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We present and demonstrate a general three-step method for extracting the quantum efficiency of dispersive
qubit readout in circuit QED. We use active depletion of post-measurement photons and optimal integra-
tion weight functions on two quadratures to maximize the signal-to-noise ratio of non-steady-state homodyne
measurement. We derive analytically and demonstrate experimentally that the method robustly extracts the
quantum efficiency for arbitrary readout conditions in the linear regime. We use the proven method to opti-
mally bias a Josephson traveling-wave parametric amplifier and to quantify the different noise contributions
in the readout amplification chain.

Many protocols in quantum information processing,
like quantum error correction1,2, require rapid interleav-
ing of qubit gates and measurements. These measure-
ments are ideally nondemolition, fast, and high fidelity.
In circuit QED3–5, a leading platform for quantum com-
puting, nondemolition readout is routinely achieved by
off-resonantly coupling a qubit to a resonator. The
qubit-state-dependent dispersive shift of the resonator
frequency is inferred by measuring the resonator response
to an interrogating pulse using homodyne detection. A
key element setting the speed and fidelity of dispersive
readout is the quantum efficiency6, which quantifies how
the signal-to-noise ratio is degraded with respect to the
limit imposed by quantum vacuum fluctuations.

In recent years, the use of superconducting paramet-
ric amplifiers7–11 as the front end of the readout am-
plification chain has boosted the quantum efficiency to-
wards unity, leading to readout infidelity on the order
of one percent12,13 in individual qubits. Most recently,
the development of traveling-wave parametric ampli-
fiers14,15 (TWPAs) has extended the amplification band-
width from tens of MHz to several GHz and with suffi-
cient dynamic range to readout tens of qubits. For char-
acterization and optimization of the amplification chain,
the ability to robustly determine the quantum efficiency
is an important benchmark.

A common method for quantifying the quantum effi-
ciency η that does not rely on calibrated noise sources
compares the information obtained in a weak qubit mea-
surement (expressed by the signal-to-noise-ratio SNR) to
the dephasing of the qubit (expressed by the decay of the
off-diagonal elements of the qubit density matrix)16,17,

η = SNR2

4βm
, with e−βm = |ρ01(T )|

|ρ01(0)| , where T is the measure-

ment duration. Previous experimental work14,18–20 has
been restricted to fast resonators driven under specific

symmetry conditions such that information is contained
in only one quadrature of the output field and in steady
state. To allow in-situ calibration of η in multi-qubit de-
vices under development21–25, a method is desirable that
does not rely on either of these conditions.

In this Letter, we present and demonstrate a general
three-step method for extracting the quantum efficiency
of linear dispersive readout in cQED. Our method dis-
poses with previous requirements in both the dynamics
and the phase space trajectory of the resonator field,
while requiring two easily met conditions: the deple-
tion of resonator photons post measurement26,27, and the
ability to perform weighted integration of both quadra-
tures of the output field28,29. We experimentally test
the method on a qubit-resonator pair with a Josephson
TWPA (JTWPA)14 at the front end of the amplification
chain. To prove the generality of the method, we extract
a consistent value of η for different readout drive frequen-
cies and drive envelopes. Finally, we use the method to
optimally bias the JTWPA and to quantify the different
noise contributions in the readout amplification chain.

We first derive the method, obtaining experimental
boundary conditions. For a measurement in the linear
dispersive regime of cQED, the internal field α(t) of the
readout resonator, driven by a pulse with envelope εf(t)
and detuned by ∆ from the resonator center frequency,
is described by16,30

∂α|0〉/|1〉

∂t
= −iεf(t)− i(∆± χ)α(t)− κ

2
α(t), (1)

where κ is the resonator linewidth and 2χ is the disper-
sive shift. The upper (lower) sign has to be chosen for
the qubit in the ground |0〉 [excited |1〉] state. We study
the evolution of the SNR and the measurement-induced
dephasing as a function of the drive amplitude ε, while
keeping T constant. We find that the SNR scales linearly,
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FIG. 1. The three-step method for extracting the quantum efficiency with active photon depletion. (a) Calibration of the
optimal weight functions for the in-phase quadrature I and out-of-phase quadrature Q for active depletion (passive depletion is
shown for reference). The measurement pulse consists of a ramp-up of duration τup = 600 ns and two 200 ns depletion segments
(τd = 400 ns). The weight functions show the dynamics of the information gain during readout and the effect of the active
photon depletion (grey area). Dashed black curves are extracted from a linear model (see supplementary material). (b) Study of
dephasing under variable-strength weak measurement. Observed Ramsey fringes at from left to right ε = 0.0, 0.12, 0.25 V. The
measurement pulse, globally scaled with ε, is embedded in a fixed-length (T = 1100 ns) Ramsey sequence with final strong fixed-
amplitude measurement. The azimuthal angle ϕ of the final π/2 rotation is swept from 0 to 4π to discern deterministic phase
shifts and dephasing. The coherence |ρ01| is extracted by fitting each fringe with the form σz = 2 |ρ01| cos (ϕ+ ϕ0). (c) Study
of signal-to-noise ratio of variable-strength weak measurement. Histograms of 215 shots at from left to right: ε = 0.0, 0.12, 0.25
V. The qubit is prepared in |0〉 without (blue) and in |1〉 with a π pulse (red). Each measurement record is integrated in real
time with the weight functions of (a) during T = 1100 ns to obtain Vint. Each histogram (markers) is fitted with the sum of
two Gaussian functions (solid lines), whose individual components are indicated by the dashed lines. From the fits we get the
signal, distance between the main Gaussian for |0〉 and |1〉, and noise, their average standard deviations. (d) Quantum efficiency

extraction. Coherence data is fitted with the form |ρ01| = be−ε
2/2σ2

and signal-to-noise data with the form SNR = aε. From
the best fits we extract ηe = a2σ2/2 = 0.165± 0.002.

SNR = aε, and that coherence elements exhibit a Gaus-

sian dependence, |ρ01(T, ε)| = |ρ01(T, 0)| e−
ε2

2σ2m , with a
and σm dependent on κ, χ, ∆, and f(t). Furthermore,
we find (Supplementary material)

η =
SNR2

4βm
=
σ2

ma
2

2
(2)

provided two conditions are met. The conditions are:
i) optimal integration functions28,29 are used to opti-
mally extract information from both quadratures, and
ii) the intra-resonator field vanishes at the beginning and
end; i.e., photons are depleted from the resonator post-
measurement.

To meet these conditions, we introduce a three-
step experimental method. First, tuneup active pho-
ton depletion (or depletion by waiting) and calibra-
tion of the optimal integration weights. Second, obtain
the measurement-induced dephasing of variable-strength
weak measurement by including the pulse within a Ram-
sey sequence. Third, measure the SNR of variable-
strength weak measurement from single-shot readout his-
tograms.

We test the method on a cQED test chip contain-
ing seven transmon qubits with dedicated readout res-
onators, each coupled to one of two feedlines (see sup-
plementary material). We present data for one qubit-
resonator pair, but have verified the method with other
pairs in this and other devices. The qubit is oper-
ated at its flux-insensitive point with a qubit frequency
fq = 5.070 GHz, where the measured energy relax-
ation and echo dephasing times are T1 = 15 µs and
T2,echo = 26 µs, respectively. The resonator has a low-
power fundamental at fr,|0〉 = 7.852400 GHz (fr,|1〉 =
fr,|0〉 + χ/π = 7.852295 GHz) for qubit in |0〉 (|1〉), with
linewidth κ/2π = 1.4 MHz. The readout pulse gener-
ation and readout signal integration are performed by
single-sideband mixing. Pulse-envelope generation, de-
modulation and signal processing are performed by a
Zurich Instruments UHFLI-QC with 2 AWG channels
and 2 ADC channels running at 1.8 GSample/s with 14−
and 12−bit resolution, respectively.

In the first step, we tune up the depletion steps and
calibrate the optimal integration weights. We use a mea-
surement ramp-up pulse of duration τup = 600 ns, fol-
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lowed by a photon-depletion counter pulse26,27 consisting
of two steps of 200 ns duration each, for a total deple-
tion time τd = 400 ns. To successfully deplete without
relying on symmetries that are specific to a readout fre-
quency at the midpoint between ground and excited state
resonances (i.e., ∆ = 0), we vary 4 parameters of the
depletion steps (details provided in the supplementary
material). From the averaged transients of the finally
obtained measurement pulse, we extract the optimal in-
tegration weights given by28,29 the difference between the
averaged transients for |0〉 and |1〉 [Fig. 1(a)]. The suc-
cess of the active depletion is evidenced by the nulling
at the end of τd. In this initial example, we connect to
previous work by setting ∆ = 0, leaving all measurement
information in one quadrature.

We next use the tuned readout to study its
measurement-induced dephasing and SNR to finally ex-
tract η. We measure the dephasing by including the
measurement-and-depletion pulse in a Ramsey sequence
and varying its amplitude, ε [Figs. 1(b)]. By varying
the azimuthal angle of the second qubit pulse, we al-
low distinguishing dephasing from deterministic phase
shifts and extract |ρ01| from the amplitude of the fit-
ted Ramsey fringes. The SNR at various ε is extracted
from single-shot readout experiments preparing the qubit
in |0〉 and |1〉 [Figs. 1(c)]. We use double Gaussian
fits in both cases, neglecting measurement results in the
spurious Gaussians to reduce corruption by imperfect
state preparation and residual qubit excitation and re-
laxation. As expected, as a function of ε, |ρ01| decreases
following a Gaussian form and the SNR increases lin-
early [Fig. 1(d)]. The best fits to both dependencies give
ηe = 0.165 ± 0.002. Note that both dephasing and SNR
measurements include ramp-up, depletion and an addi-
tional τbuffer = 100 ns, making the total measurement
window T = τup + τd + τbuffer = 1100 ns.

We next demonstrate the generality of the method by
extracting η as a function of the readout drive frequency.
We repeat the method at fifteen readout drive detunings
over a range of 2.8 MHz ∼ κ/π ∼ 14χ/π around ∆ = 0
[Figs. 2(a,b)]. Furthermore, we compare the effect of us-
ing optimal weight functions versus square weight func-
tions, and the effect of using active versus passive photon
depletion. The square weight functions correspond to a
single point in phase space during T , with unit amplitude
and an optimized phase maximizing SNR. We satisfy the
zero-photon field condition by depleting the photons ac-
tively with T = 1100 ns (as in Fig. 1) or passively by
waiting with T = 2100 ns. When information is extracted
from both quadratures using optimal weight functions,
we measure an average ηe = 0.167 with 0.004 standard
deviation. The extracted optimal integration functions
in the time domain [Figs. 2(c,d)] show how the resonator
returns to the vacuum for both active and passive de-
pletion. Square weight functions are not able to track
the measurement dynamics in the time domain (even at
∆ = 0), leading to a reduction in ηe. Figures 2(e,f) show
the weight functions in phase space. The opening of the

FIG. 2. (a) Pulsed feedline transmission near the low-power
resonator fundamentals. The qubit is prepared in |0〉 without
(blue) and in |1〉 with a π pulse (red). The data fits κ/2π =
1.4 MHz and fr,|0〉 = 7.852400 GHz (fr,|1〉 = 7.852295 GHz),
indicated by the dashed vertical lines. (b) Quantum efficiency
extraction as a function of ∆ using the pulse timings and
three-step method of Fig. 1. We use both the active depletion
(T = 1100 ns) and passive depletion schemes (T = 2100 ns)
and assess the benefit of optimal weights to standard square
integration weights. (c,d) Optimal weight functions for I and
Q at ∆/2π = −1.4 MHz, −0.8 MHz [as in Fig. 1(a)]. (e, f)
Parametric plot of the optimal weight functions at all mea-
sured ∆ [marker colors correspond to (a)]. Dashed black
curves (b-f) are extracted from a linear model (see supple-
mentary material).

trajectories with detuning illustrates the rotating opti-
mal measurement axis during measurement and leads to
a further reduction of increase of ηe when square weight
functions are used. The dynamics and the ηe dependence
on ∆ are excellently described by the linear model, which
uses eq. 1, the separately calibrated κ and χ [Fig. 2(a)]
and η = 0.1670 (details in the supplementary material).
Furthermore, the matching of the dynamics and deple-
tion pulse parameters (see supplementary material) when
using active photon depletion confirm the numerical op-
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FIG. 3. JTWPA pump tuneup to maximize the quantum
efficiency and amplification chain modeling. (a) Simplified
setup diagram, showing the input paths for the readout sig-
nal carrying the information on the qubit state and the added
pump tone biasing the JTWPA. Both microwave tones are
combined in the JTWPA amplifying the small readout sig-
nal. (b) ηe as a function of pump power and frequency. (c)
CW low-power transmission of the JTWPA showing the dip
in transmission due to the dispersion feature near 8.3 GHz
and low-power insertion loss of ∼ 4.0 dB near fr,|0〉 (dashed
vertical line). The grey area indicates the frequency range
of (b). S21 is obtained by measuring and comparing the
output power when selecting the pump input or the refer-
ence input (input lines are duplicates and calibrated up to
the directional couplers at room temperature). (d) Paramet-
ric plot of ηe at fpump = 8.13 GHz and independently mea-
sured JTWPA gain. The fit (line) uses a three-stage model
with η(GJTWPA) = ηpre×ηJTWPAd(GJTWPA)×ηpost(GJTWPA)
[model details in the main text]. (e) Plots of the best-fit ηpre,
ηJTWPAd(GJTWPA) and ηpost(GJTWPA). The stars (b, d) and
vertical dashed lines (d, e) indicate (Ppump = −71.0 dBm,
fpump = 8.13 GHz, η = 0.1670, GJTWPA = 21.6 dB) used
throughout the experiment.

timization techniques.

To further test the robustness of the method to arbi-
trary pulse envelopes, we have used a measurement-and-
depletion pulse envelope f(t) resembling a typical Dutch
skyline. The pulse envelope outlines five canal houses, of
which the first three ramp up the resonator and the latter
two are used as the tunable depletion steps. Completing
the three steps, we extract (see supplementary material)
ηe = 0.167±0.005, matching our previous value to within
error.

We use the proven method to optimally bias the
JTWPA and to quantify the different noise contributions
in the readout chain. To this end, we map ηe as a function
of pump power and frequency, just below the dispersive
feature of the JTWPA, finding the maximum ηe = 0.1670
at (Ppump = −71.0 dBm, fpump = 8.13 GHz) [Figs. 3(a-

c)]. We next compare the obtained ηe at the optimal
bias frequency to independent low-power measurements
of the JTWPA gain GJTWPA we find GJTWPA = 21.6 dB
at the optimal bias point. We fit this parametric
plot with a three-stage model, with noise contribu-
tions before, in and after the JTWPA, η(GJTWPA) =
ηpre× ηJTWPAd(GJTWPA)× ηpost(GJTWPA). The param-
eter ηpre captures losses in the device and the microwave
network between the device and the JTWPA and is
therefore independent of GJTWPA. The JTWPA has a
distributed loss along the amplifying transmission line,
which is modeled as an array of interleaved sections
with quantum-limited amplification and sections with
attenuation adding up to the total insertion loss of
the JTWPA (as in Ref. 14). Finally, the post-JTWPA
amplification chain is modeled with a fixed noise tem-
perature, whose relative noise contribution diminishes
as GJTWPA is increased. The best fit [Figs. 3(d,e)] gives
ηpre = 0.22, consistent with 50% photon loss due to
symmetric coupling of the resonator to the feedline input
and output, an attenuation of the microwave network
between device and JTWPA of 2 dB and residual loss in
the JTWPA of 27%. We fit a distributed insertion loss
of the JTWPA of 4.6 dB, closely matching the separate
calibration of 4.2 dB [Fig. 3(c)]. Finally, we fit a noise
temperature of 2.6 K, close to the HEMT amplifier’s
factory specification of 2.2 K.

We identify room for improving ηe to ∼ 0.5 by im-
plementing Purcell filters with asymmetric coupling20,31

(primarily to the output line) and decreasing the inser-
tion loss in the microwave network, by optimizing the
setup for shorter and superconducting cabling between
device and JTWPA.

In conclusion, we have presented and demonstrated a
general three-step method for extracting the quantum
efficiency of linear dispersive qubit readout in cQED. We
have derived analytically and demonstrated experimen-
tally that the method robustly extracts the quantum
efficiency for arbitrary readout conditions in the linear
regime. This method will be used as a tool for readout
performance characterization and optimization.

See supplementary material for a description of the
linear model, the derivation of Eq. (2), a description of
the depletion tuneup and additional figures.
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Gambetta, Phys. Rev. Lett. 119, 180501 (2017).

24C. Neill, P. Roushan, K. Kechedzhi, S. Boixo, S. V. Isakov,
V. Smelyanskiy, R. Barends, B. Burkett, Y. Chen, Z. Chen,
B. Chiaro, A. Dunsworth, A. Fowler, B. Foxen, R. Graff, E. Jef-
frey, J. Kelly, E. Lucero, A. Megrant, J. Mutus, M. Neeley,
C. Quintana, D. Sank, A. Vainsencher, J. Wenner, T. C. White,
H. Neven, and J. M. Martinis, arXiv:1709.06678 (2017).

25R. Versluis, S. Poletto, N. Khammassi, B. Tarasinski, N. Haider,
D. J. Michalak, A. Bruno, K. Bertels, and L. DiCarlo, Phys. Rev.
Applied 8, 034021 (2017).

26D. T. McClure, H. Paik, L. S. Bishop, M. Steffen, J. M. Chow,
and J. M. Gambetta, Phys. Rev. Appl. 5, 011001 (2016).

27C. C. Bultink, M. A. Rol, T. E. O’Brien, X. Fu, B. C. S. Dikken,
C. Dickel, R. F. L. Vermeulen, J. C. de Sterke, A. Bruno, R. N.
Schouten, and L. DiCarlo, Phys. Rev. Appl. 6, 034008 (2016).

28C. A. Ryan, B. R. Johnson, J. M. Gambetta, J. M. Chow, M. P.
da Silva, O. E. Dial, and T. A. Ohki, Phys. Rev. A 91, 022118
(2015).

29E. Magesan, J. M. Gambetta, A. D. Córcoles, and J. M. Chow,
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SUPPLEMENTARY MATERIAL FOR “GENERAL
METHOD FOR EXTRACTING THE QUANTUM
EFFICIENCY OF DISPERSIVE QUBIT READOUT IN
CIRCUIT QED“

This supplement provides additional sections and fig-
ures in support of claims in the main text. In Sec. I,
we present details of the linear model we use to describe
the resonator and qubit dynamics during linear disper-
sive readout. In Sec. II, we describe how we evaluated
these expressions to obtain the dashed lines in Fig. 2 of
the main text, to which experimental results are com-
pared. In Sec. III, we show that Eq. (2) follows from the
linear model. Sec. IV provides the cost function used for
the optimization of depletion pulses. Figure S1 supplies
the optimized depletion pulse parameters as a function of
∆ and the SNR and coherence as a function of the drive
amplitude and ∆. Figure S2 shows the extraction of ηe

for an alternative pulse shape. Finally, Fig. S3 provides
a full wiring diagram and a photograph of the device.

I. MODELING OF RESONATOR DYNAMICS AND
MEASUREMENT SIGNAL

In this section, we give the expressions that model the
resonator dynamics and measured signal in the linear dis-
persive regime.

In general, the measured homodyne signal consists of
in-phase (I) and in-quadrature (Q) components, given
by1

VI,|i〉(t) = V0

(√
2κηRe(α|i〉(t)) + nI(t)

)
,

VQ,|i〉(t) = V0

(√
2κηIm(α|i〉(t)) + nQ(t)

)
. (S1)

Here, V0 is an irrelevant gain factor and nI, nQ are con-
tinuous, independent Gaussian white noise terms with
unit variance, 〈nj(t)nk(t′)〉 = δjkδ(t − t′), while the in-
ternal resonator field α|i〉 follows Eq. (1) for i ∈ {0, 1}.
In the shunt resonator arrangement used on the device
for this work, the measured signal also includes an ad-
ditional term describing the directly transmitted part of
the measurement pulse. We omitted this term here, as
it is independent of the qubit state, and thus is irrele-
vant for the following, as we will exclusively encounter
the signal difference Vint,|1〉 − Vint,|0〉.

For state discrimination, the homodyne signals are
each multiplied with weight functions, given by the differ-
ence of the averaged signals, then summed and integrated
over the measurement window of duration T :

Vint,|i〉 =

∫ T

0

wIVI,|i〉 + wQVQ,|i〉dt. (S2)

The optimal weight functions2,3 are given by the differ-
ence of the average signal

wI/Q = 〈VI/Q,|1〉 − VI/Q,|0〉〉. (S3)

As an alternative to optimal weight functions, often con-
stant weight functions are used

wI = cosφw, wQ = sinφw, (S4)

where the demodulation phase φw is usually chosen as to
maximize the SNR (see below).

We define the signal S as the absolute separation be-
tween the average Vint for |1〉 and |0〉. In turn, we define
the noise N as the standard deviation of Vint,|i〉, which is
independent of |i〉. Thus,

S =
∣∣〈Vint,|1〉 − Vint,|0〉〉

∣∣ ,
N2 = 〈V 2

int〉 − 〈Vint〉2.

The signal-to-noise ratio SNR is then given as

SNR =
S

N
. (S5)

The measurement pulse leads to measurement-induced
dephasing. Experimentally, the dephasing can be quan-
tified by including the measurement pulse in a Ramsey
sequence. The coherence elements of the qubit density
matrix are reduced due to the pulse as1

|ρ01(ε)| = e−βm |ρ01(ε = 0)| ,

where

βm = 2χ

∫ T

0

Im(α|0〉α
∗
|1〉)dt. (S6)

Thus, βm scales with ε2, and the coherence elements de-
cay as a Gaussian in ε.

II. COMPARISON OF EXPERIMENT AND MODEL

We here describe how we compared the theoretical
model given by the previous section and Eq. (1) to the
experimental data as presented in Fig. 2.

In panels (c)-(f) of Fig. 2, we compare the measured
weight functions to a numerical evaluation of Eq. (1).
The dashed lines in those panels are obtained by numer-
ically integrating Eq. (1), using the ε and ∆ applied in
experiment, and with the resonator parameters κ and χ
that are obtained from resonator spectroscopy [presented
in panel (a)]. From the resulting α|i〉 we then evaluate
Eqs. (S1) and (S3) to obtain wI/Q, presented in panels
(c)-(f). The scale factor V0 was chosen to best represent
the experimental data.

In order to model the data presented in panel (b),
we further inserted the α|i〉 into Eqs. (S5) and (S6),
and finally into Eq. (2) to obtain ηe. This step is per-
formed for both optimal weights and constant weights,
Eqs. (S3) and (S4). As shown in Fig. 2, the result de-
pends on pulse shape and ∆ when using square weights,
but does not when using optimal weights. The value for
η in Eq. (S1) is chosen as the average of ηe for optimal
weight functions, ηe = 0.167.
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III. DERIVATION OF EQUATION 2

With the definitions of the previous sections, we now
show that Eq. (2) holds for arbitrary pulses and resonator
parameters if optimal weight functions are used, so that
ηe in Fig. 2 indeed coincides with η in Eq. (S1).

Using optimal weight functions, we can evaluate
Eq. (S5) in terms of α|i〉 by inserting Eqs. (S3) and (S1),
obtaining for the signal S:

Sopt = 2κηV 2
0

∫ T

0

∣∣α|1〉 − α|0〉∣∣2 dt.
For the noise N , we obtain

N2
opt = V 2

0

〈∫ T

0

(
wInI + wQnQ

)2

dt

〉

= 2κηV 4
0

∫ T

0

∣∣α|1〉 − α|0〉∣∣2 dt,
where we used the white noise property of nI,Q(t).

The SNR is then given by

SNRopt =
Sopt

Nopt
=

√
2κη

∫ T

0

∣∣α|1〉 − α|0〉∣∣2 dt. (S7)

Note that the α|i〉 scale linearly with the amplitude ε due
to the linearity of Eq. (1), so that the SNR scales linearly
with ε as well.

We now show that the βm and SNR are related by
Eq. (2), independent of resonator and pulse parameters.
For that, we need to make use of constraint (ii), namely
that the resonator fields α|i〉 vanish at the beginning and
end of the integration window. We then can write

0 =
[∣∣α|0〉 − α|1〉∣∣2]T

0

=

∫ T

0

∂t
∣∣α|0〉 − α|1〉∣∣2 dt

= 2

∫ T

0

Re
(

(α∗|1〉 − α
∗
|0〉)∂t(α|1〉 − α|0〉)

)
dt,

where the first equality is ensured by requirement (ii),
and the second equality follows from rewriting as the in-
tegral of a differential.

We insert the differential equation Eq. (1) into this
expression, obtaining

Re

∫ T

0

(
α∗|1〉 − α

∗
|0〉

)
×((

−i∆− κ

2

) (
α|1〉 − α|0〉

)
− iχ

(
α|1〉 + α|0〉

))
dt = 0.

Isolating the κ term and dropping purely imaginary ∆

and χ terms, we obtain

κ

2

∫ T

0

∣∣α|1〉 − α|0〉∣∣2 dt
=− Re

(
iχ

∫ T

0

(
α|1〉 + α|0〉

)
(α∗|1〉 − α

∗
|0〉)dt

)

=− Re

(
iχ

∫ T

0

(
|α|1〉|2 − |α|0〉|2 + 2iIm(α|0〉α

∗
|1〉)
)
dt

)

=2χ

∫ T

0

Im(α|0〉α
∗
|1〉)dt.

Comparing the first and last line with Eqs. (S7) and
(S6), respectively, this equality shows indeed that the
SNR, when defined with optimal integration weights, and
the measurement-induced dephasing βm are related by
Eq. (2), independent of the resonator parameters κ, χ,
and the functional form εf(t) of the drive.

IV. DEPLETION TUNEUP

Here, we provide details on the depletion tuneup. The
depletion is tuned by optimizing the amplitude and phase
of both depletion steps (Fig. S1) using the Nelder-Mead
algorithm with a cost function that penalizes non-zero av-
eraged transients for both |0〉 and |1〉 during a τc = 200 ns
time window after the depletion. The transients are ob-
tained by preparing the qubit in |0〉 (|1〉) and averag-
ing the time-domain homodyne voltages VI,|0〉 and VQ,|0〉
(VI,|1〉 and VQ,|1〉) of the transmitted measurement pulse

for 215 repetitions. The cost function consists of four dif-
ferent terms. The first two null the transients in both
quadratures post-depletion. The last two additionally
penalize the difference between the transients for |0〉 and
|1〉 with a tunable factor d. In the experiment, we found
reliable convergence of the depletion tuneup for d = 10.

cost =

√∫ τup+τd+τc

τup+τd

〈VI,|0〉(t)〉2 + 〈VQ,|0〉(t)〉2dt

+

√∫ τup+τd+τc

τup+τd

〈VI,|1〉(t)〉2 + 〈VQ,|1〉(t)〉2dt

+ d

√∫ τup+τd+τc

τup+τd

〈VI,|1〉(t)− VI,|0〉(t)〉2dt

+ d

√∫ τup+τd+τc

τup+τd

〈VQ,|1〉(t)− VQ,|0〉(t)〉2dt.

In Figures S1(b,c), we show the obtained depletion
pulse parameters for different values of ∆. As a com-
parison, we show the parameters that are predicted by
numerically integrating Eq. (1), with resonator parame-
ters extracted from Fig. 2(a), and numerically finding the
depletion pulse parameters that lead to α|0,1〉(T ) = 0.
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FIG. S1. Depletion pulse parameters, coherence and SNR as
a function of detuning. (a) The measurement pulse consists
of a ramp-up of duration τup = 600 ns, fixed phase φ = 0
and amplitude ε (fixed during tuneup to ε = ε0 = 0.25 V)
and two 200 ns depletion segments (τd = 400 ns) with each
a tunable phase (φd0, φd1) and amplitude (εd0, εd1). (b,c)
Depletion pulse parameters from the depletion optimizations
used in Fig. 2. Dashed vertical lines indicate fr,|0〉 (blue)
and fr,|1〉 (red). Dashed black curves are extracted from the
linear model (see Sec. IV). Coherence (d) and SNR (e) as a
function of drive amplitude and detuning. At non-zero ε, SNR
is maximal (coherence is minimal) at the midpoint frequency
∆ = 0 and decreases (increases) with detuning.
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(d)

optimization

FIG. S2. The three-step method for quantum efficiency
extraction with a pulse envelope consisting of seventeenth-
century Dutch canal house façade outlines. (a) Pulse enve-
lope with five façades, of which the first three ramp up the
resonator with duration τup = 600 ns, fixed phase ϕ = 0
and amplitude ε (fixed during tuneup to ε = ε0 = 0.4 V)
and the last two are 240 ns and 160 ns depletion segments
(τd = 400 ns) with each a tunable phase and amplitude. (b)
Optimized depletion pulse with εd0 = 1.68ε, εd1 = 0.58ε,
φd0 = 1.005π rad, φd1 = 0.007π rad. (c) Averaged feedline
transmission of the optimized depletion pulse. The qubit is
prepared in |0〉 (blue) and in |1〉 (red). (d) Optimal weight
functions extracted for the depletion pulse (purple) and as
a reference, weight functions are shown for passive depletion
(εd0 = εd1 = 0 V). (d) Quantum efficiency extraction using
13 values of ε. The best-fit values give ηe = 0.167± 0.005.
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FIG. S3. Photograph of cQED chip (identical design as the
one used) and complete wiring diagram of electronic com-
ponents inside and outside the 3He/4He dilution refrigerator
(Leiden Cryogenics CF-CS81). The test chip contains seven
transmon qubits individually coupled to dedicated microwave
drive lines, flux bias lines and readout resonators. The three
(four) resonators on the left (right) side couple capacitively to
the left (right) feedline traversing the chip from top to bottom.
All 18 connections are made from the back side of the chip
and reach the front through vertical coax lines4. Each verti-
cal coax line consists of a central through-silicon via (TSV)
that carries the signal and seven surrounding TSVs acting
as shield connecting the front and back side ground planes.
Other, individual TSVs interconnect front side and back side
ground planes to eliminate chip modes.
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