 4-2 - 4-4 we will show for the methods introduced in Section 3-1-1 how to use
exponential splittings and a coordinate transform to bring them in polynomial form.

4-2 Boffetta-Osborne method

We introduced the Boffetta-Osborne (BO) method in Section 3-1-1. To bring this method in a
form that is a polynomial in the transformed coordinate z(λ) we take a look at the transition
matrix for this method Eq. (3-8). We split the matrix P[n] in the sum of 2 matrices where
one is dependent on the variable λ and the other depends just on the (known) values of q(t)
for a certain t = tn as follows:

P[n] =

 −jλ q1[n] q2[n]
−κq∗1[n] jλ 0
−κq∗2[n] 0 jλ

 (4-1)

=

−jλ 0 0
0 jλ 0
0 0 jλ


︸ ︷︷ ︸

A

+

 0 q1[n] q2[n]
−κq∗1[n] 0 0
−κq∗2[n] 0 0


︸ ︷︷ ︸

B[n]

(4-2)

As the BO method is a second order method, we want to use a splitting scheme which is also
second order accurate or higher. Otherwise the error of the resulting method will be of a
lower order. For illustration purposes, we choose the third order splitting [28, Eq. 19].

expm(P[n]h) =expm ((A + B[n])h)

≈9
8expm

(1
3Ah

)
expm

(2
3B[n]h

)
expm

(2
3Ah

)
expm

(1
3B[n]h

)
− 1

8expm (Ah)expm(B[n]h)

=9
8

exp(−1
3jλh) 0 0

0 exp(1
3jλh) 0

0 0 exp(1
3jλh)

 expm(2
3B[n]h

)
×

exp(−2
3jλh) 0 0

0 exp(2
3jλh) 0

0 0 exp(2
3jλh)

 expm(1
3B[n]h

)

− 1
8

exp(−jλh) 0 0
0 exp(jλh) 0
0 0 exp(jλh)

 expm (B[n]h) .

(4-3)
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If we use the coordinate transform z = exp(1
3jλh) we can write this as a polynomial matrix

in z:

expm((A(z(λ)) + B[n])h) ≈ 9
8

1/z 0 0
0 z 0
0 0 z

 expm(2
3B[n]h)×

1/z2 0 0
0 z2 0
0 0 z2

 expm(1
3B[n]h)

− 1
8

1/z3 0 0
0 z3 0
0 0 z3

 expm(B[n]h)

=9
8

z
−1

1 0 0
0 0 0
0 0 0


︸ ︷︷ ︸

E1

+z1

0 0 0
0 1 0
0 0 1


︸ ︷︷ ︸

E2

 expm(2
3B[n]h)×

z−2

1 0 0
0 0 0
0 0 0

+ z2

0 0 0
0 1 0
0 0 1


 expm(1

3B[n]h)

− 1
8

z−3

1 0 0
0 0 0
0 0 0

+ z3

0 0 0
0 1 0
0 0 1


 expm(B[n]h).

(4-4)

We use E1 and E2 to refer to the matrices in the second equation as shown. We can now
move multiplication by terms of z in front of the matrices:

expm((A(z) + B[n])h) ≈ z−3
(9

8E1expm(2
3B[n]h)E1expm(1

3B[n]h)− 1
8E1expm(B[n]h)

)
+

z−1
(9

8E2expm(2
3B[n]h)E1expm(1

3B[n]h)
)

+

z1
(9

8E1expm(2
3B[n]h)E2expm(1

3B[n]h)
)

+

z3
(9

8E2expm(2
3B[n]h)E2expm(1

3B[n]h)− 1
8E2expm(B[n]h)

)
.

(4-5)
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At this point, multiplication with zl for a certain l ∈ N might be needed to ensure only
positive powers of z and yield a polynomial matrix. In this case we multiply with z3:

z3expm((A(z) + B[n])h) ≈
(9

8E1expm(2
3B[n]h)E1expm(1

3B[n]h)− 1
8E1expm(B[n]h)

)
+

z2
(9

8E2expm(2
3B[n]h)E1expm(1

3B[n]h)
)

+

z4
(9

8E1expm(2
3B[n]h)E2expm(1

3B[n]h)
)

+

z6
(9

8E2expm(2
3B[n]h)E2expm(1

3B[n]h)− 1
8E2expm(B[n]h)

)
.

(4-6)

This expression now approximates the transition matrix for a single timestep of BO up to
third order accuracy. Only the z is unknown and should be kept as a variable. The other
terms can all be computed using the samples of q. The resulting matrix is a polynomial
matrix: each element can be written as a polynomial g = g0 + g1z + g2z

2 + . . . gP z
P , where

P is the degree of the polynomial which is P = 6 in this particular case. The MATLAB code
used to get the symbolic expressions for the polynomial coefficients gi in Eq. (4-6) can be
found in appendix Section A-1-1. The MATLAB code for getting the polynomial coefficients
of methods based on BO with different splittings can be found in Section A-1-2, Section A-1-3,
Section A-1-4, and Section A-1-5 respectively.

4-3 CF[4]
2 method

The transition matrix for this method was given in Eq. (3-9). This is a multiplication of two
exponential matrices. To put these into polynomial form, we take a look at the first one:

exp(h(a2A1 + a1A2))

= exp

a2

 −jλ q1(t−n ) q2(t−n )
−κq∗1(t−n ) jλ 0
−κq∗2(t−n ) 0 jλ

+ a1

 −jλ q1(t+n ) q2(t+n )
−q∗1(t+n ) jλ 0
−q∗2(t+n ) 0 jλ




= exp


 −jλ/2 a2q1(t−n ) + a1q1(t+n ) a2q2(t−n ) + a1q2(t+n )
a2q
∗
1(t−n ) + a1q

∗
1(t+n ) jλ/2 0

a2q
∗
2(t−n ) + a1q

∗
2(t+n ) 0 jλ/2




(4-7)

where t−n = tn −
√

3
6 h and t+n = tn +

√
3

6 h. The second matrix can be written in an analogous
way. We notice that this matrix has the same form as the transition matrix ΦBO, but with
samples a2qk(tn−

√
3

6 ) +a1qk(tn +
√

3
6 ) instead of qk(tn) and λ/2 instead of λ. That means we

can implement this method as if it were the BO method, but replace the samples and values
of λ with their appropriate expressions. The CF[4]

2 method with D samples then effectively
turns into the BO method with 2D samples and transition matrices. Bringing this method in
polynomial form is then done in the same way as explained in Section 4-2. However, we cannot
use the third-order splitting we used in Section 4-2. We should choose a splitting scheme with
an order at least as high as the base method, as otherwise the error introduced by the splitting
becomes dominant. For CF[4]

2 we should thus choose at least a fourth-order splitting. The
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fourth-order splitting given in [28, Eq. 20] is a suitable candidate. The coordinate transform
should then be chosen as z = exp(jhλ/4); this allows us to both represent exp(1

4Ah) and
exp(1

2Ah) = exp(1
4Ah)2 in polynomial form. For getting the polynomial coefficients, the same

MATLAB code is used as for the methods based on BO and can be found in Section A-1-3 -
Section A-1-5.

4-4 TES4 method

From Eq. (3-10) we see that only the second of the three matrix exponentials involves λ. This
matrix can thus be split using the same approach as in Section 4-2 and choosing any of the
splitting from [28]. However, we would like to illustrate the use of Suzuki splitting [32] here,
as that is the splitting used for the fast implementation of TES4 in [22] and [21]. We use the
expression for Suzuki factorization as given in [22, Eq. 9]:

exp (h(A + B)) ≈ exp
( 7

48hB
)

exp
(1

3hA
)

exp
(3

8hB
)

exp
(
−1

3hA
)

exp
(
− 1

48hB
)
×

exp (hA) exp
(
− 1

48hB
)

exp
(
−1

3hA
)

exp
(3

8hB
)

exp
(1

3hA
)

exp
( 7

48hB
)
(4-8)

With coordinate transformation z = exp(jλh/3) all matrix exponentials involving λ can be
represented as polynomials in z. The lowest power of z resulting from multiplying all these
matrices is z−7, therefor we should multiply by z7 to arrive at a polynomial form. MATLAB
code for getting the polynomial coefficients is given in Section A-1-6.

4-5 A note on coordinate transforms

All coordinate transforms z = f(λ) used for the FNFT should possess the following properties:

• z(λ) maps λ onto the unit circle for all λ ∈ R.

• The mapping turns the transition matrix Φ[n, λ] into a 3×3 matrix G[n, z], where each
entry is a rational function in z. Multiplication with zl for a certain l ∈ N might be
needed to ensure only positive powers of z needed for a polynomial.

Indeed, all coordinate transformations in sections Section 4-2, Section 4-3 and Section 4-4 are
of the form z = exp(jλh/m) and thus map λ to a z on the unit circle in the complex plane. A
suitable coordinate transform for the methods with sixth-order splitting is z = exp(jλh/6).
For all other splittings proposed in [28, Eq. 17 - Eq. 24] it is also possible to choose a
transformation of that form such that the resulting matrices are polynomial in z.
Mapping z(λ) to the unit circle offers multiple benefits: The norm of zp will always be 1,
independent of p. So even for high powers of z that will arise when multiplying a high number
transition matrices, the absolute value of zp stays bounded. This prevents overflow errors
that might occur otherwise in the numerical implementation of this algorithm. Furthermore,
the chirp-Z transform can be used to evaluate the polynomials (see also Section 4-7). The
polynomial form also allows for fast polynomial multiplication of the transition matrices which
will be discussed in the next section.
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32 Fast NFTs for the Manakov equation

4-6 Polynomial multiplication

Now that we know how to write the aforementioned methods as polynomial methods we
will illustrate how to use the FFT to efficiently multiply the matrices. We will illustrate
how this works for the Manakov equation. Let G[n, z] be the polynomial approximation
of the transition matrix after applying the coordinate transform, the splitting scheme and
multiplication with zl. Eq. (3-16) then becomes

v[D,λ] =
(
ΠD
n=1z

−lG[n, z]
)

v[0, λ] = z−lDG(z)v[0, λ] (4-9)

The extra term z−l is introduced because we multiplied the transition matrix for a single time
step by zl for a certain l ∈ N. For the BO method with third-order splitting for example we
multiplied with z3 (see Section 4-2).

We get numerical approximations of the Nonlinear Fourier Transform (NFT) coefficients from
Eq. (3-4)

â(λ) =
[
z−lDG(z(λ))v[0, λ] exp

(
jλ(T2 + 1

2h)
)]

1
, (4-10)

b̂k(λ) =
[
z−lDG(z(λ))v[0, λ] exp

(
−jλ(T2 + 1

2h)
)]

k+1
, (4-11)

where the subscripts 1, k + 1 denote the first and k + 1th entry of the resulting vectors. The
multiplication of the D matrices in Eq. (4-9) is done in a tree-wise manner, multiplying 2
terms at a time and doing the same for the resulting terms until all terms are multiplied.
This is schematically represented in Figure 4-1.

G[1]

G[2]G[1]

G[2]

G[D − 1]

G[D]G[D − 1]

G[D]

∏D/2
n=1 G[n]

∏D
n=D/2+1 G[n]

∏D
n=1 G[n]

Figure 4-1: Schematic representation of the tree-wise multiplication of polynomial matrices G[n]

Here it is important to keep in mind the order of multiplication and always put the transition
matrices for the higher time indices on the left. If the number of samples D is a power of 2,
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4-6 Polynomial multiplication 33

tree-wise multiplication can be used directly. If not, we can pad the number of matrices with
identity matrices such that the total number of matrices is a power of D and apply tree-wise
multiplication as before. If we take a look at for example the first 2 transition matrices, we
see that each multiplication of a pair of matrices involves 27 polynomial multiplications:g11 g12 g13

g21 g22 g23
g31 g32 g33


︸ ︷︷ ︸

G[2]

h11 h12 h13
h21 h22 h23
h31 h32 h33


︸ ︷︷ ︸

G[1]

=

g11h11 + g12h21 + g13h31 g11h12 + g12h22 + g13h32 g11h13 + g12h23 + g13h33
g21h11 + g22h21 + g23h31 g21h12 + g22h22 + g23h32 g21h13 + g22h23 + g23h33
g31h11 + g32h21 + g33h31 g31h12 + g32h22 + g33h32 g31h13 + g32h23 + g33h33


(4-12)

These multiplications are carried out efficiently using the Fast Fourier Transform (FFT) [13].
This approach is used in articles [38], [10], and it is also the multiplication method imple-
mented in the FNFT library. With the help of the FFT two polynomials of at most degree p
can be multiplied in O (plog(p)) operations [10, Sec. IV].

We calculate the product of g11 and h11 as an example (we will write g and h here instead
of g11 and h11 to reduce the number of subscripts). We can represent the polynomial g(z) =
g0 + g1z + . . . gP z

P in different ways:

• Coefficient vector
We simply take all coefficients of gi of the polynomial g = [g0 g1 . . . gP ]T , P being
the degree of the polynomial.

• Sample representation
The following sample points of the polynomial are given: (z0, y0), (z1, y1), . . . (zp, yp)
with g(zi) = yi for i = 0, 1, . . . , p. If we know that the function through these points
is a polynomial and zi 6= zj for i 6= j, these samples uniquely determine a polynomial
of degree p by the fundamental theorem of algebra.

The expressions for h(z) are analogous. The coefficient representation is the most convenient
representation for polynomial evaluation later in the algorithm. It is also the representation
in which the elements of the transition matrix are given for all methods implemented in the
library. However, polynomial multiplication is more efficient in sample representation: O(p)
versus O(p2) operations for two polynomials of at most degree p. The main idea behind
FFT based polynomial multiplication is to efficiently convert the polynomial in coefficient
representation to sample representation, carry out the multiplication and switch back to coef-
ficient representation. The conversion between the two representations is done by the Discrete
Fourier Transform, which can be efficiently computed (in O (plog(p)) FLOPs [13]) using the
FFT. For more details we refer to [13]. A schematic representation of the multiplication of
two polynomials g(x) and h(x) of at most degree p along with computational costs is given
in Figure 4-2.
In this particular case of multiplying 3× 3 matrices, we notice that adding two polynomials
can be done both in their coefficient as well as in their sample representation. Therefore we
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g(x), h(x)
coefficient representation

c(x) = g(x)h(x)
coefficient representation

DFT of
g(x), h(x)

DFT of
g(x)h(x)

O(p2)

FFT
O (plog(p))

O(p)

inverse FFT
O (plog(p))

Figure 4-2: Schematic representation of polynomial multiplication using the FFT

only transform back to the coefficient representation after we added all terms for an element
of the matrix, saving us two inverse FFTs for each matrix element. The process for the upper
left element in our case is schematically shown in Figure 4-3

g11, g12, g13,
h11, h21, h31

coefficient representation

DFT of
g11, g12, g13,
h11, h21, h31

DFT of
g11h11, g12h21, g13h31

DFT of
g11h11 + g12h21 + g13h31

g11h11 + g12h21 + g13h31
coefficient representation

O(p2)

FFT
O (plog(p))

O(p) O(p)

inverse FFT
O (plog(p))

Figure 4-3: Schematic representation of polynomial multiplication using the FFT for one element
of a 3×3 matrix

4-7 Polynomial evaluation (chirp-Z transform)

The last step in getting the values of NFT coefficients a(λ), b(λ)1,2 is the evaluation of
Eq. (4-10) and Eq. (4-11). Because we take ΨN = [1 0 0]T exp(−jλt) from Eq. (2-19)
as the initial condition, only the first column of G(z(λ)) needs to be evaluated as the other
elements cancel when multiplied with ΨN. All elements of the matrix G(z(λ)) are polynomials
and we can use the chirp-Z transform algorithm [29] to evaluate them at the desired z(λ).
This way all values of the NFT coefficients at the nodes specified below can be computed in
O ((P +M)log(P +M)) operations, as opposed to O(PM) operations for the naive approach,
where P is the degree of the resulting polynomial and M the number of z(λ) for which we
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4-8 Determining the eigenvalues of NFT coefficient a 35

evaluate the polynomial.
In general, the chirp-Z transform efficiently computes the Z-transform X(z) of a sequence of
numbers x(n) on M points on the real line:

Xk =
P∑
n=0

x(n)(AW−k)n with k = 0, 1, . . .M − 1. (4-13)

Here A can be understood as the starting point of the spiral, and W is the ratio between the
points in the complex plane.

In this specific case we have polynomial entries of the total transition matrix g = g0 + g1z +
g2z

2+. . . gP zP that we want to evaluate onM points z = f(λ) corresponding toM equidistant
points λ ∈ [Ξ0,Ξ1] in the complex plane:

λ0 = Ξ0, λ1 = Ξ0 + dλ, λ2 = Ξ0 + 2dλ, . . . λM−1 = Ξ0 + (M − 1)dλ, (4-14)

where

∆λ = Ξ1 − Ξ0
M − 1 . (4-15)

From the first property of the coordinate transforms mentioned in Section 4-5 we know that
λ is mapped to the unit circle: all points we wish to evaluate lie on a spiral in the Z-plane
with constant radius 1.
Let x(n) in Eq. (4-13) be the polynomial coefficient for zn, x(n) = gn, and zk = exp(jλkh/m).
We can then choose A = exp(jΞ0h/m) and W = exp(−jdλh/m). Then we have

AW−k = exp(jΞ0h/m) (exp(−jdλh/m))−k ,
= exp(jΞ0h/m) exp(jdλkh/m),
= exp(j(Ξ0 + dλk)h/m),
= exp(jλkh/m) = zk,

(4-16)

which means that by applying the chirp-Z transform we are exactly evaluating the polynomial
g for all M points in the complex plane corresponding to the desired λ’s. The key point here
is that this happens for all M points at once with one chirp-Z transform.

Once the first column of G(z(λ)) is evaluated we should multiply the values by exp(−jλt)
for the initial condition, by z−lD = exp(−jλhlD/m) to compensate for the multiplication
with zl and by exp

(
jλ(T2 + 1

2h)
)
or exp

(
−jλ(T2 + 1

2h)
)
for the a and b1,2 coefficients re-

spectively. These multiplications do need to be carried out for each λ separately, but they
can be combined in one step and just add a phase factor.

4-8 Determining the eigenvalues of NFT coefficient a

As mentioned in Section 3-1, numerically finding the discrete spectrum of the Manakov equa-
tion is beyond the scope of this thesis project. We will however briefly address how to find
the roots of NFT coefficient a(λ). These discrete eigenvalues offer interesting insights in itself
as they are the λ-values for which solitons (see Section 2-2-1) occur. Computing the discrete
eigenvalues would also be the first step if one were to compute the discrete spectrum.
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36 Fast NFTs for the Manakov equation

From Section 4-7 we can write down the expression for a(λ):

a(λ) = z−lDG(z(λ))11v1[0] exp
(
jλ(T2 + 1

2h)
)

= exp(−jλhlD/m)G(z(λ))11 exp
(
−jλ(T1 −

1
2h)

)
exp

(
jλ(T2 + 1

2h)
) (4-17)

All exponential terms just add a phase factor and do not influence the location of the roots
of the polynomial a(λ): we can therefore look at the roots of the function G(z(λ))11 in terms
of z and then convert those to λ.
This also shows the advantage of fast methods when finding the discrete spectrum: Unlike for
the slow methods, where we choose a λ and get the a for this specific λ, we get a polynomial
approximation of a(λ) where λ is still a variable. This means that we can use a fast polynomial
rootfinder method to find approximations of the roots of a. Details on the fast polynomial
rootfinder used in the FNFT library can be found in [5].
The polynomials we are working with merely approximate the roots of a(λ), and it is possible
to find roots of this polynomial that are not discrete eigenvalues. The roots therefore need to
be filtered. The most basic filtering is to discard all values in the lower half complex plane.
We can do this because of the symmetry mentioned in Section 2-2: if λ is an eigenvalue, then
so in λ∗. After this, the remaining roots are merged: if two roots are less than the machine
precision apart, it is assumed they are the same root.

4-9 Computational complexity of the fast methods

In this section we derive the computational costs of the the fast NFT algorithms. The
pseudocode for the fast methods is given in Algorithm 2.

Algorithm 2 Computing the continuous nonlinear spectrum using using a fast numerical
NFT method
Input: q[1], ...,q[D], T1, T2, desired λ-interval, M
Output: a[1], ...a[M ], b[1], ...b[M ]
for n=1:D do
Determine G[n, z(λ)] based on the transition matrix Φ(t[n], λ) (note here that G is still
a function of λ: we do not need to specify λ)

end for
Fast multiplication: G(z)← ΠD

i=1G[n, z]
Fast evaluation of G11(z), G21(z) and G31(z) for all M values of z(λ)
for i=1:M do
a[i] = z[i]−lDG11(z[i]) exp

(
jλ(T1 − 1

2h)
)

exp
(
jλ(T2 + 1

2h)
)

b1[i] = z[i]−lDG21(z[i]) exp
(
jλ(T1 − 1

2h)
)

exp
(
−jλ(T2 + 1

2h)
)

b2[i] = z[i]−lDG31(z[i]) exp
(
jλ(T1 − 1

2h)
)

exp
(
−jλ(T2 + 1

2h)
)

end for

One notes here that, instead of doing the whole iteration for each λ[j], we only need to eval-
uate the polynomial matrix Φ(λ[j]) and do one multiplication with a phase factor for each λ.
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4-10 Richardson Extrapolation 37

The pseudocode and computational cost for the matrix multiplication step are given in Al-
gorithm 3. The costs for evaluating the polynomials at M points were given in Section 4-7.
The maximum degree of the resulting polynomial is P = pD, where p is the maximum degree
of the individual polynomials at the start and D the number of polynomials. The cost of
evaluating the polynomials is thus O ((pD +M) log(pD +M)), which makes the total cost of

the FNFT O

 Dlog2(D)︸ ︷︷ ︸
multiplication cost

+ ((pD +M) log(pD +M))︸ ︷︷ ︸
evaluation cost

 = O
(
Dlog2(D)

)
.

Algorithm 3 Multiplying the transition matrices using tree-wise multiplication
Input:G[1, z], ...,G[D, z] transition matrices
Output: total transition matrix ΠD

i=1G[n, z]
Complement the number of matricesD with identity matrices until we arrive atDc matrices
with Dc = 2r for some r ∈ N
while Dc > 1 do
for n = 1 : Dc/2 do

G[n, z]← G[2n, z]G[2n− 1, z]
end for
Dc ← Dc/2

end while

To determine the computational costs of the multiplication step we first look at the inner loop
of the pseudocode where we do 27 polynomial multiplications using the FFT. Let p be the
maximum degree of the polynomials and Dc the number of matrices. From Section 4-6 we
know that the cost for multiplying two polynomials of degree p is O (plog(p)). We now look
at the outer loop. For the first iteration of the outer loop we carry out the inner loop Dc/2
times, so the computational cost is O

(
Dc
2 plog(p)

)
. For the second iteration of the outer loop,

we have only half the number of matrices, but the maximum degree of the polynomials has
doubled, which leads to a computational cost of O

(
Dc
4 2plog(2p)

)
= O

(
Dc
2 plog(2p)

)
. For the

iteration after that the cost will be O
(
Dc
2 plog(4p)

)
and so on. We carry out the outer loop

log2(Dc) times, so on the last iteration the cost is O
(
Dc
2 plog(2log2(Dc)p)

)
= O

(
Dc
2 plog(Dcp)

)
:

this is the maximum cost of one iteration of the outer loop, and to get an upper bound on the
computational cost we will assume that all iterations of the outer loop have this cost. The
total cost of the multiplication is thus log2(Dc)O

(
Dc
2 plog(Dcp)

)
= O

(
Dc
2 plog(Dcp)log(Dc)

)
.

As p is constant once we have chosen the method we can ignore it when considering the com-
putational costs. Therefore we say that the computational cost of the matrix multiplication
using the FFT is O

(
Dlog2(D)

)
.

4-10 Richardson Extrapolation

One technique we can use to make the algorithm more accurate is RE. With RE we carry
out the FNFT procedure a second time using only half of the original samples and then use
knowledge of the order of the numerical method to increase the order of that method by one.
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38 Fast NFTs for the Manakov equation

We refer to [37, Sec. 3.7] for the derivation but give the expression here:

ρ̂new = 2rρ̂old(h)− ρ̂old(2h)
2r − 1 . (4-18)

ρ̂(2h), ρ̂(h) are the numerical approximations of ρ for time step size 2h and h respectively.
Choosing a time step size of 2h corresponds to using only half the samples. r is the order of
the chosen numerical method. Instead of the reflection coefficient ρ this procedure can also
be applied to any of the NFT coefficients a of b1,2.
An advantage of using this procedure is that an additional accuracy is achieved without
choosing a higher order method or using more samples. A disadvantage is that this of course
adds more computation time. Another disadvantage is that the order of the numerical method
needs to be known: even if the order is known in theory, the actual error decay will only be
of order r within a certain region. Outside that region discretization errors will be dominant
for larger h and rounding errors will be dominant for smaller h. If the actual order does not
match the assumed order r, the result from Richardson extrapolation will be less accurate
than the original result for time step h.

4-11 Summary of the FNFT algorithm

We can summarize the FNFT algorithm in the following steps:

• Choose a suitable exponential integration method

• Use a coordinate transform and an exponential splitting to turn the transition matrix
in a polynomial matrix and map all real λ in the frequency domain onto the unit circle

• Multiply all polynomial matrices using the FFT

• Evaluate the resulting polynomial for the desired points in the frequency domain using
the chirp-Z transform

• If desired, find the discrete eigenvalues using a fast rootfinder algorithm on the polyno-
mial G(z(λ))11
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Chapter 5

Overview of developed algorithms

In Section 3-3 we mentioned the FNFT method for the Nonlinear Schrödinger Equation
(NSE), which was developed to solve the problem of numerical NFT algorithms being too
slow. In Chapter 4 we extended these ideas from the NSE with one space coordinate to the
case with two space coordinates and developed fast NFT algorithms for the Manakov equation
that compute

• the continuous spectrum using the BO discretization and various exponential splitting
schemes

• the continuous spectrum using the CF[4]
2 discretization and various exponential splitting

schemes

• the continuous spectrum using the TES4 discretization and Suzuki factorization

• the discrete eigenvalues using the above mentioned discretizations and splittings and a
fast polynomial rootfinder

To make the developed algorithms widely available, we implemented them in the open-source
Fast Nonlinear Fourier Transform (FNFT) software library that Wahls et. al. have been
working on [39]. Currently, fast methods have been implemented to compute the continuous
and discrete spectrum for the NSE with vanishing and (quasi) periodic boundary conditions
and to compute the reflection coefficient ρ of the Korteweg-de Vries (KdV) equation with
vanishing boundary conditions. See [2] for the GitHub repository of this library. On the
development branch of this repository, code for computing the discrete spectrum of the KdV
can also found.
The second goal of this thesis is to implement the algorithms developed in Chapter 4 and
incorporate them in the FNFT library. The existing code for the NSE with vanishing bound-
ary conditions served as the basis for the part of the code concerning the Manakov equation.
This chapter explains how I implemented the algorithms and highlights my contributions to
the library.
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5-1 Structure of the code contributed to the FNFT library

Figure 5-1 shows a diagram with the most important functions in the library concerning
the Manakov equation. The source code can be found on GitHub: https://github.com/
ldvries/FNFT/tree/development. At the time of writing, the new features for the Manakov
Equation (ME) had not been merged with the existing library yet, but they will be in the
future. They can then be found on https://github.com/FastNFT/FNFT/tree/development.
The prefixes fnft__ and fnft_ that are found in the source code have been omitted in the
diagram. fnft_ (with one underscore) is used for the highest level functions; in the diagram,
only "manakovv" has this prefix. fnft__ (with two underscores) denote functions accessed
by the higher level functions, but that will most likely not be accessed directly by a user of
the library. The extra "v" in "manakovv" indicates that this code is for vanishing boundary
conditions (that is, q(x, t) satisfies Assumption 1 Section 2-2). The code without the extra "v"
should work as well for cases with periodic boundary conditions if they were to be implemented
in the future. Computing the NFT of the Manakov equation using the FNFT library is
schematically shown in Figure 5-1. Arrowheads pointing from function A to function B mean
that function A calls function B.

manakovv

manakovv_base

compute_bound
_statesmanakov_fscatter

poly_fmult3x3

compute_contspec

manakov_scatter poly_chirpz

Figure 5-1: Diagram of the most important functions in the library for the Manakov FNFT

– The user calls "manakovv" and provides all necessary parameters such as the number
of samples, sample points, values of the samples and desired points in the frequency
domain λ for which to calculate the continuous spectrum.

– "manakovv" checks these inputs, performs some preprocessing of the signal (determin-
ing the interpolated samples for the methods based on CF[4]

2 ) and prepares to call
manakovv_base

– manakovv_base computes the polynomial transition matrix by calling manakov_fscatter
if a fast method is chosen. If a slow method is chosen, it leaves the transition matrix
variable empty.
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5-2 Methods implemented in the library 41

– manakov_fscatter computes the transition matrix as outlined in Section 3-3. It first
computes the transition matrix for each step (see Section 4-2, Section 4-3 and Section 4-
4) and then calls manakovv_poly_fmult3x3 to perform multiplication using the FFT
and treewise multiplication (see Section 4-6).

– This transition matrix is then passed from manakovv_base to compute_contspec. If
compute_contspec recieves a transition matrix (i.e. the chosen discretization is a fast
method) it calls poly_chirpz, which evaluates this transition matrix for different λ as
explained in Section 4-7. compute_contspec then computes the continuous spectrum
(reflection coefficient ρ, a and b1,2 coefficient, or both) as outlined in Section 4-7 and
returns the continuous spectrum. If it receives an empty variable for the transition
matrix, i.e. a slow method was chosen, it calls manakovv_scatter for each desired λ.
manakovv_scatter then performs the one-step iteration Eq. (3-3) M times to arrive at
the continuous spectrum.

– If the user wants to compute the discrete eigenvalues, the total transition matrix is also
passed to compute_bound_states. The bound states (discrete eigenvalues) are then
computed as explained in Section 4-8.

A more detailed diagram and description of all relevant functions can be found in the appendix
Section B-0-1.

5-1-1 Naming conventions in the library

The fast methods in the library based on BO and CF[4]
2 are all named 2splitYZ and 4splitYZ.

"2" or "4" denote the order of the base method, 2 for BO and 4 for CF[4]
2 . "Y" indicates the

order of the splitting scheme chosen from [28], and "Z" can be either "A" or "B": "A" for the
splitting scheme as it appears in [28], "B" for the splitting scheme with the roles of matrices
A and B swapped. Here C is the matrix to be split and C = A + B as in Section 4-1. The
discretization described in Section 4-2 is thus the 2split3A method.

5-2 Methods implemented in the library

The library currently offers a wide range of discretizations to determine the Nonlinear Fourier
Transform (NFT) of the NSE and the KdV equation. I chose not implement all of those, but
rather those that are now known to be the most efficient for the NSE or might offer some
interesting insights during the testing phase. I wanted to cover a couple of points:

• Investigate if using a fast NFT algorithm for the Manakov equation improves the error
/ runtime trade-off compared to using a slow method, and if so, in which cases.

• Investigate the effect of the splitting method on the performance.

• Implement the methods which have the best trade-off between speed and accuracy for
the NSE. We expect that these are also the most efficient methods for the Manakov
equation and they will be the most useful methods for users of the software.
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• Implement a method not based on BO or CF[4]
2 by a different research group. Compar-

isons between algorithms pioneered by the same authors or research groups are quite
common, as authors naturally build on their previous work and include a comparison
to their own older algorithms. Comparisons to other algorithms developed by other
authors are not always included, and including them here will give the reader another
point of reference and hopefully allow users of the methods to make a more informed
choice.

5-2-1 Motivation of implemented methods

To show the efficiency of the FNFT algorithm, I implemented both the BO method and the
CF[4]

2 method with their fast counterparts, the 2splitYZ and 4splitYZ methods respectively.
To cover the second point, I implemented different order splitting methods for both 2splitYZ
(2nd, 4th and 6th order) and 4splitYZ (4th and 6th order). I also implemented both the "A"
variant, where the matrices A and B are as they appear in [28, Eq. 17 - 24], and the "B"
variant, where the matrices are swapped.
Which method is the best choice will of course depend on the specific application. If we just
have a small number of samples from the signal, and are only interested in the NFT for a
small number of λ’s, a slow method might even be the best choice. However, in general the
best methods are those of a higher order (order 4, to increase the accuracy) and with a lower
number of polynomial coefficients per transition matrix (this keeps the computation time
lower). The order of the method depends on the base method provided a splitting of at least
the same order is chosen. The number of polynomial coefficients is dependent on the splitting
itself. Therefore I chose to implement 4split4B and 4split6B. These are based on CF[4]

2 and
are thus fourth-order methods. The B variants in this case lead to transition matrices of a
lower degree for each step than the A variants.
To satisfy the last point, I chose to implement the FTES4 method [22], [24]. The authors
used Suzuki factorization as their exponential splitting method, so I also implemented FTES4
with this splitting method.
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Chapter 6

Tests and comparisons

In this chapter we test and benchmark the implemented fast NFT algorithms. To this end
we use potential functions q(x, t) for which the Nonlinear Fourier Transform (NFT) can be
determined analytically. For two of the test cases, the single and double soliton, the solutions
were already known from literature. They are given in Section 6-1-2 and Section 6-1-3. We
also determine the exact solution of two test cases: rectangle potential in Section 6-1-1 and
the generic secant hyperbolic potential in Section 6-1-2. These analytic solutions are new to
the best of our knowledge. We also give the parameters we used for the test cases in those
sections. in Section 6-1-5 we derive restrictions on the step size h and parameters in the
spectral domain for numerical NFT of the Manakov equation. In Section 6-2 we show and
discuss the results of the tests.

6-1 Test functions

6-1-1 Rectangle

This potential function is given by

q(t) =



[
A1
A2

]
for L1 ≤ t ≤ L2,[

0
0

]
elsewhere.

(6-1)

As far as we are aware, no analytic derivation of the NFT coefficients for this potential
function is available in the literature. We therefore derive the solution here.

Master of Science Thesis L. de Vries



44 Tests and comparisons

For potential Eq. (6-1), Eq. (2-10) becomes a piecewise constant matrix and Eq. (2-6) becomes

vt =
{

PLv for L1 ≤ t ≤ L2,
P0v elsewhere

PL =

 −jλ A1 A2
−κA∗1 jλ 0
−κA∗2 0 jλ

 ,
P0 =

−jλ 0 0
0 jλ 0
0 0 jλ

 .
(6-2)

Because P is piecewise constant, the exact solution in these regions is known to be a matrix
exponential. In the region −∞ ≤ t ≤ L1 we use the boundary condition from Eq. (2-14):

v(t) = expm(P0t)c1 =

exp(−jλt) 0 0
0 exp(jλt) 0
0 0 exp(jλt)

 c1, lim
t→−∞

v(t) =

exp(−jλt)
0
0


⇒ c1 =

1
0
0

 , v(t) =

exp(−jλt)
0
0

 for −∞ ≤ t ≤ L1

(6-3)

From this equation we get the boundary condition at t = L1 for the region L1 ≤ t ≤ L2:

v(t) = expm(PLt)c2, v(L1) =

exp(−jλL1)
0
0


⇒ c2 = expm(PLL1)−1v(L1), v(t) = expm(PLt)expm(PLL1)−1v(L1) for L1 ≤ t ≤ L2

(6-4)

This will in turn give us v(L2), which serves as the boundary condition for the last region
L2 ≤ t ≤ ∞. We arrive at

v(t) = expm(P0t)c3, v(L2) = expm(PLL2)expm(PLL1)−1v(L1)
⇒ c3 = expm(P0L2)−1expm(PLL2)expm(PLL1)−1v(L1).

(6-5)

To get the NFT coefficients we use Eq. (2-25) where we use ΨN = v = expm(P0t)c3. We
notice that the element in the first row of expm(P0t) cancels against exp(jλt) for the a
coefficient and the elements in the second and third row cancel against exp(−jλt) for the b
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coefficients:

expm(P0t)c3 exp(jλt) =

1 0 0
0 exp(jλt)2 0
0 0 exp(jλt)2

 c3

⇒ expm(P0t)c3 exp(−jλt) =

exp(−jλt)2 0 0
0 1 0
0 0 1

 c3

⇒

 ab1
b2

 = c3.

(6-6)

This potential function is interesting because it has a jump at L1 and L2, which might lead
to numerical issues. We implemented the following case:

rectangle test case:

q(t) =



[
0.8
5.2

]
for − 2 ≤ t ≤ 2,[

0
0

]
elsewhere.

T = [−2− 0.5h, 2− 0.5h], λ ∈ [−250, 250], κ = +1

T = [T1, T2] indicates the time domain where the samples of q(t) are taken. This choice for
the time domain ensures that the jump in the potential function is accurately captured. Our
choice for the the λ domain does not influence the accuracy of the results as T does. We
should merely make it large enough such that we capture all interesting dynamics. If we look
at the exact solution we observe that a → 1 and b1,2 → 0 as λ → ±∞, and thus ρ1,2 → 0
in these limits. However, the a and b1,2 coefficients tend to their asymptotic values quite
slowly and oscillate. Therefor a relatively large domain for λ with a fine mesh to capture all
oscillations makes sense. We somewhat arbitrarily define the region of interesting dynamics
to be the region where there are values of ρ2 > 2/100, 2 being the approximate maximum
value ρ2 reaches in the region around 0. That happens for λ ∈ [−247, 247], so we round that
up to λ ∈ [−250, 250]. The fine grid size is taken care of automatically for larger D as we
choose M = D.

6-1-2 Single soliton

For the single soliton test case the potential function follows from the parameters we choose
for our soliton (discrete eigenvalue). For this potential function the discrete eigenvalues
are known analytically so we will also compute those. The derivation of the corresponding
potential function is given in [20, Sec. 1]. Note that the authors give the definition of q∗ and
that their definition of x and t is swapped w.r.t. this report. For the definition of x and t we
use in this report q(x, t) is given by:

q = conj
(
−2ηc exp(2jξt+ 4j(ξ2 − η2)x)× sech(2η(t− x0) + 8ξηx)

)
. (6-7)
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The parameter ξ defines the velocity of the soliton as v = −4ξ and η defines the amplitude.
Parameters x0 and c are both defined once we choose S, the vector defining the polarization
of both elements of the signal:

c = S/|S|, x0 = 1
4η ln(|S|)2. (6-8)

The parameter S can be chosen freely. The variable x is the space coordinate where we
determine the scattering transform of q(x, t) = q(t). We can choose this freely as well.
However, this x influences q(x, t). It therefore influences the T domain we should choose for
the numerical implementation as this domain should be large enough to capture all dynamics
of the signal. For these parameters, the location of the discrete eigenvalue is given by ζ = ξ+iη
[20, Eq. 14] and the a coefficient in given by [20, Eq. 15]

a(λ) = λ− ζ
λ− ζ∗

. (6-9)

The coefficient a is the upper left element of the scattering matrix, and the remaining elements
of this matrix vanish for all real λ: b1,2 = 0, as expected, as the spectrum of this q is a pure
soliton and thus the continuous spectrum is zero.

This test case is interesting because it allows us to check if the discrete eigenvalues are
determined correctly by the FNFT library. The test case we implemented has the following
parameters:

Single soliton test case :
T = [−31.5, 32.5], λ ∈ [−110, 120],
ξ = 4.87, η = 0.56, x = 0.1, S = [6, 1 + 5i]

The time domain T indicates the time domain where the samples of q(t) are taken and thus
where we truncate q(t). This choice is motivated by the machine precision of FNFT_REAL,
the datatype used for real numbers in the software library. Double precision is used, which
implies that the machine precision is ε = 2−52 ≈ 2.22× 10−16. This choice of T ensures that
|q(t)| ≤ ε for t /∈ T . For the region in the frequency domain we looked at the imaginary part
of the a(λ) coefficient (the absolute value is 1 everywhere). The maximum absolute value of
the imaginary part of the a(λ) coefficient is 1, so we again somewhat arbitrarily define the
interesting region to be where the imaginary part of a(λ) < 1/100 = 0.01. That is true for
λ ∈ [−108, 117] which we rounded to λ ∈ [−110, 120].

6-1-3 Double soliton

As with the single soliton, the potential function for the two-soliton case follows directly from
the parameters we choose for the two solitons. For the expressions of the potential function
we refer the reader to [34, Eq. 3.1 - 3.2]. Note that in this article the roles of x and t are
swapped w.r.t. this thesis.
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The expression for q(x, t) is given by

q(x, t) = 2
det(U)

{(exp(τ2 + α2)
2η2

+ Σ2
l=1(λ22l − λ21l) exp (−(τl + αl) + j(θl − θ2))

)
exp(−jθ1)u1+

(exp(τ1 + α1)
2η1

+ Σ2
l=1(λ11l − λ12l) exp (−(τl + αl) + j(θl − θ1))

)
exp(−jθ2)u2

}
,

(6-10)

where

U =
[
U11 U12
U21 U22

]

with U11 = exp(τ1 + α1)
2η1

+ Σ2
l=1λ11l exp (−(τl + αl) + j(θl − θ1)) ,

U12 = Σ2
l=1λ12l exp (−(τl + αl) + j(θl − θ1)) ,

U21 = Σ2
l=1λ21l exp (−(τl + αl) + j(θl − θ2)) ,

U22 = exp(τ2 + α2)
2η2

+ Σ2
l=1λ22l exp (−(τl + αl) + j(θl − θ2)) ,

λjkl = −
2ηl(uj · ul

∗)
(ζl − ζ∗k)(ζl − ζ∗j ) ,

τj = 2ηj(t+ 4ξjx),
θj = 2ξjt+ 4(ξ2

j − η2
j )x,

ζj = ξj + jηj .

Here u1
∗ is the complex conjugate of vector u1. We implemented a testcase with the following

parameters:

Double soliton test case:
T = [−31.5, 30], λ ∈ [−350, 350],
ξ1 = 4.87, ξ2 = 0.358, η1 = 0.56, η2 = 1.28 α1 = 1.5,
α2 = 3.6, u1 = [j, 2]T ,u2 = [6, 2.2 + 3j]T , x = 0.1

Parameters ξ1,2 and η1,2 define the velocity and amplitude of the two solitons, α1,2 are used
for a parametrization and u1,2 are unit vectors defining the polarizations of the signal. The
domain T is chosen such that q1,2(t) ≤ ε for t /∈ T , where ε is the machine precision of real
numbers in the software library. For the region of λ we chose values for which the real part of
a(λ) < 0.99. For λ values outside this region the value barely changes and gets asymptotically
closer to 1.

6-1-4 Secant hyperbolic

The potential function is given by [
q1
q2

]
=
[
A1sech(t)
A2sech(t)

]
, (6-11)
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where sech(t) = 1
cosh(t) is the secant hyperbolic. The NFT coefficients for the Nonlinear

Schrödinger Equation (NSE) with secant hyperbolic potential q = Asech(t) are derived in
[30, Sec. 5]. The resulting expressions are

a =
Γ
(

1
2 − jλ

)2

Γ
(

1
2 − jλ+A

)
Γ
(

1
2 − jλ−A

)
b =

jΓ
(

1
2 + jλ

)2

Γ(A)Γ(1−A) = j
sin(πA)
cosh(πλ) ,

(6-12)

where Γ(·) is the gamma function. Note that the authors of [30] restricted themselves to
only the focusing case and hence their expressions do not involve a dependence on κ. As far
as we are aware, exact expressions for NFT coefficients for the Manakov equation have not
been found yet. Deriving these results is non-trivial but we found the expressions for the
coefficients by trial and error. We state them here and give reasons that support this result
afterwards:

a =
Γ(1

2 − λj)
2

Γ(1
2 − λj + q0)Γ(1

2 − λj − q0)
,

b1 = −κsin(πq0)A1sech(λπ)
q0

,

b2 = −κsin(πq0)A2sech(λπ)
q0

,

(6-13)

where we defined q0 =
√
κ
√
|A1|2 + |A2|2. Comparing 6-13 with 6-12, we see some similarities.

The amplitude A from the NSE case is replaced by q0 =
√
κ
√
|A1|2 + |A2|2. This makes

sense, as both Eq. (2-10) and the NSE equivalent can be rewritten as second order systems
for this potential function, and in that case

√
κ
√
|A1|2 + |A2|2 takes the place of A for the

Manakov Equation (ME) case. For the b coefficients, note that 1
cosh(x) = sech(x) and thus

these expressions are similar as well. The b coefficient then also has another scaling term
which has no direct analogue in the NSE solution.
We feel confident in assuming these expressions are correct for the following reasons: for the
rectangle, single soliton and double soliton potential the nonlinear spectrum can be computed
analytically. We can thus be sure that these are correct, and in Section 6-2 we will see
that the results of all implemented numerical methods converge to these exact solutions.
This implies that the methods have been implemented correctly. Secondly, we note that the
potential function for the single soliton is actually a scaled secant hyperbolic, which implies
that methods determining the NFT spectrum of the single soliton correctly will also do so
for the secant hyperbolic. As we will see, all implemented the methods converge to this "trial
and error solution" for the secant hyperbolic test case. We furthermore see that the order of
error decay is in line with what we expect from second and fourth order methods. Thus, we
can be quite sure these expressions are correct.
We did multiple tests with the secant hyperbolic potential with the following parameters:

Secant hyperbolic test case:
A1 = 0.8, A2 = 5.2, T = [−38.5, 38.5], λ ∈ [−4.6, 4.6]
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The domain T is again chosen to minimize the truncation error of q(t). The a coefficient tends
to 1 as λ → ±∞, while the b1,2 coefficients tend to 0. We define the region of interesting
dynamics as ρ1,2 = b1,2/a ≤ 10−6. This is the case for λ ≤ −4.6 and λ ≥ 4.6, so we choose
λ ∈ [−4.6, 4.6].

6-1-5 A note on timestep size

We should note that the maximum and minumum λ where we can evaluate the NFT coeffi-
cients is determined by the timestep size h.

For the linear Fourier Transform (FT), one can use the Nyquist-Shannon sampling theorem
[31] to determine the maximum value of h allowed to sample a signal with frequency content
ω. Let ω be the highest frequency ([rad/s]) for which we want to determine the FT. Then
we need to sample at a frequency of at least 2|ω| [rad/s] = 2|ω|

2π [Hz] = |ω|
π [Hz], which means

h ≤ π
|ω| .

The authors of [23, p. 5] derived a similar limit on h for the NFT: 4h ≤ 2π
ωmax

⇒ h ≤ π
2ωmax

,
where ωmax =

√
λ+ |qmax(t)|2 is the maximum local frequency of the system Eq. (2-6) for a

fixed λ. In this expression |qmax(t)| = maxt |q(t)|, the maximum of the absolute value of the
potential q(t).

However, the NFT tends to the linear FT in the limit case ||q|| << 1 where 2λ from the
NFT corresponds to ω from the linear FT [44, Sec. IV B]. For the NFT we will therefore
use the Nyquist-Shannon sampling theorem to determine suitable sampling times as well. In
the results discussed in Section 6-2, especially in the results for the secant hyperbolic test
case, we will see that this indeed is an adequate bound on the sampling time. The sampling
time for each test case should thus be at most h ≤ π

|ω| = π
|2λ| , where λ is the maximum

value in the spectral domain for which we determine the NFT. For the rectangle test case we
have h ≤ π

2|250| = π
500 = 0.0063. For the chosen time interval this means that the amount

of samples in the time domain should be at least T2−T1
0.0063 = 637. For the single soliton we get

h ≤ 0.0131 and D ≥ 4890, for the double soliton h ≤ 0.0045 and D ≥ 1371 and for the secant
hyperbolic h ≤ 0.3415 and D ≥ 226. For lower D values the algorithms will not be able to
determine the NFT correctly.
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6-2 Results and discussion

For the performance metric of the tests, we used the relative L2 error:

Ea =

√∑M
k=1 |aexact(λk)− anum(λk)|2√∑M

k=1 |aexact(λk)|2
, (6-14)

where the a coefficient can also be replaced by b1,2 or ρ1,2. The λk’s are M equidistant points
in the λ-interval. In the subsequent sections, we will mostly analyze the results for computing
the a coefficient. Results for the b1,2 coefficients are mostly the same in qualitative terms.
For ρ = b/a, numerical errors may be amplified for small a values. This effect is a bit less
predictable than other numerical errors so the results of ρ might be a bit harder to analyze.

The number of samples in the frequency domain M is equal to the number of samples in the
time domain D for all tests. Choosing M = D is common practice in the field of communica-
tions and in Section 3-2 and Section 4-9 we determined the computational complexity orders
for this case.

All tests were done for the focusing Manakov equation unless stated otherwise.

For all tests the code implemented in the library has been used. For the runtimes, background
processes on the machine can have an influence and slight variations will occur for each run.
The absolute runtimes of course heavily depend on the machine the tests are run on and
we should therefor only look at the results of methods relative to each other. Each method
has been run three times and the runtimes were averaged to minimize the effect of the slight
fluctuations in run. In the following subsections we show and discuss the results for each of
the test cases.

6-2-1 Secant hyperbolic test case

We show and analyse most results for the secant hyperbolic because this potential function
both has an interesting continuous spectrum, unlike the single and double soliton test cases
where the continuous spectrum is zero, and there are no jumps in the potential function as
with the rectangle test case. Figure 6-1 shows the error in a and b1 coefficients for all numer-
ical results. In this and all other test cases, the relative errors for b2 were virtually the same
as for b1. We therefore show only the results for b1.
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(d) Errors in b1 for fourth-order methods
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(f) Summary of errors in b1

Figure 6-1: Errors against number of samples for computing the NFT of the focusing Manakov
equation using slow and fast methods, secant hyperbolic potential function as given in Section 6-
1-4 and M = D
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(d) Errors in b1 for fourth-order methods

Figure 6-2: Errors against number of samples for computing the NFT of the focusing Manakov
equation using slow and fast methods, secant hyperbolic potential function as given in Section 6-
1-4 and M = D. Result of choosing the sampling time too large is visible for low numbers of
samples.
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In Figure 6-1a we observe something interesting: the order of error decay of the fast methods
is higher than second-order for lower numbers of samples. The methods 2split3A/B even
display higher than second-order error decay for all numbers of samples. This is most likely
because the splitting error instead of the discretization error is dominant in this region; we
see that the error decay for 2split3A/B is third-order, and for 2split4A/B and 2split6B it
is fourth and sixth-order respectively before becoming second-order. For the b1 coefficient,
we observe similar results, but the initial period where the splitting is the dominant error
is smaller, so small even that we do not see it for 2split4A/B and 2split6B. In these cases
we observe only the second-order discretization error, provided the number of time samples
D ≥ 226 as dictated by the Nyquist-Shannon sampling theorem. The performance results
are as expected: the fast methods display slightly higher errors than BO because of the error
introduced by splitting, and higher order splittings introduce a smaller error.
The fourth-order methods in Figure 6-1c and Figure 6-1d do display fourth-order error decay
for the most part for the region D ≥ 226. For the fast and CF[4]

2 methods we see that the
error of both coefficients saturates or even becomes higher again for the highest numbers of
samples. This is the error from truncating the potential function signal at q(x0, t) ≤ ε where
ε is the precision of real numbers in the library. If we want to eliminate this error we could
increase the support T . We see again that the fast methods perform slightly worse due to the
splitting error. We included the RK4 method for reference but notice that it performs worse
than even the fast methods. Figure 6-1e and Figure 6-1f have been added for convenience to
compare the methods that perform best in terms of error against number of samples.
The result of choosing the number of samples too low is seen most easily in the zoomed-
out plots for the b coefficient that we show in Figure 6-2b and Figure 6-2d. We see that
indeed the the error decreases sharply between 128 and 256 samples. In the previous section
we determined that the number of samples should be at least D = 226 according to the
Nyguist-Shannon sampling theorem.
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Figure 6-3: Runtime against number of samples for computing the NFT of the focusing Manakov
equation using slow and fast methods, secant hyperbolic potential function with parameters as
given in Section 6-1-4 and M = D

In Figure 6-3 we show the runtime of all methods against the number of samples. We see that
for lower numbers of samples, the fast methods have a higher runtime. This is because they
are not faster in absolute terms, only asymptotically for higher numbers of time and frequency
domain samples. This is indeed what we observe for higher numbers of samples. The exact
crossover point depends on the specific method, but for all fast methods this crossover point
is indeed achieved for the last sample D ≤ 32768.

We should keep in mind however, that the fast methods also had a higher error for the same
number of samples than the slow methods. We therefore plot the error against runtime in
Figure 6-4. For the second-order methods, we see for both the a and b1 coefficient in Figure 6-
4a and Figure 6-4b that the BO method is a better choice for lower numbers of samples, albeit
only slightly for the b1 coefficient. For higher numbers of samples the fast methods perform
better. For the fourth-order methods in Figure 6-4c and Figure 6-4d this effect is less clear;
the error saturates due to the truncation error shortly after the fast methods take over the
slow methods in terms of performance. The RK4 method has been omitted in these and
other runtime plots as this method has not been implemented in the Fast Nonlinear Fourier
Transform (FNFT) library. It was only implemented in MATLAB to generate results that
could serve as a reference, and therefore looking at the runtime would not be a fair comparison.
Again overview plots have been included in Figure 6-4e and Figure 6-4f.
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Figure 6-4: Errors against runtime for computing the NFT of the focusing Manakov equation
using slow and fast methods, secant hyperbolic potential function with parameters as given in
Section 6-1-4 and M = D
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Results for the secant hyperbolic test case with Richardson Extrapolation

For the fast methods we also implemented the option to use Richardson Extrapolation in the
library. See Section 4-10 for more details on how this is implemented. We show the errors
plotted against the number of time samples in Figure 6-5. For the slow methods we did not
include Richardson Extrapolation in the implementation which is why they are not included
in the plots.

In theory, Richardson Extrapolation should increase the order of the methods by 1. For the
second order methods we already concluded in the case without RE that the order was deter-
mined by the splitting method and not by the discretization error for methods 2split3A/B.
RE does not influence this error so we do not expect to see the result in these plots. Indeed,
Figure 6-5a and Figure 6-5b show that the order for these methods is not increased. For
the 2split4A/B and 2split6b methods however, which did display second-order error decay
for higher numbers of samples in the case without Richardson Extrapolation (RE), we do
see that the order is increased due to RE. In Figure 6-5c we observe that the 4split4A/B
methods now have fifth-order error decay. For 4split6B and FTES4 the error decay is even
higher than the expected fifth-order behaviour. A similar effect was also observed in [10] for
fast implementations of BO and CF[4]

2 with Richardson Extrapolation applied to the NSE.

We show the results with and without Richardson extrapolation side by side in Figure 6-6
for easy comparison. The tests with and without RE both used the same numbers of time
samples. For the 2split4A/B and 2split6B methods we clearly see that the error with RE is
less for the higher numbers of time samples. For all these methods there is also a crossover
point where the variation with RE gives a lower error for the same computation time. With
2split3A/B we do not see this effect as clearly. It is possible that we would see this effect
with higher numbers of time samples.
In 4split4A/B and 4split6B we see the unpredictable behaviour at the end where the error
goes up amplified with RE. This is also one of the dangers of RE: we need to know the order
of error decay of the method for this to work. If the order of error decay is not the expected
order, RE does not work and even gives worse results. We do however observe a slightly
better runtime / error trade off for all methods in the region of 10−5 − 10−10 relative error.
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Figure 6-5: Errors against number of samples for computing the NFT of the focusing Manakov
equation using fast methods with Richardson Extrapolation, secant hyperbolic potential function
as given in Section 6-1-4 and M = D
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Figure 6-6: Errors against runtime for computing the a coefficient of the focusing Manakov equa-
tion using fast methods with and without Richardson Extrapolation, secant hyperbolic potential
function as given in Section 6-1-4 and M = D
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Results for the secant hyperbolic test case with different numbers of time samples

For all previous tests in this subsection and all tests concerning the other test cases we set the
numbers of time samples to be a power of 2. As noted in Section 4-6 this leads to the most
computationally efficient form of multiplication as the transition matrices to be multiplied
are padded with identity matrices if the number of samples is not a power of 2. In Figure 6-
7 we show the runtimes against numbers of samples where D is not a power of 2. For all
fast methods we notice a kind of staircase figure. This is because of the padding in the
multiplication step. The multiplication step is dominant for the runtime and the runtime
for D samples will always be the same as the runtime for 2f samples, where f is the lowest
integer such that D ≤ 2f . For the slow methods this is not an issue and we see that the
runtime increases with O(D2). We remark on a possible solution to decrease the runtime of
cases with D not a power of 2 in Section 7-3.

Results for the defocusing tests

The defocusing case is, in terms of the algorithm, not fundamentally different from the fo-
cusing case so these tests primarily serve as a check of the implementation of the code. We
only did these tests for the secant hyperbolic and assume that performance results for the
rectangle test case will be similar. We chose the same ξ and as this turned out to be the
interesting region for the defocusing case as well where at the boundaries the value of a was
reduced to around 0.01 of its maximum value at λ = 0. As the potential function q(x, t)
is the same as for the focusing case, the T interval can stay the same as well. We plot the
results in Figure 6-8.

In the plots for the second-order methods Figure 6-8a and Figure 6-8b we observe the same
qualitative results as for the focusing case. For the fourth-order methods, there are some
specific parts where some of the fast methods perform better, but as with the focusing the
error saturates before the fast methods achieve a better performance than the slow methods.
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Figure 6-7: Runtime against samples for computing the NFT coefficient of the focusing Manakov
equation using fast and slow methods, secant hyperbolic potential function as given in Section 6-
1-4 and M = D where D is not a power of 2
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Figure 6-8: Error against runtime for computing the NFT coefficient of the defocusing Manakov
equation using fast and slow methods, secant hyperbolic potential function as given in Section 6-
1-4 and M = D
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6-2-2 Rectangle test case

In the previous subsection we gave some results which show that the fast algorithms are
indeed faster than the slow methods in specific cases. Having established that, we will focus
here on error / runtime plots as they are quite informative for users of the software. Before
that however we show an interesting error / samples plot for the second-order methods in
Figure 6-9.
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Figure 6-9: Error against the number of samples for computing the NFT of the focusing Manakov
equation using fast and slow second-order methods, rectangle potential function as given in
Section 6-1-1 and M = D

We notice that BO has a very low relative error. We recall from Section 3-1 that BO ap-
proximates the potential function in each timestep to be constant and then gives the exact
solution. If we choose the time interval for the rectangle potential such that the jumps at −L
and L are at the boundaries of the v interval, the potential function is actually constant in
over the whole interval. It is then also constant over each time step and thus BO determines
the solution exactly. The small remaining error is due to rounding errors, which is why it
grows with the number of samples: more samples mean more rounding errors.
In Figure 6-10 we plot the errors against the runtimes. Apart from the low error of BO the
results in Figure 6-10a and Figure 6-10b are similar to the results from the secant hyperbolic
test case, with the difference that for the rectangle potential the 2split6B method has the
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lowest error of the fast methods. For the fourth-order methods we observe that there is a
crossover point where the fast methods start to outperform the CF[4]

2 method. 4split4B offers
the best error / runtime trade-off.
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(d) Errors in b1 for fourth-order methods
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Figure 6-10: Errors against the runtime for computing the NFT of the focusing Manakov equation
using fast and slow methods, rectangle potential function as given in Section 6-1-1 and M = D
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6-2-3 Single soliton test case

The single and double soliton test cases are pure solitons and thus the continuous spectrum
ρ and also the NFT coefficient b are zero. We therefore only focus on the a coefficient and
the discrete spectrum in these test cases.

Results for determining the a coefficient for the single soliton test case

We show the error against runtime for computing the a coefficient in Figure 6-11. the quan-
titative results are similar to what we saw for the secant hyperbolic: compare for example
Figure 6-11a to Figure 6-4a. This makes sense, as the soliton potential function is a special
case of the secant hyperbolic. Comparing Figure 6-11b to Figure 6-4c however we see that
in the single soliton test case the error does not saturate and we do see the crossover point
where the fast methods start to outperform the slow methods.
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(a) Errors in a computed by second-order methods
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(b) Errors in a computed by fourth-order methods

Figure 6-11: Errors against the runtime for computing the a coefficient of the focusing Manakov
equation using fast and slow methods, single soliton potential function as given in Section 6-1-2
and M = D

Determining the discrete spectrum of the single soliton test case

We determined the discrete eigenvalues (also known as bound states) of the test case given
in Section 6-1-2 using the method from Section 4-8. The exact value of the single discrete
eigenvalue is λd = ξ + iη = 4.87 + 0.56i. We plot the eigenvalues determined by the different
fast methods for multiple numbers of time samples in Figure 6-12.
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Figure 6-12: Numerical approximations of the bound states of the single soliton test case from
Section 6-1-2 computed by the different fast methods for different numbers of time samples

For all methods except the FTES4 method the fast rootfinder determines the bound state
correctly, with the error getting smaller as D increases. However, a lot of spurious values
are found. This is to be expected as the roots of polynomial G11 numerically approximate
the roots of a(λ) instead of giving an exact expression. In [10, Appendix C] the authors also
found spurious eigenvalues when computing the discrete eigenvalues for the NSE. They used
the same approach as we used for the ME. Various filtering techniques can be devised to only
select the true eigenvalue. In all 2split and 4split methods these spurious values have a large
error in their real part that grows as D increases. So discarding all found values with a large
absolute real part might be a good approach. However, if the exact solution is unknown, it
might be difficult to determine exactly how large the real part should be before the value can
be discarded.

6-2-4 Double soliton test case

For the test case in Section 6-1-3 the exact values of the bound states are given by λd1 =
4.87 + 0.56i, λd2 = 0.358 + 1.28i. The results for some of the fast methods are given in
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Figure 6-13.
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Figure 6-13: Numerical approximations of the bound states of the double soliton test case from
Section 6-1-3 computed by the different fast methods for different numbers of time samples

We see the same qualitative results as for the single soliton: spurious eigenvalues with an in-
creasingly large real part as D increases and the bound states are determined more accurately
for higher numbers of samples.
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Chapter 7

Conclusions and recommendations

7-1 Final results

We started out this thesis project with the following objectives:

In this thesis we aim to extend the first Fast Nonlinear Fourier Transform methods as proposed
for the Nonlinear Schrödinger Equation to the dual-polarization case of the Manakov equation.
We will develop these Fast Nonlinear Fourier Transform algorithms, integrate them in the
existing open-source software library and benchmark them.

We developed multiple fast NFT algorithms for the Manakov equation: second-order methods
based on the BO method with third, fourth and sixth-order exponential splitting, fourth-order
methods based on CF[4]

2 with fourth and sixth-order splitting and a fourth-order method based
on TES4 with Suzuki factorization as the exponential splitting. The developed algorithms nu-
merically determine the continuous nonlinear spectrum of the Manakov equation with a given
potential function. We implemented these methods and integrated them in a C-based fast
NFT software library, along with implementations of the BO and CF[4]

2 methods which served
as a tool for comparison. We also implemented the option to use Richardson extrapolation on
the fast algorithms to further decrease errors. Furthermore, we implemented a fast method
to determine the roots of the NFT coefficient a(λ). These roots are the discrete eigenvalues of
the equation and computing them is an essential step to determining the discrete spectrum.
We then checked the implementation of the methods by analyzing the errors of the numerical
approximations against the number of time domain samples of the potential function. After
that, we benchmarked the fast algorithms by providing plots of the error against runtime for
multiple test cases and comparing those to the results achieved with slow methods.
In the process of testing the methods we derived the exact solution for the continuous spectrum
of the Manakov equation with a rectangle potential. We also determined the exact solution
for the continuous spectrum of the Manakov equation with a secant hyperbolic potential.
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7-2 Conclusions

Based on the results in Section 6-2 we conclude that the fast NFT algorithms as introduced
by Wahls et. al. for the NSE can be and have been succesfully extended to the Manakov
equation. For higher numbers of samples and M = D, the fast methods give better results
than the slow methods as long as the support of the potential function is chosen appropriately
and rounding or truncation errors do not start to dominate. We also conclude that fast poly-
nomial rootfinders are an effective method in determining the discrete eigenvalues, although
some spurious values are created.

Specifically, for the focusing secant hyperbolic test case without Richardson extrapolation we
found the 4split4B, 4split6B and FTES4 with Suzuki factorization methods to give comparable
error versus runtime results. With Richardson extrapolation FTES4 with Suzuki factorization
slightly outperforms 4split4B and 4split6B for high numbers of time and frequency domain
samples. In the defocusing secant hyperbolic test case we see that FTES4 outperforms both
the 4split4B and 4split6B methods for the highest numbers of samples, even though it is not
significantly better than CF[4]

2 . For the rectangle potential test case BO is the best choice
as long as the time support T is properly chosen, as the numerical method gives the exact
result in that case. From the other tested methods 2split4B and 2split6B are among the best
choices for higher numbers of time and frequency domain samples. From the single soliton
test case we conclude that FTES4 in not a good choice for computing the discrete eigenvalues.
This method is not able to compute the discrete eigenvaues correctly, while all other tested
methods do. Unfortunately all methods generate a lot of spurious values as well.

7-3 Recommendations for further additions to the FNFT library

We hope that the FNFT library will be useful in the years to come to anyone working in
the field of Nonlinear Fourier Transforms. To this goal, we recommend two additions to
the library on the short term. The first is to implement a more computationally efficient
multiplication of the transition matrices if D is not a power of 2. A possible method for this
was proposed in [10]. We can divide D into groups which are powers of 2:

D = 2M1 + 2M2 + . . . 2Mm (7-1)

where each Mi is a positive integer [10]. First fix M1 as large as possible, then fix M2 as large
as possible and so on. We have thus divided the D samples in m sets which can be multiplied
in the tree-like fashion as outlined in Section 4-6, yielding Gi(z) for i = 1, 2, ...m. The final
polynomials are then given by G(z) =

∏m
i=1 Gi(z).

The second new feature we recommend implementing is better filtering of the eigenvalues for
the Manakov Equation (ME). We noted in the results chapter that a lot of spurious roots
of a(λ) are identified by the fast rootfinder algorithm. For a higher amount of time samples,
these eigenvalues have a large real part, and a possible filtering method would be to simply
discard all eigenvalues with a real part above a certain threshold. For lower numbers of time
samples this solution will not work.

L. de Vries Master of Science Thesis



7-3 Recommendations for further additions to the FNFT library 71

On the longer term, we recommend extending the methods for computing the discrete spec-
trum of the NSE to the Manakov equation. A start has been made with the implementation
of a fast polynomial rootfinder but more steps need to be taken. The Nonlinear Fourier
Transform (NFT) coefficients b1,2(λ) and the derivative of NFT coefficient a(λ) need to be
computed at the values λd that were found by the rootfinder. The algorithms for the discrete
spectrum of the Manakov equation still need to be developed after which they can be imple-
mented and tested. This falls outside the scope of this thesis project, but we do think this
will add greatly to the usefulness of the FNFT library.

Master of Science Thesis L. de Vries



72 Conclusions and recommendations

L. de Vries Master of Science Thesis



Appendix A

MATLAB code for getting the
polynomial coefficients

A-1 Code for getting the polynomial coefficients

A-1-1 2split3A coefficients

1 syms q1 q2 l kappa h z . . .
2 % split3A method
3 A = [−1i∗l , 0 , 0 ; 0 , 1 i∗l , 0 ; 0 , 0 , 1 i∗l ] ;
4 B = [0 , q1 , q2 ;−kappa∗conj (q1 ) ,0 ,0; − kappa∗conj (q2 ) , 0 , 0 ] ;
5 % Let AE = expm(A*h) and BE = expm(B*h)
6 % Set z = exp(j lambda h/3) such that
7 AE = [1/ z ^3 ,0 , 0 ; 0 , z ^3 ,0 ; 0 , 0 , z ^3 ] ;
8 BE = sym (’BE’ , [ 3 , 3 ] ) ;
9 % CE=expm((A+B)*h)

10 % Let CE_approx be approximation of CE after application of splitting
11 % scheme
12 % AE_3 = expm(A*h/3)
13 AE_3 = [1/z , 0 , 0 ; 0 , z , 0 ; 0 , 0 , z ] ;
14 % BE_3 = expm(B*h/3)
15 BE_3 = sym (’BE_3’ , [ 3 , 3 ] ) ;
16
17 CE_approx = 9/8∗AE_3∗BE_3∗BE_3∗AE_3∗AE_3∗BE_3 − . . .
18 1/8∗AE∗BE ;
19
20 % Dividing throughout by z^-3
21 CE_approx_pos = expand ( CE_approx∗z^3) ;
22
23 % We can now look at coefficients of individual polynomials. Here c gives
24 % the coefficients of the element specified by (i,j) in CE_approx_pos(i,j

)
25 % and t gives which power of z the coefficients belong to
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26 [ c11 , t11 ] = coeffs ( CE_approx_pos ( 1 , 1 ) ,z ) ;
27 [ c12 , t12 ] = coeffs ( CE_approx_pos ( 1 , 2 ) ,z ) ;
28 [ c13 , t13 ] = coeffs ( CE_approx_pos ( 1 , 3 ) ,z ) ;
29
30 [ c21 , t21 ] = coeffs ( CE_approx_pos ( 2 , 1 ) ,z ) ;
31 [ c22 , t22 ] = coeffs ( CE_approx_pos ( 2 , 2 ) ,z ) ;
32 [ c23 , t23 ] = coeffs ( CE_approx_pos ( 2 , 3 ) ,z ) ;
33
34 [ c31 , t31 ] = coeffs ( CE_approx_pos ( 3 , 1 ) ,z ) ;
35 [ c32 , t32 ] = coeffs ( CE_approx_pos ( 3 , 2 ) ,z ) ;
36 [ c33 , t33 ] = coeffs ( CE_approx_pos ( 3 , 3 ) ,z ) ;
37
38 % now look at all the c’s to see what the matrices for each coefficient
39 % should be:
40 matz0 = [ c11 (2 ) , c12 (2 ) , c13 (2 ) ;
41 0 , 0 , 0 ;
42 0 , 0 , 0 ] ;
43
44
45 matz2 = [0 , 0 , 0 ;
46 c21 (2 ) , c22 (2 ) , c23 (2 ) ;
47 c31 (2 ) , c32 (2 ) , c33 (2 ) ] ;
48
49 matz4 = [ c11 (1 ) , c12 (1 ) , c13 (1 ) ;
50 0 , 0 , 0 ;
51 0 , 0 , 0 ] ;
52
53 matz6 = [0 , 0 , 0 ;
54 c21 (1 ) , c22 (1 ) , c23 (1 ) ;
55 c31 (1 ) , c32 (1 ) , c33 (1 ) ] ;
56
57 % now we have the following approximation:
58 % exp(A+B) = z^-3 * (matz0*1 + matz2*z^2 + matz4*z^4 + matz6*z^6)

A-1-2 2split3B coefficients

1 %% computing the coefficients in sybmbolic form
2 syms q1 q2 l kappa h z
3
4 A = [−1i∗l , 0 , 0 ; 0 , 1 i∗l , 0 ; 0 , 0 , 1 i∗l ] ;
5 B = [0 , q1 , q2 ;−kappa∗conj (q1 ) ,0 ,0; − kappa∗conj (q2 ) , 0 , 0 ] ;
6
7 % Let AE = expm(A*h) and BE = expm(B*h)
8 % Set z = exp(j lambda h/3) (m=1/3) such that
9 AE = [1/ z ^3 ,0 , 0 ; 0 , z ^3 ,0 ; 0 , 0 , z ^3 ] ;

10 BE = sym (’BE’ , [ 3 , 3 ] ) ;
11 % AE_3 = expm(A*h/3)
12 AE_3 = [1/z , 0 , 0 ; 0 , z , 0 ; 0 , 0 , z ] ;
13 % BE_1_3 = expm(B*h/3)
14 BE_1_3 = sym (’BE_1_3’ , [ 3 , 3 ] ) ;
15 % BE_2_3 = expm(B*h*2/3)
16 BE_2_3 = sym (’BE_2_3’ , [ 3 , 3 ] ) ;
17
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18
19 % CE=expm((A+B)*h)
20 % Let CE_approx be approximation of CE after application of splitting
21 % scheme
22
23 CE_approx = (9/8) ∗BE_1_3∗AE_3∗AE_3∗BE_2_3∗AE_3 − . . .
24 (1/8) ∗BE∗AE ;
25 CE_approx_pos = expand ( CE_approx∗z^3) ;
26
27 % We can now look at coefficients of individual polynomials. Here c gives
28 % the coefficients of the element specified by (i,j) in CE_approx_pos(i,j

)
29 % and t gives which power of z the coefficients belong to
30 [ c11 , t11 ] = coeffs ( CE_approx_pos ( 1 , 1 ) ,z ) ;
31 [ c12 , t12 ] = coeffs ( CE_approx_pos ( 1 , 2 ) ,z ) ;
32 [ c13 , t13 ] = coeffs ( CE_approx_pos ( 1 , 3 ) ,z ) ;
33
34 [ c21 , t21 ] = coeffs ( CE_approx_pos ( 2 , 1 ) ,z ) ;
35 [ c22 , t22 ] = coeffs ( CE_approx_pos ( 2 , 2 ) ,z ) ;
36 [ c23 , t23 ] = coeffs ( CE_approx_pos ( 2 , 3 ) ,z ) ;
37
38 [ c31 , t31 ] = coeffs ( CE_approx_pos ( 3 , 1 ) ,z ) ;
39 [ c32 , t32 ] = coeffs ( CE_approx_pos ( 3 , 2 ) ,z ) ;
40 [ c33 , t33 ] = coeffs ( CE_approx_pos ( 3 , 3 ) ,z ) ;
41
42 % Organizing all coefficients in corresponding matrices
43 matz0 = [ c11 (2 ) , 0 , 0 ;
44 c21 (2 ) , 0 , 0 ;
45 c31 (2 ) , 0 , 0 ] ;
46
47
48 matz2 = [0 , c12 (2 ) , c13 (2 ) ;
49 0 , c22 (2 ) , c23 (2 ) ;
50 0 , c32 (2 ) , c33 (2 ) ] ;
51
52 matz4 = [ c11 (1 ) , 0 , 0 ;
53 c21 (1 ) , 0 , 0 ;
54 c31 (1 ) , 0 , 0 ] ;
55
56 matz6 = [0 , c12 (1 ) , c13 (1 ) ;
57 0 , c22 (1 ) , c23 (1 ) ;
58 0 , c32 (1 ) , c33 (1 ) ] ;

A-1-3 2split4A, 4split4A coefficients

1 syms q1 q2 l kappa h z . . .
2 % split4A
3 A = [−1i∗l , 0 , 0 ; 0 , 1 i∗l , 0 ; 0 , 0 , 1 i∗l ] ;
4 B = [0 , q1 , q2 ;−kappa∗conj (q1 ) ,0 ,0; − kappa∗conj (q2 ) , 0 , 0 ] ;
5 % Let AE = expm(A*h) and BE = expm(B*h)
6 % Set z = exp(j lambda h/4) such that
7 AE = [1/ z ^4 ,0 , 0 ; 0 , z ^4 ,0 ; 0 , 0 , z ^4 ] ;
8 BE = sym (’BE’ , [ 3 , 3 ] ) ;
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9 % CE=expm((A+B)*h)
10 % Let CE_approx be approximation of CE after application of splitting
11 % scheme
12 % AE_4 = expm(A*h/4)
13 AE_4 = [1/z , 0 , 0 ; 0 , z , 0 ; 0 , 0 , z ] ;
14 % BE_4 = expm(B*h/4)
15 BE_2 = sym (’BE_2’ , [ 3 , 3 ] ) ;
16
17 CE_approx = (4/3) ∗AE_4 ∗( BE_2 ) ∗( AE_4∗AE_4 ) ∗( BE_2 ) ∗AE_4 − . . .
18 (1/3) ∗( AE_4∗AE_4 ) ∗BE ∗( AE_4∗AE_4 ) ;
19
20 % Dividing throughout by z^-4
21 CE_approx_pos = expand ( CE_approx∗z^4) ;
22
23 % We can now look at coefficients of individual polynomials. Here c gives
24 % the coefficients of the element specified by (i,j) in CE_approx_pos(i,j

)
25 % and t gives which power of z the coefficients belong to
26 [ c11 , t11 ] = coeffs ( CE_approx_pos ( 1 , 1 ) ,z ) ;
27 [ c12 , t12 ] = coeffs ( CE_approx_pos ( 1 , 2 ) ,z ) ;
28 [ c13 , t13 ] = coeffs ( CE_approx_pos ( 1 , 3 ) ,z ) ;
29
30 [ c21 , t21 ] = coeffs ( CE_approx_pos ( 2 , 1 ) ,z ) ;
31 [ c22 , t22 ] = coeffs ( CE_approx_pos ( 2 , 2 ) ,z ) ;
32 [ c23 , t23 ] = coeffs ( CE_approx_pos ( 2 , 3 ) ,z ) ;
33
34 [ c31 , t31 ] = coeffs ( CE_approx_pos ( 3 , 1 ) ,z ) ;
35 [ c32 , t32 ] = coeffs ( CE_approx_pos ( 3 , 2 ) ,z ) ;
36 [ c33 , t33 ] = coeffs ( CE_approx_pos ( 3 , 3 ) ,z ) ;
37
38 % now look at all the c’s to see what the matrices for each coefficient
39 % should be:
40 matz0 = [ c11 (2 ) 0 0 ; . . .
41 0 0 0 ; . . .
42 0 0 0 ] ;
43
44 matz2 = [0 c12 (3 ) c13 (3 ) ;
45 c21 (3 ) 0 0 ; . . .
46 c31 (3 ) 0 0 ] ;
47
48 matz4 = [ c11 (1 ) c12 (2 ) c13 (2 ) ; . . .
49 c21 (2 ) c22 (2 ) c23 (2 ) ; . . .
50 c31 (2 ) c32 (2 ) c33 (2 ) ] ;
51
52 matz6 = [0 c12 (1 ) c13 (1 ) ; . . .
53 c21 (1 ) 0 0 ; . . .
54 c31 (1 ) 0 0 ] ;
55
56 matz8 = [0 0 0 ; . . .
57 0 c22 (1 ) c23 (1 ) ; . . .
58 0 c32 (1 ) c33 (1 ) ] ;
59
60 % now we have the following approximation:
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61 % exp(A+B) = z^-4 * (matz0*1 + matz2*z^2 + matz4*z^4 + matz6*z^6 + matz8*
z^8)

A-1-4 2split4B, 4split4B coefficients

1 syms s1 s2 l kappa h z
2
3 AE = [1/ z ^2 ,0 , 0 ; 0 , z^2 0 ; 0 , 0 , z ^2 ] ;
4 BE = sym (’BE’ , [ 3 , 3 ] ) ;
5
6
7 % we have CE = expm(A+B)
8 % Let G_approx be approximation of CE after application of splitting
9 % scheme , choose z = exp(j*lambda*h/2)

10 % AE_2 = expm(A*h/2)
11 % BE_2 = expm(2B*h/4) = expm(B*h/2)
12 % BE_4 = expm(B*h/4)
13 AE_2 = [1/z , 0 , 0 ; 0 , z , 0 ; 0 , 0 , z ] ;
14 BE_2 = sym (’BE_2’ , [ 3 , 3 ] ) ;
15 BE_4 = sym (’BE_4’ , [ 3 , 3 ] ) ;
16
17 G_approx = ((4/3) ∗BE_4∗AE_2∗BE_2∗AE_2∗BE_4 ) + . . .
18 −((1/3)∗BE_2∗AE_2∗AE_2∗BE_2 ) ;
19
20 % Dividing throughout by z^-4
21 G_approx_pos = expand ( G_approx∗z^2) ;
22
23 % We can now look at coefficients of individual polynomials. Here c gives
24 % the coefficients of the element specified by (i,j) in CE_approx_pos(i,j

)
25 % and t gives which power of z the coefficients belong to
26 [ c11 , t11 ] = coeffs ( G_approx_pos ( 1 , 1 ) ,z ) ;
27 [ c12 , t12 ] = coeffs ( G_approx_pos ( 1 , 2 ) ,z ) ;
28 [ c13 , t13 ] = coeffs ( G_approx_pos ( 1 , 3 ) ,z ) ;
29
30 [ c21 , t21 ] = coeffs ( G_approx_pos ( 2 , 1 ) ,z ) ;
31 [ c22 , t22 ] = coeffs ( G_approx_pos ( 2 , 2 ) ,z ) ;
32 [ c23 , t23 ] = coeffs ( G_approx_pos ( 2 , 3 ) ,z ) ;
33
34 [ c31 , t31 ] = coeffs ( G_approx_pos ( 3 , 1 ) ,z ) ;
35 [ c32 , t32 ] = coeffs ( G_approx_pos ( 3 , 2 ) ,z ) ;
36 [ c33 , t33 ] = coeffs ( G_approx_pos ( 3 , 3 ) ,z ) ;

A-1-5 2split6B, 4split6B coefficients

1 syms s1 s2 l kappa h z
2
3 AE = [1/ z ^6 ,0 , 0 ; 0 , z ^6 ,0 ; 0 , 0 , z ^6 ] ;
4 BE = sym (’BE’ , [ 3 , 3 ] ) ;
5
6
7 % we have CE = expm(A+B)
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8 % Let G_approx be approximation of CE after application of splitting
9 % scheme

10 % AE_6 = expm(A*h/6)
11 % then expm(A*h/3) = AE_6*AE_6, expm(A*h/2) = AE_6^3,
12 % expm(A*h) = AE_12^6
13 % BE_p = expm(B*h/p)
14 AE_6 = [1/z , 0 , 0 ; 0 , z , 0 ; 0 , 0 , z ] ;
15 BE = sym (’BE’ , [ 3 , 3 ] ) ;
16 BE_6 = sym (’BE_6’ , [ 3 , 3 ] ) ;
17 BE_4 = sym (’BE_4’ , [ 3 , 3 ] ) ;
18 BE_3 = sym (’BE_3’ , [ 3 , 3 ] ) ;
19 BE_2 = sym (’BE_2’ , [ 3 , 3 ] ) ;
20
21 G_approx = (81/40) ∗ BE_6 ∗( AE_6^2∗BE_3 ) ^2∗AE_6^2∗BE_6 +. . .
22 −(16/15)∗BE_4∗AE_6^3∗BE_2∗AE_6^3∗BE_4 +. . .
23 (1/24) ∗BE_2∗AE_6^6∗BE_2 ;
24
25 % Dividing throughout by z^-6
26 G_approx_pos = expand ( G_approx∗z^6) ;
27
28 % We can now look at coefficients of individual polynomials. Here c gives
29 % the coefficients of the element specified by (i,j) in CE_approx_pos(i,j

)
30 % and t gives which power of z the coefficients belong to
31 [ c11 , t11 ] = coeffs ( G_approx_pos ( 1 , 1 ) ,z ) ;
32 [ c12 , t12 ] = coeffs ( G_approx_pos ( 1 , 2 ) ,z ) ;
33 [ c13 , t13 ] = coeffs ( G_approx_pos ( 1 , 3 ) ,z ) ;
34
35 [ c21 , t21 ] = coeffs ( G_approx_pos ( 2 , 1 ) ,z ) ;
36 [ c22 , t22 ] = coeffs ( G_approx_pos ( 2 , 2 ) ,z ) ;
37 [ c23 , t23 ] = coeffs ( G_approx_pos ( 2 , 3 ) ,z ) ;
38
39 [ c31 , t31 ] = coeffs ( G_approx_pos ( 3 , 1 ) ,z ) ;
40 [ c32 , t32 ] = coeffs ( G_approx_pos ( 3 , 2 ) ,z ) ;
41 [ c33 , t33 ] = coeffs ( G_approx_pos ( 3 , 3 ) ,z ) ;

A-1-6 FTES4_suzuki coefficients

1 %% Matlab file to get the polynomial coefficients for FTES4
2 % also to generate results for the test file
3
4 syms q1 q2 l kappa h z . . .
5
6 A = [−1i∗l , 0 , 0 ; 0 , 1 i∗l , 0 ; 0 , 0 , 1 i∗l ] ;
7 B = [0 , q1 , q2 ;−kappa∗conj (q1 ) ,0 ,0; − kappa∗conj (q2 ) , 0 , 0 ] ;
8 % Let AE = expm(A*h) and BE = expm(B*h)
9 % Set z = exp(j lambda h/3) such that

10 AE = [1/ z ^3 ,0 , 0 ; 0 , z ^3 ,0 ; 0 , 0 , z ^3 ] ;
11 BE = sym (’BE’ , [ 3 , 3 ] ) ;
12 % CE=expm((A+B)*h)
13 % Let CE_approx be approximation of CE after application of splitting
14 % scheme
15 % AE_1_3 = expm(A*h/3)
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16 AE_1_3 = [1/z , 0 , 0 ; 0 , z , 0 ; 0 , 0 , z ] ;
17 AE_m1_3 = [ z , 0 , 0 ; 0 , 1/z , 0 ; 0 , 0 , 1/z ] ;
18 BE7_48_ = sym (’BE7_48_’ , [ 3 , 3 ] ) ;
19 BE3_8_ = sym (’BE3_8_’ , [ 3 , 3 ] ) ;
20 BEm1_48_ = sym (’BEm1_48_’ , [ 3 , 3 ] ) ;
21 E1 = sym (’E1’ , [ 3 , 3 ] ) ;
22 E2 = sym (’E2’ , [ 3 , 3 ] ) ;
23
24 CE_approx = E1 ∗( BE7_48_∗AE_1_3∗BE3_8_∗AE_m1_3∗BEm1_48_ ∗ . . .
25 AE∗BEm1_48_∗AE_m1_3∗BE3_8_∗AE_1_3∗BE7_48_ ) ∗E2 ;
26
27 % Dividing throughout by z^-7 (z^-7 is the lowest power of z found in the
28 % polynomial)
29 CE_approx_pos = expand ( CE_approx∗z^7) ;
30
31 % We can now look at coefficients of individual polynomials. Here c gives
32 % the coefficients of the element specified by (i,j) in CE_approx_pos(i,j

)
33 % and t gives which power of z the coefficients belong to
34 [ c11 , t11 ] = coeffs ( CE_approx_pos ( 1 , 1 ) ,z ) ;
35 [ c12 , t12 ] = coeffs ( CE_approx_pos ( 1 , 2 ) ,z ) ;
36 [ c13 , t13 ] = coeffs ( CE_approx_pos ( 1 , 3 ) ,z ) ;
37
38 [ c21 , t21 ] = coeffs ( CE_approx_pos ( 2 , 1 ) ,z ) ;
39 [ c22 , t22 ] = coeffs ( CE_approx_pos ( 2 , 2 ) ,z ) ;
40 [ c23 , t23 ] = coeffs ( CE_approx_pos ( 2 , 3 ) ,z ) ;
41
42 [ c31 , t31 ] = coeffs ( CE_approx_pos ( 3 , 1 ) ,z ) ;
43 [ c32 , t32 ] = coeffs ( CE_approx_pos ( 3 , 2 ) ,z ) ;
44 [ c33 , t33 ] = coeffs ( CE_approx_pos ( 3 , 3 ) ,z ) ;
45
46 % now look at all the c’s to see what the matrices for each coefficient
47 % should be
48 matz0 = [ c11 (8 ) , c12 (8 ) , c13 (8 ) ;
49 c21 (8 ) , c22 (8 ) , c23 (8 ) ;
50 c31 (8 ) , c32 (8 ) , c33 (8 ) ] ;
51
52 matz2 = [ c11 (7 ) , c12 (7 ) , c13 (7 ) ;
53 c21 (7 ) , c22 (7 ) , c23 (7 ) ;
54 c31 (7 ) , c32 (7 ) , c33 (7 ) ] ;
55
56 matz4 = [ c11 (6 ) , c12 (6 ) , c13 (6 ) ;
57 c21 (6 ) , c22 (6 ) , c23 (6 ) ;
58 c31 (6 ) , c32 (6 ) , c33 (6 ) ] ;
59
60 matz6 = [ c11 (5 ) , c12 (5 ) , c13 (5 ) ;
61 c21 (5 ) , c22 (5 ) , c23 (5 ) ;
62 c31 (5 ) , c32 (5 ) , c33 (5 ) ] ;
63
64 matz8 = [ c11 (4 ) , c12 (4 ) , c13 (4 ) ;
65 c21 (4 ) , c22 (4 ) , c23 (4 ) ;
66 c31 (4 ) , c32 (4 ) , c33 (4 ) ] ;
67
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68 matz10 = [ c11 (3 ) , c12 (3 ) , c13 (3 ) ;
69 c21 (3 ) , c22 (3 ) , c23 (3 ) ;
70 c31 (3 ) , c32 (3 ) , c33 (3 ) ] ;
71
72 matz12 = [ c11 (2 ) , c12 (2 ) , c13 (2 ) ;
73 c21 (2 ) , c22 (2 ) , c23 (2 ) ;
74 c31 (2 ) , c32 (2 ) , c33 (2 ) ] ;
75
76 matz14 = [ c11 (1 ) , c12 (1 ) , c13 (1 ) ;
77 c21 (1 ) , c22 (1 ) , c23 (1 ) ;
78 c31 (1 ) , c32 (1 ) , c33 (1 ) ] ;
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Appendix B

Detailed documentation of the library
functions

B-0-1 Documentation of the functions

In this section we provide details for all functions used in the Fast Nonlinear Fourier Transform
(FNFT) routine for the Manakov equation. Figure B-1 provides a detailed diagram of these
functions.
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manakovv

Inputs

D Number of time samples from the potential function

T Array of length 2 indicating the position in time of the first and last potential
function sample. C uses 0-relative indexing, so T[0] = T1 and T[1] = T2 from
Section 3-1

q1, q2 Samples from the potential function: q1 = q1(T [0]), q1(T [0]+h), . . . q1(T [1]) with
h being the time step size

M Desired number of samples in the frequency domain for which the NFT should
be determined

XI Array of length 2 indicating the position of first and last sample in the frequency
domain

kappa Dispersion constant to indicate focussing (kappa = 1) or defocussing (kappa =
-1) case

opts Variable to pass different options to the manakovv routine: discretization
method, turn Richardson extrapolation on or off, type of continuous spectrum
to be computed (a and b1,2 coefficients, ρ1,2 coefficients, all coefficients or skip
continuous spectrum computation), compute bound states or skip computing
bound states

Outputs

contspec Contains the NFT coefficients a, b1, b2 and / or the reflection coefficients 2
depending on the options passed by the user

bound_states
Contains the discrete eigenvalues (roots of a(λ))

Highest level function in the library and the only one that is called directly by the user.
The user can specify the discretization method, request different NFT coefficients for the
continuous spectrum and specify whether the discrete eigenvalues should be calculated using
the "opts" input variable.

manakovv_base

Inputs

D The effective number of samples, that is, the number of transition matrices to be
multiplied. This might be different from the original number of samples from the
potential function for two possible reasons. If Richardson extrapolation used,
manakovv_base is called twice, first using all the available samples and then
with only half the samples. For the second call the effective number of samples
is halved. See also Section 4-10. Secondly, the fast implementations of CF[4]

2 are
implemented as if they are fast versions of BO (Section 4-3), but with twice the
number of samples. In these cases the effective number of samples is doubled.
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q1, q2 The effective samples of the potential function, which are different from the
original samples in the second call to manakov_base if Richardson extrapolation
is used or if the discretization method is a fast version of CF[4]

2 . In both cases,
preprocess_signal takes care of getting the appropriate samples.

T Array of length 2 indicating the position in time of the first and last sample.
Might be different from the original T if Richardson extrapolation is used. Be-
cause only half the number of samples is used then, the first sample is still taken
at the original T[0], but the last sample used is the sample from T[1]-h

M See inputs manakovv

XI See inputs manakovv

kappa See inputs manakovv

Outputs

contspec See outputs manakovv

bound_states
See outputs manakovv

Performs the actual computations for getting the continuous spectrum and bound states.
If a fast method is chosen, manakovv_base calls manakov_fscatter to compute the total
transition matrix and passes this matrix to compute_contspec and compute_bound_states.
If a slow method is chosen, an empty matrix is passed in place of the transition matrix and
multiplications of the transition matrices are done by by compute_contspec directly (bound
state localization using a slow method is currently not supported in the library)

discretization_upsampling_factor

Inputs

discretization
Type of discretization used

Output

upsampling_factor
Factor needed to calculate the effective number of samples we should pass to
manakovv_base. 2 for (fast discretizations based on) CF[4]

2 and 1 for all other
discretizations

This function uses a switch-case statement to output a "2" for all (fast discretizations based
on) CF[4]

2 because these are implemented "as if" they are (fast discretizations based on) BO
with double the number of samples. See also Section 4-3 for more details.
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preprocess_signal

Inputs

D Original number of time samples of q(x0, t)

q1, q2 See inputs manakovv

eps_t Time step size for the original samples of q(x0, t), eps_t= T [1]−T [0]
D−1 . Called h

in the sections of Chapter 3 and Chapter 4 explaining the numerical (F)NFT
algorithms

kappa See inputs manakovv

Dsub Desired number of samples after subsampling. If Richardson extapolation is
used, manakovv_base is called with half the number of samples. In that case
we have Dsub = D/2

discretization
see inputs manakovv_base

Outputs

first_last_index: If subsampling is applied, this variable gives the index of the first and last
sample from the original potential function samples used

q1_preprocessed, q2_preprocessed
The samples q(x0, t) after preprocessing. They may be subsampled, or different
from the actual samples as outlined in Section 4-3 for (fast discretizations based
on) CF[4]

2

The function performs some preprocessing on the samples of q(x0, t). If subsampling is
desired, Dsub < D and preprocess_signal first determines the appropriate number of samples
after subsampling based on this desired Dsub. The actual number of subsamples should be
such that we can select equidistant samples from the arrays q1, q2. So the actual number
of subsamples should be exactly D/n, where n is an integer. Subsampling is required when
Richardson extrapolation is used and may also be used when computing the disrete eigenvalues
to limit the computation time. After determining the actual Dsub the appropriate samples are
selected from q1, q2. first_last_index is set to the first and last index of the original samples
that are used for the subsampled samples. If Dsub=D, the subsampling step is skipped.
If the discretization is of type 4splitYZ, 2*Dsub new samples are now determined as outlined
in Section 4-3.

manakov_discretization_method_order

Input

discretization
See inputs manakovv_base
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Output

method_order
Order of the discretization

This function outputs the order of error decay for the chosen discretization method. This is
needed for Richardson extrapolation.

manakov_fscatter

Inputs

D effective number of samples after preprocessing by preprocess_signal

q1, q2 preprocessed samples of the potential function

kappa See inputs of manakovv

eps_t time step size for the preprocessed signal samples

discretization
See inputs discretization_upsampling_factor

Outputs

deg Polynomial degree of the polynomials in the final transition matrix

result Array containing the polynomial coefficients of the total transfer matrix, starting
with the coefficients of element (1,1) from highest order coefficient to lowest,
followed by the coefficients for element (1,2), etc.

If a fast discretization is chosen, manakovv_base calls manakov_fscatter. The function man-
akov_fscatter first determines and stores the polynomial coefficients for all individual tran-
sition. These are a function of the samples, eps_t and the discretization method. They are
then multiplied by calling poly_fmult3x3.

discretization_degree

Input

discretization
See inputs discretization_upsampling_factor

Output

degree Maximum degree of the polynomials of a single transition matrix for the given
discretization

The output degree is used to determine the degree of the total transition matrix. discretiza-
tion_degree returns 0 if the discretization is a slow method
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poly_fmult3x3

Inputs

d Polynomial degree of a single transition matrix

n Total number of transition matrices to be multiplied

p Polynomial coefficients of the transition matrices to be multiplied

Output

result Resulting polynomial coefficients of the multiplication

This function pads the transition matrices with unity matrices if D is not a power of 2. It
then performs tree-wise multiplication by calling poly_fmult_two_polys3x3 for each multi-
plication in the tree.

poly_fmult_two_polys3x3

Inputs

p1, p2 Polynomial coefficients of the first and second matrix to be multiplied, starting
with the polynomial coefficients from element [1,1], then [1,2], ... [3,3]. The first
entry corresponds to the coefficient for the highest power of z

Output

result Resulting polynomial coefficients of the two polynomials that were multiplied

This function performs the 27 polynomial multiplications from Eq. (4-12) needed to multiply
two 3x3 matrices. Each of these 27 multiplications is performed by calling poly_fmult_two_polys.
To make the code more efficient, poly_fmult_two_polys is called with different modes as ar-
gument. If we look at the upper left element of Eq. (4-12), the following steps are carried out:

– call poly_fmult_two_polys to calculate the FFT of g11h11

– call poly_fmult_two_polys to calculate the FFT of g12h21 and add this to the previously
stored FFT of g11h11

– call poly_fmult_two_polys to calculate the FFT of g13h31, add this to the FFT’s of
g11h11 and g12h21, and take the inverse FFT
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poly_fmult_two_polys

Inputs

p1, p2 Polynomial coefficients of the two elements to be multiplied, starting with the
coefficient for the highest power of z

mode Indicates what mode is used, see below for explanation of all modes

Output

result Dependent on mode, this is the result for one element of the matrix after mul-
tiplication or an intermediate result

This function takes the FFT of the polynomials passed as inputs and performs the actual
multiplication. The output is dependent on the mode.

– Mode 2 takes the FFT of polynomials p1 and p2, multiplies them in the FFT domain
and stores this result

– Mode 4 takes the FFT of p1 and p2, multiplies them and adds this to the previously
stored value

– Mode 5 takes the FFT of p1 and p2, multiplies them, adds this to the previously stored
value and takes the inverse FFT

poly_rescale3x3

Inputs

d degree of each element of the transition matrix at this stage

p11, p12, ... p33
Arrays with the polynomial coefficients for all elements of the matrix

Output

p11, p12, ...p33
Rescaled arrays

a Parameter of the scalefactor scl = s−a

poly_fmult3x3 first performs one tree-wise multiplication step i.e. multiplying all pairs of
polynomials. If rescaling is desired, poly_fmult3x3 then calls poly_rescale3x3. Function
poly_rescale3x3 finds the largest polynomial coefficient of the resulting matrices after multi-
plication and rescales all coefficients with scl = 2−a, where a = log2(max coeff). This ensures
the maximum absolute values of the polynomial coefficients stay bounded and prevents over-
flow errors. Parameter a is then added to the previous value of a. When all multiplications
are done, multiplying by a factor sa gives the original values of the polynomial coefficients.
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poly_fmult_two_polys_len

Inputs

deg * n/2 deg is the maximum degree of an element in a single transition matrix, n is the
effective amount of matrices to be multiplied

Output

len length of the buffer

Used to allocate appropriate amount of memory for the buffers used in poly_fmult_two_polys.
Output is at least the amount of elements after multiplying two polynomials with length
deg*n/2, so at least deg*n. The actual length might be more to allow the third-party code
determining the FFT’s to work more efficiently.

manakov_compute_contspec

Inputs

deg Degree of the total transition matrix

W all the parameters "a" from poly_rescale3x3 added

transfer_matrix
Total transition matrix or NULL if the discretization method is a slow method

q1 q2 Preprocessed samples of the potential. Needed if a slow discretization is chosen

T See inputs manakovv_base

D Effective number of samples after preprocessing

XI See inputs manakovv

M See inputs manakovv

kappa See inputs manakovv

Output

result The requested NFT coefficients, reflection coefficients or both

For fast methods we noted in Section 4-7 that we only need to evaluate elements [1,1], [2,1]
and [3,1] of transfer_matrix to get v[T2]. They are evaluated at the desired λ’s by first
applying the appropriate transformation with manakov_discretization_lambda_to_z and
then evaluated using the chirp-Z transform. The NFT coefficients are then given by

a = H11 ∗ scl ∗ exp(jλ ∗ phase_factor_a)
b1 = H21 ∗ scl ∗ exp(jλ ∗ phase_factor_b1)
b2 = H31 ∗ scl ∗ exp(jλ ∗ phase_factor_b2)

(B-1)
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Hij are the elements from the first column of the total transition matrix, scl takes care of
possible scaling that was applied, and the term exp(jλphase_factor) takes care of the multipli-
cation with exp(−jλT1), multiplication with exp(jλT2) for the a coefficient and exp(−jλT2)
for the b coefficients, and the extra powers of z we multiplied with in Section 4-2, Section 4-3
and Section 4-4 to make sure we only had positive powers of z. As noted at the end of Sec-
tion 4-7 these can all be combined in one phase factor.
For a slow method, manakov_scatter_matrix is called which multiplies the numerical values
of the scattering matrices for each λ, resulting in the total transition matrix.

manakov_discretization_phase_factor_(rho/a/b)

Inputs

discretization
See inputs manakovv

eps_t Time step with subsampling taken into account

D Number of samples after possible subsampling

T Time instant of first and last sample of the potential function

Output

phase_factor
Phase factor to be used in Eq. (B-1)

This function computes the phase factor.

poly_chirpz

Inputs

deg Degree of the total transition_matrix

transfer_matrix
Polynomial coefficients of the total transition matrix

A First λ in the complex plane to evaluate

V Distance from each point λ to the next

M Number of points in the frequency domain for which we wish to evaluate the
NFT

Output
Hij_vals: values of element ij of polynomial transition matrix evaluated at all desired points

Evaluation of the polynomials for all desired λ’s using the chirp-Z transform Section 4-7.
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manakov_discretization_lambda_to_z

Inputs

M Number of points in the frequency domain for which we wish to evaluate the
NFT

eps_t Time step with subsampling taken into account

vals Upon entry, all λ for which to evaluate the NFT

discretization
See inputs manakovv

Output

vals Upon exit, all λ transformed to the Z-domain

Determines z(λ). For all methods in the library, z = exp(jλh/m) for a certain integer m. See
Section 4-2, Section 4-3 and Section 4-4 for more details on how to choose an appropriate m.

compute_boundstates

Inputs

deg Polynomial degree of the total transition matrix

transfer_matrix
polynomial coefficients of the total transition matrix

eps_t Time step with subsampling taken into account

Output

bound_states
The bound states of the NFT for the given potential q(x, t), i.e., the roots of
polynomial a(λ)

Takes the first element of the total transition matrix and computes the roots of this polynomial
using a fast rootfinder. As explained in Section 4-8 these correspond to the roots of polynomial
a(λ). After that it transforms the found roots z to λ, λ = m

jh ln(z), where m is an integer
dependent on the discretization method.
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function A

function B

dataaddress

get data
from address

Figure B-2: Using pointers for function input

poly_roots_fast_eigen

inputs

deg Polynomial degree of the total transition matrix

transfer_matrix
Polynomial coefficients of the transfer matrix

output

buffer Array containing the z’s for the bound states

This function determines the roots of the upper left element of the transition matrix using
the fast polynomial rootfinder found in [5]. These correspond to the roots of a(λ(z)) and are
transformed from z to λ by compute_boundstates.

A note on inputs, outputs and pointers

In the FNFT library, large datastructures are used such as arrays with potential function
time samples or the values of the continues spectrum for a high number of samples in the
frequency domain. Passing large datastructures from one function to another makes the code
slow. In the library this problem is solved by passing a pointer to the array instead of the
array itself.
If the array is an input, the executing function (B) simply reads the data on the address that
A passes to B. See B-2 for a schematic representation. If the array is an output, function A
also passes an address to B. This time B writes data to the location indicated by the address,
after which A can read out the data on this address. See B-3.
In the description of the functions in Section B-0-1, we did not indicate which pointers are the
actual inputs to the functions. Rather, we listed the variables themselves directly as inputs.
Secondly, we use "outputs" for the values of interest that are calculated by the function. Most
often, the actual output of the function is a return code indicating if any errors occurred and
the computed values are stored in a location indicated by a pointer. This choice was made
to make the report more readable to some one less familiar with C programming. We direct
the reader to the full documentation of the library [1] for full information on this and the
datatypes of all variables.
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function A

function B

dataaddress

write data
to address

get data
from address

Figure B-3: Using pointers for function output
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Glossary

List of Acronyms

ADC Analog-to-Digital Converter
DCSC Delft Center for Systems and Control
BO Boffetta-Osborne
DAC Digital-to-Analog converter
DE Differential Equation
FFT Fast Fourier Transform
FNFT Fast Nonlinear Fourier Transform
FT Fourier Transform
IST Inverse Scattering Transform
KdV Korteweg-de Vries
MZS Manakov Zakharov Shabat
NSE Nonlinear Schrödinger Equation
NFT Nonlinear Fourier Transform
NFDM Nonlinear Frequency Division Multiplexing
ME Manakov Equation
ODE Ordinary Differential Equation
PDE Partial Differential Equation
RE Richardson Extrapolation
RK4 fourth-order Runge-Kutta
ZS Zakharov Shabat
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