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On the time lag between sea-level 
rise and basin infilling at tidal inlets
Roshanka Ranasinghe1,2,3, Zheng Bing Wang2,4, Janaka Bamunawala5 &  
Trang Minh Duong1,2,3

Tidal inlets are a common feature along the world’s coastline. Inlet-adjacent coastlines have for 
millennia supported communities and livelihoods, and therefore, projected climate change driven 
variations in catchment-estuary-coast (CEC) system drivers (e.g., sea-level rise (SLR)) are likely to 
lead to substantial socio-economic impacts. One important SLR-driven process that affects inlet-
adjacent shoreline change is basin-infilling (i.e., sediment import to the estuary from the coast to 
satisfy the SLR-driven increase of estuarine accommodation space). Due to the slow morphological 
response to hydrodynamic forcing, however, there is a time lag between basin infilling and SLR, 
which, in numerical models that simulate century-scale evolution of CEC systems, is represented by a 
basin infilling lag factor (M). To date, an indicative M value has only been derived for small tidal inlet 
systems (M ~0.5), and due to the lack of M estimates for larger systems, studies have been using M ~0.5 
indiscriminately. Here, for the first time, we derive indicative M values for small, medium, and large 
tidal inlet systems (M ~0.5, ~0.25 and ~0.15 respectively) via analytical considerations. Subsequently, 
to investigate the consequences of using sub-optimal M values on twenty-first century projections of 
inlet-adjacent shoreline change, we apply a probabilistic, reduced complexity model (G-SMIC), under 
four IPCC AR6 climate scenarios, to three CEC systems representing small, medium and large systems. 
Results show that, in general, shoreline change projections are substantially lower(higher) when M 
values smaller(larger) than the indicative M for a given system are used. When smaller-than-optimal M 
values (0.25 and 0.15) are used for the small tidal inlet, both mid- and end-century shoreline retreats 
are under-estimated by 50–75% (across the four climate scenarios), relative to projections obtained 
with the optimal M value. For the medium-sized inlet, shoreline retreats for both future periods are 
over-estimated by ~100% with the larger-than-optimal M value of 0.5, while they are under-estimated 
by ~40–75% (across climate scenarios) with the smaller-than-optimal M value of 0.15. When the two 
higher-than-optimal M values (0.25 and 0.5) are used for the large tidal inlet system, shoreline retreat 
is over-estimated by ~ 65–240% (across climate scenarios) for both future periods. In terms of absolute 
values, these under/over-estimations increase in time and with the severity of emission scenario.

Estuaries connected to the ocean via a narrow inlet channel, often referred to simply as “tidal inlets”, can be 
commonly found all over the world1–9. These inlets come in different types, shapes and sizes6, and in general, 
inlet-adjacent coastlines have supported many human activities such as fishing, sand mining, navigation, and  
waterfront developments, to name a few2,8,10,11. As such, inlet-interrupted coasts have for centuries attracted 
human settlements, making them highly sought after regions11–13. Any changes to the inlet-coast system that 
impacts on such human activities would, therefore, lead to heavy socio-economic consequences and, in some 
cases, may even threaten the safety of coastal communities8–11.

It is now well understood that the stability of tidal inlets and adjacent coastlines is a function of both oceanic 
(e.g., change in mean sea level) and terrestrial (e.g., change in fluvial sediment supply) processes8,9,11,13. Climate 
change, however, is projected to affect almost all key inlet system drivers, such as mean sea level, riverflow, 
ocean waves, and storm surges6,8–10. In fact, several impact assessments have shown that climate change-driven 
impacts at inlet-coast systems are all but inevitable over the twenty-first century8,9,13–22.

One of the key processes governing tidal inlet response to especially sea-level rise (SLR) is the process known 
as basin infilling11,23, which is the focus of this contribution. When the mean sea level increases, the estuary 
volume will also increase by a certain amount (i.e., accommodation space). To maintain its initial equilibrium 
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state, the estuary will then strive to import a sediment volume equal to this SLR-driven increase in estuary 
volume. This is the process known as SLR-driven basin infilling. However, as the time scales associated with 
hydrodynamic forcing and morphological response are different, there will be a potential time lag between SLR 
and basin infilling. Through analytical considerations, Ranasinghe et al.11 showed that, for small tidal inlets 
(defined as systems with estuary surface areas of around 50–100 km2), this time lag is approximately 50% (i.e., at 
any given time, the SLR-driven accommodation space in an estuary will only be half filled up by basin infilling). 
This simplification has been used extensively in the reduced complexity model SMIC11 and its successor 
G-SMIC8,9,21. However, as stated in Ranasinghe et al.11, this time lag of 50%, represented in the aforementioned 
reduced complexity models by a so-called ‘lag-factor’ M equal to 0.5 in the term representing basin infilling, is 
valid only for small tidal inlets. In this contribution, starting with the analytical considerations in Ranasinghe 
et al.11, we explore how M might vary for larger tidal inlets. In this regard, two additional cases are considered: 
medium and large inlets, with the respective surface areas twice and four times that typical of small tidal inlets. 
Subsequently, through applications of G-SMIC to systems representing small, medium and large inlets with 
different M values, we investigate the potential under/over-estimation of future shoreline change along the inlet-
adjacent coast that could result from using inappropriate M values in computations. Please see Methods for more 
details on the analytical derivation for M, a brief description of G-SMIC and its implementation in this study.

Results
Lag factor M for different tidal inlets
Using analytical methods (fully described in Methods), the following M values are obtained for different tidal 
inlet systems:

•	 M ~ 0.5 for Small tidal inlets (~ 50 km2 < AB < 100 km2)
•	 M ~ 0.25 for Medium-sized tidal inlets (~ 100 km2 < AB < 200 km2); and
•	 M ~ 0.15 for Large tidal inlets (~ 200 km2 < AB < 400 km2).

Where, AB is the horizontal basin surface area. The medium and large tidal inlet classes here are based on the 
estuary data base used by Bamunawala et al.21.

Essentially, the above results imply that larger systems take much longer than smaller systems to 
morphologically respond to SLR, which is in line with previous assertions4,23–27.

The impact of using inappropriate M values in shoreline change assessments
Here, we present the G-SMIC projected inlet-adjacent shoreline changes by the middle and end of the twenty-
first century under four IPCC AR6 climate scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5), at all three 
types of inlet systems, with all three M values derived above. The representative systems considered here, and 
their key system characteristics are shown in (Fig. 1 and Table 1).

Table 2 shows the decadal averaged median (i.e., 50th percentile) projections of shoreline positions (∆xsv) at 
the selected three case studies for the four considered climate scenarios for mid-century (2056–2065) and end-
century (2091–2100) periods. These median values are extracted from fully probabilistic G-SMIC projections. 
For the sake of completeness, decadal averaged 10th, 50th, and 90th percentile values of sediment exchange 
volume between the estuary and the coast (∆V T) during the mid-century (2056–2065) and end-century (2091–
2100) periods are shown in Supplementary Tables S1, S2, while the consequent variations in shoreline positions 
(∆xsv) are shown in Supplementary Tables S3, S4, respectively.

For all three inlet systems, in general, the results show that projected future variations in shoreline position 
(∆xsv, in m) are substantially lower(higher) when M values smaller (larger) than the indicative M value for the 
system type are used, under all climate scenarios and for both future time periods. For the small inlet system 
(indicative M~ 0.5), across the four considered climate scenarios, shoreline retreat is under-estimated (relative 
to the shoreline retreat projected with the appropriate indicative M value of 0.5) by between 50–75% for both 
mid and end-twenty-first century when using the two smaller M values (0.25 and 0.15). In terms of absolute 
values, the under-estimation of shoreline retreat for this system can be up to ~ 25 m for mid-century and as 
high as ~ 50  m for end-century. For the medium-sized inlet system (indicative M ~ 0.25), shoreline retreat is 
over-estimated by ~ 100% under all climate scenarios and for both future time periods (over-estimations 
of ~ 10 m–15 m and ~ 20 m–35 m for mid and end-century, respectively) when the higher-than-optimal M value 
of 0.5 is used. Conversely, when the lower-than-optimal   M value of 0.15 is used at the medium-sized inlet 
system, shoreline change is under-estimated by 40–75% across the considered climate scenarios for both future 
periods (under-estimations of ~ 5 m and 10–15 m for mid and end-century, respectively). When the two higher-
than-optimal M values are used for the large tidal inlet system (optimal M ~ 0.15), shoreline retreat is over-
estimated by ~ 65–240% across all climate scenarios and for both future time periods (over-estimations of up 
to ~ 15–75 m and up to ~ 30–165 m for mid and end-century, respectively). It is also noteworthy that, in terms 
of absolute values, all these under/over-estimations increase in time and with the severity of emission scenario.

It should be noted that all the shoreline variations presented in Table 2 and Supplementary Tables are only 
due to projected changes in sediment volume exchange (∆V T). In addition to this, these systems will inevitably 
experience an additional SLR-driven coastal recession due to the so-called Bruun effect28, which is not included 
in the results presented in this study. Furthermore, here, we do not consider any significant changes in river 
catchments (such as dam removal or construction of new dams) that might substantially change the overall 
sediment exchange volume and the consequent shoreline position change.
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Conclusions
This study investigated the time lag between SLR and basin infilling; both being important processes that affect 
inlet-adjacent shoreline change. In numerical models that simulate century-scale evolution of tidal inlets this 
time lag is represented by a basin infilling lag factor (M). However, an indicative M value has only been derived 
for small tidal inlet systems (M ~ 0.5) to date, which has resulted in this one value being used indiscriminately 
for larger inlet systems. In this study, physics based analytical methods were used to derive M values for different 
tidal inlet systems with the following results:

Parameter
Rio Deseado, Argentina
 (small tidal inlet)

Muni, Equatorial Guinea
 (medium-sized tidal inlet)

Lisboa, Portugal
 (large tidal inlet)

Basin surface area (AB  in km2) 90 185 320

River catchment area (A in km2) 38,743 7995 8022

Basin volume (V  in ×106m3) 166.3 341.8 591.2

Catchment relief (R in km) 2.4 1.15 0.98

Catchment lithology factor (Lc) 1 0.5 1.5

Anthropogenic factor (Eh) 0.41 0.396 0.64

Mean ebb-tidal prism (P in × 106m3) 682.2 482.9 1340.8

Depth of closure (DoC in m) 15 20 15

Length of inlet-affected coastline (km) 30 50 35

Table 1.  Properties of the selected tidal inlet systems (see methods for data sources).

 

Fig. 1.  Location, watershed, and Human FootPrint Index (HFPI) of the case studies: (A) Rio Deseado (small 
system), (B) Muni (medium system), and (C) Lisboa (large system). HFPI data were obtained from ​h​t​t​p​s​:​/​/​d​o​i​.​
o​r​g​/​1​0​.​7​9​2​7​/​H​4​6​T​0​J​Q​4​​​​​. Figure created with ArcGIS Pro, ver 3.3.1 (​h​t​t​p​s​:​​​/​​/​w​w​​w​.​e​s​r​​i​.​c​​o​m​/​​e​​n​​-​u​s​/​​a​r​c​​g​i​​s​/​p​r​o​d​​​u​c​t​
s​/​​a​r​​c​g​i​​s​-​p​r​o​/​o​v​e​r​v​i​e​w).
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•	 M ~ 0.5 for Small tidal inlets (~ 50 km2 < AB < 100 km2)
•	 M ~ 0.25 for Medium-sized tidal inlets (~ 100 km2 < AB < 200 km2); and
•	 M ~ 0.15 for Large tidal inlets (~ 200 km2 < AB < 400 km2).

where, AB is the horizontal basin surface area.
The consequences of using sub-optimal M values on twenty-first century projections of inlet-adjacent 

shoreline change were investigated through the application of the probabilistic, physics-based, reduced 
complexity model  (G-SMIC), under SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5, to three tidal inlet systems 
representing small, medium, and large systems. Results showed that, in general, shoreline change projections 
are substantially lower(higher) when M values smaller(larger) than the indicative M for a given system are 
used, under all climate scenarios considered and for both mid- and end-twenty-first century periods. More 
specifically, for the small inlet system (indicative M ~ 0.5), when smaller-than-optimal M values (0.25 and 0.15) 
are used, both mid- and end-century shoreline retreats are under-estimated by 50–75% across the four climate 
scenarios (relative to the shoreline retreat projected with the appropriate indicative M value of 0.5). In the case 
of the medium-sized inlet, across the four climate scenarios, shoreline retreats are over-estimated by ~ 100% 
for both future periods when the larger-than-optimal M value of 0.5 is used, while they are under-estimated 
by ~ 40–75% when the smaller-than-optimal M value of 0.15 is used. For the large tidal inlet system, shoreline 
retreat is over-estimated by ~ 65–240% (across the four climate scenarios) for both future periods when the two 
higher-than-optimal M values (0.25 and 0.5) are used. The absolute values (i.e. meters instead of percentages) of 
these under/over-estimations increase in time and with the severity of emission scenario.

Methods
Analytical solution for the basin infilling lag factor M
For the sake of completeness, here we first reproduce the derivation of M ~ 0.5 for small tidal inlets presented in 
Ranasinghe et al.11 and then expand the analysis to larger inlets.

The derivation of the basin infilling lag factor M presented here is based on the ASMITA model24. ASMITA 
conserves sediment within an inlet system (comprising ebb delta, channel, and basin) and the ‘outside world’ 
(which represents the adjacent nearshore area). ASMITA has two basic assumptions: (1) sediment exchange 
between the inlet system elements and with the ‘outside world’ drives morphological interaction between the 
three system elements, and (2) the ‘outside world’ is always in a state of equilibrium. Thus, when, for example, 

Tidal-Inlet system Lag factor (M)

Decadal-averaged projections of shoreline position change 
(∆xsv  in m) for the 2056–2065 period

SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5

Rio Deseado 
(small)

0.50 −25 (−) −28 (−) −30 (−) −33 (−)

0.25 −12 (−52%) −14 (−51%) −15 (−52%) −16 (−51%)

0.15 −7 (−73%) −8 (−72%) −8 (−72%) −9 (−72%)

Muni (medium)

0.50 −24 (100%) −27 (93%) −29 (93%) −32 (100%)

0.25 −12 (−) −14 (−) −15 (−) −16 (−)

0.15 −7 (−42%) −8 (−75%) −9 (−40%) −10 (−38%)

 Lisboa (large)

0.50 −79 (235%) −88 (236%) −96(235%) −104 (234%)

0.25 −39 (67%) −44 (67%) −48 (67%) −52 (67%)

0.15 −24 (−) −26 (−) −29 (−) −31 (−)

Decadal-averaged projections of shoreline position change 
(∆xsv  in m) for the 2091–2100 period

Rio Deseado 
(small)

0.50 −43 (−) −54 (−) −64 (−) −73 (−)

0.25 −20 (−53%) −25 (−53%) −30 (−53%) −35 (−52%)

0.15 −11 (−75%) −14 (−74%) −16 (−74%) −19 (−74%)

 Muni (medium)

0.50 −42 (100%) −53 (104%) −63 (97%) −71 (97%)

0.25 −21 (−) −26 (−) −32 (−) −36 (−)

0.15 −13 (−38%) −16 (−63%) −19 (−41%) −22 (−39%)

Lisboa (large)

0.50 −139 (240%) −173 (239%) −207 (239%) −234 (237%)

0.25 −69 (68%) −86 (68%) −103 (69%) −116 (68%)

0.15 −41 (−) −51 (−) −61 (−) −69 (−)

Table 2.  Median (i.e., 50th percentile) projections of time-averaged shoreline position change (∆xsv) relative 
to present-day at the selected case study locations under four IPCC AR6 climate scenarios for mid and end-
twenty-first century periods. Negative values indicate shoreline retreat. For each system type, bold numbers 
indicate the projections obtained when using the indicative basin infilling lag factor (M) for that system, while 
the non-bold numbers show the result when M values other than the indicative M value are used for a given 
system. The % values within brackets indicate the % difference between each projection and the projection 
using the indicative M value (negative % change indicates an under-prediction relative to the projection with 
the indicative M value for the system).

 

Scientific Reports |         (2025) 15:4231 4| https://doi.org/10.1038/s41598-025-86699-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


SLR perturbs the system, the three elements and the outside world interact in such a way that each of the three 
system elements evolves towards a dynamic equilibrium state. For the M factor derivation here, we use the 
simplified single-element version of ASMITA presented by Van Goor et al.25, given by:

	
dV

dt
= VB − V

T
+ ABR� (1)

where, V  is the wet volume of the basin below the changing sea level (in m3), t is time (in years), VB is the 
equilibrium volume in the absence of sea-level change (taken as the present-day basin volume; m3); T is the 
morphological time scale of the inlet/basin system (in years), AB is the horizontal surface area of the basin (in 
m2), and R is the rate of SLR (in m/year).

The first term on the right-hand side of [1] represents the basin volume change due to erosion, and the second 
term on the right-hand side represents the SLR-driven change of the basin volume. Therefore, the sediment 
import rate into the basin is given by:

	
QBi = V − VB

T
� (2)

If R is assumed to be more or less a constant, the solution of equation [1] is:

	 V = (V0 − Ve) e−( t
T ) + Ve� (3)

where, V0 is the initial value of V (i.e., V(t = 0)), and Ve represents the dynamic equilibrium volume (i.e., the 
basin volume that would result after a long time of sea-level rise at a constant rate R).

The rate of volume change should be zero (i.e., dV/dt = 0) when dynamic equilibrium is achieved, and thus by 
substituting V = Ve in [1]:

	 Ve = VB + ABRT � (4)

Assuming that the rate of sea-level rise increases from a rate R1 to R2 at t = 0 (e.g., at the beginning of the 
twenty-first century), the solution becomes:

	 V = (Ve1 − Ve2) e−( t
T ) + Ve2 = ABT (R1 − R2) e−( t

T ) + VB + ABT R2� (5)

By substituting [5] for V in [2], the sediment import into the basin (or SLR-induced basin infilling) is given by:

	 QBi = AB (R1 − R2) e−( t
T ) + ABR2� (6)

The total basin infilling volume during a given time period (i.e., t = t1 to t = t2) can be calculated by integrating 
[6] within the limits of t as:

	
ABT (R1 − R2)

[
e

−
(

t1
T

)
− e

−
(

t2
T

)]
+ ABR2 (t2 − t1)� (7)

By definition, the basin infilling volume is equal to the lag factor (M) multiplied by the accommodation space 
due to SLR:

	
M∆SAB = ABT (R1 − R2)

[
e

−
(

t1
T

)
− e

−
(

t2
T

)]
+ ABR2 (t2 − t1)� (8)

As SLR over the twentieth century has been very slow (Fox-Kemper et al.29 report an average rate global mean 
sea level change of 1.35 [0.78 to 1.92, very likely range] mm yr–1), R1 can be assumed to be zero, which reduces 
[8] to:

	
M∆S = R2 (t2 − t1) + T R2

[
e

−
(

t2
T

)
− e

−
(

t1
T

)]
� (9)

Following Stive and Wang23, the Morphological time scale T can be defined as:

	
T = Ve

nCE

[ 1
wsAB

+ 1
δ

]
� (10)

where, n is an empirical coefficient between 3 and 511, CE is the representative (long-term average) volumetric 
sediment concentration in the system, ws is the vertical exchange velocity of sediment (in m/s), and horizontal 
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exchange coefficient δ = DAc
L , in which D is the diffusion coefficient (in m2/s), Ac is the inlet channel cross-

sectional area (in m2), and L is a length measurement (in m), representing the distance between the inside and 
outside of the basin.

Assuming typical values of the above variables for small inlet systems with AB = 75 × 106 m2 (n = 5; CE = 3.14 × 10–4; 
Ve = 200 × 106 m3; ws = 0.001 m/s; D = 200 m2/s, Ac = 2,000 m2, and L = 10,000 m), the morphological time scale 
T is estimated as ~ 100 years. Now, substituting t1 = 0; t2 = 100 years, T = 100 years, and ∆S = R2t2 (by assuming 
a linear rate of SLR) in [9] yield M = 0.37, rounded off as ~ 0.5.

In order to extend the lag factor analysis to larger inlet systems, we introduce a scale factor α, which is 
essentially a multiplier of the surface area of small tidal inlets. Thus, α = 2 represents medium-sized inlet 
systems (with 100 < AB< 200 km2), and α = 4 represents large inlet systems (with 200 < AB< 400 km2). Note that 
the medium and large tidal inlet classes here are based on the estuary data base used by Bamunawala et al.21. 
Using the empirical relationships defining morphological equilibrium and assuming that the tidal range remains 
unchanged, the key terms in the above equations can now be expressed in terms of α as below:

Basin area AB ∼ α; equilibrium basin volume Ve ∼ α3/2, inlet cross-sectional area Ac ∼ α; distance 
L ∼ α1/2, horizontal exchange coefficient δ ∼ α1/2, and morphological time scale T ∼

(
α1/2 + α

)
/2.

Substituting for the various terms in terms of the above α quantities, and assuming ∆S = R2t2, [9] can be 
re-arranged as:

	
M = 1 + 1

G

[
e−G − 1

]
� (11)

where, G = T −1 ∼ 2/
(
α1/2 + α

)
.

Using [11] with α = 1, 2, and 4, the following M values are obtained for small, medium, and large tidal-inlet 
systems:

M ~ 0.5 for Small tidal inlets with α = 1,
M ~ 0.25 for Medium-sized tidal inlets with α = 2, and.
M ~ 0.15 for Large tidal inlets with α = 4.

G-SMIC model description
G-SMIC is a fully probabilistic, reduced complexity model that computes sediment exchange between the 
nearshore and the estuary and resulting shoreline evolution at ~ 100  year time scales. The model has been 
validated against satellite-derived shoreline change estimates at more than 10 catchment-estuary-coast systems 
around the world9,21. G-SMIC is fully described in Bamunawala et al.8,9, and hence, only a brief description is 
given here.

The main governing equation of G-SMIC is:

	 ∆V T = ∆V BI + ∆V BV + ∆V FS� (12)

where, ∆V T is the cumulative change in the total sediment-volume exchange between the estuary and the 
adjacent coast, ∆V BI is the basin infilling due to increases in basin accommodation space (driven by sea-level 
rise), ∆V BV is the change in basin infill sediment volume due to variations in river discharge, and ∆V FS is the 
change in fluvial sediment supply due to combined effects of climate change and anthropogenic activities (all 
volumes in m3).

The different terms in [12] are computed as below:

	 ∆VBI = −M (AB∆S)� (13)

where, AB is the basin surface area (m2), M (0 < M < 1) is the basin infilling lag factor, and ΔS is the sea-level rise.

	
∆VBV = ∆QRVB

(P + QR) � (14)

where, QR is the present river flow into the basin during ebb, ∆QR is the climate change-driven variation in 
river flow during ebb, VB is the present basin volume, and P is the mean equilibrium ebb-tidal prism (all volumes 
in m3).

In G-SMIC, the change in fluvial sediment supply (∆V FS (m3)) is calculated using the BQART model presented 
by Syvitski and Milliman30 expressed as:

	 QS = ωBQ0.31A0.5RcTc� (15)
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where, ω is a coefficient equal to 0.02 or 0.0006 for the annual fluvial sediment supply (QS), expressed in kg/s 
or MT/year at catchments with its mean annual temperature greater than 2 ℃, Q is the annual cumulative river 
discharge (km3), A is the river catchment area (km2), Rc is catchment relief (km), and Tc is the catchment-wide 
mean annual temperature (℃).

The term ‘B’ in [15] represents the catchment sediment production, given by [16]:

	 B = ILc (1 − TE) Eh� (16)

where, Lc is the lithology factor that represents the catchment’s soil type and erodibility, TE is the catchment-
wide reservoir trapping efficiency factor, and Eh is the human-induced erosion factor of the river catchment, 
which here is represented by the human footprint index (HFPI)31,32.

The term I in [16] is the glacial erosion factor, which is given by:

	 I = 1 + (0.09Ag)� (17)

where, Ag is the ice cover percentage within the catchment area.

As previous studies (e.g., Wright and Nittrouer33) have shown that sediment loads projected by the BQART 
model consist mostly of suspended sediment, which is likely to be lost to the sea without contributing to a 
change in beach volume, in G-SMIC, a stochastic factor (fac_Qs) is used when using BQART21. Thus, coastal 
sediment budget computations consider only a fraction of the fluvial sediment load.

G-SMIC requires four stochastic inputs: (1) annual mean temperature (Tc), (2) annual cumulative runoff (Q), 
(3) change in global mean sea level (∆S ), and (4) human-induced erosion factor (Eh). With these stochastic 
inputs, a Monte-Carlo simulation is implemented to probabilistically determine the change in total sediment 
volume exchange (∆V T) between the inlet system and adjacent inlet-interrupted coasts.

To derive shoreline change-projections, the 10th, 50th, and 90th percentiles of the annual ∆V T are used to 
compute consequent shoreline change. Following the approach adopted by Ranasinghe et al.11, the total sediment 
volume change is assumed to shift the active coastal profile forward or backward along the inlet-affected coast, 
thereby moving the shoreline forward (i.e., progradation) or backward (i.e., retreat). Note that this study assesses 
only the shoreline change due to ∆V T. To assess the “total” amount of climate change driven shoreline change, 
this estimate could be combined with that due to the Bruun effect (for instance using the modified Bruun rule 
presented by Vousdoukas et al.34).

Model inputs
Catchment wide mean annual temperature and annual cumulative runoff values are obtained from four IPCC 
CMIP6 GCMs (viz., BCC-CSM2-MR, CESM2, CNRM-CM6-1-HR, and GFDL-ESM4). The global projections 
(5th, 50th, and 95th percentile) from NASA were used to generate stochastic variables of SLR29,35,36. The basin 
volumes were estimated via the linear regression model used in the global application of G-SMIC21. The basin 
surface-area values are obtained from the DIVA dataset37. The river network and basin information given by 
Lehner et al.38 was used to determine the river catchment areas of the selected inlet-estuary systems. The global 
estimates of active profile slopes presented by Athanasiou et al.39 are used in this study to obtain the depth of 
closure values. The catchment relief and reference HFPI values were extracted from one arc-second resolution 
digital elevation model (DEM) from the USGS earth explorer tool40 and human footprint index (HFPI) data 
presented by Venter et al.31,32, respectively.

Model applications
G-SMIC is here applied at the three selected tidal inlet systems representing small, medium, and large systems 
(as defined above) under for IPCC AR6 climate scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5). All 
simulations span the period 2030 (taken here as present-day) to 2100. The key system characteristics are shown 
in Table 1 above.

Data availability
The data supporting the calculation and conclusions presented in this manuscript will be made available by the 
corresponding author, without reservation, to any qualified researcher.
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