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Abstract
Most real-world systems are affected by external disturbances, which may be
impossible or costly to measure. For instance, when autonomous robots move
in dusty environments, the perception of their sensors is disturbed. Moreover,
uneven terrains can cause ground robots to deviate from their planned trajecto-
ries. Thus, learning the external disturbances and incorporating this knowledge
into the future predictions in decision-making can significantly contribute to
improved performance. Our core idea is to learn the external disturbances that
vary with the states of the system, and to incorporate this knowledge into a
novel formulation for robust tube model predictive control (TMPC). Robust
TMPC provides robustness to bounded disturbances considering the known
(fixed) upper bound of the disturbances, but it does not consider the dynamics
of the disturbances. This can lead to highly conservative solutions. We propose
a new dynamic version of robust TMPC (with proven robust stability), called
state-dependent dynamic TMPC (SDD-TMPC), which incorporates the dynam-
ics of the disturbances into the decision-making of TMPC. In order to learn the
dynamics of the disturbances as a function of the system states, a fuzzy model
is proposed. We compare the performance of SDD-TMPC, MPC, and TMPC via
simulations, in designed search-and-rescue scenarios. The results show that,
while remaining robust to bounded external disturbances, SDD-TMPC generates
less conservative solutions and remains feasible in more cases, compared to
TMPC.

K E Y W O R D S

fuzzy-logic-based modeling, robust tube model predictive control, state-dependent disturbances

1 INTRODUCTION

Model predictive control (MPC)1,2 is a state-of-the-art control approach that can optimize multiple control objectives,
handle state and input constraints, and provide guarantees on stability and feasibility. MPC heavily relies on a model that

Abbreviation: MPC, model predictive control.
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2 SURMA and JAMSHIDNEJAD

predicts the evolution of the states of the controlled system across a given prediction horizon. Thus, unmodeled exter-
nal disturbances may lead to dangerous situations in real-life applications. For instance, search-and-rescue (SaR) robots
should operate autonomously in unknown environments that are prone to external disturbances.3,4 Therefore, for mis-
sion planning SaR robots need control methods that next to optimize the objectives of the SaR mission (e.g., maximizing
the coverage of the area in the smallest possible time) and satisfying the constraints, also, deal with external disturbances
that pose risks to the mission. Thus, MPC methods that can systematically handle the disturbances are promising for SaR
robots.

Various extensions to standard MPC, including robust and stochastic MPC, have been developed.5 In this article, we
focus on robust tube MPC (TMPC),6 which provides robustness to bounded disturbances, without significantly increasing
the online computation time. TMPC generates control inputs that are composed of two parts: a nominal and an ancillary
control input. The nominal states and control inputs of the system are determined by solving the nominal version of the
MPC optimization (obtained by excluding external disturbances). The nominal states determine the centroids of a tube
(i.e., a set of possible future states given chosen inputs and bounded disturbances) that propagates across the prediction
horizon. The cross sections of the tube lie within the state space of the system, and as long as the realized states (i.e.,
the states in the presence of the external disturbances) at the corresponding time step remain in these cross sections,
robustness is guaranteed. The ancillary controller ensures that the realized states remain inside the tube.

The nominal MPC in TMPC is not aware of the dynamics of the external disturbances. Thus, while the simplicity
of the nominal optimization problem leads to a lower computation time, this may be at the cost of compromising the
performance and generating overly conservative solutions, especially for systems with nonlinear dynamics and prone to
dynamic disturbances. Moreover, existing MPC methods, including TMPC, do not naturally allow for incorporation of the
expert knowledge. This gap should be addressed, particularly when extensive expert knowledge is available, but humans
cannot or should not participate in real-time control procedures, for instance for autonomous onboard control of SaR
robots.

1.1 Main contributions

The main contributions of this article are:

1. We introduce state-dependent tube model predictive control (SDD-TMPC), which leverages classical tube model
predictive control (TMPC) to incorporate a flexible tube that is adaptively optimized online.
• Unlike TMPC which designs a static tube offline based on the maximum expected disturbances, SDD-TMPC allows

both the size and the center of the tube to be determined by the optimization problem, taking into account
the dynamics of the external disturbances as a function of the system’s states. The resulting dynamic tube for
SDD-TMPC is always a subset of the static tube of its counterpart TMPC.

• Unlike TMPC where the ancillary control inputs are generated and included outside and independent of the
optimization loop, the nominal SDD-TMPC optimization problem includes within its loop the dependence of
the ancillary control inputs on the nominal states that are being determined. This alteration of the nominal
SDD-TMPC optimization problem, compared to TMPC, results in completely different nominal trajectories, which
based on theoretical discussions and numerical validations of the article, significantly reduce the conservativeness
and thus risk of infeasibility of SDD-TMPC.

• More specifically, while solving its nominal problem, SDD-TMPC ensures to steer the evolution of the states (i.e.,
the combination of the nominal states and errors due to the disturbances) according to online estimation of the
state-dependent disturbances. Therefore, a trade-off is achieved between optimizing the estimated states and reduc-
ing the impact of the resulting disturbances. Accordingly, compared to TMPC, SDD-TMPC systematically reduces
the risk of the infeasibility of the constrained optimization problem, as well as the conservatives (see Figure 1). This
results in improved performance in terms of the realized cost, with affordable computations.

• We prove the robust stability of SDD-TMPC under standard stability assumptions.
2. We introduce a set-based approach to model the dynamics of the state errors for SDD-TMPC based on the estimated

dynamics of the (bounds of the) disturbances and the dynamics of the system itself. The mapping that evolves the
error sets may be modeled as an analytical function or by data-based approaches (e.g., deep neural networks or fuzzy
inference systems).
• The mathematical conditions that such a mapping should generally satisfy are discussed.
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SURMA and JAMSHIDNEJAD 3

F I G U R E 1 Comparison of SDD-TMPC and TMPC, where the sequences of the circular areas in both plots illustrate the evolution of
the tube based on a prediction at the current time step. Left plot: The tube in SDD-TMPC (shown via the smaller varying green circles) is
dynamic, and always a subset of the tube of regular TMPC (shown via the larger blue circles). Thus, SDD-TMPC allows the system to perform
closer to the boundaries of hard constraints, and to potentially improve the performance, without violating these constraints. Right plot: The
nominal trajectory (shown via the blue stars) and the tube of SDD-TMPC (shown via the green varying circles) are illustrated when the states
are constrained to remain within a set shown by the black boundary curves. SDD-TMPC allows, for example, by reducing the speed of a
robot, to formulate a feasible problem and provide solutions for it, and to safely move through the narrow corridor.

T A B L E 1 Frequently used abbreviations and their explanation.

Abbreviation Explanation Abbreviation Explanation

Ai The ith assumption SaR Search and Rescue

FIS Fuzzy inference system SDD-TMPC State-dependent dynamic tube model predictive control

GA Genetic algorithm TSK-FIS Takagi–Sugeno–Kang fuzzy inference system

MPC Model predictive control TMPC Tube model predictive control

PS Particle swarm algorithm ZOH Zero-order hold

• We specifically propose a mapping that learns the dynamics of the state-dependent disturbances, initialized by exist-
ing expert knowledge, and using a fuzzy inference system (FIS). Our main motivation for using a FIS is two-folded:
First, FIS allows, without additional costs, to direct integration of the valuable knowledge of experts (e.g., expe-
rienced search-and-rescue staff) that is usually available as linguistic data, into the controller of a system (e.g.,
autonomous search-and-rescue robots). Second, while other modeling approaches, for example, neural networks
require an extensive data set to be trained, a FIS can easily be initialized with human knowledge and then be
fine-tuned online to adapt to the changing environment conditions.

3. We compare the performance of SDD-TMPC with regular MPC and with TMPC for both linear and nonlinear systems
with state-dependent external disturbances. The simulated problems correspond to autonomous robots that navigate in
unknown environments. The results confirm that SDD-TMPC outperforms both regular MPC and TMPC by generating
less conservative control inputs that still guarantee the satisfaction of the hard constraints and by resulting in an overall
smaller value for the objective function (considering a minimization problem).

Note that in various cases, by proper reformulation, model inaccuracies may also be represented as state-dependent
disturbances, as will be illustrated in the second case study of this article. Thus, SDD-TMPC can be extended to deal with
uncertainties due to model mismatches.

The rest of the article is structured as follows. In Section 2, we discuss the related work and identify the open challenges
and limitations of the state-of-the-art methods. In Section 3, we explain our proposed approaches, including SDD-TMPC,
and the fuzzy model of disturbances. We also provide proof for the stability of SDD-TMPC. In Section 4, we implement
and compare the performance of MPC, TMPC, and SDD-TMPC via computer simulations for a ground robot. Finally,
Section 6 concludes the article and suggests topics for future research. The abbreviations and mathematical notations
that are frequently used in this article are listed in Tables 1 and 2, respectively.
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4 SURMA and JAMSHIDNEJAD

T A B L E 2 Frequently used mathematical notations and their definition.

Notation Definition Notation Definition

k Time step counter in the discrete-time
domain

 A class of continuous and strictly increasing
functions starting at zero

N Prediction horizon ∞ A subclass of 

zk Nominal state vector W(xk) Set of all possible disturbances given state xk of
the system at time step k

xk State vector at time step k for a given
dynamical system

Wk Set of all possible disturbances for all possible
states estimated at time step k

ek Error between the real and the nominal
state for time step k

X Admissible set for the states

w(xk) Disturbance vector when the state of the
system is xk

Zf Terminal set for the nominal states

vk Nominal input vector U Admissible set for the control inputs

uk Input vector N Set of natural numbers

z̃k Sequence of the nominal state vectors
across the prediction horizon (i.e.,
{zk+1, … , zk+N}) estimated at time step k

R Set of real numbers

x̃k Sequence of the state vectors across the
prediction horizon (i.e., {xk+1, … , xk+N})
estimated at time step k

Ek Error set estimated for time step k, assuming
an autonomous evolution of the error set
(excluding the influence of the disturbances at
previous time step k − 1)

ṽk Sequence of the nominal input vectors
across the prediction horizon (i.e.,
{vk, … , vk+N−1}) estimated at time step k

Ek Set of all possible errors between the real and
the nominal state for time step k

ũk Sequence of the input vectors across the
prediction horizon (i.e.,
{uk, … ,uk+N−1}) estimated at time step k

T
max
k Tube of regular robust TMPC for prediction

horizon {k + 1, … , k + N} with a fixed cross
section area Emax

𝜋(⋅) Control policy of SDD-TMPC Tk Tube of SDD-TMPC for prediction horizon
{k + 1, … , k + N} with a dynamic cross
section area Ei for i = k + 1, … , k + N

𝜖(⋅) Autonomous error dynamic function,
which determines Ek based on Ek−1

⊕ Minkowski summation

(⋅)i|k prediction of a dynamic variable for time
step i, given the measurements at time
step k

⊖ Minkowski difference

2 RELATED WORK

2.1 Modeling via fuzzy inference systems

FIS can approximate any nonlinear function, when the inputs of the function are bounded.7 Various supervised
learning algorithms, for example, gradient descent,8 learning from example,9 and genetic algorithm (GA)10 have
been proposed for the FIS to learn such functions from data. One of the most common FISs used in various
applications, including robotics, is Takagi-Sugeno-Kang (TSK) FIS. TSK FISs can be updated online in a stable
way using, for example, reinforcement learning (see applications to robot navigation,11 balancing a bipedal robot,12

controlling a continuum robot13). To the best of our knowledge, FISs have never been used to model the dynam-
ics of external disturbances, especially for providing robustness for model-based control approaches, for example,
MPC.
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SURMA and JAMSHIDNEJAD 5

2.2 Robust MPC

Linear MPC is a well-known, theoretically mature control approach that has successfully been implemented in many
applications.14,15 Linear MPC was utilized to regulate multiple vehicles across various domains such as spacecraft alti-
tude control,16 ground vehicle steering,17 and drone trajectory tracking.18 The LMPC framework incorporates a linear
system, linear constraints, and a quadratic cost function. In real-life problems, including SaR, in order to deal with
nonlinear cost functions and nonlinear constraints, a nonlinear version of MPC may be used. Nonlinear model pre-
dictive control (NMPC) has been implemented in various applications including exploration of a grid world with
multiple agents,19 decision making for simultaneous localization and mapping (SLAM),20 obstacle avoidance,21 and
global path planning.22 Although MPC is robust to small disturbances (due to operating upon state feedback), lin-
ear and nonlinear MPC cannot deal with large external disturbances.5 Therefore, robust MPC approaches have been
introduced.

One of the most attractive robust MPC methods is robust tube MPC (TMPC),6 where a robust control strategy that is
designed offline is used to keep the state trajectory within an invariant tube, the center-line of which is a nominal trajec-
tory of the states that is determined online. For the sake of brevity of the notations, we refer to robust TMPC as TMPC
in the rest of the article. The nominal state trajectory can be determined for the system whenever the controller has a
perfect model of the system and there are no disturbances. Although the nominal states are predictable in such cases,
the actual states cannot be known in advance because the external disturbances are unknown. However, since the dis-
turbances are assumed to be bounded and thus the maximum error between the actual and the nominal states can be
determined, it is possible to compute a sequence Tmax

k of N sets per time step k, where each set {zi|k}⊕ Emax within this
sequence includes all the possible actual states for a given time step i within the prediction window {k + 1, … , k + N},
and N is the prediction horizon of TMPC. Then the state constraints are guaranteed to be satisfied within the prediction
window, if all the states within sequence Tmax

k satisfy the constraints. In order to prevent the actual states from deviat-
ing significantly from the corresponding nominal states, an ancillary control law, for example, an error state feedback
controller,6 another MPC controller,23 or a sliding mode control,21 is used to reduce the error between the actual and the
nominal state.

There are two common ways of designing and implementing TMPC24:

• The first approach involves determining a single error set (i.e., tube) for the entire prediction window based on
the error dynamics and the selected ancillary control law, where this error set serves as a positive robust invari-
ant set. In other words, if the current error belongs to this positive robust invariant set, then all future errors
will remain within the set. This approach benefits from a low online computational complexity since the posi-
tive robust invariant set can be computed offline. Moreover, tighter constraints can be imposed on the nominal
set, such that if the center of the positive robust invariant set is inside the tightened constraints, then the actual
state remains in the original feasible set. However, using this approach may result in more restrictive control
inputs.

• The second approach involves computing the error set per time step within the prediction window. This approach
results in a sequence of regions, known as reachable sets, which are the smallest sets of possible states for a system
prone to external disturbances that guarantee that the states remain in these sets for all time steps. This approach may
yield less conservative solutions for TMPC but requires additional online computations compared to the first approach.

Some variations of TMPC for nonlinear systems have been proposed. Nonlinear TMPC is much more challenging
than linear TMPC, particularly because it is not trivial to choose an ancillary control law and design a tube. One way
to reduce the computational complexity of nonlinear TMPC is by using parameterized TMPC, such as the approach in
Reference 25, which reduces the required online optimization into a linear programming problem. Another alternative
is to employ ellipsoids as tubes, instead of polytopic sets (see, e.g., Reference 26). Some examples of nonlinear TMPC can
be found in References 21,23,27–29.

The first implementation of robust MPC (although not TMPC) when state-dependent disturbances exist includes.30

In Reference 31 the optimization problem of robust MPC has been handled as a 2nd-order cone program. This approach,
however, can only be used for linear systems subject to a certain group of additive disturbances (i.e., disturbances
defined as the summation of an independent component from a polytope and a state and input-dependent component
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6 SURMA and JAMSHIDNEJAD

bounded via a nonconvex inequality). Similarly, in Reference 32 robust MPC has been discussed for a special class
of state-dependent disturbances. However, our proposed TMPC-based approach, that is, SDD-TMPC, is not limited to
any type of nonlinearity. Authors in Reference 21 propose a stable controller for an agent that should avoid obsta-
cles in an environment with disturbances that are proportional to the square of its velocity. The proposed method,
however, is restricted to a sliding-mode ancillary control law, and thus can only be used for feedback-linearizable or
minimum-phase systems. In Reference 33, a dynamic tube is used and is parameterized as a sublevel set of incremental
Lyapunov functions. This method is extended in Reference 34, where chance constraints and state or input-dependent
disturbances are included. This article has the most similarities with SDD-TMPC, since it uses a dynamic tube that
evolves in time, and tightens the constraints online. Using a sublevel set of incremental Lyapunov functions reduces
the conservativeness with a small increase in parameters and equations (and probably in computations) compared to
other approaches in the literature. The parameterization, however, restricts the shape of the tube, which potentially
leads to conservative decisions. In Reference 27, a neural network has been used to learn the dynamics of the tube
of robust TMPC. The neural network, however, cannot be initialized without an extensive dataset, and thus another
controller should be used until a sufficient number of data is gathered. Moreover, no proof has been provided that
the trajectory of the states remains inside the tube. In Reference 28, a Gaussian process is used to learn the distur-
bance set. The stability of the algorithm for linear systems has been proven. However, this method requires heavy
offline computations, and discretization of the state space, and may thus become intractable for systems with large state
spaces.

SDD-TMPC is proven to be stable under standard assumptions. SDD-TMPC can be used in unknown and
time-varying environments, being initially provided with intuitive human knowledge about similar environments,
using fuzzy rules, and afterward being updated online or based on newly collected real-life data from the environ-
ment. Unlike most state-of-the-art methods, SDD-TMPC is not limited to any specific class of nonlinearity and does
not restrict the choice of the ancillary control law. Moreover, unlike state-of-the-art methods that assume the bounds
or the probability distribution of the disturbances are known, for SDD-TMPC it is possible to learn the disturbances
online.

3 SDD-TMPC: IDEA, FORMULATION, AND STABILITY

In this section, we describe and formulate the problem and discuss the proposed methods for SDD-TMPC.

3.1 Problem statement

We consider a dynamic system that is described in discrete time with the state vector xk and control input
uk, and is affected by additive state-dependent external disturbances w(xk) at time step k ∈ N, where xk ∈
X ⊆ Rn, uk ∈ U ⊆ Rm, and w(xk) ∈ W(xk) ⊆ Rn. While the admissible sets X and U for, respectively, the
state and the control input are static, we allow the admissible set W(xk) of the external disturbances to
vary as a function of the state. Learning (an approximate of) the admissible set W(xk), such that it bounds
the external disturbances per state, instead of considering a set that bounds all potential external distur-
bances for the entire admissible set X in time, will introduce dynamics and reduced conservativeness into
SDD-TMPC.

The dynamic system is given by:

xk+1 = f (xk,uk) + w(xk), (1)

where f (⋅) is a time-invariant time-discrete nonlinear Lipschitz function.
We assume that the states are measured by perfect sensors, that is, per time step k the value of the state xk is perfectly

known, whereas the external disturbances are unknown and may take any arbitrary value within W(xk). The aim is to
control the dynamics of system (1), such that a given cost function J(⋅) is minimized across a prediction horizon of size
N, while it is guaranteed for the controlled system that for all admissible external disturbances the hard constraints are
always satisfied. Thus, for time step k we have:
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SURMA and JAMSHIDNEJAD 7

J∗(xk) = min
x̃k ,ũk

J(x̃k, ũk)

s.t. for i = k, … , k + N − 1
xi+1|k = f (xi|k,ui|k) + w(xi|k)
xk|k = xk

xi+1|k ∈ X

ui|k ∈ U

w(xi|k) ∈ W(xi|k)

(2)

with x̃k = [x⊤
k+1|k, … , x⊤

k+N|k]⊤, xi|k for i > k the value of xi predicted at time step k, ũk = [u⊤
k|k, … ,u⊤

k+N−1|k]⊤, ui|k for
i ≥ k the value of ui determined at time step k, and J∗(xk) an optimal value for the cost function obtained by solving
the constrained minimization problem. The cost function J(⋅) is composed of a stage cost that is accumulated across the
prediction horizon {k, … , k + N − 1}, and a terminal cost that is computed at the terminal time step k + N. The cost
function is continuous and finite for xi ∈ X, ∀i ∈ {k, … , k + N}.

3.2 State-dependent dynamic tube MPC (SDD-TMPC)

TMPC works based on the assumption of bounded external disturbances, where the boundary set Wmax for the distur-
bances is known and given.6 A main challenge for SDD-TMPC in solving (2) per time step k is that the dynamic set W(xi)
(for i = k, … , k + N − 1) is not known (neither for the current time step nor for the future time steps) and should thus
be estimated. The link between the known static set Wmax and the dynamic set W(xi) of disturbances that should be
estimated by SDD-TMPC for every prediction horizon {k + 1, … , k + N} is given by:⋃

i=k,… ,k+N−1
W(xi) ⊆ W

max. (3)

We assume that W(xi) always contains the origin. Regular TMPC uses Wmax to determine a sequence of N control inputs
and a tube Tmax

k for the entire prediction window per time step k, for which the cross section Emax remains unchanged. The
tube Tmax

k is a robust positive invariant set. The main difference between TMPC and our proposed approach, SDD-TMPC,
is in the formulation of their nominal MPC. This allows SDD-TMPC to make use of the dynamics of the external distur-
bances, in order to generate per time step k a tube Tk with a generally time-varying cross section Ei for i = k + 1, … , k + N
across the prediction horizon that improves the control performance by generating less conservative solutions. Note that
set Tk is a robust control invariant set, that is, there is at least one control policy that prevents the state trajectory from
leaving the tube. The nominal problem of SDD-TMPC is given by:

V∗(xk, zk) = min
z̃k ,ṽk ,Tk

k+N−1∑
i=k

l(zi|k, vi|k) + Vf(zk+N|k), (4a)

s.t. for i = k + 1, … , k + N ∶

zi|k = f (zi−1|k, vi−1|k), (4b)

Ei|k = 𝜖(Ei−1|k), (4c)

𝚯i−1|k = f dis({zi−1|k}⊕ Ei−1|k), (4d)

Ei|k = Ei|k ⊕ Wi−1|k(𝚯i−1|k), (4e)

xk, zk are given (4f)

Ek = {xk − zk}, (4g)
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8 SURMA and JAMSHIDNEJAD

{zi|k}⊕ Ei|k ⊆ X, (4h)

zN|k ∈ Z
f, (4i)

Tk =
{
{zk+1|k}⊕ Ek+1|k, … , {zN|k}⊕ Ek+N|k}, (4j)

𝜋
(
{zi|k}⊕ Ei|k, vi|k, zi|k) ⊆ U. (4k)

In (4a), l(⋅) is the stage cost, Vf(⋅) is the terminal cost, and z̃k and ṽk are the trajectory/sequence of, respectively, the nominal
states and the nominal control inputs within the prediction window {k + 1, … , k + N}. The realized states of the system
follow the nominal state sequence when there are no external disturbances. The nominal states zi|k are predicted at time
step k for time step i = k + 1, … , k + N according to (4b). Moreover, ⊕ represents the Minkowski addition,35 which for
every two given sets A and B is defined by:

A ⊕ B = {a + b ∶ a ∈ A, b ∈ B}. (5)

The error set Ei|k (for i = k + 1, … , k + N) for SDD-TMPC is computed in three steps: First, in (4c) the system uses
the autonomous error dynamic function 𝜖(⋅) to estimate the evolved error set, without considering the influence of the
state-dependent disturbances on the errors. The autonomous error dynamic function is determined via state-of-the-art
methods and based on the nominal model f (⋅) of the system dynamics and the policy 𝜋(⋅), assuming no external distur-
bances exist. Note that the error vector is defined in the prediction window by ei|k = xi|k − zi|k for i = k + 1, … , k + N.
For details on how 𝜖(⋅) can be determined, see, for example, Reference 6, for linear TMPC and Reference 21 for nonlin-
ear TMPC. Second, in (4d) a mapping, f dis, is used to determine, based on the estimated nominal states (see (4b)) and the
error set corresponding to the previous time step, a vector of parameters 𝚯i−1|k. This vector is then used in (4e) to deter-
mine an admissible set Wi−1|k per time step i (i = k + 1, … , k + N) that contains all the possible disturbances at time step
i − 1 that can result in all the possible states at time step i. Note that mathematically, f dis can in general be represented
by any mappings (e.g., an analytical function or a deep neural network) that properly formulate the existing knowledge
about the state-dependent disturbances, as long as the mapping meets the conditions explained in Section 3.3.1. The dis-
turbance model (i.e., f dis in (4c) is in general developed offline, based on the existing general knowledge that corresponds
the expected disturbance levels with the states of the environment, thus the states of the robot. Such prior information
may be available as quantified data or in linguistic terms (e.g., via expert search-and-rescue staff). Accordingly, the most
suitable ways for modeling (e.g., machine learning, fuzzy-logic-based modeling) will be used. Third, the sets obtained via
the previous two steps (i.e., via (4c) and (4d)) are combined in (4e). In other words, the set Ei|k of all possible errors for
time step i is obtained by combining the autonomously evolved error set and the set of all possible disturbances from the
previous time step that can result in further errors. Based on Definition 1 given next, Ei|k for i = k + 1, … , k + N is an
estimation of a robust forward reachable set for Ei−1|k.

Definition 1. Consider the autonomous system that is formulated via (4c)–(4e). A one-step robust reachable
set from the set of errors Ei−1|k that is estimated for time step i − 1 (with i = k + 1, … , k + N) is defined based
on Reference 36, via:

𝜖(Ei−1|k,Wi−1|k) = {
e ∈

(
X ⊖ {zi|k})|∃ei−1|k ∈ Ei−1|k,∃w(xi−1|k) ∈ Wi−1|k ∶ e = 𝜖(ei−1|k) + w(xi−1|k)}.

The three steps explained above for estimation of the error set Ei|k (for i = k + 1, … , k + N) are illustrated in Figure 2.
Constraint (4g) initializes the error set per time step when the nominal SDD-TMPC is solved. Constraint (4h) assures that
the realized states, estimated online based on the nominal state and the error values, remain inside the admissible state
set X. Finally, (4i) is a terminal constraint with Zf ⊆ X, where Zf is a control invariant set for the nominal system that
guarantees the recursive feasibility.

The dynamic tube Tk of SDD-TMPC for time step k is given by (4j). The optimization variables of (4) are the nomi-
nal state sequence z̃k, the nominal control input sequence ṽk, and the SDD-TMPC tube Tk (i.e., an ordered set including
the influence of the error sets across the entire prediction horizon). By including the tube as an optimization variable
for the nominal SDD-TMPC problem, the optimizer determines solutions that foresee the dynamics of the error in the
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SURMA and JAMSHIDNEJAD 9

F I G U R E 2 Illustration of the development of the error set E⋅|k for SDD-TMPC via (4c)–(4e) in 2 dimensions: Each row corresponds to
one prediction time step (illustrated in this figure for time steps i, i + 1, i + 2). The 2-dimensional sets in the first column (shown in yellow)
illustrate the error set E⋅−1|k that has been determined at the previous time step. By propagating this error set through the autonomous error
dynamics (i.e., mapping 𝜖) via (4c), the 2-dimensional sets E⋅|k at the top side of the second column of each row (shown in red) are generated.
Moreover, the 2-dimensional sets W⋅−1|k at the bottom part of the second column in each row (shown in green) are obtained via the
disturbance model (mapping f dis(⋅)) using (4d) where the input of the mapping is the error set that is centered around the nominal state
trajectory. Finally, the red and green 2-dimensional sets of the second column per row are combined using Minkowski summation to obtain
the error set E⋅|k via (4e). This set is then used as the starting set for the next time step (i.e., at the start of the next row).

generation of the online nominal state trajectory (i.e., the center-line of tube Tk). Therefore, the nominal state trajec-
tory of SDD-TMPC is in general different from that of regular TMPC (see Figure 1). Moreover, the SDD-TMPC policy
𝜋 ∶ X × U × X → U, which receives the nominal state trajectory of SDD-TMPC as input, is incorporated within the opti-
mization loop of SDD-TMPC via constraint (4k), as well as in the estimation of the autonomous error dynamic function
as explained before. The policy 𝜋(⋅) of SDD-TMPC, which combines the nominal SDD-TMPC inputs and ancillary control
inputs, may be generated such that the closed-loop system is stabilized (see, e.g., References 21 and 23). Constraint (4k)
enforces the generated control inputs to remain inside the admissible control input set U for all possible realizations of
the state. Thus, the policy also plays a role in the computation of the online nominal state trajectory that is determined via
SDD-TMPC. Note that for computing the policy in (4k), where the input of the function is a set, Definition 2 given next
is used.

Definition 2. Whenever a function g(⋅) takes a set S as input, then the output O is also a set defined by
O ∶= {g(i)|||i ∈ S}, when g(i) itself is not a set, and by

⋃
i∈S

g(i) when g(i) itself is a set. Thus, if S1 ⊆ S2, then

g(S1) ⊆ g(S2).

State-of-the-art TMPC methods, however, solve the nominal MPC problem without incorporating the policy 𝜋(⋅). In
fact, only after determining the nominal state trajectory via an optimization procedure, the policy of TMPC is used outside
of the optimization loop to generate the actual control input uk.

In summary, the inclusion of the error evolution model into the optimization procedure of SDD-TMPC, which is
done via incorporating the dynamic tube of SDD-TMPC in the optimization variables, as well as including the policy of
SDD-TMPC into the constraints, are expected to result in solutions for SDD-TMPC that are less conservative than the
solutions of TMPC.

The optimization problem (4) is in general nonlinear and nonconvex. It is common to assume convexity for the admis-
sible sets X and U for the states and the control inputs,6,28 but this is not the case in some applications (e.g., in collision
avoidance,21,36 which is relevant for SaR). Therefore, to solve the nonconvex, nonlinear optimization problem, solvers
such as genetic algorithm,10 particle swarm,37 sequential quadratic programming38 may be used. In particular, to address
the issues that are raised due to nonconvexity, especially falling into local optima (due to the gradient-based nature of the
optimizer or the limited number of iterations for the optimization) one may use multi-start optimization.
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10 SURMA and JAMSHIDNEJAD

3.3 Modeling the dynamics of the external disturbances

We assume that the predicted and actual states will be different, and that the difference is bounded, but the bound is
state-dependent. This difference can be the result of a real external force that affects the system differently depend-
ing on its state. For example, when a robot moves in an environment, the external force may vary in different
parts of the environment. This difference can also be the result of an inaccurate model, and the inaccuracy can be
state-dependent. For example, it is well known that when a system is linearized around a certain state, a model is very
accurate around that state, but becomes less accurate as it moves away. Both of these examples will be shown in the
case studies.

The goal is to use a disturbance model (f dis) to model the set of external disturbances per time step i − 1, where i
belongs to the prediction horizon {k + 1, … , k + N}, as a function of the system states, that is, to approximate W(xi−1|k)
given in (3) by Wi−1|k using (4d). For the type of the set we consider an ellipsoid or a polytope and assume that the origin
always belongs to the set. Ellipsoids and polytopes are the most commonly used sets in the related References 6 and 26
and—when parameterized—are bounded if these parameters are bounded.

Next, we parameterize the set and show the parameterized set by Wi−1|k(𝚯i−1|k), where𝚯i−1|k is the vector of all param-
eters at time step i − 1. Therefore, the problem of approximating the disturbance set is translated into the problem of
determining the vector 𝚯i−1|k. This vector is returned by the mapping f dis(⋅), which takes as input the corresponding state
of the system (see (4d)). Mathematically, f dis can in general be represented by any mappings (e.g., an analytical function
or a deep neural network) that properly formulates the existing knowledge about the state-dependent disturbances, as
long as the conditions explained in Section 3.3.1 are met by the mapping.

3.3.1 Stability condition

To ensure robustness for SDD-TMPC to all values of the external disturbances, that is, to ensure that (3) holds, the param-
eter vector 𝚯i−1|k should be determined such that the actual disturbance set W(xi−1|k) for all time steps i ∈ {k + 1, … , k +
N} is a subset of the approximate disturbance set Wi−1|k(𝚯i−1|k), which itself should be a subset of W

max
. The formulation

of the robust control problem is based on the assumption of the existence of Wmax, which bounds all possible distur-
bances. Thus, the evolution of the disturbance set generated by the above f dis(⋅) is stable if the approximate disturbance
set Wi−1|k(𝚯i−1|k) is bounded by Wmax for all i ∈ {k + 1, … , k + N}.

3.3.2 TSK-FIS for search-and-rescue robotics

The rule base of the TSK-FIS of SDD-TMPC is composed of rules with the formulation given by (6), where X̃ l is a fuzzy
set that mathematically represents a linguistic term that describes the input variable x:

Rule l ∶ IF x is X̃ l, THEN yl is hl(x). (6)

The output generated by each rule concerns only one element of parameter vector 𝚯i−1|k. More specifically, for i ∈ {k +
1, … , k + N}, the input x is replaced by xi−1|k, and the output yl is replaced by an element 𝜃l

i−1|k of the parameter vector.
Note that more than one rule in the rule base may generate a candidate value for this element of the parameter vector.
Therefore, the superscript l is used to show that the value is generated for this element via the lth rule within the set of
all L rules that generate a candidate value for this element. Moreover, hl(⋅) shows a generally nonlinear mapping from
the input space to the output space (i.e., from the admissible set of the state variables of the dynamical system to the
admissible set for element 𝜃i−1|k of the vector 𝚯i−1|k). Then the final value for the parameter is computed by:

𝜃i−1|k =
ΣL

l=1𝜇
l(xi−1|k)hl(xi−1|k)
ΣL

l=1𝜇
l(xi−1|k) , (7)

where 𝜇l(⋅) is the membership function of fuzzy set X̃ l and L is the number of the rules in the rule base that generate a
value for element 𝜃i−1|k.
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SURMA and JAMSHIDNEJAD 11

The approximate set Wi−1|k(𝜽i−1|k) is bounded, whenever all elements of vector 𝚯i−1|k are bounded (based on the
assumption of an ellipsoid or polytope set or any other set that satisfies the condition of bounded output for bounded
input). The membership functions in (7) are restricted to the interval [0, 1] by definition, implying that to keep the ele-
ments of 𝚯i−1|k bounded, the functions hl(⋅) (with l ∈ {1, · · · ,L}) should be formulated such that for all xi−1|k ∈ X the
function remains bounded. Finally, to ensure that the approximate set Wi−1|k(𝚯i−1|k) that is designed to be bounded, is
also a subset of Wmax, this set is defined as the union of the output of the TSK-FIS and Wmax. Therefore, the proposed
TSK-FIS satisfies the stability conditions explained in Section 3.3.1.

3.4 Stability of SDD-TMPC

In this section, we discuss the stability of SDD-TMPC, where our discussions are based on the following assumptions:

A1 There exists Tmax
k = {{zk+1|k}⊕ Emax, … , {zN|k}⊕ Emax} that propagates across the prediction horizon at time step

k and is positive robust invariant under the policy 𝜋(⋅) ∶ X × U × X → U, that is, when the system follows policy 𝜋(⋅),
the state remains inside this set.

A2 There exists a terminal control invariant set Zf ⊆ X for the nominal system, such that Zf ⊕ Emax ⊆ X.
A3 There exists a control law 𝜅 ∶ Zf → U for the nominal system, such that for zk ∈ Zf and i = k, … , k + N − 1:

• f (zi|k, 𝜅(zi|k)) ∈ Zf,

• Vf(f (zi|k, 𝜅(zi|k))) − Vf(zi|k) ≤ −l(zi|k, 𝜅(zi|k)) (where Vf(⋅) is the terminal cost as is given in (4a)),
• 𝜋(xi|k, 𝜅(zi|k), zi|k) ∈ U, xi|k ∈ {zi|k}⊕ Emax.

A4 There exists ∞ functions 𝛼1(⋅) and 𝛼f(⋅) that satisfy the following inequalities (note that a function belongs to class
, if it is continuous, zero at zero, and strictly increasing; and a function belongs to class ∞, if it is in class K and is
unbounded1)):

• l(zi|k, vi|k) ≥ 𝛼1(|zi|k|) ∀zi|k ∈ X,∀vi|k ∈ U (where l(⋅) is the stage cost as is given in (4a)).
• Vf(zi|k) ≤ 𝛼f(|zi|k|) ∀zi|k ∈ Zf.

Assumption A1 implies that a stabilizable TMPC law can be determined for the system (i.e., the error does not go
to infinity). Moreover, Tmax

k is the tube with a constant cross section that is used in TMPC. Assumption A2 (existence
of a nominal invariant set) is a standard assumption in TMPC literature.6 The first two items of Assumption A3 and
Assumption A4 are standard assumptions in MPC literature1 that are required to use the optimal cost as a Lyapunov
function. The third item of Assumption A3 indicates that there exists a control law in the terminal set, such that the input
constraints are satisfied.

We first give some theorems that are used in the discussions on stability.

Theorem 1. If C ⊆ A, then C ⊕ B ⊆ A ⊕ B.

Proof. Each element in C ⊕ B is given by c + b, where c ∈ C and b ∈ B. Since C ⊆ A, then c ∈ A. Thus, from
the definition of Minkowski addition (5), we have (c + b) ∈ A ⊕ B. ▪

Theorem 2. If C ⊆ A and D ⊆ B, then C ⊕ D ⊆ A ⊕ B.

Proof. From the previous theorem, we have C ⊕ B ⊆ A ⊕ B and C ⊕ D ⊆ C ⊕ B, which together imply that
C ⊕ D ⊆ A ⊕ B. ▪

Theorem 3. If Ek ⊆ Emax and the system follows the SDD-TMPC policy 𝜋(⋅), then Ei|k ⊆ Emax for i = k +
1, … , k + N, where {zi|k}⊕ Ei|k are the elements of the tube Tk of SDD-TMPC.

Proof. By contradiction, if the theorem is not true, that is, if there exists Ei|k for i = k + 1, … , k + N, such
that Ei|k ⊈ Emax then there is at least one element ei|k = xi|k − zi|k corresponding to a possible realization xi|k
of the state at time step i, such that ei|k ∈ Ei|k, but ei|k ∉ Emax,i|k. Therefore, for the corresponding external
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12 SURMA and JAMSHIDNEJAD

disturbances the state leaves tube Tmax, which is not possible because Tmax is a robust positive invariant set
for the policy 𝜋(⋅) according to assumption A1. ▪

Theorem 4. The set Φ ∶= {{zi|k}⊕ Ei|k|||zi|k ∈ Zf, Ei|k ⊆ Emax, i = k + 1, … , k + N} is a set robust positive
invariant set for the SDD-TMPC inputs 𝜋(xi|k, 𝜅(zi|k), zi|k), for i = k, … , k + N − 1. (Note that according to Ref-
erence 6 a set robust positive invariant set is defined as a set of sets. Since the terminal real state xk|N+k should
be bounded, we need to constrain both the nominal state and the potential errors, thus a set of tubes (i.e., Φ) is
needed.)

Proof. From assumption A3 it follows that if zk ∈ Zf, then zi|k ∈ Zf for i = k + 1, … , k + N. Moreover, from
Theorem 3 if Ek ⊆ Emax, then Ei|k ⊆ Emax for i = k + 1, … , k + N. Therefore, from the definition of Φ, we
have {zi|k}⊕ Ei|k ∈ Φ, which proves the theorem. ▪

Theorem 5. If the sequence of nominal control inputs ṽk = [v⊤k|k, v⊤k+1|k, … , v⊤k+N−1|k]⊤ of SDD-TMPC is
feasible for the admissible pair (zk, xk), that is, using these inputs and policy 𝜋(⋅), the controlled
system satisfies xi|k ∈ X for i = k + 1, … , k + N, then the shifted sequence of nominal control inputs
ṽk+1 = [v⊤k+1|k, v⊤k+2|k, … , v⊤k+N−1|k, 𝜅⊤(zk+N|k)]⊤ is feasible for the admissible pair (zk+1, xk+1) under the
SDD-TMPC policy 𝜋(⋅).

Proof. The nominal system is deterministic, and at time step k + 1 for the first N − 1 time steps the same
nominal control inputs as for time step k are applied. Thus one can write zi|k+1 = zi|k for i = k + 1, … , k + N.
The error set Ek+1|k contains all the possible errors of xk+1|k with respect to zk+1|k. At time step k + 1, however,
Ek+1|k+1 contains only one element of Ek+1|k based on the realized state under the SDD-TMPC policy. Thus,
we have Ek+1|k+1 ⊆ Ek+1|k.

Since zk+1|k+1 = zk+1|k and Ek+1|k+1 ⊆ Ek+1|k, from Theorem 2 we have {zk+1|k+1}⊕ Ek+1|k+1 ⊆ {zk+1|k}⊕
Ek+1|k. From (4d)-(4e), the next error set is derived based on a mapping from all elements of the cur-
rent error set added to the nominal state. Based on the last two statements, Definition 2, and Theorem 2,
we conclude that Ek+2|k+1 ⊆ Ek+2|k. Similarly, in an iterative way it can be shown that Ei|k+1 ⊆ Ei|k for
i = k + 1, … , k + N.

The sequence ṽk is assumed to be feasible for the admissible pair (zk, xk). Thus the elements {zi|k}⊕
Ei|k for i = k + 1, … , k + N − 1 belong to the admissible state set. Now since zi|k+1 = zi|k and Ei|k+1 ⊆

Ei|k for i = k + 1, … , k + N, based on Theorem 4, the elements {zi|k+1}⊕ Ei|k+1 for i = k + 1, … , k + N −
1 belong to the admissible state set. Finally, since at time step k + N the SDD-TMPC input is deter-
mined based on the nominal control input 𝜅(zk+N|k) (or equivalently, based on 𝜅(zk+N|k+1)), and since
Ek+N|k+1 ⊆ Ek+N|k ⊆ Emax, from Theorem 4 we conclude that {zk+N|k+1}⊕ Ek+N|k+1 belongs to the admissible
state set. ▪

Theorem 6. The optimal cost function V∗(⋅) in (4a) is a Lyapunov function for system (1) (which implies
stability).

Proof. Given assumption A4, the optimal cost function V∗(⋅) is lower bounded by 𝛼1(⋅). Moreover,
an upper bound can be found for V∗(⋅), since it is continuous and finite for x, z ∈ X. The opti-
mal sequence of nominal control inputs corresponding to the optimal cost V∗(xk, zk) is given by
v∗k = [v∗⊤k|k, v∗⊤k+1|k, … , v∗⊤k+N−1|k]⊤. Based on Theorem 5, for the next control time step the sequence
ṽk+1 = [v∗⊤k+1|k, v∗⊤k+2|k+1, … , v∗⊤k+N−1|k, 𝜅⊤(zN|k)]⊤ is feasible for the admissible pair (zk+1, xk+1) under the
SDD-TMPC policy 𝜋(⋅). The difference between V∗(xk, zk) and the cost under sequence ṽk+1 is l(zk|k, vk|k) +
V f(zk+N|k) − l(zk+N|k+1, 𝜅(zk+N|k+1)) − V f(f (zk+N|k+1, 𝜅(zk+N|k)). From assumption A3, this difference is posi-
tive, implying that the optimal cost V∗(xk, zk) is larger than the cost under ṽk+1, which itself is larger than or
equal to the optimal cost V∗(xk+1, zk+1). Therefore, we have V∗(xk+1, zk+1) < V∗(xk, zk). ▪

4 CASE STUDIES

In this section, we provide the following two numerical case studies that have been designed for a SaR robot:
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SURMA and JAMSHIDNEJAD 13

• Case study 1: A SDD-TMPC controller is developed for a linear model of the robot, which is impacted by
state-dependent disturbances. With this experiment we showcase the unique capability of SDD-TMPC, in compari-
son with MPC and TMPC, to provide robustness with respect to the disturbances, while improving the feasibility and
reducing the conservativeness. The codes for this experiment have been published in Reference 39.

• Case study 2: To showcase the performance of SDD-TMPC for nonlinear systems, an SDD-TMPC controller is devel-
oped for a nonlinear reference tracking problem, which has previously been addressed in Reference 40 using nonlinear
TMPC. While the robot steered via nonlinear TMPC suffers from a large rise time, with SDD-TMPC, the robot achieves
a better performance, by using less conservative control inputs. Consequently, the robot safely moves faster, still guar-
anteeing robustness to disturbances. Thus, our results indicate a decreased rise time using SDD-TMPC, compared to
nonlinear TMPC, without violating the constraints. The code has been published in Reference 41.

The results of these case studies, where the performance of SDD-TMPC is compared with MPC and regular TMPC,
are presented and discussed in Section 5. Table 3 includes the mathematical notations that are frequently used in this
section. The parameters and values used in the case studies are given in Appendix A.

4.1 Case study 1

4.1.1 Simulation setup

We simulate a holonomic ground robot with the following discrete-time state-space representation for its kinematics:

xk+1 =

⎡⎢⎢⎢⎢⎢⎣

1 0 Ts 0
0 1 0 Ts

0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎦
xk +

⎡⎢⎢⎢⎢⎢⎣

0 0
0 0

Ts 0
0 Ts

⎤⎥⎥⎥⎥⎥⎦
uk +

[
wk

02×1

]
, (8)

where the state xk = [px,k, py,k, 𝜈x,k, 𝜈y,k]⊤ and control input uk = [ax,k, ay,k]⊤ vectors include, respectively, the position and
velocity, and the acceleration of the robot in the x and y directions, Ts is the discretization sampling time and wk is the
2-dimensional vector of the external disturbances that influence the position of the robot. We assume that the disturbances
affect the position only (similarly as in Reference 40). The set W(xk) of external disturbances when the state of the robot
is xk is a two-dimensional ellipse, with its major parallel to the direction of the movement of the robot. The magnitude of

T A B L E 3 Frequently used mathematical notations of the case study and their definition.

Notation Definition Notation Definition

[Aineq
n1×n2

, bineq
n1×1] Pair of matrices describing a polytope in

n2 dimensions with n1 inequalities
m meters

px,k Component of robot position parallel to
x axis at time step k

m
s

meters per second

py,k Component of robot position parallel to
y axis at time step k

m
s

2
meters per squared second

𝜈x,k Component of robot velocity parallel to
x axis at time step k

rmax(xk) The major of the ellipsoidal disturbance
set given current state

𝜈y,k Component of robot velocity parallel to
y axis at time step k

rmin(xk) The minor of the ellipsoidal disturbance
set given current state

ax,k Component of robot acceleration
parallel to x axis at time step k

Ts Sampling time

ay,k Component of robot acceleration
parallel to y axis at time step k

In×n Identity matrix with dimension n
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14 SURMA and JAMSHIDNEJAD

the disturbances is nonlinearly dependent on the state of the robot, that is,

rmax(xk) = 0.202
√

𝜈2
x,k + 𝜈2

y,k + rmin(xk), rmin(xk) = 0.225𝛽2(xk) 4
√

𝜈2
x,k + 𝜈2

y,k (9)

with rmax(xk) and rmin(xk) the length of the, respectively, major and minor of the ellipse. The external disturbances may
vary across the environment; thus, the parameter 𝛽(xk), an indication of the ground slipperiness, is defined to include
this variation in the simulations. We assume that the robot has perfect knowledge of its own state and of 𝛽(xk), but has
no information on (9). The constraints on the position of the robot vary in different simulations, while the constraints on
the inputs and the velocity of the robot are always the following:

|𝜈x,k| < 2 m
s
, |𝜈y,k| < 2 m

s
, |ax,k| < 5 m

s2 , |ay,k| < 5 m
s2 . (10)

4.1.2 Formulating SDD-TMPC for path planning

For path planning of the SaR robot, we formulate an SDD-TMPC problem with a quadratic cost function given by:

V(zk, vk) =
k+N−1∑

i=k

(‖‖zi|k‖‖2
Q + ‖‖vi|k‖‖2

R

)
+ ‖‖zk+N|k‖‖2

F . (11)

A common choice for the ancillary control input is a linear state feedback, which for time step k is given by:

uk = Kek + vk, (12)

where ek = xk − zk. For determining K we use a linear quadratic regulator (LQR) method (the corresponding matri-
ces are given in Appendix A), such that the ancillary control law more aggressively reduces the position. Thus,
the influence of the state-dependent external disturbances is more significantly reduced. The error ek evolves
according to:

ek+1 = (A + BK)ek +
[

w⊤
k |01×2

]⊤
(13)

with A4×4 and B4×2 the dynamic and input matrices in (8). Thus the equivalent of (4c) and (4k) for this case study are:

Ei+1|k = (A + BK)Ei|k, i = k, … , k + N − 1, (14)

KEi|k ⊕ {vi|k} ⊆ U, i = k, … , k + N − 1. (15)

Definition 2 is used to compute (14) and (15). In order to reduce the computation time and since the external disturbance
set changes slowly with the states, we simplify (4d), only considering the centroid of the tubes as input:

Wi|k = f dis(zi|k + (A + BK)i−kek
)
. (16)

To determine the terminal admissible set Zf (a positive invariant polytope) for the nominal state, we assume that the
system follows an LQR control law 𝜅(⋅) beyond the prediction horizon. Thus, the terminal cost in (11) is the limit of the
cost for k → ∞, when the system follows the LQR control law 𝜅(⋅), and is determined by solving the following Riccati
equation, using, for example, Matlab dlyap command42:

F = (A + BK)TF(A + BK) + Q𝜅 + KTR𝜅K. (17)

For details on the derivation of (17), see Reference 1. Control policy 𝜅(⋅) should be designed such that Assumption A3
holds.
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SURMA and JAMSHIDNEJAD 15

4.1.3 Learning the external disturbance sets using a FIS

A fuzzy inference system (FIS) can describe the dynamics of a (generally nonlinear) system via rules that are formu-
lated via linguistic terms (e.g., very high), where this nonlinear mapping is interpretable –unlike, for example, neural
networks.43 The rules of a FIS can be generated based on experimental data gathered before the beginning of a mission
or can be deduced directly from expert knowledge available in human language. In this case study, we consider two TSK
FISs, one for approximating the major and one for the minor in (9) per time step k, with their output functions defined by:

rm(xk) = cm
1 𝜈

2
k + cm

2 𝛽
2(xk) + cm

3 𝜈k𝛽(xk) + cm
4 𝜈k + cm

5 𝛽(xk) + cm
6 (18)

with 𝜈2
k = 𝜈2

x,k + 𝜈2
y,k, m ∈ {max,min}, and 𝜽

m = [cm
1 … cm

6 ]
⊤.

However, Minkowski summation of two ellipses does not result in an ellipse. In order to solve this problem, we approx-
imate W(xk) by Wk, which is a polytopic sets defined by {[x, y]⊤ ∶ Aineq

8×2 [x, y]⊤ ≤ bineq
8×1 } with a fixed number of edges that

encounters the resulting ellipse and is used as the disturbance set at time step k. For polytope sets, unlike ellipses, the
Minkowski addition can be computed without approximation, and the set remains a polytope afterward.

4.1.4 Implementation of SDD-TMPC

The following four scenarios, relevant for SaR, were considered. Each scenario assesses one key property of SDD-TMPC.
The scenarios were simulated several times to show the behavior of the controllers under different disturbances.

Scenario 1: Closely following a reference path
The main aim of the comparison among MPC, TMPC, and SDD-TMPC in Scenario 1 is to assess how fast a robot that
is controlled by each of these approaches reaches a given destination, following a reference path (i.e., an ordered set of
given positions). As soon as the (nominal) state of the robot reaches a distance of 0.3 m from its reference position, the
next reference position from the path is followed by the controller. Scenario 1 resembles a real-life SaR situation when a
robot should precisely travel along a given path in the presence of external disturbances (e.g., to avoid hazards that exist
in the close vicinity of the robot). Scenario 1 was simulated 3 times, considering the following situations:

1. The robot was not affected by external disturbances.
2. The external disturbances helped in attracting the robot to the current reference position.
3. The external disturbances resulted in repelling the robot from the current reference position.

Scenario 2: Mission planning in the vicinity of obstacles
SaR robots should often move close to obstacles. In such cases, it should be guaranteed that no crashes occurs, whereas
overly conservative decisions significantly slow down the mission. In Scenario 2, the robot should move from position
[2, 0.01]⊤ to position [8.5, 0.01]⊤. Whenever the vertical position of the robot falls below py = 0, a crash with an obstacle
(e.g., a wall extended across py = 0) occurs. Moreover, the value of 𝛽(xk) is determined via:

𝛽(xk) =
1|5 − px,k| + 1

. (19)

Scenario 2 was simulated 3 times, considering the following situations:

1. The robot was not affected by external disturbances.
2. The robot was pushed upwards by external disturbances.
3. The robot was pushed downwards by external disturbances.

Scenario 3: Approaching an unreachable target
SaR robots may need to move in very narrow corridors, avoiding crashes into the walls. TMPC may become infea-
sible in such cases due to conservativeness. Scenario 3 simulates such an infeasible problem for TMPC. The robot
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16 SURMA and JAMSHIDNEJAD

starting at position [5.5, 0]⊤ with a zero initial speed should reach position [11, 0]⊤ in a narrowing corridor. To avoid
crashes into the walls, the following hard constraints are defined on the robot position for all time steps k during the
simulation:

px,k + 8py,k < 10; px,k − 8py,k < 10. (20)

Note that all coordinates are given in m. While TMPC is infeasible already at the initial position of the robot (the farthest
position where TMPC generates a feasible tube is px = 4.59 m, whereas the width of the corridor is about 0.68 m (see
Figure 5)), we investigate how far the robot moves forward using SDD-TMPC.

Scenario 3 was simulated twice, considering the following situations:

1. The robot was not affected by external disturbances.
2. The robot was pushed (relative to the speed value) upwards via external disturbances.

Scenario 4: Ability to make high-level optimal decisions
Next to robustness, SDD-TMPC should improve the performance by making high-level optimal decisions. In Scenario 4,
we consider a case where the robot has to move from position [2.3, 3]⊤ to position [3.25, 3.05]⊤, with an obstacle on its
way (see Figure 8). The robot initially has a horizontal speed of 𝜈x = 1 m

s
, and should select an initial vertical speed of

either 𝜈y = 1.2 m
s

(i.e., moving upwards) or 𝜈y = −1.2 m
s

(i.e., moving downwards).

4.2 Case study 2

4.2.1 Simulation setup

In Reference 40, two controllers, nonlinear TMPC and nonlinear robust MPC, have been used for a nonlinear reference
tracking problem. We simulated a similar experiment using SDD-TMPC. The only differences, to our knowledge, concern:

• Disturbance generator: In Reference 40, only the boundaries of the disturbances are given.
• Solver: Despite using the same algorithm (interior point) from Matlab’s optimization toolbox, due to the nonconvex

nature of the optimization problem, we cannot ensure to identify the exact same solutions.
• Tube initialization: In Reference 40, the solver chose the initial nominal position per time step, provided that the

measured position remains within the tube. The starting nominal direction is, however, not given. We allowed the
solver to freely choose the direction.

• Discretization method: In Reference 40, the system is discretized using the ICLOCS toolbox.44 We used Matlab’s c2d
function, Zero-Order Hold (ZOH),45 and Runge–Kutta 4 algorithm to discretize the linear and nonlinear systems.

• Terminal state sets
• Hardware

Two unicycle robots are simulated: a leader, which is assumed to remain unaffected by the external disturbances, and
a follower, which we control and is affected by the disturbances. A unicycle robot is a circular robot, steered at time instant
t by the velocities 𝜈l

t and 𝜈r
t of its, respectively, left and right wheels. The head of the robot is its front point, located on the

main axis of the robot that is perpendicular to the axis of the wheels of the robot. The inputs to the robot at time instant t
are the linear velocity 𝜈t and the angular velocity 𝜔t, given by:

𝜈t = (𝜈l
t + 𝜈r

t )∕2, 𝜔t = (𝜈r
t − 𝜈l

t)∕(2𝜌), (21)

where 𝜌 represents the radius of the robot. Moreover, the admissible set of the inputs is defined by:

U =∶
{
[𝜈, 𝜔]T ∈ R

2||| |𝜈|
𝜈max + 𝜌|𝜔|

𝜈max ≤ 1
}
, (22)
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SURMA and JAMSHIDNEJAD 17

where 𝜈max is the maximum absolute velocity of the wheels.
The leader robot utilizes constant reference inputs 𝜈R and 𝜔R. The state xR

t of the leader robot per time instant t is
characterized by the position (pR

x,t, pR
y,t) of its center and by the orientation 𝜓R

t of the robot. The state evolution, in the
continuous time domain, for the leader robot at time instant t is determined by:

⎡⎢⎢⎢⎣
ṗR

x,t

ṗR
y,t

�̇�R
t

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
𝜈R cos(𝜓R

t )
𝜈R sin(𝜓R

t )
𝜔R

⎤⎥⎥⎥⎦. (23)

The input ut to the follower robot at time instant t consists of its linear 𝜈t and angular 𝜔t velocities, and its state xt includes
the position (px,t, py,t) of its head and the robot orientation𝜓t. The position is impacted by the unknown disturbance vector
wt = [wx,t,wy,t]T , where

√
w2

x,t + w2
y,t < 𝜂. The state evolution for the follower robot is given by:

ẋt =
⎡⎢⎢⎢⎣
ṗx,t

ṗy,t

�̇�t

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
𝜈t cos(𝜓t) + 𝜌𝜔t sin(𝜓t)
𝜈t sin(𝜓t) + 𝜌𝜔t cos(𝜓t)

𝜔t

⎤⎥⎥⎥⎦ +
⎡⎢⎢⎢⎣
wx,t

wy,t

0

⎤⎥⎥⎥⎦ = f (xt,ut,wt). (24)

4.2.2 Formulating SDD-TMPC

The nonlinear ancillary control law used for SDD-TMPC is the same as the one in Reference 40:

ut =

[
cos(xt[3]) −𝜌 sin(xt[3])
sin(xt[3]) 𝜌 cos(xt[3])

]−1([
cos(zt[3]) −𝜌 sin(zt[3])
sin(zt[3]) 𝜌 cos(zt[3])

]
vt − Keet[1 ∶ 2]

)
, (25)

where Ke is a constant design parameter and the notation et[1 ∶ 2] implies elements 1 and 2 of vector et. This ancillary con-
trol law linearizes the dynamics of the position error of the controlled system (see Appendix B for details). The dynamics
of the position and direction errors are formulated via:

ėt[1 ∶ 2] = Keet[1 ∶ 2] + [wx,wy]T , ėt[3] = −1
𝜌

et[3]vt[1] + we
t , (26)

where the description, derivation, and lower and upper bounds of we
t (which is state-dependent and contains the nonlinear

terms in the directional error evolution equation) are given in detail in Appendix C. We give the above equations in the
continuous time domain. At the end, the derived equations may be discretized in time.

In this case study, in order to speed up the computations, SDD-TMPC uses a box to represent the error set, which
is larger than the real error set. However, since the disturbance set is a box and the error dynamics of the variables are
independent, the error set is also a box set for the entire optimization iterations. This means that the entire error set can
be described by 3 times as many state variables, which makes the computational complexity linear. In the previous case
study, where we used the smallest possible sets, the computational complexity was growing exponentially with the size
of the state vector and prediction horizon.

The nonlinear optimization problem (in the discrete time domain) solved by SDD-TMPC per time step is:

V∗(xk, zk) = min
z̃k ,ṽk ,Tk

k+N−1∑
i=k

(‖‖‖zr
i|k‖‖‖2

Q
+ ‖‖‖ur

i|k‖‖‖2

R

)
+ ‖‖‖zr

k+N|k‖‖‖2

F
, (27a)

s.t. for i = k + 1, … , k + N ∶

zi+1|k = f d(zi|k, vi|k), (27b)

Tk = {{zk+1|k}⊕ Ek+1|k, … , {zk+N|k}⊕ Ek+N|k}, (27c)
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18 SURMA and JAMSHIDNEJAD

Ei|k = diag
(

Ke,d,Ke,d,K𝜃,d)
Ei−1|k, (27d)

Ei|k = Ei|k ⊕ Wi−1|k(Ei−1|k, zi−1|k, vi−1|k), (27e)

xk, zk are given (27f)

Ek = {xk − zk}, (27g)

vi|k ∈ V(Ei|k), (27h)

zr
k+N|k ∈ Z

f, (27i)

where f d(⋅) is the discretized dynamic function that is determined after time-discretization of (24), and Ke,d and K𝜃,d are
coefficients that are multiplied by, respectively, discretized errors ei[1] (or ei[2]) and ei[3], after discretization of the error
dynamics equation (26), and are explained in more detail in Appendix B. For control input constraint tightening (27h)
the following set in the continuous time is proposed:

V(Et) ∶= min
et[3]∈Et[3]

(𝜆(et[3])U ⊖

[
− cos(zt[3]) − sin(zt[3])
1
𝜌

sin(zt[3]) − 1
𝜌

cos(zt[3])

]
Ke(Et[1] × Et[2]). (28)

The details on the derivation of this tightened set are given in Appendix D.

5 RESULTS AND DISCUSSIONS

All simulations were implemented in Matlab 2022b on the same computer (details can be found in the Table 4). In
SDD-TMPC, the error set, that is, the cross section of the tube evolves in time. We have illustrated this evolution for a hori-
zon of 30 in Figure 3. Since the tube is 4-dimensional, its projections on the planes of the positions and the velocities are

T A B L E 4 Hardware description.

CPU Clock speed

11th Gen Intel(R) Core(TM) i7-1185G7 3GHz

F I G U R E 3 The projections of the fixed error set (i.e., cross section of the tube) of TMPC (shown in green) generated based on
Reference 35 and the dynamic error set for SDD-TMPC (shown in blue) generated by the FIS, compared with the ground truth admissible
sets of disturbances (shown in red), for a prediction horizon of 30. Since for regular TMPC the error set is fixed we have plotted it only once.
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SURMA and JAMSHIDNEJAD 19

T A B L E 5 Results for the trained FISs that estimate the lengths of the major and minor of the disturbance ellipse sets using the test
data. The error values are normalized via dividing by the maximum ground truth value.

FIS that estimates the major FIS that estimates the minor

Number (in %) of cases where errors were negative 2.64 3.01

Mean value of negative errors 7.8 × 10−4 1.93 × 10−3

Mean value of positive errors 1.02 × 10−2 2.32 × 10−2

Maximum value of negative errors 5.89 × 10−3 2.56 × 10−2

Maximum value of positive errors 5.94 × 10−2 2.45 × 10−1

illustrated separately. Additionally, the admissible set of the control input (i.e., robot acceleration) is also demonstrated.
The tube of SDD-TMPC evolves until there is convergence in all dimensions of the state, whereas this tube is never close to
the tube of TMPC. The evolution of the tube can result in both its growth and shrinkage. In the simulations, the solution
of TMPC is used as a warm start for SDD-TMPC, and in case TMPC is infeasible, the shifted trajectory from Theorem 5 is
used.

5.1 Case study 1: Training the FISs

First we give the results of training the FISs for case study 1. We generated 1240 input-output pairs, based on the ground
truth ellipsoids given by (9). This data set was divided into a training and a validation set, with a proportion of 660 ∶ 580.
For the test set, we generated a large data set with 100000 pairs of input-output using (9) in order to extensively test the
trained FISs. Given the training and the validation errors, the best results were achieved using 5 fuzzy sets per input,
which resulted in 25 fuzzy rules with outputs that are described by (18). Note that compared to different expressions for
the output of the rules, the expression given by (18) did not result in under or over-fitting. GA was used to train the FISs
by minimizing the mean square error, with an additional penalty for negative errors.

The results obtained for the test set for the two FISs that estimate the lengths of the major and minor of the ellipse sets
for the external disturbances are summarized in Table 5, where the error values have been normalized. In general, both
FISs were able to approximate the ground truth with mostly positive-valued errors. In case negative-valued errors exist, a
penalty for small positive errors may be considered to ensure to eliminate all these negative-valued errors as well.

5.2 Case study 1: Comparison of MPC, TMPC, SDD-TMPC

In the simulations, regular MPC (29), TMPC (30), and SDD-TMPC (31) were implemented and their performance, with
respect to minimizing the cost function, satisfying the hard constraints, and computation time were compared. In order
to solve the optimization problems, the quadratic programming solver from Matlab’s Optimization toolbox was used
for MPC and TMPC, whereas for SDD-TMPC (which solves a nonconvex nonlinear optimization problem), the parti-
cle swarm (PS) algorithm37 from Matlab’s Global optimization toolbox was implemented. Unless stated otherwise, the
optimization procedure for SDD-TMPC was terminated after 60 iterations, which took about 4 min to run and provided
a balanced trade-off between the computation time and the accuracy of the solutions. In comparison, MPC and TMPC
solved their quadratic problems in milliseconds. The initial nominal state was assumed to be equal to the real state. Ter-
minal constraint and cost were not used in Scenarios 2 and 3, respectively, for computational efficiency and since the
goal was infeasible. To compare the convergence of the optimization algorithms, in a sample problem the robot moved
to the zero state, starting from state [0.35, 0.65, 0, 0]⊤. Table 6 shows the optimal costs for MPC, TMPC, and SDD-TMPC.
Since SDD-TMPC solves a nonconvex, nonlinear optimization problem, it may not be possible to find a global minimum.
Therefore, the changes in the value of the cost by iteration of the PS algorithm are given in the table (the number of
iterations is given in parentheses). The rate of these changes depends strongly on how constrained the problem is (com-
pare the third and sixth rows of the table). As expected, the cost values corresponding to TMPC and MPC are, respectively,
an upper and a lower bound for the cost of SDD-TMPC.
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20 SURMA and JAMSHIDNEJAD

T A B L E 6 Comparing the cost values for MPC, TMPC, and different numbers of iterations of PS, which solves SDD-TMPC when the
robot should reach the zero state from state [0.35, 0.65, 0, 0]⊤ (no stage position constraints).

Without terminal constraints and terminal cost

MPC TMPC PS(40) PS(80) PS(120) PS(160) PS(200)

339.23 379.76 340 339.6 339.6 339.6 339.6

With terminal constraints and terminal cost

MPC TMPC PS(40) PS(80) PS(120) PS(160) PS(200)

402.91 781.32 667.05 597.10 540.48 531.28 528.31

T A B L E 7 The mission time required by the robot in Scenario 1 to closely track the entire reference path.
Mission time (s) without terminal

cost and constraint
Mission time (s) with terminal

cost and constraint

MPC TMPC SDD-TMPC MPC TMPC SDDT-MPC

Case 1 10.8 12.9 10.7 12.5 13.3 11.5

Case 2 7.8 12.9 10.7 8.6 13.3 11.3

Case 3 18 12.9 10.7 19.8 13.3 11.4

V∗(xk) = min
x̃k ,ũk

k+N−1∑
i=k

(‖‖xi|k‖‖2
Q + ‖‖ui|k‖‖2

R

)
+ ‖‖xk+N|k‖‖2

F , (29)

s.t. for i = k + 1, … , k + N ∶ xi|k = Axi−1|k + Bui−1|k, xk is given, xi|k ∈ X, ui|k ∈ U, xN|k ∈ Z
f, (30)

V∗(zk) = min
z̃k ,ṽk

k+N−1∑
i=k

(‖‖zi|k‖‖2
Q + ‖‖vi|k‖‖2

R

)
+ ‖‖zk+N|k‖‖2

F s.t. for i = k + 1, … , k + N ∶

zi|k = Azi−1|k + Bvi−1|k, zk is given, zi|k ∈ X ⊖ Emax, vi|k ∈ U ⊖ Emax, zN|k ∈ Z
f, (31)

V∗(xk, zk) = min
z̃k ,ṽk ,Tk

k+N−1∑
i=k

(‖‖zi|k‖‖2
Q + ‖‖vi|k‖‖2

R

)
+ ‖‖zk+N|k‖‖2

F

s.t. for i = k + 1, … , k + N ∶

zi|k = Azi−1|k + Bvi−1|k, Tk = {{zk+1|k}⊕ Ek+1|k, … , {zN|k}⊕ Ek+N|k}, Ei|k = (A + BK)Ei−1|k,
Wi−1|k = FIS

(
zi|k + (A + BK)i−k(xk − zk)

)
, Ei|k = Ei|k ⊕ Wi−1|k, Ek = {xk − zk},

{zi|k}⊕ Ei|k ⊆ X, KEi|k ⊕ {vi|k} ⊆ U, zN|k ∈ Z
f xk, zk are given.

Remark 1. For determining Zf we start by computing the Minkowski difference of X and Emax, to generate
a candidate admissible terminal set, shown by Zc. This set is then transformed into the set Zd through the
system dynamics, using the terminal control law (see Section 4.1.2). In case the resulting set Zd is a subset
of Zc, then Zc is the admissible terminal set for the nominal states. Otherwise, the intersection of Zc and Zd

is the new candidate admissible terminal set for the nominal states, and the procedure is repeated until the
condition Zd ⊆ Zc is satisfied.

Scenario 1: The mission time of the robot for the 3 MPC-based controllers is represented in Table 7: For MPC the
mission time is strongly affected by the external disturbances (see the significant variations in the mission time in different
cases), whereas TMPC and SDD-TMPC provide more consistent results independent of the realized disturbances. TMPC
needs more time than SDD-TMPC to finish the mission. In fact, to keep the states within the tube of TMPC (determined
for the worst disturbance case), the nominal acceleration and speed of the robot have to remain within 60% and 50% of
their maximum allowed values.

Scenario 2: The results of the simulations for Scenario 2 are shown in Figure 4: MPC steers the robot close to the
wall, and when the robot is pushed downwards due to external disturbances, it collides into the wall. TMPC provides a
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SURMA and JAMSHIDNEJAD 21

F I G U R E 4 Scenario 2: Trajectories of the robot position when controlled by MPC (top plot), TMPC (middle plot) and
SDD-TMPC (bottom plot), in case 1 (in green), 2 (in red), and 3 (in yellow). Note that the spectrum of blue corresponds to the values of 𝛽(xk)
for all realized states xk of the robot during the simulation. In the middle plot, the black trajectory corresponds to the nominal case. For the
bottom plot, the corresponding nominal and real trajectories are shown in the same color but with solid and dashed lines respectively.
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22 SURMA and JAMSHIDNEJAD

F I G U R E 5 Scenario 3: The feasible state set X (in blue) and the tube of TMPC (in red).

safe, collision-free trajectory for the robot, moving relatively far from the wall. The initial nominal state of the robot with
TMPC is considered far enough from the wall to avoid infeasibility (i.e., initial tube colliding with the wall). From the
nominal and realized trajectories of the robot, when controlled via SDD-TMPC, it moves much closer to the wall compared
to TMPC, but never crashes into it. Note that from (4), the nominal states of SDD-TMPC are determined based on an
estimation of the external disturbances. Thus, the nominal trajectories vary with the disturbances (the more slippery the
ground, the more careful the actions of SDD-TMPC).

Scenario 3: To reduce the risks of collision to the wall, the prediction horizon for this scenario is 6 (i.e., larger than
other scenarios), since the target is outside of the feasible state set and there is no terminal constraint (Figure 5). In
Figure 6, the evolution of the position and velocity of the robot when no external disturbances exist are shown, using
SDD-TMPC to steer the robot. Since there is no wall in a close neighborhood of the robot, it first moves faster and then
slows down in time (thanks to the larger prediction horizon) as the corridor narrows down. In fact, with SDD-TMPC the
robot can move further through the corridor, compared to when TMPC is used. In case external disturbances push the
robot upwards relative to its speed value, a similar pattern of behavior for the robot is observed, although the increase
in the speed will be less significant than the case without external disturbances. Figure 7 shows the trajectories for the
position of the robot for both cases, that is, with and without external disturbances: SDD-TMPC changes the nominal
vertical position (in presence of external disturbances), which, in a vacuum, raises the cost (because of deviating from the
reference trajectory). However, SDD-TMPC makes this decision for the nominal trajectory of the robot, because it foresees
that significantly cancels out the impact of the external disturbances for the realized trajectory py,k of the robot via the
ancillary control input. Such behavior cannot be obtained via regular MPC and TMPC.

Scenario 4: When the robot moves upwards, the slipperiness coefficient is larger and thus, the robot is prone to larger
disturbances, compared to when it moves downwards. The larger external disturbances will result in a longer realized
path (due to an increased distance from the obstacle) for the robot. Since MPC and TMPC do not take into consideration
the dynamics of the external disturbances, they estimate smaller costs when 𝜈y is positive, whereas SDD-TMPC returns
a lower cost (772) for the trajectory with smaller disturbances that corresponds to an initial vertical speed of 𝜈y = −1 m

s
,

compared to the cost (917) for the other trajectory (Figure 8).

5.3 Case study 2: Transient response behavior

The leader and follower robots were simulated for 100 time steps, based on Reference 46, with 𝜈max = 0.13 m
s

and 𝜌 =
0.0267m. The aim was to maintain a constant distance [−0.1,−0.1]T (measured in the local coordinates of the leader robot)
between the robots, in the local coordinate frame of the leader robot (the origin of this local frame coincides with the
position of the center of the leader robot and the x-axis is parallel to the heading of the robot). The initial state of the leader
and follower robots were, respectively, [0, 0, 𝜋

3
] and [0.4,−0.2,− 𝜋

2
]T . We compared the performance of SDD-TMPC and

a nonlinear TMPC (see Appendix B for the formulation) for steering the follower robot. Since the control framework
is discrete time, we used Matlab Ode4547 to determine the evolved states per discrete time step, using the system of
differential equations (23) and (24). To solve one optimization step, TMPC needed 0.2 s, while SDD-TMPC needed about
20 s. This is an improvement compared to the previous case study where it took 4 min for SDD-TMPC per optimization
iteration for a twice smaller prediction horizon.
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SURMA and JAMSHIDNEJAD 23

F I G U R E 6 Scenario 3: The evolution of the position px (blue) and the velocity 𝜈x (orange) of the robot, when SDD-TMPC is used and
no external disturbances exist.

F I G U R E 7 Scenario 3: Comparison of the trajectories of the position of the robot using SDD-TMPC, when no external disturbances
affect the robot (green curve) and when external disturbances push the robot upwards relative to its speed (the blue curve for the nominal
trajectory and the orange curve for the realized trajectory). Note that the black lines represent the boundaries of the corridor.
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24 SURMA and JAMSHIDNEJAD

F I G U R E 8 Scenario 4: The robot has to move from position [2.3, 3]⊤ to position [3.25, 3.05]⊤, while avoiding an obstacle (illustrated by
the triangular red shape). The trajectories of the position projections of the tubes for two cases were shown in green (above the obstacle) and
yellow (below the obstacle) colors.

F I G U R E 9 The leader trajectory, the desired trajectory for the follower, and the realized trajectories when the follower is steered via
SDD-TMPC and via regular TMPC.
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SURMA and JAMSHIDNEJAD 25

Figure 9 shows the path generated by these controllers: Both controllers were able to reach and follow the reference tra-
jectory despite the disturbances. Figure 10 shows that the absolute value of the directional error is actually less than 0.6 rad,
which confirms our assumption of small angles. Figure 11 shows the transient responses, where SDD-TMPC reaches the
desired position in 10% less time compared to nonlinear TMPC. From Figure 12, once both controllers achieve the steady
state, their performance is nearly equivalent. This is due to the fact that SDD-TMPC is authorized to employ substan-

F I G U R E 10 Directional error (i.e., difference between the nominal and actual heading for SDD-TMPC).

F I G U R E 11 Distance between the desired and the transient positions using SDD-TMPC and regular TMPC.
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26 SURMA and JAMSHIDNEJAD

F I G U R E 12 Difference between the desired and the steady-state positions using SDD-TMPC and regular TMPC.

F I G U R E 13 Nominal control input over time for SDD-TMPC and for regular TMPC.
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SURMA and JAMSHIDNEJAD 27

F I G U R E 14 Control input over time for SDD-TMPC and for regular TMPC.

tially larger nominal inputs, as shown in Figure 13. Even though SDD-TMPC returns significantly larger inputs (above
30%), especially in the early stages, the actual input constraints are never violated (Figure 14) and, compared to nonlin-
ear TMPC, the actual input is usually 20% larger, during the first 3 s of the mission, compared to the input of TMPC.
This is particularly intriguing, because the nominal input of SDD-TMPC violates the original constraints U. Nonethe-
less, SDD-TMPC anticipates the behavior of the ancillary controller and allows it to marginally violate the constraints,
since the actual control input will not breach them. These results are noteworthy, since in Reference 40 nonlinear TMPC
is compared to another robust MPC, where nonlinear TMPC exhibits an improved steady-state performance, but has a
larger transient time. With SDD-TMPC however, the large rise time is successfully eliminated, whereas it maintains an
equivalent steady-state performance.

6 CONCLUSIONS AND FUTURE WORK

A dynamic version of tube model predictive control (TMPC), called state-dependent dynamic TMPC (SDD-TMPC), was
proposed that uses a disturbance model (f dis) to learn the dynamics of state-dependent external disturbances and to incor-
porate these dynamics into its future decisions. We used a fuzzy inference system (FIS) as an example of f dis. It was
generated offline based on a historical dataset. In the future, expert knowledge can be used to derive the rules and a rein-
forcement learning approach can be integrated into the FIS for online tuning. We also show an alternative approach by
deriving state-dependent bounds by comparing real and simplified models in Appendix C.

We also proved the stability of SDD-TMPC. The performance of SDD-TMPC was evaluated compared to regular
MPC and TMPC for steering an autonomous robot in various scenarios that include obstacles and external disturbances.
SDD-TMPC and TMPC show robustness to state-dependent disturbances, whereas SDD-TMPC compromises the opti-
mality less than TMPC. Thus, SDD-TMPC can reach states that are inaccessible for TMPC, resulting in reduced mission
time (e.g., via a larger velocity or moving closer to the obstacles). In Table 8, we have included a summarized comparison
between TMPC and SDD-TMPC, based on the theoretical discussions and results of the numerical experiments given in
this article.

A main challenge of SDD-TMPC is the time required to solve online the optimization problem, which does not scale
well with the number of states. Moreover, if polytopes are used to describe the error sets, the complexity of the optimiza-
tion problem does not scale well with the size of the prediction horizon. In the future, the online computation time of
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28 SURMA and JAMSHIDNEJAD

T A B L E 8 Comparison between SDD-TMPC and TMPC based on the results of the case studies.

Criteria Optimality Computation time Robustness

Outperforming controller SDD-TMPC (reducing the final
value of the cost function by up to
33% in case study 1 and reducing the
time to reach steady state by 18% in
case study 2)

TMPC (with TMPC operating in the
range of milliseconds and
SDD-TMPC in the range of a few
minutes for Case study 1, whereas
this computation time has already
been reduced to seconds for
SDD-TMPC in Case study 2)

Both controllers
are the same

SDD-TMPC will be improved by providing approximate versions for SDD-TMPC, for example, by learning the nonlinear
control policy using a neural network, as has been done for MPC in Reference 48 and for TMPC in Reference 49. The
main research challenges for such an approximation will involve the proper choice of the learning method (e.g., deep ver-
sus spiking neural networks) and enhancing the guarantees of the trained system for satisfying the hard constraints and
regarding stability. Another interesting topic concerns comparing SDD-TMPC and a similar controller that includes the
dynamic tube within the cost, similarly as in Reference 27.

An additional interesting topic for future research is to replace the FIS with other approximators, including
state-of-the-art state estimators for estimating an augmented state vector that includes the external disturbances. This
allows to implement SDD-TMPC for various real-life applications, including systems for which no reliable intuitive
knowledge is available, but such state estimators already exist.

Finally, SDD-TMPC will be implemented and assessed for large-scale search-and-rescue scenarios.
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APPENDIX A. PARAMETERS/VALUES USED IN THE CASE STUDIES

This appendix includes all the parameters and values that have been used in the case studies.
In particular, for case study 1 we have:

• Discretization sampling time: Ts = 0.1 s,
• Prediction horizon: N = 5,

• Cost matrices used in (11): Q = diag(100,100, 1, 1), R = I2×2, F =
⎡⎢⎢⎢⎣

805 0 −571 0
0 805 0 −571

− 571 0 655 0
0 −571 0 655

⎤⎥⎥⎥⎦,

• Gain matrix used in (12): K =
[

7, 98 0 4.42 0
0 7, 98 0 4.42

]
,

• Matrices used to determine matrix K in (12) via LQR: QK = diag(100,100, 0.1, 0.1), RK = I2×2,
• Matrices Q𝜅 and R𝜅 used in (17): Q𝜅 = diag(10, 10, 1, 1), R𝜅 = I2×1,
• Ground slipperiness coefficient: 𝛽 = 1 (unless otherwise states).

We used different cost matrices for

• ancillary control law to more aggressively minimize the position state which more strongly reduces the influence of
external position disturbances in then the original cost matrices.

• terminal control law to reduce the size of the terminal set.
For case study 2 we have used the following values:

• Discretization sampling time: Ts = 0.2 s,
• Prediction horizon: N = 10,
• Maximum value of the velocity of the robot wheels: 𝜈max = 0.13 m/s,
• Maximum value of the position disturbance vector: 𝜂 = 0.004 m,
• Radius of the leader and follower robots: 𝜌 = 0.0267 m,
• velocity of the leader robot: 𝜈R = 0.015 m

s
, 𝜔R = 0.04 rad

s
,

• Cost matrices used in (B1a): Q=diag(0.2,0.2,0), R=diag(0.4,0.4), F=diag(0.5,0.5),
• Gain used in (26): Ke=2.3,
• Gain used in (B2): Ke,d=0.63,
• Gain used in (B6): K = 0.12,
• Emax = {e ∈ R3|max(|e[1 ∶ 2]|) ≤ 0.0022},
• V = 0.6636U,
• Zf = {zr ∈ R3||zr[1]| + |zr[2]| ≤ 0.542}.
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APPENDIX B. NONLINEAR TMPC FORMULATION FOR CASE STUDY 2

To control the motion of the follower robot, TMPC solves the following problem per iteration:

V∗(xk) = min
z̃k ,ṽk

k+N−1∑
i=k

(‖‖‖zr
i|k‖‖‖2

Q
+ ‖‖‖vr

i|k‖‖‖2

R

)
+ ‖‖‖zr

k+N|k‖‖‖2

F
, (B1a)

s.t. for i = k + 1, … , k + N ∶

xk ∈ {zk}⊕ E
max, (B1b)

zi+1|k = f d(zi|k, vi|k), (B1c)

vi|k ∈ V, zr
i+N|k ∈ Z

f, (B1d)

zr
i|k[1, 2] = Rot(−zi|k[3])(xR

i [1, 2] − zi|k[1 ∶ 2]) + Rot(zr
i|k[3])pd, (B1e)

zr
i|k[3] = xR

i [3] − zi|k[3], (B1f)

vr
i|k =

[
− vi|k[1] + (𝜈R − pd

x𝜔
R) cos(zr

i|k[3]) − pd
x𝜔

R sin(zr
i|k[3])

− 𝜌vi|k[2] + (𝜈R − pd
x𝜔

R) sin(zr
i|k[3]) − pd

y𝜔
R cos(zr

i|k[3])
]
, (B1g)

where (B1b) states that the initial nominal state zk of the follower robot, which is a decision variable, should be determined
such that the error between the measured state xk and the nominal state zk of the follower robot belongs to set Emax.
Moreover, according to (B1c), the nominal states of the follower robot evolve according to the discretized function f d(⋅),
which is determined after time-discretization of (24) and by putting wk = 0 for all time steps. Constraint (B1d) enforces
all the calculated nominal inputs to fall within set V, which should be constructed, such that if vi|k ∈ V, then for the
actual input ui|k ∈ U for a given ancillary control law. Finally, Zf is the terminal set of the states for the follower robot. The
cost function V(⋅) is computed using zr

i|k, which is the nominal state of the follower robot within the coordinate system
of the leader robot, while the original nominal state zi|k is given in the global coordinates. The transition from the global
coordinate system to the local coordinate system of the leader robot is done via (B1e)-(B1g), where Rot(⋅) is a function that
returns a 2-dimensional rotation matrix with respect to the global coordinates, given an input angle. Whenever square
brackets are used after a vector, if the bracket contains one scalar, the notation refers to the element corresponding to
that scalar of the vector. In case the square brackets include ‘scalar 1:scalar 2’, the notation refers to elements ‘scalar 1’ to
‘scalar 2’ (including these elements) of the vector.

For the nonlinear ancillary control law given at time instant t via (25), the dynamics of the position error for the
controlled system is described by the first equation in (26). After discretization, the dynamics of the position error for
time step i ∈ {k, … , k + N − 1} is given by:

ei+1[1 ∶ 2] = Ke,dei[1 ∶ 2] + Ts[wx,wy]T , (B2)

where Ts represents the sampling time and Ke,d is calculated based on the zero-order hold approach (ZOH),45 in order to
ensure equivalence between the continuous-time and discrete-time formulations.

The cross section Emax of the tube for nonlinear TMPC, set V of admissible values for the nominal control
inputs, and the terminal control law (i.e., the control law that is implemented beyond the prediction horizon) are
defined by:

E
max =

{
e ∈ R

3|||max(|e[1 ∶ 2]|) < Ts𝜂

1 − Ke,d

}
, (B3)

V =

{
v ∈ R

2|||[ 1
𝜈max ,

𝜌

𝜈max

]|v| < √
2

2
−

𝜂
√

2
𝜈max

}
, (B4)
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32 SURMA and JAMSHIDNEJAD

uT
k =

[
Kzr

k+N[1] + (𝜈R − pd𝜔R) cos(zr
k+N[3]) − pd

x𝜔
R sin(zr

k+N[3])
1
𝜌
(kzr

k+N[2] + (𝜈R − pd
x𝜔

R) sin(zr
k+N[3]) − pd

y𝜔
R cos(zr

k+N[3]))

]
, (B5)

where K is a constant. Finally, the terminal admissible set for the position of the follower robots is given by:

Z
f =∶

{
zr ∈ R

3|||K(|zr[1]| + |zr[2]|) < 𝜈max
√

2
2

− 𝜂
√

2 −
√

2
‖‖‖‖‖‖
[

1 −pd
x

0 pd
y

]‖‖‖‖‖‖
}

. (B6)

APPENDIX C. DIRECTIONAL ERROR DYNAMICS AND LOWER AND UPPER BOUNDS

In case study 2, for SDD-TMPC we approximate the error sets via box sets, which may slightly increase the conservatism,
but significantly reduces the computation time. Let Ei[𝓁] denote the projection of the error set Ei onto the 𝓁th dimension
of the state space (thus for this case study 𝓁 = 1, 2, 3). Since we work with box sets, Ei is the cross product over the
projections of this set on all the dimensions of the state space. Based on (B2), for W = {w ∈ R|w ≤ Ts𝜂} and 𝓁 = 1, 2, for
the projection of the error set we can write:

Ei+1[𝓁] = Ke,d
Ei[𝓁]⊕ W. (C1)

In order to obtain the error dynamics for the third dimension of the state space (i.e., the robot direction), from the
definition of this error and (24) we have:

ėt[3] = ẋt[3] − żt[3] = ut[2] − vt[2] (C2a)

which, together with (25), and after applying the trigonometric identities cos(𝛼 + 𝛽) = cos(𝛼) cos(𝛽) − sin(𝛼) sin(𝛽) and
sin(𝛼 + 𝛽) = sin(𝛼) cos(𝛽) + cos(𝛼) sin(𝛽), as well as substituting xt[3] = zt[3] + et[3], results in:

ėt[3] = −1
𝜌

sin(et[3])vt[1] + (cos(et[3]) − 1)vt[2] −
Ke

𝜌
sin(xt[3])et[1] −

Ke

𝜌
cos(xt[3])et[2]. (C2b)

Note that (C2b) is nonlinear and thus, computing all possible errors per time instant via (C2b) is in general compu-
tationally demanding. Moreover, we have chosen to work with polytopic error sets, while (C2b) does not necessarily
result in a polytopic error set per time instant. Thus, as explained in Reference 36, we rewrite the dynamic equation in
(C2b) as a linear evolutionary equation for et[3], where the nonlinear terms are treated as state-dependent disturbances,
that is,

ėt[3] = −1
𝜌

et[3]vt[1] + we
t , (C2c)

where we
t =

∑4
i=1we,i

t , with we,1
t = − 1

𝜌
(sin(et[3]) − et[3])vt[1] and we,2

t = (cos(et[3]) − 1)vt[2] and we,3
t = −Ke

𝜌
sin(xt[3])et[1]

and we,4
t = −Ke

𝜌
cos(xt[3])et[2]. This approach has proven to be accurate for small deviations in the third dimension of

the state space (in this case the heading/direction of the robot). Henceforth, we assume that the absolute values of et[3]
remain relatively low (i.e., |et[3]| < 𝜋∕4).

For determining the lower and upper bounds of the external disturbances, we find a lower bound and an upper bound
per term we,i

t for i = 1, 2, 3, 4. Since et[3] < 𝜋∕4, we can write:

we,1,min
t = − 1

𝜌
(sin(min(Et[3])) − min(Et[3]))vt[1]

we,1,max
t = − 1

𝜌
(sin(max(Et[3])) − max(Et[3]))vt[1]

for vt[1] ≥ 0, (C3a)

we,1,min
t = − 1

𝜌
(sin(max(Et[3])) − max(Et[3]))vt[1]

we,1,max
t = − 1

𝜌
(sin(min(Et[3])) − min(Et[3]))vt[1]

for vt[1] ≤ 0. (C3b)
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SURMA and JAMSHIDNEJAD 33

We can bound we,2
t considering that cos(et[3]) − 1 is a descending function for the given range of et[3]:

we,2,min
t = (cos(|max(Et[3])|) − 1)max(vt[2], 0),

we,2,max
t = (cos(|min(Et[3])|) − 1)min(vt[2], 0).

(C3c)

Finally, for we,3
t and we,4

t we can write:

we,3,min
t = min

(et[1],et[3])∈Et[1]×Et[3]

(
−Ke

𝜌
sin(zt[3] + et[3])et[1]

)
,

we,3,max
t = max

(et[1],et[3])∈Et[1]×Et[3]

(
−Ke

𝜌
sin(zt[3] + et[3])et[1]

)
,

(C3d)

we,4,min
t = min

(et[2],et[3])∈Et[2]×Et[3]

(
−Ke

𝜌
cos(zt[3] + et[3])et[2]

)
,

we,4,max
t = max

(et[2],et[3])∈Et[2]×Et[3]

(
−Ke

𝜌
cos(zt[3] + et[3])et[2]

)
.

(C3e)

Therefore, the admissible set of the external disturbances for (C2c) is defined via:

Wt[3] ∶=

{
we

t ∈ R
||| 4∑

i=1
we,i,min

t ≤ we
t ≤

4∑
i=1

we,i,min
t

}
. (C3f)

For the discrete-time framework of the problem, (C3f) is estimated for the discrete time steps.

APPENDIX D. INPUT CONSTRAINT TIGHTENING

Here we explain the approach that has been used to tighten the input constraints of SDD-TMPC online for case study
2. Considering the ancillary control law that is formulated by (25), imposing the hard constraint ut ∈ U, using the

equality xt[3] = zt[3] + et[3], multiplying both sides of the hard constraints by
[ cos(et[3]) −𝜌 sin(et[3])

1
𝜌

sin(et[3]) cos(et[3])

]
from left, and

considering all possible combinations of et[1], et[2], and et[3], the following condition is obtained:

{vt}⊕

[
− cos(zt[3]) − sin(zt[3])
1
𝜌

sin(zt[3]) − 1
𝜌

cos(zt[3])

]
Ke(Et[1] × Et[2]) ⊆

⋂
e[3]∈Et[3]

([
cos(et[3]) −𝜌 sin(et[3])

1
𝜌

sin(et[3]) cos(et[3])

]
U

)
= V

NL(Et[3]).

(D1)
Note that multiplication of a matrix by a set that contains vector elements means that the mapping corresponding to that
matrix is implemented on each vector element of the matrix. On the left-hand side of (D1), the Minkowski addition of
the nominal control input and a linear transformation of the error set is given, whereas on the right-hand side a non-
linear transformation of the admissible set of control inputs, that is, VNL(Et[3]), should be computed. The resulting set
VNL(Et[3]) does not necessarily correspond to a polytope. Moreover, since set VNL(Et[3]) is time-varying and based on
(D1) is in general rotated per time instant, the exact computation of (D1) per time instant is complex or may become
computationally intractable.

Picking an arbitrary element of U, for example, [u[1],u[2]]T , after the mapping
[ cos(et[3]) −𝜌 sin(et[3])

1
𝜌

sin(et[3]) cos(et[3])

]
is per-

formed on this vector, we obtain a new vector
[
cos(et[3])u[1] − 𝜌 sin(et[3])u[2], 1

𝜌
sin(et[3])u[1] + cos(et[3])u[2]

]T
, which

belongs to the admissible set U of inputs in case based on (22), it satisfies the following condition:

|cos(et[3])u[1] − 𝜌 sin(et[3])u[2]|
𝜈max + |sin(et[3])u[1] + 𝜌 cos(et[3])u[2]|

𝜈max ≤ 1.
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34 SURMA and JAMSHIDNEJAD

F I G U R E D1 Illustration of an example quadrangle (the red background quadrangle) that represents VNL(et[3]) when et[3] = 0.3473.
The intersection of all such quadrangles for the entire range of et[3], that is, for −0.3473 ≤ et[3] ≤ 0.3473, generates VNL(Et[3]) (the black
middle-ground polygon). The simplified version of VNL(et[3]), that is, the largest subset of VNL(et[3]) with its diameters parallel to the x and
y axes, is shown via the blue foreground quadrangle.

Therefore, in general for each et[3] ∈ Et[3] the right-hand side term of (D1), that is, VNL(et[3]), can be defined by the
following quadrangle:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos(et[3]) + sin(et[3])
𝜈max

−𝜌 sin(et[3]) + 𝜌 cos(et[3])
𝜈max

− cos(et[3]) + sin(et[3])
𝜈max

𝜌 sin(et[3]) + 𝜌 cos(et[3])
𝜈max

− cos(et[3]) − sin(et[3])
𝜈max

𝜌 sin(et[3]) − 𝜌 cos(et[3])
𝜈max

cos(et[3]) − sin(et[3])
𝜈max

−𝜌 sin(et[3]) − 𝜌 cos(et[3])
𝜈max

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ut ≤

⎡⎢⎢⎢⎢⎢⎣

1
1
1
1

⎤⎥⎥⎥⎥⎥⎦
. (D2)

Figure D1 (see the red background quadrangle) illustrates an example of such a quadrangle, when et[3] = 0.3473. The
intersection of all such quadrangles for the entire range of et[3], in this case when −0.3473 ≤ et[3] ≤ 0.3473, generates
VNL(Et[3]) according to (D1). This set is illustrated via the black middle-ground polygon in Figure D1. In order to tackle
the computational complexity associated with (D1) and to ensure that the resulting VNL(Et[3]) is always represented via
a polytope, we replace the quadrangles corresponding to VNL(et[3]) (i.e., the red background quadrangle in Figure D1)
with the largest subset of VNL(et[3]), for which the diameters are parallel to the x and y axes (see the blue foreground
quadrangle in Figure D1). In other words, we replace VNL(⋅) with the multiplication of the original set U and a positive,
state-dependent scalar function 𝜆(⋅), that is,

V
NL(⋅) = 𝜆(⋅)U. (D3)

This approach is similar to the constraint tightening method used in Reference 40, although there a constant value is used
instead of a scalar function 𝜆(⋅).
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SURMA and JAMSHIDNEJAD 35

To determine this subset, we first put ut[1] = 0, which based on (D2) results in:

⎡⎢⎢⎢⎢⎢⎣

ut[2]
ut[2]
− ut[2]
− ut[2]

⎤⎥⎥⎥⎥⎥⎦
≤

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜈max

𝜌(cos(et[3]) − sin(et[3]))

𝜈max

𝜌(cos(et[3]) + sin(et[3]))

𝜈max

𝜌(cos(et[3]) − sin(et[3]))

𝜈max

𝜌(cos(et[3]) + sin(et[3]))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (D4)

Since |et[3]| < 𝜋∕4, both ‘cos(et[3]) − sin(et[3])’ and ‘cos(et[3]) + sin(et[3])’ result in positive values. Thus, (D4) can be
reformulated via:

|ut[2]| ≤ 𝜈max

𝜌
𝜆(et[3]), (D5)

where we define 𝜆(⋅) via:

𝜆(⋅) = 1
cos(⋅) + | sin(⋅)| . (D6)

Similarly, if we put ut[2] = 0, from (D2) we obtain:

⎡⎢⎢⎢⎢⎢⎣

ut[1]
ut[1]
− ut[1]
− ut[1]

⎤⎥⎥⎥⎥⎥⎦
≤

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜈max

cos(et[3]) − sin(et[3])

𝜈max

cos(et[3]) + sin(et[3])

𝜈max

cos(et[3]) − sin(et[3])

𝜈max

cos(et[3]) + sin(et[3])

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (D7)

which is equivalent to the following equation:

|ut[1]| ≤ 𝜈max𝜆(et[3]). (D8)

From (D5) and (D8), vectors 𝜆(et[3])
[
0, 𝜈

max

𝜌

]T
, 𝜆(et[3])

[
0,− 𝜈max

𝜌

]T
, 𝜆(et[3])[𝜈max, 0]T , and 𝜆(et[3])[−𝜈max, 0]T are obtained

as the corners of the polytope that represents the largest subset of VNL(et[3]) (see, e.g., the blue foreground quadrangle
in Figure D1). All other points of this polytope are obtained by a convex combination of these vectors. In this case, the

original set U is simplified to a polytope with it corners given by [𝜈max, 0]T ,
[
0,− 𝜈max

𝜌

]T
, [−𝜈max, 0], and

[
0, 𝜈

max

𝜌

]T
, which

satisfies VNL(et[3]) = 𝜆(et[3])U, that is, satisfies (D3).
Figure D2 shows the curve corresponding to function 𝜆(⋅). From the expression of 𝜆(⋅) given by (D6) and as is shown

in Figure D2, for negative values of et[3], 𝜆(⋅) shows an ascending behavior, where the maximum of 𝜆(⋅) is unity, which
occurs for et[3] = 0. For positive values of et[3],𝜆(⋅) shows a descending behavior. Moreover,𝜆(⋅) is an even function, which
implies that its representative curve is symmetric with respect to the vertical axis (see Figure D2). Thus, for tightening the
constraints online, from (D1) and (D3), we define the admissible set V(Et) for the nominal control inputs as a function of
the error set via:

V(Et) ∶= min
et[3]∈Et[3]

(𝜆(et[3])U ⊖

[
− cos(zt[3]) − sin(zt[3])
1
𝜌

sin(zt[3]) − 1
𝜌

cos(zt[3])

]
Ke(Et[1] × Et[2]). (D9)
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36 SURMA and JAMSHIDNEJAD

F I G U R E D2 Illustration of the curve representing function 𝜆(⋅) versus the error in the third dimension of the state space.

For the design of TMPC in Reference 40, the admissible set of the nominal control inputs were generated by scaling set U

using a constant value 0.6636. As shown in Figure D2, set V(Et) defined via (D9) is consistently larger. Consequently, the
original design is more conservative than our proposed approach. Note that in order to further reduce the conservatism,
VNL(Et) and thus V(Et) may be approximated via polytopes that in general have more vertices than 4.
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