
Master Thesis
Semantic Segmentation of
Large-scale Urban Scenes
from Point Clouds
Zhiwei Ai

Semantic Segmentation of Large-scale Urban
Scenes from Point Clouds

by

Zhiwei Ai
to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Monday July 29, 2019 at 10:30 am.

Student number: 4699076
Project duration: September, 2018 – July, 2019
Thesis committee: Prof. dr. D. M. Gavrila, TU Delft

Dr. L. Nan, TU Delft
Dr. R. C. Lindenbergh, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract
Deep learning methods have been demonstrated to be promising in semantic segmentation
of point clouds. Existing works focus on extracting informative local features based on indi-
vidual points and their local neighborhood. They lack consideration of the general structures
and latent contextual relations of underlying shapes among points. To this end, we design
geometric priors to encode contextual relations of underlying shapes between corresponding
point pairs. Geometric prior convolution operator is proposed to explicitly incorporate the
contextual relations into the computation. Then, GP-net, which contains geometric prior con-
volution and a backbone network is constructed. Our experiments show that the performance
of our backbone network can be improved by up to 6.9 percent in terms of mean Intersec-
tion over Union (mIoU) with the help of geometric prior convolution. We also analyze different
design options of geometric prior convolution and GP-net. The GP-net has been tested on
the Paris and Lille 3D benchmark, and it achieves the state-of-the-art performance of 74.7%
mIoU.

iii

Contents

1 Introduction 1

2 Literature 3
2.1 Background on deep learning . 3

2.1.1 Perceptron and activation function. 3
2.1.2 Multi-layer perceptrons . 4
2.1.3 Convolution layer . 4
2.1.4 Pooling layer . 5
2.1.5 Softmax and loss function . 5

2.2 Related work . 6
2.2.1 Semantic segmentation based on hand-crafted features. 6
2.2.2 Voxel-based methods . 8
2.2.3 Image-based methods . 9
2.2.4 Point-based methods. 10
2.2.5 Graph-based method. 14

3 Methodology 17
3.1 Backbone network . 17
3.2 Geometric prior convolution . 18

3.2.1 Rationale . 18
3.2.2 Geometric features . 18
3.2.3 Learning from contextual relations. 20

3.3 GP-net . 22
3.3.1 Implementation details . 22

4 Results and Discussion 25
4.1 Dataset and experimental setup . 25
4.2 Results . 26
4.3 Discussion . 28

4.3.1 Structure of GP-net . 28
4.3.2 Geometric prior convolution . 28
4.3.3 Combined Lovász-Softmax loss . 30

5 Conclusion and Future Work 33

Bibliography 35

v

1
Introduction

Semantic segmentation of images assigns each pixel a class label, which has been applied to
autonomous driving, surveillance, medical analysis, and other fields. Deep leaning methods
[25, 27, 31, 37, 53, 54] achieve a success in this area, and pushes this area into a limit. Due to
the lack of spatial information, the applications of image semantic segmentation are restricted.

As a supplement to images, point cloud data can provide spatial information directly. Point
cloud semantic segmentation plays a crucial role in computer vision. It can serve as a clue for
scene understanding to provide a robust perception of the environment. Autonomous driving
requires HD maps for accurate localization, and semantic segmentation of point clouds can
be applied to provide more detailed environment information. 3D reconstruction is important
for the construction of 3D cities. Semantic segmentation of point clouds with good quality
can significantly improve the accuracy of 3D reconstruction. Traditional methods of point
cloud semantic segmentation require training a classifier on hand-crafted features, and the
performance of these methods faces the bottleneck. Deep learning, as an alternative, has been
attracting researchers’ attention on the semantic segmentation of point clouds. It has been
proved to be promising in this field. However, it is still a challenging task.

Figure 1.1: An example of permutation variance of a regular convolution applied on a point cloud

On the one hand, a point cloud is irregular and unordered, which results in permutation vari-
ance when a regular convolution is applied to process the point cloud. In Figure 1.1, i and ii
represent two same point clouds with corresponding features 𝔽 = {𝑓ፚ , 𝑓 , 𝑓 , 𝑓 }, but the index
orders are different. When two point clouds are convolved with a same regular convolution
kernelK, it results in 𝑓። ≠ 𝑓።።. For this issue, a group of methods [3, 39, 51] proposes to convert
a point could into regular grids in images, and make use of well-developed image CNNs [1, 13]
to make predictions. While some of the works [6, 14, 29, 55] focus on transforming a point
cloud into regular grids in 3D voxels to process the point cloud. Generally, transformation
of a point cloud into images or voxels causes loss in spatial information, which limits the
resolution of predictions. In order to process a point cloud directly using neural networks, a
set of works, such as PointNet [33], and [16, 26, 34, 42, 46], uses a symmetric function to
achieve permutation invariance. PointCNN [23] proposes to learn a 𝒳-transformation matrix

1

to permute and weight point features into a latent and potentially canonical order. SO-Net
[22] learns a permutation invariant self-organizing map to achieve permutation invariance. In
a word, permutation variance is solved by various ways. Compared with methods that require
data transformation, point-based methods can preserve more original and internal informa-
tion from points.

On the other hand, many of the current point-based methods [16, 22, 23, 34] focus on ex-
tracting effective local features in a local structure representation usually generated by point
searching methods, such as kNN, and ball query. They lack consideration of latent contex-
tual relations among points. Superpoint Graph [21] is the pioneering method harnessing the
contextual relations in a point cloud to make predictions.

Inspired by current point-based methods and Superpoint Graph, we design permutation in-
variant geometric prior convolution operator that can explicitly incorporate contextual rela-
tions between the underlying shapes of corresponding point pairs. GP-net, a point-based
U-type network containing a backbone network and geometric prior convolution, is proposed.
We show that GP-net can achieve state-of-the-art performance on the point cloud semantic
segmentation task. Compared to the current point-based methods, GP-net makes use of con-
textual relations between underlying shapes of points. Unlike Superpoint Graph, the point
pairs to provide contextual relations are dynamically constructed, instead of pre-defined, for
each layer of geometric prior convolution, and the final predictions are made point-wise.

2

2
Literature

Deep learning has been attracting researchers’ attention since 2012. One neural network-
basedmethod [18] outperformed other traditional machine learning methods by a large margin
on Imagenet benchmark [9]. Neural networks, as the hero behind the impressive performance,
has been studied for decades. In this chapter, the basic components and relevant knowledge
needed to understand the structure of neural networks are introduced. Then several state-
of-the-art methods for semantic segmentation of point clouds are discussed.

2.1. Background on deep learning
2.1.1. Perceptron and activation function
The basic unit of neural networks is the artificial neuron. The artificial neuron, which im-
itates the process of information flowing through a biological neuron, was first proposed by
McCulloch and Pitts’s work [30] in 1943. Based on this work, a neuron named perceptron
[38], was designed by Frank Rosenblatt in 1958.

Figure 2.1: The model of a perceptron

A perceptron generally has several inputs and one output. For each input 𝑥።, there is a cor-
responding weight 𝜔። to indicate how important the input is. The weighted sum of inputs are
computed in the perceptron, and the output is decided by comparing the weighted sum of
inputs with a threshold 𝜃. The output is binary. When the weighted sum is greater than the
threshold, the neuron is activated and the output is 1.

𝑜𝑢𝑡𝑝𝑢𝑡 = {0, ∑፧።ኻ𝜔።𝑥። ≤ 𝜃
1, ∑፧።ኻ𝜔።𝑥። > 𝜃

(2.1)

The above mathematical model is the very initial representation of a perceptron. This repre-
sentation can be changed into a more common version. If the inputs and their corresponding

3

weights are in two vectors, the weighted sum can be substituted by dot product as 𝜔 ⋅ 𝑥. Fur-
thermore, the threshold can be moved to the left side of inequality and replaced by a bias.
Then, the perceptron can be written as a more common version.

𝑜𝑢𝑡𝑝𝑢𝑡 = {0, 𝜔 ⋅ 𝑥 + 𝑏𝑖𝑎𝑠 ≤ 0
1, 𝜔 ⋅ 𝑥 + 𝑏𝑖𝑎𝑠 > 0 (2.2)

To simplify the above function, it can be written as 𝑠𝑔𝑛(𝜔 ⋅ 𝑥 + 𝑏𝑖𝑎𝑠). 𝑠𝑔𝑛(𝑥) is denoted as a
step function shown below, and it is here also called an activation function since it decides
the final output.

𝑠𝑔𝑛(𝑥) = {0, 𝑥 ≤ 0
1, 𝑥 > 0 (2.3)

Using a step function as an activation function has many negative properties. Step function is
not continuous, and very small changes of weights and bias can lead to a completely different
output, for example, from 0 to 1. These problems can be overcome by using other activation
functions, for example sigmoid function 𝜎(𝑥). Similar to perceptron, a sigmoid neuron can be
denoted as 𝜎(𝜔 ⋅ 𝑥 + 𝑏𝑖𝑎𝑠).

𝜎(𝑥) = 1
1 + 𝑒ዅ፱ (2.4)

In modern neural networks, neurons are not initial perceptrons with step functions but neu-
rons with advanced activation functions, such as sigmoid, tanh, ReLU. When many of the
neurons are connected in various orders and structures, different neural networks can be
constructed.

2.1.2. Multi-layer perceptrons
Multi-layer perceptrons comprise at least three layers, one input layer, one hidden layer, and
one output layer. The depth of multi-layer perceptrons can be increased by stacking several
hidden layers. For the example shown in the figure, the input layer has three input neurons,
and the output layer has one output neuron. Two hidden layers have respectively 5 and 4
neurons. The number of neurons in each layer can be adjusted case by case. The neurons
of previous layer are fully connected to the neurons in the subsequent layer. Even though
this structure is called multi-layer perceptrons, the neurons applied here are not original
perceptrons but neurons with advanced activation functions, such as sigmoid, and ReLU.

Figure 2.2: An example of MLPs

2.1.3. Convolution layer
Instead of full connections between neurons in the previous layer and successive layer, local
connectivity of neurons are applied in convolution layers. This way, computation and param-
eters can be significantly reduced for a large number of input. One of the most successful

4

applications of convolution is on images. A common definition of image convolution is,

𝑔(𝑥, 𝑦) = 𝜔 ∗ 𝑓(𝑥, 𝑦) =
ፚ

∑
፬ዅፚ

∑
፭ዅ

𝜔(𝑠, 𝑡)𝑓(𝑥 − 𝑠, 𝑦 − 𝑡) (2.5)

where 𝑓(𝑥, 𝑦) is a source image, and 𝑔(𝑥, 𝑦) is the image after convolution. The location of a
pixel on the image is marked by 𝑥, and 𝑦 values. 𝜔 is the convolution filter kernel, also called
the weights for the image to convolve with. 𝜔 always has three dimensions, namely, width,
height, and depth. In the equation, 2𝑎 is the width of convolution kernel and 2𝑏 is the height
of the convolution kernel. The figure below shows the convolution when the depth of kernel is
1, and the depth of the kernel determines the output feature channel of the convolved image.

Figure 2.3: An example of image convolution

2.1.4. Pooling layer
The function of applying pooling layer in neural networks is to down-sample the size of input
in order to save computation and aggregating features. The operation of pooling works on the
width or height for images or on the number of points for point tasks, but not on the feature
channels. Max pooling is a commonly used pooling operation. As in the figure below, max
pooling with a 2 × 2 filter, and stride 2 can down sample a 4 × 4 image into 2 × 2 by selecting
the maximum value corresponding to each filter region.

Figure 2.4: An example of max pooling

2.1.5. Softmax and loss function
Softmax
Given the task of semantic segmentation of point clouds. We need to classify 𝑝 points into
𝑛 classes, and it exists a class 𝑐 ∈ 𝒞. 𝒞 is a vector of all classes. For classification tasks,
the output channels at the end of the neural network are usually aligned with the number of
classes 𝑛, so that the neural network will output a vector with dimensions of 𝑛 for each point,
𝑋። for point i. Softmax function is often used to project raw outputs of the neural network to

5

probability distribution. After using softmax to process each element in 𝑋።, each element in
the resulting vector represents the probability of this point belonging to a respective class.

𝑓።(𝑐) =
𝑒ፗᑚ()

∑ᖤ∈𝒞 𝑒ፗᑚ(
ᖤ) ∀𝑖 ∈ [1, 𝑝], ∀𝑐 ∈ 𝒞 (2.6)

In the softmax function, for a point 𝑖 ∈ [1, 𝑝], 𝑓። is the 𝑛 dimension probability distribution
vector after softmax. 𝑓።(𝑐) denotes the probability of point 𝑖 belonging to class 𝑐 ∈ 𝒞. 𝑋።(𝑐) is
the element in 𝑋። that corresponds to class 𝑐. The results of softmax are normalized between
(0, 1). Clearly, all the elements in the 𝑓። add up to 1. The classification results or the loss can
be computed after softmax.

Cross-entropy loss
When training a neural network, an objective is needed for adjusting the weights and biases.
The objective is usually to minimize the loss function. In order to have a good performance
in terms of metrics that evaluate the neural network, the loss function should be chosen
carefully. Cross-entropy is a common loss function in neural networks.

𝐶 = −1𝑝

፩

∑
።ኻ
log 𝑓። (𝑦∗።) (2.7)

For the task of semantic segmentation of point clouds, the cross-entropy loss 𝐶 for all the 𝑝
points, is the mean of negative log likelihood of all these points, with each point 𝑖 ∈ [1, 𝑝], 𝑦∗። the
ground truth of point 𝑖. Using an optimizer to minimize cross-entropy loss equals to applying
maximum likelihood estimation on the neural network [10], which optimizes the parameters
to maximize the log likelihood.

2.2. Related work
Point clouds are irregular, which makes semantic segmentation of point clouds a challenging
problem. In traditional methods, a classifier is trained on hand-crafted features. In deep
learning, different methods were proposed in recent years. Based on how neural networks
consume the data, current deep learning methods can be roughly categorized into voxel-based
methods, image-based methods, graph-based methods, and point-based methods.

2.2.1. Semantic segmentation based on hand-crafted features
The general pipeline of machine learning methods requires training a classifier on hand-
crafted features, and then the trained classifier can be applied to label the test data. The
performance of machine learning methods mainly relies on the quality of hand-crafted fea-
tures as well as the choice of the classifier. Therefore, extracting informative and discriminant
features that represent the properties of the data effectively and selecting a smart classifier
that can make use of the features comprehensively remain challenges to overcome. In the
following section, several hand-crafted features and two methods are introduced.

Hand-crafted features
For a specific point, and its selected neighbor points, a covariance matrix can be easily com-
puted. Eigenvalues 𝜆ኻ > 𝜆ኼ > 𝜆ኽ can be calculated afterwards. Many of the features are based
on the eigenvalues. Such a covariance matrix is sometimes mentioned as a structure tensor,
such as in [47, 50], and their relevant features are called structure tensor features. Both the
eigenvalues and their related features have abilities to represent the local structure geometric
properties. According to [47], 3D features are listed in the Table 2.1.

Among the features, Verticality was initially defined in [8]. 𝑛ፙ is the third component of the
normal vector of the local structure. Verticality provides information about points and a flat
vertical area [8]. Therefore, it has the potential to distinguish facades from grounds [47].
Change of curvature, also called surface variation, was defined in [32]. This measurement

6

Sum of eigenvalues Σ᎘ 𝜆ኻ + 𝜆ኼ + 𝜆ኽ
Omnivariance 𝑂᎘ (𝜆ኻ ⋅ 𝜆ኼ ⋅ 𝜆ኽ)

Ꮃ
Ꮅ

Eigenentropy 𝐸᎘ −∑ኽ።ኻ 𝜆። ⋅ 𝑙𝑛(𝜆።)
Anisotropy 𝐴᎘ (𝜆ኻ − 𝜆ኽ)/𝜆ኻ
Planarity 𝑃᎘ (𝜆ኼ − 𝜆ኽ)/𝜆ኻ
Linearity 𝐿᎘ (𝜆ኻ − 𝜆ኼ)/𝜆ኻ
Curvature 𝐶᎘ 𝜆ኽ/(𝜆ኻ + 𝜆ኼ + 𝜆ኽ)
Sphericity 𝑆᎘ 𝜆ኽ/𝜆ኻ
Verticality 𝑉 1 − 𝑛ፙ

Local point density 𝐷 (𝑘 + 1)/(ኾኽ𝜋𝑟
ኽ
፤ዅፍፍ)

Table 2.1: 3D features mentioned in [47]

demonstrates if the points of the local neighborhood are in a plane. If a change of curvature
equals 0, all points are in the same plane. If it reaches the maximum, ኻኽ , it means the points
are isotropically distributed. Thus, it can help us discriminate between planar structures and
non-planar structures. The linearity determines how well the points fit a linear structure, and
the planarity describes the smoothness of the points. Sphericity provides information on the
existence of a volumetric structure, and omnivariance also describes the volumetric distri-
bution of points [45]. Eigenentropy indicates if the local point cloud is ordered or unordered
[49].

Examples of methods

Covariance

Sum 𝜆ኻ + 𝜆ኼ + 𝜆ኽ
Omnivariance (𝜆ኻ ⋅ 𝜆ኼ ⋅ 𝜆ኽ)

Ꮃ
Ꮅ

Eigenentropy −∑ኽ።ኻ 𝜆። ⋅ 𝑙𝑛(𝜆።)
Anisotropy (𝜆ኻ − 𝜆ኽ)/𝜆ኻ
Planarity (𝜆ኼ − 𝜆ኽ)/𝜆ኻ
Linearity (𝜆ኻ − 𝜆ኼ)/𝜆ኻ

Surface Variation 𝜆ኽ/(𝜆ኻ + 𝜆ኼ + 𝜆ኽ)
Sphericity 𝜆ኽ/𝜆ኻ
Verticality 1 − |⟨[001] , 𝑒ኽ⟩|

Moment

1፬፭𝑜𝑟𝑑𝑒𝑟, 1፬፭𝑎𝑥𝑖𝑠 ∑።∈ፏ ⟨𝑃። − 𝑃, 𝑒ኻ⟩
1፬፭𝑜𝑟𝑑𝑒𝑟, 2፧፝𝑎𝑥𝑖𝑠 ∑።∈ፏ ⟨𝑃። − 𝑃, 𝑒ኼ⟩
2፧፝𝑜𝑟𝑑𝑒𝑟, 1፬፭𝑎𝑥𝑖𝑠 ∑።∈ፏ ⟨𝑃። − 𝑃, 𝑒ኻ⟩

ኼ

2፧፝𝑜𝑟𝑑𝑒𝑟, 2፧፝𝑎𝑥𝑖𝑠 ∑።∈ፏ ⟨𝑃። − 𝑃, 𝑒ኼ⟩
ኼ

Vertical range 𝑍፦ፚ፱ − 𝑍፦።፧
Height Height below 𝑍 − 𝑍፦።፧

Height above 𝑍፦ፚ፱ − 𝑍

Table 2.2: Features used in [12]

In the work [12] proposed by Hackel et al., in order to efficiently and effectively extract features
for points, the neighborhood of a specific point is considered by a multi-scale scheme. The
point cloud is down-sampled several times and the density of the point cloud is decreasing
each time. The reduced point cloud density requires less computation for further processing.
After each down-sampling, the neighborhood points in this scale are selected using kNN. The
authors think that kNN can avoid the drawbacks caused by the varying density of the point
cloud, and thus it can be considered an adaptive radius for searching. For one single point,
10 nearest points of 9 scales are taken into account, which results in 144 feature dimen-
sions in total. The features for each scale is listed in Table 2.2. For the contour edges, the
before-mentioned surface property features may be insufficient. Therefore, histogram-based
descriptors are used specifically for contour edges. A random forest classifier is implemented

7

for classification, and its effectiveness has been approved in [4, 48].

Based on the previous work [12], Thomas et al. presented a new work [43] that modified
the point neighborhood definition. Instead of kNN, multi-scale spherical neighborhood that
contains more geometrical meaning is defined. Spherical neighborhood searches points in an
area with a fixed radius, which may reach two extremes. When a point cloud is dense and the
scale is large, included points may be too many to compute. When a point cloud is sparse and
the scale is small, included points may be too less to extract features. The first problem can
be solved by down-sampling, similar to [12]. The second problem can be solved by making
use of different scales. The features used in this work are slightly different than previous one,
as shown in Table 2.3. By also implementing a random forest classifier, the method achieves
a competitive performance.

Covariance

Sum 𝜆ኻ + 𝜆ኼ + 𝜆ኽ
Omnivariance (𝜆ኻ ⋅ 𝜆ኼ ⋅ 𝜆ኽ)

Ꮃ
Ꮅ

Eigenentropy −∑ኽ።ኻ 𝜆። ⋅ 𝑙𝑛(𝜆።)
Linearity (𝜆ኻ − 𝜆ኼ)/𝜆ኻ
Planarity (𝜆ኼ − 𝜆ኽ)/𝜆ኻ

Surface Variation 𝜆ኽ/(𝜆ኻ + 𝜆ኼ + 𝜆ኽ)
Verticality(×2) |ኼ − 𝑎𝑛𝑔𝑙𝑒(𝑒። , 𝑒፳)|።∈(ኺ,ኼ)

Sphericity 𝜆ኽ/𝜆ኻ
Moment Absolute moment (×6) ኻ

|ፍ| |∑ ⟨𝑃 − 𝑃ኺ, 𝑒።⟩
፤|
።∈(ኺ,ኻ,ኼ)

Vertical moment (×2) ኻ
|ፍ| ∑ ⟨𝑃 − 𝑃ኺ, 𝑒፳⟩

፤

Others
Number of points |𝑁|

Average color (×3) ኻ
|ፍ| ∑𝑐

Color variance (×3) ኻ
|ፍ|ዅኻ ∑(𝑐 − �̄�)

ኼ

Table 2.3: Features used in [43]

The performance of the traditional methods is constrained by the power of classifier and effec-
tiveness of hand-crafted features. Deep learning demonstrates a more powerful representation
ability and feature learning ability.

2.2.2. Voxel-based methods
VoxNet [29] is a pioneering effort using 3D convolutional networks for point cloud processing.
The input to the network is pre-segmented objects, and the network can predict labels for
them. The network consists of two parts. The first part is a volumetric grid representing. Vol-
umetric occupancy grid is used because it can provide information about both occupied and
unoccupied spaces, and it also can be calculated in an efficient data structure. The second
part is a 3D convolution network that labels the object. 3D CNN is considered because spatial
structures are expected to be learned explicitly by the network. A hierarchical network can
be designed by adding more layers of convolution with different sizes of kernels, which can
make the network concatenate information from different scales.

After VoxNet, Huang et al. presented a new 3D convolutional neural network [14] that can
comsume large-scale point clouds for labelling. It is an end-to-end voxel-based method that
requires no segmentation and hand-crafted features. They came up with two different vox-
elization methods for training and testing phases. For training, in order to avoid the bias
caused by dense sampling, they select the same number of center points from each class of
objects. After choosing the center points, cubic bounding boxes are generated and then cubes
are separated into small grids of cells. For testing, dense voxelization is used. This method
can classify the whole scene with a high accuracy and computation efficiency.

8

Figure 2.5: The architecture of network in [14]

In later works, ScanNet [6] proposed a 3D convolutional network that can predict labels for
columns. When testing, the network is moving on the x-y plane to make the whole scene pre-
dicted. The predictions are based on information from the targeted voxel and its neighborhood
voxels. Zhou et al. proposed a voxel-based end-to-end method, VoxelNet [55] that can learn
feature representations automatically for region proposal networks to accomplish the point
cloud object classification.

Though voxel-based methods have many applications, transforming a point cloud into voxel
grids requires additional computation. Besides, transformation causes a loss in spatial infor-
mation and a decrease in resolution. Some works are presented in order to produce a high
resolution representation. For example, [36] uses Octree data structure to achieve a high
resolution.

2.2.3. Image-based methods
Despite voxel-based representation methods, another way to transform a point cloud into an
ordered data type is to generate images from a point cloud.

Yang et al. presented a semantic segmentation method [51] specifically for ALS point clouds.
This work can be considered as a combination between traditional feature selection and deep
learning methods. The method mainly consists of two parts, point-based feature image trans-
formation, and CNNs that are intended to extract hierarchical features of the feature images.
Three types of features, including local geometric features, global geometric features as well
as full-waveform Lidar features are calculated and transferred into RGB values to generate
feature images. After the feature images are generated, CNNs consume the feature images
and abstract high-level features for labeling.

Figure 2.6: The pipeline of network in [51]

Another work that adopts the same idea of transferring a point cloud into meaningful feature
images to do semantic segmentation is SnapNet [3]. As the pipeline shows in Figure 2.7,
a point cloud is first pre-processed. In order to boost the efficiency of processing a point
cloud, voxelization is applied and the closest point to the center of each voxel is kept so that
the down-sampled point cloud has an uniform density. Then, the meshes are constructed
with textures. Textures contain RGB, normal deviation to vertical, and a noise estimation.
Snapshots are then generated containing two different images, RGB images, and images from

9

depth composite. The images are next fused and fed into SegNet [1] based network for pixel-
wise segmentation. The point-wise labels are obtained by back-projection of 2D results.

Figure 2.7: The pipeline of network in SnapNet [3]

Roveri et al. presented a novel end-to-end network [39] that can automatically generate infor-
mative depth images for a point cloud instead of selecting hand-crafted features to generate
feature images. From the pipeline of the network, we can see that the network mainly consists
of three stages. The network first takes an input point cloud and predicts its representative
directions. In the second stage, the network generates depth images for each direction of the
point cloud automatically. Then, several ResNet50 [13] architectures are used to predict class
labels based on the depth images in the third stage.

Figure 2.8: The pipeline of network in [39]

One of the advantages of before-mentioned image-based methods is that they can harness
well-studied existing 2D methods. However, their performance is related to the quality of the
feature images, and the network lacks consideration of spatial information provided by point
clouds internally.

2.2.4. Point-based methods
Using neural networks to process point clouds can make use of spatial information directly.
The challenge is to solve permutation variance. [33, 34, 42] use a symmetric function to
achieve permutation invariance. [23] uses MLPs to learn a 𝒳-transformation matrix to achieve
permutation equivariance. [16] gives points specific orders corresponding to orientations, so
that the computation does not suffer from permutation variance.

PointNet
PointNet [33] is the first attempt to use neural networks to process a point cloud directly,
while the previous methods need to convert a point cloud into other data representations, for
example, voxels. Processing a point cloud directly keeps rich spatial information in x, y, z
coordinates, and prevents transforming a point cloud into a redundant data form. The key
of PointNet is the symmetric function, max pooling. Max pooling helps the network achieve
permutation invariance, which is a challenge of using deep learning on point clouds.

For segmentation tasks, PointNet takes a fixed number of points as input, so that a point
cloud needs to be down-sampled first. T-nets in the network make the points invariant of
geometric transformations. Multi-layer perceptrons lift each point into a high dimensional

10

Figure 2.9: The architecture of PointNet [33]

feature vector. Max pooling extracts the maximum of each channel to generate a global fea-
ture vector for the input points. Then, global features are concatenated with point features
to supply each point with global information. After several layers of multi-layer perceptrons,
points are assigned with labels.

PointNet++
Though PointNet achieves an impressive performance on point cloud analysis, it is incompe-
tent to consider local features and multi-scale features. This may result in a poor performance
when dealing with data with fine-grained patterns. Otherwise, the features extracted by Point-
Net are in an uniform manner, which limits the performance on data with uneven densities.
Based on the success of PointNet as an effective and robust local feature extractor, Point-
Net++ [34] was proposed to enhance the PointNet by extracting multi-scale local features. The
network comprises several layers of set abstraction structure. Specifically, it consists of a
sampling layer, a grouping layer, and a simplified PointNet.

Figure 2.10: The architecture of PointNet++ [34]

Sampling layers select a set of central points using farthest point sampling. Grouping layers
can find neighborhood points for selected central points, and group respective features for fur-
ther processing. PointNet is utilized to extract local features for grouped local neighborhood
points. For the semantic segmentation task, PointNet++ achieves a hierarchical structure by
decreasing the number of central points while projecting local features into central points. The
high level global features are then interpolated to original points with the help of skip con-
nections. The experiments show that, PointNet++ achieves better performance than PointNet,
and it is robust to uneven sampling densities.

PointSIFT
PointNet++ sets a new standard for point cloud semantic segmentation. However, the ball
query searching used in the grouping layer of PointNet++ overlooks the possible unbalanced

11

distribution of a point cloud in different directions. PointSIFT [16] was proposed to solve this
problem. PointSIFT is inspired by both point-based methods and SIFT [28] descriptor that is
widely used in 2D images. Similar to SIFT in 2D, given a point 𝑝, PointSIFT module computes
a description of a set of points centered at 𝑝. A difference from SIFT is that PointSIFT module
can be trained end-to-end.

Figure 2.11: An illustration of orientation encoding unit [16]. ℱ is the feature matrix of 8 points, with size ኻ × ዂ × ፝. ℱᑩ,
ℱᑩᑪ, ℱᑩᑪᑫ are corresponding feature matrices after convolutions. ዕᑩ, ዕᑪ, ዕᑫ, are three convolution kernels.

The key to the PointSIFT module is the orientation encoding unit, which consists of an 8
orientation search and a three-stage orientation encoding convolution. For a center point 𝑝,
space is partitioned into 8 octants by x, y, z local coordinates. 8 orientation search searches
one nearest point from each of the 8 orientations in a fixed radius to generate a feature matrix
ℱ of 1× 2× 2× 2×𝑑 = 1× 8×𝑑 dimensions. 2× 2× 2 represents x, y, z axes, and there are two
directions, positive as well as negative, for each axis. Every point has 𝑑 dimension features.
Since the point features are stored in a certain order, the orientation encoding convolution
does not suffer from permutation variance. Three 2D convolutions with the filter size 1×2×𝑑
and the stride 1 × 2 are applied on the point features to integrate information in x, y, z direc-
tions accordingly. The illustration of the three-stage convolution is demonstrated in Figure
2.11.

After the convolution, the features of local neighborhood points in 8 orientations are inte-
grated on the center point. Though one orientation encoding unit takes merely 8 points into
consideration, if 𝑖 units are stacked in the PointSIFT module, theoretically 8። points are com-
puted. This property allows the network to choose the most adaptive scales.

PointCNN
CNNs cannot be applied on points directly because CNNs require ordered data type. Li et al.
presented PointCNN [23] that overcomes the unordered property of point clouds. The key to
the performance of PointCNN is 𝒳-Conv.

For input points with features, farthest point sampling is used to find a set of representative
points for input points. 𝒳-Conv can be considered as a local feature extractor that projects
the information of neighborhood points into the representative points. 𝒳-Conv can be applied
on the point clouds repeatedly, and their functions are similar to applying convolutions on
images. As 𝒳-Conv is applied recursively, the number of points is reduced gradually, while

12

Algorithm 1 𝒳-Conv Operator
Input: K, 𝑝,P,F
Output: F፩ Features ’projected’, or ’aggregated’, into representative point 𝑝

1: Pᖣ ← P− 𝑝 Move P to local coordinate system of 𝑝
2: F᎑ ← 𝑀𝐿𝑃᎑ (Pᖣ) Individually lift each point into 𝐶᎑ dimensional space
3: F∗ ← [F᎑ ,F] Concatenate F᎑ and F,F∗ is a 𝐾 × (𝐶᎑ + 𝐶ኻ) matrix
4: 𝒳 ← 𝑀𝐿𝑃 (Pᖣ) Learn the 𝐾 × 𝐾 𝒳-transformation matrix
5: F𝒳 ← 𝒳 × F∗ Weight and permute F∗ with the learnt 𝒳
6: F፩ ← Conv (K,F𝒳) Finally, typical convolution between K and F𝒳

the feature channels are increased.

In Algorithm 1, 𝑝 is the representative point. K is a trainable kernel of 𝒳-Conv. P is the
𝐾 nearest local neighborhood point set of the representative point. F is the feature matrix of
P. F፩ is the feature projected from local neighborhood points to the representative point. In
the 𝒳-Conv operator, neighborhood points are first transformed into a local coordinate sys-
tem centered at the representative point. Because 𝒳-Conv is designed to extract features for a
local region, the extracted features should depend on relative locations. 𝑀𝐿𝑃᎑ is applied to lift
the features into 𝐶᎑ dimensional space, and then the learned 𝒳-transformation matrix is used
to weight and permute the features. A convolution is then applied on the features. Achieving
invariance using a symmetric function may result in the loss of information, while achiev-
ing equivariance solves this problem. Ideally, because of the approximation ability of MLPs,
permutation equivariance should be achieved by learning the 𝒳-transformation matrix from
input points. An example of semantic segmentation network using 𝒳-Conv is demonstrated
in Figure 2.12.

Figure 2.12: An example of semantic segmentation network with 𝒳-Conv [23]

Similar to other point-based methods, the network takes a specific number of points as input.
𝑁 and 𝐶 stand for the number of output representative points and feature dimension. 𝐾 is
the number of local neighborhood points for each representative point. 𝐷 is the dilation rate.
When 𝐷 is larger than 1, the 𝐾 neighborhood points are uniformly sampled from 𝐾 ×𝐷 neigh-
borhood points. Therefore, the receptive field of PointCNN can be defined as (𝐾 ×𝐷)/𝑁. It can
be concluded that as 𝒳-Conv is recursively applied, the resolution of each layer is decreasing,
but the receptive field is increasing. The increasing receptive field determines the network has
a larger view of the whole shape, which is beneficial for semantic segmentation.

Edge conditioned convolution
Following the idea that a point cloud can be regarded as graph-structured data, edge-conditioned
convolution is proposed [42] and demonstrated to be effective on point cloud analysis. The

13

proposed operator is a generalization of convolution on graph-structured data. It is differ-
ent from general convolution since the weights of ECC are dependent on edge features. This
property makes the operation explicitly aware of relative relations encoded in edge features. A
point graph of a given point 𝑖 and its neighborhood points 𝑗 ∈ 𝑁(𝑖) can be denoted as 𝐺 = (𝑉, 𝐸),
in which 𝑉 are a set of points of the graph, and 𝐸 are a set of edges of points. Every point
comes with certain features 𝑋፥ዅኻ(⋅) as input to ECC, and 𝐿(𝑗, 𝑖) defines the edge relation of point
𝑗 ∈ 𝑁(𝑖) and point 𝑖. The edge-specific weights Θ፥፣። are produced by Filter generating networks
[15] 𝐹፥(⋅) based on edge features 𝐿(𝑗, 𝑖). The convolution output 𝑋፥(𝑖) of point 𝑖 is then defined
as below.

𝑋፥(𝑖) = 1
|𝑁(𝑖)| ∑

፣∈ፍ(።)
𝐹፥ (𝐿(𝑗, 𝑖); 𝑤፥) 𝑋፥ዅኻ(𝑗) + 𝑏፥

= 1
|𝑁(𝑖)| ∑

፣∈ፍ(።)
Θ፥፣።𝑋፥ዅኻ(𝑗) + 𝑏፥

(2.8)

𝑏፥ and 𝑤፥ are trainable parameters, and 𝐹፥ is implemented using multi-layer perceptorns. By
computing the weighted sum of 𝑋፥ዅኻ(⋅), ECC can achieve permutation invariance.

Figure 2.13: An illustration of ECC [42]

2.2.5. Graph-based method
Superpoint Graph
Point-based methods, such as PointNet and PointCNN, need to naively split a large-scale point
cloud into small cubes before feeding points into the neural network. Landrieu et al. proposed
a novel method [21] specifically designed for performing semantic segmentation at large-sclae
point clouds.

Unlike other works that constrain the spatial linkages among points, the idea behind this
work is that a geometrical representation called Superpoint graphs can effectively capture
the internal connections between Superpoints. In order to obtain Superpoint graphs, Super-
points are first computed by an unsupervised method using hand-crafted features, including
planarity, linearity, scattering, verticality, and elevation. The generated Superpoints are a set
of points that represent a geometrically homogeneous shape. The homogeneous shape can be
a large segment, for example, a wall, or it can be a small part of an object, for example, one
component of a vehicle.

14

Then, the symmetric Voronoi adjacency graph of the whole point cloud is defined. And as-
sume there are two Superpoints, 𝑆 and 𝑇. If there is at least one edge in symmetric Voronoi
adjacency graph that one end of the edge belongs to 𝑆 and the other end belongs to 𝑇. 𝑆 and
𝑇 are considered adjacent. The edge of adjacent superpoints 𝑆 and 𝑇 is called Superedge.
Then, the features of Superedges are obtained from the set of offsets for edges linking both
Superpoints. Superedge features indicate the spatial relationship between Superpoints.

After we have Superedges and associated features, Superpoint embeddings are computed
using a simplified PointNet. 128 points are selected on the fly from each Superpoint and fed
into the PointNet. The authors believe a small number of points can represent the Superpoint
because the Superpoint is considered as a semantically separable shape.

In the last phase, a graph neural network that contains an improved version of Edge-Conditioned
Convolution [42] as well as Gated Recurrent Units [5] are used to assign each superpoint a
class label based on its embeddings and edge features.

Figure 2.14: A pipeline of Superpoint Graph [21]

The design of Superpoint Graph significantly reduces the computation needed for a large-
scale scene. The graph neural network can make use of contextual relations of superpoints.
However, to a certain extent, the quality of the partitions determines the accuracy of final
segmentation outcomes.

15

3
Methodology

In this chapter, the methodology details of my thesis project are introduced. The structure
of my backbone network is introduced to demonstrate how a general point cloud semantic
segmentation network processes the input data. Then, the rationale and architecture of the
proposed geometric prior convolution are described.

3.1. Backbone network
𝒳-Conv [23] has been empirically verified to be an effective feature extractor by learning a
𝒳-transformation matrix. Orientation-encoding unit [16] searches points from 8 different
orientations to better capture the distribution of a point cloud. With the strong representation
ability of 𝒳-Conv, and the help of orientation-encoding unit, a hierarchical encoder-decoder
semantic segmentation network can be constructed.

Figure 3.1: Backbone network with 𝒳-Conv and orientation-encoding unit

The backbone network takes 8192 points with certain features as input, and outputs seman-
tic labels. In each orientation-encoding unit, it treats every input point as a center point, and
features from 8 orientations are projected on the center point. 𝒳-Conv operators in encoder
part down-sample the point cloud by finding a set of representative points using farthest point
sampling. For a representative point, 𝒳-Conv is applied on its k-Nearest Neighbor local point
neighborhood. The features of the local point neighborhood are projected on the representa-
tive point. At the end of the encoder part, a point cloud is represented by 128 points with high

17

dimensional global features. In the decoder part, 𝒳-Conv operators aim to propagate global
features to original points following an idea of DeConv [31]. Representative points for 𝒳-Conv
are not searched by farthest point sampling, but simply adopted from corresponding repre-
sentative points in the encoder part. Features, therefore, can be interpolated from a smaller
number of points with higher dimensional features to a larger number of representative points
with lower dimensional features. Skip connections are designed to supplement global features
with detailed local features for classification.

The hierarchical structure enables the backbone network to enlarge the receptive field of each
representative point. The computation of point features are under two structure representa-
tions. The first one is kNN local point neighborhood around a representative point in 𝒳-Conv
operator. The second is 8 points from different orientations in orientation-encoding unit. The
two structure representations have slightly different focuses on the point cloud distribution.
kNN local neighborhood can capture the local structure defined by k nearest points, but the
structure representation can be constrained by local point distribution. For example, if a
point is on a plane, the k nearest points of this point are likely to be on the same plane. 8
orientation search can solve this problem by finding points in 8 orientations, which captures
a more general structure of the point cloud. In a way, the two operations can be considered
supplementary to each other.

3.2. Geometric prior convolution
3.2.1. Rationale
Though the backbone network is well-designed, we see differences with human perception.
When we look at a wall, our intuitive definition of a wall is an enormous vertical plane. When
the backbone network processes the point cloud, the structure representations to extract
the features are point sets, either generated by kNN or 8 orientation search. It has been
empirically testified that the information embedded in x, y, z coordinates can be harnessed to
yield a good point-wise classification result. However, two questions remain. The first is that
if it’s possible that a point cloud can be represented by meaningful shapes similar to what
human perceives rather than independent points. The second is that if it’s possible that the
latent contextual relations of meaningful shapes can be harnessed to produce more accurate
classification results. In order to address the two questions, we introduce geometric prior
convolution that can weight the point features depending on geometric priors that encode the
contextual relations between the underlying shapes of corresponding point pairs.

3.2.2. Geometric features
Superpoint Graph [21] shows a point cloud can be effectively represented by graphs of Super-
points. Superpoints are point cloud partitions generated by homogeneous partition process.
In this subsection, we show how homogeneous partitions can be utilized to generate geometric
features that represent the underlying shapes of points.

Homogeneous partition
The first step to generate geometric features is to segment the point cloud into semantically
and geometrically homogeneous partitions. Ideally, the points reside in a partition will have
same labels and similar geometric features. The shapes and sizes of partitions are not fixed.
They vary with the shape complexity of the point cloud. The partitions are not complete objects
in most of the cases. Instead, they are simpler shapes on objects. If one object is geometri-
cally complex, for example a chair, the object is more likely to be divided into several small
partitions. One partition contains a simple shape of the object, such as, the back or a leg
of the chair. When the object is geometrically simple, for example a wall, it is likely to be
segmented into one large partition. We follow the unsupervised method introduced in [21] to
do homogeneous partition.

Given a point cloud with 𝒩 points, eigenvalues are first computed for each point, follow-
ing [7]. For a point x። = (𝑥። 𝑦። 𝑧።)

ፓ
and its local point neighborhood 𝒱 with 𝑛 points,

18

Figure 3.2: An example of homogeneous partitions on Paris and Lille 3D benchmark [40]. The upper row is the
visualization of homogeneous partitions. Each color demonstrates a single partition. The lower row is the ground truth.

Each color represents a class.

we have x = ኻ
፧ ∑

።፧
።ኻ x።. The 3D structure tensor can be defined as C = ኻ

፧M
ፓM, with M =

(xኻ − x, … ,x፧ − x)ፓ. Here, C is a symmetric positive definite matrix, and eigenvalue
decomposition can be applied. The eigenvalues can be arranged in a descending order as
𝜆ኻ ≥ 𝜆ኼ ≥ 𝜆ኽ > 0. Then, eigenvalue features can be defined following [11].

𝐿𝑖𝑛𝑒𝑎𝑟𝑖𝑡𝑦 ∶ 𝜆ኻ − 𝜆ኼ𝜆ኻ
(3.1)

𝑃𝑙𝑎𝑛𝑎𝑟𝑖𝑡𝑦 ∶ 𝜆ኼ − 𝜆ኽ𝜆ኻ
(3.2)

𝑆𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔 ∶ 𝜆ኽ𝜆ኻ
(3.3)

Let 𝑢ኻ, 𝑢ኼ, 𝑢ኽ be the corresponding eigenvectors of 𝜆ኻ, 𝜆ኼ, 𝜆ኽ. The vertical component of the vector
below is the verticality of a point.

[�̂�]። ∝
ኽ

∑
፣ኻ
𝜆፣ |[𝑢፣]።| , for 𝑖 = 1, 2, 3 and ‖�̂�‖ = 1 (3.4)

The eigenvalue and eigenvector features reveal different structure properties. The linearity and
planarity describes how well the point local structure fits a line or a plane. Scattering evaluates
if the point local structure is an isotropic spherical neighborhood. Verticality can discriminate
the vertical property of the point cloud. In addition to these four features, elevation is defined
as the 𝑧 coordinate of each point x። normalized over the entire point cloud. Therefore, for
each point x።, we have a 5 dimension feature vector 𝑓። ∈ ℝ to describe the local structure. The
points in a point cloud can be connected by an undirected graph, 𝐺 = (𝑉, 𝐸). 𝐺 here is the point
graph. 𝑉 contains nodes of the graph, which are the points in the point cloud. 𝐸 represents
the edges of the graph, which indicate the adjacency between point pairs. The homogeneous
partition [7] is based on 10 nearest graph 𝐺 of the point cloud. An optimization function for

19

homogeneous partition is defined as below.

𝑔 = argmin
፠∈ℝᑍ×Ꮇ

∑
።∈ፕ
‖𝑔። − 𝑓።‖

ኼ + 𝜇 ∑
(።,፣)∈ፄ

𝜔።,፣ [𝑔። − 𝑔፣ ≠ 0] (3.5)

𝑔 is the piece-wise constant approximation of 𝑓 ∈ ℝፕ× that minimizes the optimization func-
tion. [⋅] is the Iverson bracket that returns 1 if the condition is satisfied, otherwise returns 0.
The weight 𝜔።,፣ is inversely proportional to the distance between the point pairs. The first term
of the optimization function ensures the resulting 𝑔 is close to 𝑓. The second term adds more
penalty to edges with long distances, which guarantees the simple shape of the partitions.
𝜇 is the regularization strength that makes a balance between two terms. ℓኺ-cut pursuit al-
gorithm [20] can be used to find the approximate solution of the optimization function. The
homogeneous partitions 𝒫 = {𝑃ኻ, ⋯ , 𝑃፤} are defined as constant connected components of the
piece-wise constant approximations.

Feature generation
After homogeneous partition, a point cloud is segmented into 𝑘 semantically and geometrically
homogeneous partitions. Geometric features are designed to describe the underlying shapes of
points defined by the homogeneous partitions. The features can be adjusted flexibly depending
on the data properties.

Feature Dimension Description
Centroid of the partition 3 mean፩ᑚ∈ፏᑜ 𝑝። , 𝑝። ∈ ℝኽ
Length of the partition 1 𝜆ፏᑜኻ
Surface of the partition 1 𝜆ፏᑜኻ 𝜆ፏᑜኼ
Volume of the partition 1 𝜆ፏᑜኻ 𝜆ፏᑜኼ 𝜆ፏᑜኽ

Point count of the partition 1 Point number |𝑃፤| of the partition
Linearity of the point 1 Linearity computed for homogeneous partition
Planarity of the point 1 Planarity computed for homogeneous partition
Scattering of the point 1 Scattering computed for homogeneous partition

Table 3.1: 10 dimensional geometric features to describe the underlying shape of each point

For each point 𝑝። ∈ 𝑃፤, a geometric feature vector 𝑓፩ᑚ፠ ∈ ℝኻኺ is constructed. The first three di-
mensions are the center coordinates of the partition 𝑃፤. Following [21], eigenvalues 𝜆ፏᑜኻ , 𝜆ፏᑜኼ , 𝜆ፏᑜኽ ,
are computed in a descending order for all the points in the partition. Three features, length,
surface and volume, representing the general shape of the partition are derived based on the
eigenvalues. Point count |𝑃፤| defines the size of the partition, which in a way assumes the point
cloud is evenly distributed. The last three features are reused from the homogeneous partition
step, and they can supplement the general shape features with more local considerations.

3.2.3. Learning from contextual relations
In human perception, we consider contextual relations among objects, such as chairs are
usually close to desks, and a chair commonly has four legs attached. Homogeneous parti-
tion divides a point cloud into geometrically simple but meaningful shapes. Based on this,
geometric features are designed to represent the underlying shapes of points, which makes it
possible to make use of similar contextual relations explicitly. In order to incorporate these
contextual relations into point-wise classification, we propose geometric prior convolution,
which is a generalization of a convolution operator on points.

The logic behind geometric prior convolution is simple and similar to [41]. A center point
with its neighborhood points can be structured as a directed graph where the neighborhood
points are pointing towards the center point. In the directed graph, the nodes are points with
features. The edges indicate the relationship between node pairs. Given this, geometric priors
are constructed as edge features to demonstrate the contextual relations between node pairs.

20

A convolution-like operation can be applied to integrate the features of the neighborhood graph
to the center point.

Graph construction
For a center point, not all the nearby points can bring contextual relations. The quality of point
searching to construct the graph is crucial for the effectiveness of the proposed convolution.
In order to find the points with meaningful contextual relations, an ideal candidate of point
searching should have certain properties. First, the point searching should not be constrained
by local structures, for example a plane. It should have a certain pattern that captures the
3D space, so that similar contextual relations can always be found in the point graph. 8
orientation search qualifies by searching nearest points in 8 octants around the center point.
This functionality makes it overcome the constraints of a local structure, and it is more likely to
capture points with different underlying shapes to provide contextual relations for the center
point. Benefited from its orientation aware property, possible underlying shapes in different
orientations are equally considered.

Figure 3.3: An illustration of searching in 8 different octants. The red dot is the center point, and other dots represent
nearest points in 8 different orientations.

Geometric priors
Geometric priors are based on geometric features, which encodes the relationship of shapes
underlying the points. We use subtraction and division to make the geometric priors aware
of the shape relations. Given a center point 𝑥። with geometric features 𝑓፱ᑚ፠ , we can find a
neighborhood point 𝑥፣. 𝑥፣ comes with geometric features 𝑓፱ᑛ፠ , and geometric priors 𝑓፩(𝑥፣ , 𝑥።)
are denoted in Table 3.2.

Geometric priors Dimension Description
Centroid offset 3 Centroid of 𝑥፣ - Centroid of 𝑥።
Length ratio 1 log(Length of 𝑥፣ / Length of 𝑥።)
Surface ratio 1 log(Surface of 𝑥፣ / Surface of 𝑥።)
Volume ratio 1 log(Volume of 𝑥፣ / Volume of 𝑥።)

Point count ratio 1 log(Point count of 𝑥፣ / Point count of 𝑥።)
Linearity ratio 1 log(Linearity of 𝑥፣ / Linearity of 𝑥።)
Planarity ratio 1 log(Planarity of 𝑥፣ / Planarity of 𝑥።)
Scattering ratio 1 log(Scattering of 𝑥፣ / Scattering of 𝑥።)

Table 3.2: Geometric priors ᑡ፟(፱ᑛ , ፱ᑚ)

Learning by permutation invariant convolution
Learning a discriminative representation of the point cloud is the key to the semantic seg-
mentation. The rationale behind geometric prior convolution is to provide each point with

21

contextual relations of shapes underlying the points to enhance the point cloud structural
representation. To this end, a more efficient version of ECC [42] is considered.

Given a point cloud 𝒞, we have a point 𝑥። ∈ 𝒞. 𝒩ዂ
፱ᑚ is the 8 orientation neighborhood found by 8

orientation search centered at 𝑥።, and it exists 𝑥፣ ∈ 𝒩ዂ
፱ᑚ . A general convolution can be defined

as below.
F፱ᑚ = 𝜎(𝒜(𝜔 ⋅ F፱ᑛ , ∀𝑥፣)), ∀𝑥፣ ∈ 𝒩ዂ

፱ᑚ (3.6)

The representation F፱ᑚ of 𝒩ዂ
፱ᑚ is obtained by performing element-wise multiplication, denoted

by ⋅, between weight vector 𝜔 and point feature vector F፱ᑛ , ∀𝑥፣ ∈ 𝒩ዂ
፱ᑚ . Then aggregation func-

tion 𝒜 is applied following with a non-linear activation function 𝜎. In a classic convolution,
aggregation function is summation, Σ, and weights are order-dependent 𝜔፣, so that we have:

F፱ᑚ = 𝜎 (Σ
፣ዂ
፣ኻ (𝜔፣ ⋅ F፱ᑛ)) (3.7)

For non-grid data, point clouds, the weights𝜔፣ will introduce permutation variance. Therefore,
we use 𝜔፣። instead of 𝜔፣, and we here explain how weights 𝜔፣። based on geometric priors
𝑓፩(𝑥፣ , 𝑥።) can achieve permutation invariance. Weights 𝜔፣። are generated by a Filter generating
network [15], which can also be considered as a mapping ℳ [26] from geometric priors to
weights. The mapping can be defined as below.

ℳ ∶ 𝑓፩(𝑥፣ , 𝑥።) → 𝜔፣። (3.8)

Along with the mapping ℳ, we use average function as aggregation function. The geometric
prior convolution then can be defined.

F፱ᑚ = 𝜎 (
1
8Σ

፣ዂ
፣ኻ (ℳ(𝑓፩(𝑥፣ , 𝑥።)) ⋅ F፱ᑛ))

= 𝜎 (18Σ
፣ዂ
፣ኻ (𝜔፣። ⋅ F፱ᑛ))

(3.9)

In this formulation of convolution, weights 𝜔፣። are conditioned on geometric priors 𝑓፩(𝑥፣ , 𝑥።)
that encode the underlying shape relations between 𝑥፣ and 𝑥።. Because of the powerful ap-
proximation ability of multi-layer perceptrons (MLPs), we use shared MLPs to dynamically
map 𝑓፩(𝑥፣ , 𝑥።) into 𝜔፣። with the same channel number of F፱ᑛ . In this way, weights 𝜔፣። are order
specific, which realizes permutation awareness. By performing element-wise multiplication
𝜔፣። ⋅ F፱ᑛ , the contextual relations are explicitly connected with point features. By using aver-
age function to aggregate features, the generated feature F፱ᑚ considers both point features and
contextual relations of shapes underlying the points. Because of the permutation awareness,
weights 𝜔፣። will always be the same for a certain point pair 𝑥፣ and 𝑥።, so that after symmetric
aggregation function, the output is irrelevant with the input order.

3.3. GP-net
Since the structure of geometric prior convolution is differentiable and it can be applied on
each of the input points, we insert three layers of it in the encoder part of the backbone
network to provide each point with contextual relations of shapes underlying points. This is
the structure of our GP-net, as shown in Figure 3.5.

3.3.1. Implementation details
In geometric prior convolution, the mappingℳ is implemented with three layers of MLPs with
size (32, 64, 𝐶), in which 𝐶 is the dimension of point features. Every layer of MLPs has elu as
activation function and batch normalization. After each of the geometric prior convolution, we
also apply elu and batch normalization on the output. The implementation of other structures
follows the original papers. For training the network, we use ADAM [17] optimizer with initial
learning rate of 0.001. The loss function is combined Lovász-Softmax loss [2], and the details

22

will be discussed in the next chapter.

𝐿𝑜𝑠𝑠 = −1𝑝

፩

∑
።ኻ
log 𝑓። (𝑦∗።) + 𝑙

1
|𝒞| ∑

∈𝒞
Δፉ(𝑚(𝑐)) +

𝜆
2𝑛 ∑

፰
𝑤ኼ (3.10)

Figure 3.4: An illustration of geometric prior convolution. is the dimension of geometric priors ᑡ፟(፱ᑛ , ፱ᑚ). ፂ is the
dimension of point features ፅᑩᑛ , ፅᑩᑚ , and weights Ꭶᑛᑚ.

Figure 3.5: The structure of GP-net

23

4
Results and Discussion

In this chapter, we introduce dataset, metrics and experimental setups. We show the geo-
metric prior convolution can improve the performance of our backbone network by a large
margin. We also demonstrate alternatives of components in geometric prior convolution and
analyze how they influence the performance.

4.1. Dataset and experimental setup
Paris and Lille dataset [40] is a large-scale point cloud dataset acquired using LiDAR equipped
on the top of a moving truck. It covers 1940 meters of the urban road scene in Paris and Lille
with over 140 million points. The points in the dataset are annotated with 9 classes, ground,
pedestrian, building, vegetation, signage, bollard, trash can, barrier and car. The dataset has
a relatively even density, which is around 1000 and 2000 points per 𝑚ኼ. However, due to the
properties of the multi-beam LiDAR sensor, there are anisotropic patterns in the data.

Figure 4.1: Examples of Paris and Lille dataset, every class is assigned an unique color.

As shown in the Table 4.1, Paris and Lille dataset consists of 3 large point clouds that are
collected in two different cities. For experiments, the dataset is first divided into training set
and validation set. We follow the 80 ∶ 20 ratio, and divide Lille1 as well as Paris into training
set. Lille2 is the validation set. The training set is then split into blocks of 20𝑚 × 5𝑚 along

25

Section Length Number of points Number of objects
Lille1 1150 m 71.3 M 1349
Lille2 340 m 26.8 M 501
Paris 450 m 45.7 M 629
Total 1940 m 143.1 M 2479

Table 4.1: Overview of the Paris and Lille dataset

the road center line with a stride of 2𝑚. Since in our methods, we consider contextual re-
lations of shapes underlying points, the completeness of objects is possible to influence the
performance. Therefore, for the training set, we augment the data with a stride of 2𝑚, so that
the information of objects can be thoroughly utilized. We naively split the validation set into
20𝑚 × 5𝑚 blocks without a stride for an efficient and unbiased evaluation. Then, the homo-
geneous partition can be applied on the blocks. After homogeneous partition, we randomly
subsample each block into 8192 points with geometric features for processing.

Paris and Lille 3D benchmark also has 30 million unlabeled points as the test set. The test
set comprises 3 point clouds, Ajaccio2, Ajaccio 57, and Dijon 9. Each of them has 10 million
points. In order to make use of the contextual relations among points completely to have a
better performance, we split the test set into 20𝑚 × 5𝑚 blocks along the road center line with
stride of 5𝑚 in x direction, and 3𝑚 in y direction for further processing.

4.2. Results
Metrics
Mean Intersection over Union (mIoU) is the metric to evaluate our models. This is because it
treats different classes evenly, and usually the number of points belonging to different classes
is unbalanced. One extreme example is that we have 10000 points in class 𝐴, 100 points
in class 𝐵 and 100 points in class 𝐶. If one model classify all points as class 𝐴, the overall
accuracy (OA) of this model is 98%, but mIoU is 32.7%. Clearly, this is a poor classifier. OA
evaluates the model with bias, and mIoU is more reasonable. The equations of IoU and mIoU
are shown in equation 4.1 and 4.2. 𝑁 here is the number of classes.

𝐼𝑜𝑈 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 (4.1)

𝑚𝐼𝑜𝑈 = 1
𝑁Σ

።ፍ
።ኻ 𝐼𝑜𝑈። (4.2)

Results

Methods mIoU (%) Ground Building Sinage Bollard Trash can Barrier Pedestrian Car Vegetation
KP-FCNN [44] 75.9 99.5 93.2 69.3 82.2 48.8 44.3 62.0 93.6 90.4
HDGCN [24] 68.3 99.4 93.0 67.7 75.7 25.7 44.7 37.1 81.9 89.6

RF_MSSF [43] 56.3 99.3 88.6 47.8 67.3 2.3 27.1 20.6 74.8 78.8
GP-net (ours) 74.7 99.3 96.8 77.4 71.7 56.8 45.9 38.8 94.5 91.3

Table 4.2: Test result comparison of Paris and Lille 3D benchmark. mIoU and IoU of all classes are presented.

The test results in Table 4.2 show that our method achieves state-of-the-art performance. In
several classes, our method outperforms the method with the highest mIoU. The visualization
of test results are shown in Figure 4.2-4.4.

26

Figure 4.2: Test result of Paris and Lille 3D benchmark, Ajaccio 2 with 10 million points

Figure 4.3: Test result of Paris and Lille 3D benchmark, Ajaccio 57 with 10 million points

Figure 4.4: Test result of Paris and Lille 3D benchmark, Dijon 9 with 10 million points

27

4.3. Discussion
We analyze different design options of geometric prior convolution and GP-net by doing abla-
tion studies. The experiment results of ablation studies are based on training set and valida-
tion set described in the previous section.

4.3.1. Structure of GP-net

Model mIoU (%)
Backbone 68.6

Add the first layer of GP-conv 73.2
Add first two layers of GP-conv 73.9

Add three layers of GP-conv 75.5

Table 4.3: Performance of models with different layers of geometric prior convolution

mIoU (%) Ground Building Signage Bollard Trash can Barrier Pedestrian Car Vegetation
Backbone 68.6 98.2 95.4 60.3 75.3 55.1 16.7 53.4 96.1 66.7
GP-net 75.5 98.5 97.3 71.5 75.9 68.3 31.1 71.4 94.8 69.9

Table 4.4: The detailed IoU comparison between backbone network and GP-net

Since geometric prior convolution can be inserted into point-based networks, we exam each
layer’s contribution of geometric prior convolution to GP-net. Experiments show the first layer
of geometric prior convolution plays a most important role in providing useful contextual
information. This is probably because the first layer is applied on the point cloud before
down-sampling, so that more effective points can be found in the relatively dense point cloud.

4.3.2. Geometric prior convolution
Point searching method
kNN and ball query are two most prevalent point neighborhood searching methods. We com-
pare them with 8 orientation search to show 8 orientation search is more suitable for geometric
prior convolution.

Figure 4.5: An illustration of different point neighborhood searching methods

Ideally, for a specific point, the points that can provide contextual relations should be in close
but different homogeneous partitions. Only when two points reside in two different homo-
geneous partitions, can the geometric priors provide contextual relations. Thus, the point
searching method can not be constrained by local structures, and it should perceive the dis-
tribution of the point cloud with a certain pattern. kNN is easily constrained by a small local
structure. It is unable to capture a more general local structure. Ball query randomly selects

28

points in a search radius. The randomness makes it less reliable in providing consistent con-
textual relations under similar circumstances. 8 orientation search finds nearest points in
8 octants, which makes it more likely to find points in different homogeneous partitions and
better capture the distribution of the point cloud.

Point searching method mIoU (%)
8 orientation search 75.5

kNN 68.6
Ball query 72.3

Table 4.5: Performance of models with different point searching methods. Ball query and 8 orientation search have same
searching radius. All of the three methods search 8 points for computation.

Our experiment results prove our analysis. kNN barely provides useful contextual informa-
tion. The model with kNN has the same performance as the backbone network. Ball query
helps the network to incorporate informative relations, but the randomness limits its perfor-
mance.

Self-loops
Among other convolution operators, on pixels or points [42, 46], the information of the center
element is usually carefully preserved. One important difference of geometric prior convolution
is that the information of the center point is not involved in computation. We have three
reasons for this design. First, the hierarchical structure of GP-net is to make sure at the
end of the encoder part, each point has a large receptive field. Even though geometric prior
convolution does not include the feature of the center point into computation, it can still
effectively integrate features of 8 points together to enlarge the receptive field. Second, the
purpose of geometric prior convolution is to incorporate contextual relations, when it comes
to self-loops, similar to kNN, geometric priors of same homogeneous partitions are not able to
provide effective information, so that it may even degrade the performance, as shown in Table
4.6. Third, the features of center points are not actually discarded. Because of the existence
of skip-connections, the local features of each point are concatenated with high-level global
features to provide detailed features in the decoder part. Since the point-wise classification
is made at the end of the neural network, an effective integration of local point features and
global point features is crucial for the classification.

Model mIoU (%)
With self-loops 72.7

Without self-loops 75.5

Table 4.6: Performance of models with or without self-loops

Aggregation function
As discussed in [26], there are more symmetric functions that can be used as aggregation
functions for geometric prior convolution. We exam the performance of GP-net with max pool-
ing, average function, and summation. In our experiments, different aggregation functions do

Model mIoU (%)
Average function 75.5

Max pooling 75.4
Summation 74.8

Table 4.7: Performance of models with different aggregation function

not differentiate from each other. Average function performs slightly better than others.

29

Geometric feature
Geometric features and relative geometric priors can be flexibly designed for different datasets.
We here propose different combinations of geometric priors and show the experiment results.
We tested two different sets of geometric priors on Paris and Lille dataset. One set is described

Geometric priors mIoU (%)
With centroid offset 75.5

Without centroid offset 72.9

Table 4.8: Geometric priors with or without centroid offset

in the previous chapter, and the other set is more rotation invariant. In order to be more ro-
tation invariant, we replace centroid offset with distance offset and z offset. Distance offset is
the Euclidean distance of centers of two corresponding homogeneous partitions. For urban
point cloud, rotation rarely happens in terms of z axis, so that the offset of z coordinate of
two corresponding homogeneous partitions is also rotation invariant. Experiments show the
geometric priors with centroid offset perform better. We therefore keep centroid offset for Paris
and Lille dataset.

Besides the rotation invariant geometric priors, we try to replace some of the geometric priors
with 1 at each time to exam their contribution to the general performance. The experiments
show they all contribute to the performance.

Geometric priors mIoU (%)
All priors kept 75.5

Centroid offsets replaced by 1 72.2
Length, surface, volume ratio replaced by 1 72.4

Point count ratio replaced by 1 72.6
Linearity, planarity, scattering ratio replaced by 1 72.3

Table 4.9: Performance under different geometric prior combinations

We described in the previous chapter the functions used to compute geometric priors from
geometric features are responsible to find the relative relations of features. We remove the
functions and only use geometric features to demonstrate the underlying shapes and see
how the performance goes. The experiment results show without relative computation, the
relations of underlying shapes of points can not be demonstrated, which barely contributes
to the improvement of performance.

Model mIoU (%)
With geometric priors 75.5

With geometric features 69.3

Table 4.10: Performance of models with geometric priors or geometric features

4.3.3. Combined Lovász-Softmax loss
Cross-entropy loss treats each point equally by summing the negative log-likelihood of all
points together and divide it by the number of points. When a point has a high probability to
be correctly classified, the loss caused by this point is nominal, otherwise is large. In a way,
cross-entropy directly optimizes the overall accuracy, which has been proved to be a sub-
optimal metric for semantic segmentation task. To evaluate a semantic segmentation neural
network, we usually use mean Intersection over Union (mIoU) as the main metric. Given
this, minimizing cross-entropy along may not be the perfect choice to optimize a semantic
segmentation neural network.

30

Lovász-Softmax loss
In order to compensate the shortcoming of cross-entropy, we want to optimize the neural
network directly on Jaccard index (intersection over union). Jaccard index of class 𝑐, 𝐽, can
be defined.

𝐽 (𝑦∗, �̃�) =
|{𝑦∗ = 𝑐} ∩ {�̃� = 𝑐}|
|{𝑦∗ = 𝑐} ∪ {�̃� = 𝑐}| =

𝑇𝑃
𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃

(4.3)

𝑦∗ is a vector of the ground truth, �̃� a vector of predictions, 𝑇𝑃 true positives of 𝑐, 𝐹𝑁 false
negatives of 𝑐, 𝐹𝑃 false positives of 𝑐. A loss function in terms of Jaccard index can be defined
as below.

Δፉᑔ (𝑦∗, �̃�) = 1 − 𝐽 (𝑦∗, �̃�) (4.4)

From equation (4.3), Jaccard index is count based [35], and we need 𝑇𝑃, 𝐹𝑁, 𝐹𝑃 to compute
it. The Jaccard index loss is not differentiable, so that it can not be optimized directly by back
propagation. Therefore, an alternative of Jaccard index loss needs to be found. The set of
mispredictions of class 𝑐, M ∈ {0, 1}፩, can be defined as below.

M (𝑦∗, �̃�) = {𝑦∗ = 𝑐, �̃� ≠ 𝑐} ∪ {𝑦∗ ≠ 𝑐, �̃� = 𝑐} (4.5)

M is a set with 𝑝 elements of either 0 or 1. The Jaccard index loss can be defined with respect
to M as below.

Δፉᑔ =
|M|

|{𝑦∗ = 𝑐} ∪M|
(4.6)

Lovász-Softmax loss [2] is a surrogate to optimize a neural network directly on Jaccard index.
The Lovász-Softmax loss in multi class setting is defined as below.

𝔏 = 1
|𝒞| ∑

∈𝒞
Δፉᑔ(𝑚(𝑐)) (4.7)

𝑚(𝑐) ∈ [0, 1]፩ is an error vector that records the probability for each point 𝑖 ∈ [1, 𝑝] that is
misclassified in terms of class 𝑐 ∈ 𝒞.

𝑚።(𝑐) = {
1 − 𝑓።(𝑐) if 𝑐 = 𝑦∗።
𝑓።(𝑐) otherwise (4.8)

Δፉᑔ is the Lovász extension of Jaccard index loss Δፉᑔ . Equation (4.6) has been proved to be
submodular [52]. The Lovász extension of a submodular function is convex and continuous
and it can be minimized efficiently. The minimization of Lovász extension of a submodular
function is an ideal surrogate for minimizing a submodular set function. In addition, the op-
erations in Lovász-Softmax loss are differentiable and can be implemented on GPU with high
efficiency [2]. Lovász-Softmax loss considers all classes by computing the mean of Δፉᑔ , 𝑐 ∈ 𝒞,
which is similar to the operation in mIoU.

As mentioned in [2], optimizing batch mIoU is not completely equivalent to optimizing dataset
mIoU, because of the absence of some of the classes under the mini-batch setting. We here
adopt an idea to combine cross-entropy loss and Lovász-Softmax loss for a more accurate and
stable training.

𝐿𝑜𝑠𝑠 = −1𝑝

፩

∑
።ኻ
log 𝑓። (𝑦∗።) + l

1
|𝒞| ∑

∈𝒞
Δፉᑔ(𝑚(𝑐)) +

𝜆
2𝑛 ∑

፰
𝑤ኼ (4.9)

The final loss function is defined in equation (4.9). The first term is cross-entropy loss, which
ensures the successful and stable convergence of the training process. The second term is
Lovász-Softmax loss with empirical intensity parameter l . This term provides extra penalty in
order to optimize the parameters in the direction of a higher mIoU. The intensity parameter
can be adjusted to keep a balance between cross-entropy loss and Lovász-Softmax loss. In
experiments, l is set to 2 for Paris and Lille 3D benchmark. The third term is L2 regularization

31

term. This term can prevent overfitting by minimizing the weights. 𝜆 is weight decay parame-
ter. 𝑤 represents all the weights in the neural network. 𝑛 is the number of training samples.
The experiments show that the combined loss can improve the performance by 6.6 mIoU(%).

Loss mIoU(%)
Cross-entropy loss 68.9

Combined loss 75.5

Table 4.11: Performance of models with different loss functions

32

5
Conclusion and Future Work

In this work, we think outside the box of conventional point cloud deep learning. Our inspi-
ration origins from human perception. We try to incorporate contextual relations of underly-
ing shapes among points into computation. For this purpose, we design geometric features
representing underlying shapes of points. Geometric priors are further generated to define
contextual relations of point pairs. Permutation invariant geometric prior convolution with
8 orientation search is responsible for integrating these contextual relations on points. A
backbone network is designed to accommodate geometric prior convolution layers to achieve
point-wise classification. We call the final network GP-net. Our ablation studies show the
architecture of GP-net has been optimized. The test results on Paris and Lille 3D benchmark
show GP-net can achieve state-of-the-art performance. We also show Lovász-Softmax loss
can be generalized to improve the performance of point cloud semantic segmentation neural
networks.

Though GP-net has a good performance on Paris and Lille 3D benchmark, we believe the
point searching method for providing the contextual relations can be further improved. 8 ori-
entation search outperforms other point searching methods in our experiments, but a draw-
back is conspicuous. The points searched by 8 orientation search are not guaranteed to be
in different homogeneous partitions. This implicit searching scheme may fail to provide ef-
fective contextual information on a different dataset. An alternative of 8 orientation search
should be proposed. In addition, the quality of contextual information also relies on the qual-
ity of homogeneous partition process. The method that we follow is unsupervised, and it is
computation-costly. [19] proposes to use neural networks to perform the oversegmentation
on a point cloud in a supervised manner. A more efficient and effective homogeneous partition
method is worth being further studied to provide a more meaningful shape representation of
the point cloud. The current point-based neural networks also have a limitation. The neural
networks can only process a fixed number of points. This limits its ability to process large
scale point clouds, while making use of spatial information in a wider range. This can be
resolved by researching a more efficient point cloud data representation without a sacrifice of
its spatial information.

33

Bibliography
[1] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep convolutional

encoder-decoder architecture for image segmentation. arXiv preprint arXiv:1511.00561,
2015.

[2] Maxim Berman, Amal Rannen Triki, and Matthew B Blaschko. The lovász-softmax loss: A
tractable surrogate for the optimization of the intersection-over-union measure in neural
networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 4413–4421, 2018.

[3] Alexandre Boulch, Joris Guerry, Bertrand Le Saux, and Nicolas Audebert. Snapnet:
3d point cloud semantic labeling with 2d deep segmentation networks. Computers &
Graphics, 71:189–198, 2018.

[4] Nesrine Chehata, Li Guo, and Clément Mallet. Airborne lidar feature selection for urban
classification using random forests. International Archives of Photogrammetry, Remote
Sensing and Spatial Information Sciences, 38(Part 3):W8, 2009.

[5] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using
rnn encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078,
2014.

[6] Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber, Thomas A Funkhouser, and
Matthias Nießner. Scannet: Richly-annotated 3d reconstructions of indoor scenes. In
CVPR, volume 2, page 10, 2017.

[7] Jerome Demantke, Clément Mallet, Nicolas David, and Bruno Vallet. Dimensionality
based scale selection in 3d lidar point clouds. Int. Arch. Photogramm. Remote Sens. Spat.
Inf. Sci, 38(5):W12, 2011.

[8] Jérôme Demantké, Bruno Vallet, and Nicolas Paparoditis. Streamed vertical rectangle
detection in terrestrial laser scans for facade database production. IAPRS I-3, pages 99–
104, 2012.

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pat-
tern recognition, pages 248–255. Ieee, 2009.

[10] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

[11] Stéphane Guinard and Loïc Landrieu. Weakly supervised segmentation-aided classifica-
tion of urban scenes from 3d lidar point clouds. In ISPRS Workshop 2017, 2017.

[12] Timo Hackel, Jan D Wegner, and Konrad Schindler. Fast semantic segmentation of 3d
point clouds with strongly varying density. ISPRS Annals of Photogrammetry, Remote
Sensing & Spatial Information Sciences, 3(3), 2016.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[14] Jing Huang and Suya You. Point cloud labeling using 3d convolutional neural network.
In Pattern Recognition (ICPR), 2016 23rd International Conference on, pages 2670–2675.
IEEE, 2016.

35

[15] Xu Jia, Bert De Brabandere, Tinne Tuytelaars, and Luc V Gool. Dynamic filter networks.
In Advances in Neural Information Processing Systems, pages 667–675, 2016.

[16] Mingyang Jiang, Yiran Wu, and Cewu Lu. Pointsift: A sift-like network module for 3d
point cloud semantic segmentation. arXiv preprint arXiv:1807.00652, 2018.

[17] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[18] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems,
pages 1097–1105, 2012.

[19] Loic Landrieu and Mohamed Boussaha. Point cloud oversegmentation with graph-
structured deep metric learning. arXiv preprint arXiv:1904.02113, 2019.

[20] Loic Landrieu and Guillaume Obozinski. Cut pursuit: Fast algorithms to learn piecewise
constant functions on general weighted graphs. SIAM Journal on Imaging Sciences, 10
(4):1724–1766, 2017.

[21] Loic Landrieu and Martin Simonovsky. Large-scale point cloud semantic segmentation
with superpoint graphs. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 4558–4567, 2018.

[22] Jiaxin Li, Ben M Chen, and Gim Hee Lee. So-net: Self-organizing network for point
cloud analysis. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 9397–9406, 2018.

[23] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. Pointcnn:
Convolution on x-transformed points. In Advances in Neural Information Processing Sys-
tems, pages 820–830, 2018.

[24] Zhidong Liang, Ming Yang, Liuyuan Deng, Chunxiang Wang, and Bing Wang. Hierarchi-
cal depthwise graph convolutional neural network for 3d semantic segmentation of point
clouds. 2019 IEEE International Conference on Robotics and Automation (ICRA), 2019.

[25] Wei Liu, Andrew Rabinovich, and Alexander C Berg. Parsenet: Looking wider to see
better. arXiv preprint arXiv:1506.04579, 2015.

[26] Yongcheng Liu, Bin Fan, Shiming Xiang, and Chunhong Pan. Relation-shape convolu-
tional neural network for point cloud analysis. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 8895–8904, 2019.

[27] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for
semantic segmentation. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 3431–3440, 2015.

[28] David G Lowe. Distinctive image features from scale-invariant keypoints. International
journal of computer vision, 60(2):91–110, 2004.

[29] Daniel Maturana and Sebastian Scherer. Voxnet: A 3d convolutional neural network for
real-time object recognition. In Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ
International Conference on, pages 922–928. IEEE, 2015.

[30] Warren SMcCulloch andWalter Pitts. A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

[31] Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. Learning deconvolution network for
semantic segmentation. In Proceedings of the IEEE international conference on computer
vision, pages 1520–1528, 2015.

36

[32] Mark Pauly, Markus Gross, and Leif P Kobbelt. Efficient simplification of point-sampled
surfaces. In Proceedings of the conference on Visualization’02, pages 163–170. IEEE Com-
puter Society, 2002.

[33] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning
on point sets for 3d classification and segmentation. Proc. Computer Vision and Pattern
Recognition (CVPR), IEEE, 1(2):4, 2017.

[34] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierar-
chical feature learning on point sets in a metric space. In Advances in Neural Information
Processing Systems, pages 5099–5108, 2017.

[35] Md Atiqur Rahman and Yang Wang. Optimizing intersection-over-union in deep neural
networks for image segmentation. In International symposium on visual computing, pages
234–244. Springer, 2016.

[36] Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger. Octnet: Learning deep 3d repre-
sentations at high resolutions. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, volume 3, 2017.

[37] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In International Conference on Medical image computing
and computer-assisted intervention, pages 234–241. Springer, 2015.

[38] Frank Rosenblatt. The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review, 65(6):386, 1958.

[39] Riccardo Roveri, Lukas Rahmann, A Cengiz Oztireli, and Markus Gross. A network ar-
chitecture for point cloud classification via automatic depth images generation. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4176–
4184, 2018.

[40] Xavier Roynard, Jean-Emmanuel Deschaud, and François Goulette. Paris-lille-3d:
A large and high-quality ground-truth urban point cloud dataset for automatic seg-
mentation and classification. The International Journal of Robotics Research, page
0278364918767506, 2017.

[41] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Mon-
fardini. The graph neural network model. IEEE Transactions on Neural Networks, 20(1):
61–80, 2008.

[42] Martin Simonovsky and Nikos Komodakis. Dynamic edgeconditioned filters in convolu-
tional neural networks on graphs. In Proc. CVPR, 2017.

[43] Hugues Thomas, François Goulette, Jean-Emmanuel Deschaud, and Beatriz Marcotegui.
Semantic classification of 3d point clouds with multiscale spherical neighborhoods. In
2018 International Conference on 3D Vision (3DV), pages 390–398. IEEE, 2018.

[44] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud, Beatriz Marcotegui, François
Goulette, and Leonidas J Guibas. Kpconv: Flexible and deformable convolution for point
clouds. arXiv preprint arXiv:1904.08889, 2019.

[45] ChristophWaldhauser, Ronald Hochreiter, Johannes Otepka, Norbert Pfeifer, Sajid Ghuf-
far, Karolina Korzeniowska, and Gerald Wagner. Automated classification of airborne
laser scanning point clouds. In Solving Computationally Expensive Engineering Problems,
pages 269–292. Springer, 2014.

[46] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and
Justin M Solomon. Dynamic graph cnn for learning on point clouds. arXiv preprint
arXiv:1801.07829, 2018.

37

[47] Martin Weinmann, Boris Jutzi, and Clément Mallet. Feature relevance assessment for
the semantic interpretation of 3d point cloud data. ISPRS Annals of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, 5:W2, 2013.

[48] Martin Weinmann, Steffen Urban, Stefan Hinz, Boris Jutzi, and Clément Mallet. Dis-
tinctive 2d and 3d features for automated large-scale scene analysis in urban areas.
Computers & Graphics, 49:47–57, 2015.

[49] Martin Weinmann, Michael Weinmann, Clément Mallet, and Mathieu Brédif. A
classification-segmentation framework for the detection of individual trees in dense mms
point cloud data acquired in urban areas. Remote sensing, 9(3):277, 2017.

[50] Karen F West, Brian N Webb, James R Lersch, Steven Pothier, Joseph M Triscari, and
A Evan Iverson. Context-driven automated target detection in 3d data. In Automatic
Target Recognition XIV, volume 5426, pages 133–144. International Society for Optics
and Photonics, 2004.

[51] Zhishuang Yang, Wanshou Jiang, Bo Xu, Quansheng Zhu, San Jiang, and Wei Huang.
A convolutional neural network-based 3d semantic labeling method for als point clouds.
Remote Sensing, 9(9):936, 2017.

[52] Jiaqian Yu and Matthew B Blaschko. The lovász hinge: A novel convex surrogate for
submodular losses. IEEE transactions on pattern analysis andmachine intelligence, 2018.

[53] Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue Zhang, Xiaogang Wang, Ambrish
Tyagi, and Amit Agrawal. Context encoding for semantic segmentation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 7151–7160,
2018.

[54] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyramid
scene parsing network. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2881–2890, 2017.

[55] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning for point cloud based 3d ob-
ject detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4490–4499, 2018.

38

	Introduction
	Literature
	Background on deep learning
	Perceptron and activation function
	Multi-layer perceptrons
	Convolution layer
	Pooling layer
	Softmax and loss function

	Related work
	Semantic segmentation based on hand-crafted features
	Voxel-based methods
	Image-based methods
	Point-based methods
	Graph-based method

	Methodology
	Backbone network
	Geometric prior convolution
	Rationale
	Geometric features
	Learning from contextual relations

	GP-net
	Implementation details

	Results and Discussion
	Dataset and experimental setup
	Results
	Discussion
	Structure of GP-net
	Geometric prior convolution
	Combined Lovász-Softmax loss

	Conclusion and Future Work
	Bibliography

