
Discovering the Topology in an Unknown Network

Silviu Mărı̂i
Supervisor(s): Jérémie Decouchant, Bart Cox

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
22-6-2022

1

I. Abstract
Discovering the topology in an unknown network is a
fundamental problem for the distributed systems that faces
several backlashes due to the proneness of such systems to
Byzantine (i.e. arbitrary or malicious) failures. During the
past decades, several protocols were developed to allow a
network to be resilient up to a certain number of Byzantine
processes and guarantee a reliable communication between
the correct processes. However, they still suffer from high
complexity or unrealistic assumptions which makes them
impractical. In this paper modifications made to one of the
current state-of-art protocols are presented, modifications
that can potentially reduce the load of the network and
improve the Reliable Communication layer. We employ em-
pirical analysis in order to prove that reliable communication
can still be achieved with these modifications in place and
to measure the performance. The findings of this study show
that our improved protocol has a reduction of 18.38% in the
number of exchanged messages.

Keywords – Reliable Communication, Topology Dis-
covery, Explorer2

II. Introduction
In this paper, the topology reconstruction of an arbitrary
network in the presence of Byzantine processes is inves-
tigated. Each process may not be aware of its neighbors,
but it is guaranteed that every process has an arbitrary
number of direct links to other processes with a lower bound
of 2 ∗ f + 1 and it needs to be able to reconstruct the
topology of the entire network. The variable f represents
the maximum number of faulty processes the network can
tolerate. A Byzantine process is by definition a process
that behaves arbitrarily: it can malfunction or crash, send
arbitrarily messages or it can be malicious and attempt to
disrupt other connections.

The Byzantine Generals is one of the most famous com-
puter science problems and provides a clear example of
the challenges in a communication network [1]. As it is
impossible to have in reality a direct connection between
each process in an ever-growing network, a process may
need to rely on other processes to forward a message to
the desired target, but these processes might prove to be
Byzantine and compromise the integrity of the communica-
tion. Dolev addressed this issue in 1981 and developed a
broadcast protocol which solves the reliable communication
problem in an unknown network with at most f faulty
processes, although this protocol is not feasible in large
systems as it floods the network with messages, generating
a factorial complexity [2]. An alternative version of Dolev’s
protocol that can potentially reduce the message complexity
from factorial to polynomial was proposed [3], but it faces
several problems: the improvements made may become
insignificant in an asynchronous network and the complexity
of the worst-case scenario is still factorial. Other protocols
that have an optimal complexity were designed, but these
protocols assume that the network topology is known by
every process and therefore, their practical applications are

greatly reduced [4]. Thus, reconstructing the topology of
an unknown network became essential in distributed com-
puting. Nesterenko and Tixeuil divised a protocol called
Explorer to solve this problem, but it was later shown that it
fails to guarantee one of the properties of the reliable com-
munication [5]. Recently, Farina proposed a new solution
which employs several modifications of the Dolev protocol
and has a polynomial complexity of reliable communication
instances [6]. Yet, it is still unclear whether this complexity
can be further reduced.

In this study we explore the fundamental relations of
topology discovery. We select the weakest practical state
models for a communication network and the current as-
sumptions made by the aforementioned state-of-art proto-
cols. The main contribution of this study is examining if it
is possible to reconstruct the topology using Explorer2 when
only a part of the processes broadcast initially (in contrast
to the current protocol in which all processes broadcast
initially) and how the processes can optimize Reliable Com-
munication layer based on the found topology. To achieve
this goal, the processes will be replicated separately in order
to simulate the conditions of a real network and sample
actual latency and network throughput data.

In section III insights about the related work are provided,
in section IV we state the system model and the problem
statement. In section V we detail our approach and in section
VI we introduce the changes made to the Explorer2 protocol
in order to reduce the complexity. In section VII we present
our experimental work and in section VIII we discuss the
ethical aspect of our research. In section IX we provide a
discussion of the results and in section X we present the
conclusion and the questions that remain unanswered.

III. Related Work
In this section we present in detail the necessary and
sufficient conditions identified that are required to solve the
reliable communication problem, the state-of-art protocols
that approach the reliable communication or the topology
reconstruction problems and the mathematical basis of some
assumptions.

The reliable communication problem
Techniques for reconstructing the topology require any-
to-any reliable communication, meaning that any correct
process is able to communicate reliably with any other
correct process present in the network. An essential con-
dition formulated by Dolev is that the any-to-any RC can
be achieved only when the process connectivity is strictly
greater than 2 ∗ f , the maximum number of assumed faults,
and when f is strictly smaller than a third of the total number
of processes.

Dolev protocol
Dolev protocol assumes a partially connected network and
uses a flooding algorithm for broadcasting a message. The
message contains the id’s of the sender and the target,
the content and the path. Specifically, a process pi sens a
message m to a target process pj by broadcasting m to all
of its neighbors. Every correct process that receives m will

2

append the id of the process that forwarded m to the path and
relay it to any other neighbor that is not already in m’s path.
Eventually pj will receive m through f + 1 disjoint paths
and deliver m. The complexity of this protocol is factorial
in the size of the network.

Modified Dolev protocol
Modified Dolev protocol or BFT presents several improve-
ments made that significantly reduce the number of mes-
sages exchanged between the processes, enabling reliable
communication in larger systems [7].

Explorer
Explorer protocol supports a static asynchronous network
with unicast links and a known neighborhood. In this pro-
tocol, each process pi broadcasts a message that contains
its neighborhood Γ(i) and when a process pj delivers this
message via a reliable communication instance, it will save
Γ(i) in a dictionary data structure cTopj :=

⋃
< i,Γ(i) >.

However, this protocol fails to guarantee the liveness prop-
erty, which will be explained in the next section.

Explorer2
Explorer2 protocol represents an improved version that can
also handle the weaker scenario in which the neighborhood
is unknown. Furthermore, it introduces a failure detector that
can correct the topology reconstructed under certain assump-
tions. It has a complexity of O(n2) reliable communication
instances [6]. The complete analysis of Explorer2 can be
found in Background.

Graphs and disjoint paths
Definition. The local node connectivity ki,j between two
nodes vi, vj ∈ V is the minimum number of nodes that
have to be removed from G to disconnect vi from vj [6].

Definition. A disjoint paths solution Πi,j between two
nodes vi, vj is a collection of node disjoint paths between
vi and vj [6].

Definition. The node connectivity of a graph is the mini-
mum value k for the local node connectivity ki,j [6].

Definition. Many paths between two nodes are node
disjoint (or simply disjoint) if they share no vertex except
for their endpoints [6].

Theorem [Menger’s theorem [8]]. The local node connec-
tivity between two nodes is equal to the maximum number
of node disjoint paths that exist between them.

IV. System Model and Problem Statement
This section explains the motivation of our research by first
introducing the relevant background information and then
the questions answered in this study. Furthermore, an overall
description of the system model is provided.

A. Background
A solution to the Reliable Communication problem needs
to meet the following properties, where pi and pj are both
correct processes in an arbitrary network:

• ”safety: if pi delivers a message m received from pj ,
then pj sent m previously.

• liveness: if pi sends a message m to pj , eventually pj
delivers m” [6].

The safety property guarantees the authenticity of a message
as no malicious process should be able to impersonate a cor-
rect process. In the state-of-art protocols that are mentioned
in this study, it is accomplished in the following way: when
a process receives a message m, it will append to m’s path
the id of the process that forwarded m and not its’ own id.
The liveness property refers to fact that each correct process
must be able to send a message m to any other correct
process present in the network. This means that there must
be at least 2 ∗ f + 1 disjoint paths available between every
two processes, as there can be at most f disjoint paths that
contain one or more faulty processes and the target process
needs to receive the message from at least f + 1 disjoint
paths in order to deliver m. Following Menger’s Theorem,
it results that the local connectivity between two arbitrary
nodes must be at least 2 ∗ f + 1, or in other words, a k-
connected network, where k > 2 ∗ f .

In Dolev’s protocol for unknown networks, each process
broadcasts a message of the format <sourceId,*, content,∅>
to its neighbors pj ∈ Γ(i). When receiving a message m
from a neighbor pa, a process relays
<sourceId,*, content, path∪pa> to all pb ∈ Γ(i) and pb /∈
path and delivers a message m if it received m from f + 1
disjoint paths.

Practical Reliable Broadcast Protocol (BFT) is a modified
version of the Dolev protocol that may reduce significantly
the message complexity whilst achieving reliable communi-
cation under certain system models [6]. It is important to
note that in BFT, a process pt is said to deliver a message
m from a process ps if there is a direct link between them
or if pt received m from at least f + 1 disjoint paths.

Explorer2 protocol is defined by employing a BFT prim-
itive and a failure detector that allows the processes to
eventually output the same topology. In this protocol, each
process broadcasts its neighborhood Γ(i) and stores any Γ(j)
delivered via a BFT instance in a dictionary data structure
cTopi. According to Farina [6], the topology Gi(Vi,Ei) is
reconstructed by each process as follows:

• if < v,Γ(v) >∈ cTopi, then v is inserted in Vi.
• if v is declared as neighbor by at least f +1 nodes and

u0, u1, ..., uf ∈ cTopi, then v is inserted in Vi.
• if v, u ∈ Vi and one declares the other as neighbor,

then (v, u) ∈ Ei.
As a process can only know that its neighborhood is at least
f + 1, each time the neighborhood grows, it will broadcast
it again. Thus, processes need a failure detector to identify
and discard incorrect messages: if a process pi delivers Γ(j)
and Γ(j)′ from pj such that Γ(j)′ /∈ Γ(j) and Γ(j) ∈ cTopi,
then exclude process pj from the reconstruction [6].

B. Problem Statement
The overall complexity is O(n2) reliable communication
instances for the weakest model [6]. We aim to reduce
this complexity by reducing the number of processes that
begin the broadcast procedure. We will assume that each
process knows whether it was assigned as broadcaster or

3

not. Furthermore, we introduce new modifications to the
Explorer2 protocol in order to guarantee the properties
of the reliable communication. Lastly, we show how to
compute an optimal routing. Decreasing the complexity of
Explorer2 and generating a routing table could prove to be
extremely beneficial, because routing protocols that have a
low complexity can be used afterwards to enable reliable
communication in larger systems.

Remark Note that the worst-case complexity for a
single reliable communication instance is factorial in the size
of the network.

C. System Model
In this subsection details on the system model and all
assumptions made are provided. Specifically, our system
model consists of p1, p2, p3 ... pn independent processes
or nodes that have physical connections between them.
These connections can are unicast links, which are simple
connections between two different processes, or broadcast
links in which a process pi is attached to several others
pa,pb.... Note that in the case of unicast links the complexity
is implicitly higher and therefore our study focuses only on
this type of link.

The processes or nodes of a network G can either be
correct or faulty, while the edges or links between two
processes can be divided into: (i) correct, (ii) one-faulty,
the edge interconnects a correct node and a faulty one, and
(iii) two-faulty, the edge interconnects two faulty nodes [6].

We select a global failure model, where there are at
most f < [N / 3] faulty processes, N being the number of
processes in the network. The network is k-connected where
k > 2 ∗ f , a requirement needed in order to achieve reliable
communication from any process to any other process [9].
To outline everything, we consider a static asynchronous
communication network with unicast links and a global
failure model. In a static network no new processes appear
over time, communication links are always available and
bidirectional and by asynchronous we refer to the each
process’s capability of executing local computations and
message exchanges in an unpredictable amount of time.

The knowledge of each process is the number f and
whether it is a broadcaster. Cryptographic solutions or any
other way of validating the authenticity of a message are not
considered for this study.

V. Approach
This section provides technical details on the methodology
used, data collected and the metrics used for analysing the
data.

A. Methodology
The test cases, graph generation and the methods for data
processing were implemented in Python, while in C++ we
implemented the BFT reliable communication and Explorer2
protocols as this language offers a better performance com-
pared to the former and we made use of Salticidae, a minimal
asynchronous library, to connect the processes. In order to

obtain relevant data regarding network throughput and la-
tency, the processes were simulated separately using Docker
containers. The Docker image is Ubuntu version 22.10. For
the experiments, we used a Intel I7-9750H machine with
16 GB of RAM.

For each different run, the network has three editable
parameters namely, the total number of nodes, the number
of faulty nodes and the connectivity. The number of faulty
nodes is restricted to be less than [k/3], where k is the
connectivity. According to these parameters, a random graph
is generated which can either be general k-connected or
multipartite wheel. This data was gathered and analysed
so that we could find out whether the improved version of
Explorer2 is still reliable.

B. Collecting data

The processes were designed to output in several files the
topology discovered, the time for each delivery for com-
puting the network latency, the number of BFT delivers for
computing the network throughput. The topology discovered
by each process was compared to the topology of the
network, excluding the edges that contain one or two faulty
processes.

C. Validation and metrics

Before measuring the performance of the modified Ex-
plorer2, it was necessary to check whether the functionality
behaves as expected. Empirical analysis was applied for this
topic by making each process output the topology recon-
structed in an individual file. After every run, the results
were compared with the actual topology of the network,
with and without the faulty edges. Moreover, it was verified
that each process has at least f + 1 connections in order to
assert the properties of the reliable communication.

For measuring the possible improvements in the perfor-
mance, we ran the same network topology and configuration
in parallel on the unmodified implementation of Explorer2.
The comparisons made will focus mainly on the message
and delivery complexity and communication latency where
relevant. Time complexity will not be considered since our
system model is based on an asynchronous behaviour. We
define message complexity as the total number of messages
exchanged by the processes in a network and the delivery
complexity as the local computational cost required by a
single process to validate a content.

Network throughput is computed by averaging
countDelivers/(maxTime − minTime) values of
each process, where maxTime and minTime represent
the last timestamp a message was delivered and the first
timestamp a message was delivered respectively.

Remark Communication latency plays a secondary role in
our evaluation due to our experimental setup. The processes
run in independent Docker containers, yet the channels used
for communication are still on the same machine and thus,
they have a low and similar latency if not the same and
elements like jitter are hard to simulate.

4

VI. Improving Explorer2

In this section we present the problems encountered when
trying to reduce the number of broadcasts, the observations
made and lastly, how to compute the routing paths.

A. Explorer2

We implemented the Explorer2 protocol according to the
pseudocode found in Algorithm 1 and the code is available
in [10]. The topology reconstruction process is triggered
every time a different message is dolev delivered (line 10).
The neighborhood Γ received is added to cTop if the size
of the respective entry is 0 (line 20), or otherwise it is
goes through the failure detector step (lines 30-38) and if
necessary the topology is updated accordingly. The counter
array is incremented (lines 42-43) on the respective indices
of the elements present in the received neighborhood. For
each element p in the neighborhood, if it was already
declared by at least f + 1 processes as neighbor then
the edge (p, broadcasterId) is added to edges (lines 50-
52), otherwise broadcasterId is pushed in edge valid[p]
(lines 58-59). In the case in which p was just declared
by f + 1 processes (lines 53-57), for each element b in
edge valid[m], the edge (b, p) is added to edges (lines 50-
52, 60-67).

This protocol enables any correct process to partially
reconstruct the topology and eventually all correct processes
will share the same topology. However, ”the sets of as-
sumptions (i) k ≥ 2 ∗ f , (ii) unicast links, (iii) unknown
neighborhood, (iv) no two-faulty edges in G or (a) k ≥ 2∗f ,
(b) known neighborhood are not sufficient to enable every
correct process to to compute a disjoint path solution towards
every other correct process” [6].

Explorer2 guarantees the properties of RC when:

• ”k > 3 ∗ f
• k > 2 ∗ f + [f/2] with local broadcast links
• k ≥ 2 ∗ f + [f/2] with known neighborhood” [6]

Algorithm 1 Explorer2
1: Global Parameters:
2: cTop: matrix containing Γ of broadcasters
3: edges: vector containing edges in final topology
4: edge valid: vector containing edges not validated yet
5: counter: counter for the number of times each process

was declared as neighbor by some other process
6: alreadyProcessed: bool vector keeping track of ver-

tices accepted.
7: vertices: vector containing nodes in final topology
8: upon event ⟨Dolev, Deliver⟩ do
9: saveNeighborhood(broadcasterId,msg.neighborhood)

10: Function saveNeighborhood(bId: int, neighbors: vector)
11: if not saveToStructure() then
12: checkBuild()
13: end if
14:

15: Function saveToStructure(bId: int, neighbors: vector)
16: if cTop[bId].size() = 0 then
17: cTop[bId] := neighbors
18: return false
19: else if cTop[bId].size() < neighbors.size() then
20: detectChange(bId, neighbors, false)
21: return true
22: else
23: detectChange(bId, neighbors, true)
24: return true
25: end if
26:
27: Function detectChange(bId: int, neighbors: vector,

larger: bool)
28: if larger and cTop[bId] not in neighbors then
29: return
30: else if not larger and cTop[bId] not in neighbors

then
31: return
32: end if
33: arr := neighbors not in cTop[bId]
34: for it in arr do
35: counter[it] := counter[it] + 1
36: end for
37: buildTopology(bId)
38:
39: Function checkBuild(bId: int)
40: if bId not in vertices then
41: vertices.add(bId)
42: end if
43: counter[bId] := counter[bId] + numFaulty + 1
44: for it in cTop[bId] do
45: counter[it] := counter[it] + 1
46: end for
47: buildTopology(bId)
48:
49: Function buildTopology(bId: int)
50: for i in cTop[bId] do
51: if counter[i] ≥ numFaulty + 1 then
52: if alreadyProcessed[i] and (i, bId) not in

edges then
53: edges.add((i, bId))
54: continue
55: else
56: if i not in vertices then
57: vertices.add(bId)
58: end if
59: edge valid[i].push back(bId)
60: addEdges(i)
61: alreadyProcessed[i] := True
62: end if
63: else if counter[i] ≤ numFaulty then
64: edge valid[i].push back(bId)
65: end if
66: end for
67:
68: Function addEdges(node: int)
69: for e in edge valid[node] do
70: if e not in edges then
71: edges.add((i,j))
72: cnt := cnt + 1
73: end if
74: end for
75:

5

B. Reducing the number of broadcasters
We assume that the nodes that are declared as broadcasters
are always correct and k > 3 ∗ f . Let us denote from now
on the set of broadcasters as β. The solution would be to
use the unmodified version of Explorer2 with a reduced
number of broadcasters, but we must be able to guarantee
the liveness property. Take the network presented in Figure
1 for instance, where all the nodes that are not neighbors
of 14 will not be able to reach this node using a reliable
communication primitive. Since k = 8 it results that f = 2
and Πpi,14 = 4 < 2 ∗ f + 1, ∀pi /∈ Γ(14). The disjoint path
solution is four, as |β ∪Γ(14)| = 4 and the rest of the links
node 14 has will remain undiscovered.

Taking this into account, our initial assumption that
2 ∗ f + 1 broadcasters would be enough is not realistic and
an in-depth analysis is required in order to find the number
of broadcasters needed to guarantee the liveness property.
However, the range we need to look into is significantly
reduced, as it is shown that at least 2/3 of the processes
need to broadcast initially.

Fig. 1: A k-connected network of 15 nodes where k = 8. The green
nodes represent the broadcasters.

C. Getting back the paths lost
The main problem is the low number of edges belonging to
one or more processes that are discovered. As was described
in the section above, when a process pi is not selected as
a broadcaster, other processes will be able to discover only
a part of Γ(i). Precisely, the other processes in the network
will discover an edge e(ei, ek) ∈ Γ(i) only if pk ∈ β. This
means that in order for a process pk to compute Πk,i,
pk ∈ G, either pi ∈ β, pk ∈ Γ(i) or |Γ(i) ∩ β| ≥ 2 ∗
f + 1. The latter condition can be used to employ a new
modification with ease, as each process knows f and the
number of neighbors that are broadcasters is equal to the
number direct dolev delivers.

Using this observation, we could enable a smaller number
of processes to broadcast initially and still guarantee the

liveness property. A downside might be that more processes
than the optimal number will end up broadcasting, although
in an asynchronous communication it can prove to be highly
unlikely as this translates to the case where at least two
processes that are neighbors and are not in β will finish
delivering all the messages broadcasted at exactly the same
time.

D. Routing
After the broadcast rounds are over, each process needs to
compute the disjoint paths solution Π to every other process
present in the network G for routing future messages. We
enabled the processes to generate the routing table using the
Ford-Fulkerson algorithm.

A process pi will assign its id as the source and the id of
a process pj as the sink and call the max-flow function to
get Πi,j . Each edge e(e1, e2) reconstructed and its inverse
e′(e2, e1) are added with a capacity of 1 in the graph used
for the max-flow algorithm. This procedure is done for every
process pj ∈ G resulting in a total complexity of O(E*N),
where E is the number of edges and N is the number of
processes. Ford-Fulkerson was selected as an alternative for
other max-flow algorithms in an effort to achieve optimal
routing, as the disjoint paths are retrieved in ascending
order (from the shortest to the longest) since the algorithm
is based on a breadth-first approach and consequently, no
additional sorting will be needed. This procedure can be
found in Algorithm 2, while maximizeFlow function and
the objects used can be found in Appendix A. Data structure
routingTable will contain the final Π.

Algorithm 2 Routing

1: Parameters:
2: routingTable : map<int, vector<vector<int>>
3:
4: vector<Node> connections
5: for node in vertices do
6: connections[node] := Node(node)
7: end for
8:
9: for it in edges do

10: connections[it.first].addEdge(it.second)
11: end for
12:
13: for node in vertices do
14: Graph g(connections, myid, node)
15: routingTable.add(maximizeFlow(g, myid, node))
16: end for

VII. Evaluation
A. Experimental work
The focus of the experimental work was to find the lower
limit of broadcasters that would guarantee the RC properties
for every process in the network. Due to the heavy load of
a network with a high connectivity and a significant number
of nodes running locally, the Salticidae library is prone to
connection errors at runtime. Having nodes crashing during

6

execution is undesirable, as it could tamper the data and lead
to erroneous results and for this reason, we decided to set the
connectivity to 10 for all experiments and the total number
of processes in the range of [15, 32]. For each test run, a new
k-connected graph and β set are generated at random. Using
scripts made in Python, the topologies outputted by each
process were compared to the initial topology in order to
identify the potential missing edges. The results can be seen
in Figure 2. The highest percentage of nodes that broadcast
that has an invalid outcome is 81.25%.

Another subject of interest regarding these results is
the percentage of processes that are not able to generate
the Π (referred to as invalid nodes) when the number of
broadcasters is not big enough. The percentage is quite high,
as it can be seen in Figure 3. The reason for this was
explained in Reducing the number of broadcasters.

Fig. 2: Outcome of our main experiment. Valid refers to the case
where all processes are able to generate the Π to every other process
in the network.

Fig. 3: Percentage of invalid nodes matched against the number of
nodes that broadcasted.

A more interesting distribution of the data can be found in
Figure 4, where the averaged number of undiscovered nodes

for each node is compared to the percentage of nodes that
broadcasted. A node pj is undiscovered for a node pi, if pi
is not able to compute a |Πi,j | > 2 ∗ f . This offers a much
better perspective on how the protocol fares with different
numbers of broadcasters. It is worth mentioning that usually
the undiscovered nodes are the same for each node during
an execution.

Fig. 4: Percentage of averaged undiscovered nodes for each node
matched against percentage of nodes that broadcasted.

B. Impact of improvements

The results of the metrics for performance analysis can be
found in Table 1. For the k-connected and multipartite wheel
graphs we kept the configuration across the experiments
while interchanging only the set β and connectivity was
10. On average, the reduction of 20% in the number of
broadcasters seems to be reflected on the values of the
metrics, as the difference in the number of messages
exchanged is in the first case 21.71% and in the second
18.38%. The values of throughput in the second case
should not be considered, as the data was clearly affected
by the machine’s computational power. The latency is also
improved, both cases having a similar rate of improvement.

k-connected with 20 nodes
Percentage
of nodes

No. of
messages

Throughput
(delivers/s)

Latency
(ms)

80%
5499 43 233.5
5939 47 229.3
6929 37 326.2

100%
8962 31 354.0
8286 37 297.3
6210 44 281.9

Improvement 21.71% 11.82% 15.44%

7

multipartite wheel graph with 30 nodes
Percentage
of nodes

No. of
messages

Throughput
(delivers/s)

Latency
(ms)

80%
23188 3 9263
24575 2 9945
27338 3 10690

100%
31005 1 12250
32448 2 12740
28460 2 11667

Improvement 18.38% 18.44%

VIII. Responsible Research
Explorer2 was reimplemented to the best of our abilities
and according to the indications provided in the literature
and we provided the explicit pseudocode to ensure the
reproducibility of our experiments. Furthermore, the results
are expected to be similar, regardless of the choice of the
topology configuration or the set β. Experiments in which
one or more nodes crashed at runtime were discarded and
with them any chances of using tampered data. We presented
an explicit and complete pseudocode for the routing process
and description of the methods and metrics used. All exper-
iments are reproducible and we mentioned the values used
for each parameter.

IX. Discussion
The averaged number of broadcasters required to enable
any-to-any RC in a network is higher than expected, being
around 80% out of the total number of processes. However,
the modification detailed in Getting back the paths lost could
reduce the number of broadcasters even more, but most
importantly it guarantees the properties of RC. The metrics
used indicate that the performance is better, especially
when it comes to the number of messages the processes
exchanged.

Regarding the results mapped in Figure 3, it is likely that
the percentage of these invalid processes in the range of 60%
to 80% broadcasters will drop if the connectivity increases.
Moreover, we did not take into account the fact that if a
process pj ∈ Γ(i) and |Πi,j | < 2 ∗ f + 1, pi, then it is not
necessary for pi to know 2 ∗ f +1 disjoint paths towards pj
in order to achieve reliable communication as they have a
direct link. Thus, the percentage of invalid processes might
be smaller.

X. Conclusions and Future Work
In this paper we described the pseudocode of the Explorer2
protocol, shown that it is possible to reduce the number of
broadcasters required down to 81.25% of the total number
of process and provided a new modification meant to ensure
that the RC properties are preserved. The modification
employed might decrease significantly the number of broad-
casters needed, but more experiments with the aim of finding
an optimal number of broadcasters are necessary since it is
difficult to predict its behaviour in an asynchronous network.
Moreover, we provided a pseudocode for generating the
disjoint paths in an efficient way with a complexity of
O(N ∗ E).

The outcome was not what we expected initially, but
while the delivery complexity remains rather unchanged,
decreasing the message complexity by 20% is still a sig-
nificant improvement, given that the worst-case scenario is
factorial. However, this work could be extended in the future
by designing a new way to reconstruct the topology.

8

Appendix A

Objects pseudocode

1: class Graph
2: Parameters:
3: nodes : vector<Node>
4: source : Node
5: sink : Node
6:
7: Function Graph(nodes: vector<Node>, source: int,

sink: int)
8: this.nodes = nodes
9: this.source = this.nodes[sourceId]

10: this.sink = this.nodes[sinkId]
11:
12: end class
13:
14: class Node
15: Parameters:
16: id : int
17: edges : vector<Node>
18:
19: Function Node(id: int)
20: this.id := id
21:
22: Function addEdge(to: Node, lower: int, capacity:

int)
23: Edge e := Edge(lower, upper, this.id, to.id)
24: this.edges.push back(e)
25: to.edges.push back(e.getBackwards())
26:
27: end class
28:
29: class Edge
30: Parameters:
31: to : int
32: from : int
33: flow : int
34: capacity : int
35: lower : int
36: backwards : Edge
37:
38: Function augmentFlow(add: int)
39: flow := flow + add
40: backwards.flow := getResidual()
41:
42: Function Edge(lower: int, capacity: int, from: int,

to: int)
43: this.lower := lower
44: this.capacity := capacity
45: this.from := from
46: this.to := to
47: this.flow := 0
48: this.backwards := Edge(this)
49:
50:

50: Function Edge(e: Edge)
51: this.lower := 0
52: this.flow := e.capacity
53: this.capacity := e.capacity
54: this.from := e.to
55: this.to := e.from
56: this.backwards := e
57:
58: Function getBackwards()
59: return backwards
60:
61: Function getResidual()
62: return capacity - flow
63:

Function maximizeFlow
1: Function maximizeFlow(g: Graph, source: int, sink: int)
2: vector<Edge> path
3: vector<vector<Edge>> solution
4: while not (path := findPath(g, source, sink).empty()

do
5: for e dodge in path
6: r := min(r, e.capacity - e.flow)
7: end for
8: for edge in path do
9: g.nodes[e.from].edges[e].augmentFlow(r)

10: end for
11: f := f + r
12: solution.push back(path)
13: end while
14:
15: Function findPath(g: Graph, start: Node, end: Node
16: map<Node, Edge> mapPath
17: queue<Node> sQueue
18: Node currentNode := start
19: sQueue.push(currentNode)
20: while not sQueue.empty() and currentNode != end

do
21: currentNode = sQueue.pop()
22: for edge in currentNode.edges do
23: if edge.to != start.id and edge.to not in

pathMap and edge.capacity > edge.flow then
24: sQUeue.push(edge.to)
25: mapPath.insert((edge.to, edge))
26: end if
27: end for
28: end while
29: vector<Edge> path
30: if sQueue.empty() and currentNode = end then
31: return path
32: end if
33: Node current = end
34: while mapPath.find(current) do
35: path.insert(mapPath[current])
36: current = mapPath[current].from
37: end while
38: return path
39: =0

9

References
[1] Leslie Lamport, Robert Shostak, and Marshall Pease. The

byzantine generals problem. In Concurrency: the Works of
Leslie Lamport, pages 203–226. 2019.

[2] Dolev D. Unanimity in an unknown and unreliable envi-
ronment. IEEE Computer Society, 22nd Annual Symposium
on Foundations of Computer Science (sfcs 1981):159–168,
October 1981.

[3] Silvia Bonomi, Giovanni Farina, and Sébastien Tixeuil. Multi-
hop byzantine reliable broadcast with honest dealer made
practical, Sep 2019.

[4] Danny Dolev, Joseph Y. Halpern, Barbara Simons, and
H.Raymond Strong. A new look at fault-tolerant network
routing, Nov 2004.

[5] Nesterenko M. and Tixeuil S. Discovering network topology
in the presence of byzantine faults. In Structural Informa-
tion and Communication Complexity, pages 212–226, Berlin,
Heidelberg, 2006. Springer Berlin Heidelberg.

[6] Giovanni Farina. Tractable Reliable Communication in
Compromised Networks. PhD thesis, Sorbonne Université;
Sapienza Università di Roma (Italie), 2020.

[7] Silvia Bonomi, Giovanni Farina, and Sébastien Tixeuil. Multi-
hop byzantine reliable broadcast with honest dealer made
practical. Journal of the Brazilian Computer Society, 25(1):1–
23, 2019.

[8] Karl Menger. Zur allgemeinen kurventheorie. Fund. Math.,
10:96–1159, 1927.

[9] Danny Dolev. The byzantine generals strike again. Journal
of algorithms, 3(1):14–30, 1982.

[10] Explorer2 code implementation and python
scripts for processing the metrics. https://gitlab.
tudelft.nl/cse3000-2022-reliable-communications/
silviu-discover-network-topology, June 2022.

10

https://gitlab.tudelft.nl/cse3000-2022-reliable-communications/silviu-discover-network-topology
https://gitlab.tudelft.nl/cse3000-2022-reliable-communications/silviu-discover-network-topology
https://gitlab.tudelft.nl/cse3000-2022-reliable-communications/silviu-discover-network-topology

	Abstract
	Introduction
	Related Work
	The reliable communication problem
	Dolev protocol
	Modified Dolev protocol
	Explorer
	Explorer2
	Graphs and disjoint paths

	System Model and Problem Statement
	Background
	Problem Statement
	System Model

	Approach
	Methodology
	Collecting data
	Validation and metrics

	Improving Explorer2
	Explorer2
	Reducing the number of broadcasters
	Getting back the paths lost
	Routing

	Evaluation
	Experimental work
	Impact of improvements

	Responsible Research
	Discussion
	Conclusions and Future Work
	Appendix A
	References

