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Prediction Models for Individuals’ Control Skill Development
and Retention using XGBoost and SHAP

Barry A.A. van Leeuwen∗

Delft University of Technology, Delft, Zuid-Holland, The Netherlands

Armon Toubman† and Jelke van der Pal‡
Royal Netherlands Aerospace Centre (NLR), Amsterdam, Noord-Holland, The Netherlands

Daan M. Pool§
Delft University of Technology, Delft, Zuid-Holland, The Netherlands

Current capabilities for predicting skill retention, i.e., the extent to which human operators
retain learned skills over time, at an individual level are limited due to a requirement for large
data sets and methods that can extract relevant patterns in highly dimensional data. This paper
investigates the application of Extreme Gradient Boosting (XGBoost) decision tree models
for predicting a high-resolution individual skill retention curve. For this, a large skill-based
tracking experiment dataset is used to extract different feature classes and train an XGBoost
predictive model. To identify the robust predictors, the effects of the different features on
the model’s output are analyzed using SHapley Additive exPlanations (SHAP). Furthermore,
the proposed XGBoost model is trained using both the experiment dataset and a matched
synthetic dataset, with both approaches evaluated on the experiment data. Overall, the available
experiment dataset was found to include too few retention measurements, and too significant
between-group differences, to extract a reliable prediction model. On the synthetic dataset,
the XGBoost model was found to accurately capture individuals’ skill retention curves, where
the features that contributed most (21%) to the prediction model’s accuracy were found to be
the considered learning curve parameters. Overall, this paper shows that experiment data of
skill-based tracking tasks can be used to predict skill decay curves using XGBoost, but that
more research and data are needed to achieve sufficient accuracy and reliability at an individual
level for practical applications.

I. Introduction
Learning and skill acquisition represent an expensive and crucial activity in most large organizations. For example,

the total costs of training and development in the United States for 2011 were estimated to be $156.2 billion [1]. For
many professions, such as pilots in aviation, skill training may be followed by long periods of inactivity, where learned
skills are not used sufficiently to retain competence. To prevent problems, most organizations tend to provide repetitive
and frequent training based on standardized intervals [2–8]. It is well-known that while effective, such an approach is
inherently inefficient and causes unnecessarily high training costs. For example, [9] claims that only 10% of training
costs typically result in “enduring behavioral change”. Increasing the efficiency of training programs and explicitly
optimizing for skill retention requires a better understanding of skill development and skill degradation over time, as
well as improved predictive models that can be used to grasp and predict individuals’ future training needs.
Over the last century, a significant amount of research has been performed into skill retention, its main influencing

factors, and how the retention process may be captured in mathematical models [6, 10–16]. Unfortunately, experimental
research into skill retention is often limited by practical considerations, as more expensive and time-consuming
experiments with longer periods of inactivity and larger groups of participants than can often be achieved are, in
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fact, needed. Furthermore, generalizing the findings of such studies and any extracted simplified models for skill
retention generally is often limited [17–19], due to complex human operator skills and large individual variations in
skill decay. A currently under-explored research area is the potential application of Machine Learning (ML) models for
the prediction of individuals’ skill level and skill retention. In numerous applications, ML approaches have shown to
excel in recognizing crucial patterns in large and complex multidimensional datasets.
This paper investigates the potential of using machine learning (ML) models for predicting individuals’ skill retention

in a skill-based manual tracking task. For this study, the individual task performance, (cybernetic) pilot model fitting,
and demographic data collected from 37 participants in the previous training and retention experiment of [20] is used.
This data is used to train Extreme Gradient Boosting (XGBoost) decision tree models, while the SHapley Additive
exPlanations (SHAP) method is applied to extract important predictors to be used as primary features. Using both
the experiment data from [20] and a matched and augmented synthetic dataset, the effectiveness of XGBoost models
for individual prediction of skill retention is evaluated. The intended contribution of this paper is to verify the crucial
features and effective ML model structure and hyperparameter settings for predicting an individual retention curve for
skill-based manual control behavior.
The paper is structured as follows. Section II describes the experiment dataset of [20] and the skill-based tracking

task used to collect it. Section III explains the two key ML methods used in this paper: XGBoost and SHAP. In
Section IV the methodology followed in this paper is outlined, and its outcomes are presented in Section V. The paper
ends with a discussion section (Section VI) and the main conclusions in Section VII.

II. Experiment Data

A. Experiment

1. Skill-Based Tracking Task
In this paper, data from a dual-axis compensatory tracking task experiment is used to develop a model that can

predict individual skill decay over a period of inactivity. The experiment is described in [20], where its data is used
for the objective evaluation of the retention of manual control skills using a ‘cybernetic’ pilot modeling method. To
acquire operationally relevant results, a dual-axis pitch/roll tracking task was performed by a total of 43 task-naive
participants, of whom 37 were able to provide a complete dataset. The experiment was performed in the fixed-base
HMILab simulator at TU Delft, see Fig. 1.

Fig. 1 Experiment setup in the fixed-base HMILab simulator at TU Delft [20].

A schematic representation of the dual-axis tracking task is shown in the block diagram of Fig. 2. As shown in
Fig. 2, in this task the Human Operator (HO) is required to control the roll 𝜙 and pitch 𝜃 attitudes to match the forcing
functions 𝑓𝑡𝜙 and 𝑓𝑡𝜃 . The HO controls the 𝜙 and 𝜃 outputs of the aircraft dynamics 𝐻𝑐𝜙 and 𝐻𝑐𝜃 , respectively, using a
control stick with roll and pitch gains 𝐾𝑠𝜙 and 𝐾𝑠𝜃 . Human manual control behaviour in such a dual-axis compensatory
tracking task can be captured with two parallel error responses [20, 21], as indicated in Fig. 2 by 𝐻𝑝𝑒𝜙 (𝑠) and 𝐻𝑝𝑒 𝜃 (𝑠).

2. Human Operator Model
In [20], measured HO control behavior was quantified using “cybernetic” HO models as proposed in [21, 22]. In

compensatory tracking tasks, see also Fig. 2, the HO control dynamics can be modeled using only a compensatory
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Fig. 2 Schematic representation of the compensatory dual-axis roll and pitch altitude skill-based tracking task
performed in [20].

control response with the tracking error 𝑒 as the input [22, 23]:

𝐻𝑝𝑒 (𝑠) = 𝐾𝑝 (𝑇𝐿𝑠 + 1)𝑒−𝜏𝑒𝑠𝐻𝑛𝑚 (𝑠) (1)

𝐻𝑛𝑚 (𝑠) =
𝜔2𝑛𝑚

𝑠2 + 2𝜁𝑛𝑚𝜔𝑛𝑚𝑠 + 𝜔2𝑛𝑚
(2)

In Eq. (1) and (2), 𝐾𝑝 , 𝑇𝐿 , 𝜏𝑒, 𝜔𝑛𝑚 and 𝜁𝑛𝑚 are the HO’s control gain, lead time-constant, time delay, neuromuscular
frequency, and neuromuscular damping ratio, respectively. In [20], these parameters were estimated separately for both
the roll and pitch human operator responses shown in Fig. 2.

3. Experiment Setup and Procedures
The experiment data was collected in a 6-month experiment that included an initial training phase and a retention

phase. The training phase consisted of 100 training runs divided over four 1-hour training sessions performed on
four successive days. The tracking runs were always 90 seconds in length. After the training phase, the participants
were divided over three experiment groups, where the three groups were matched for their average end-of-training
performance. As listed in Table 1, all three groups performed a final retention-phase measurement after 180 days.
The participants in Groups 2 and 3 returned after 90 days or 60 and 120 days of inactivity, respectively, for additional
intermediate retention tests.

Table 1 Experiment schedule used by [20].

Experiment schedule Group 1 Group 2 Group 3
Training phase 100 runs 100 runs 100 runs

60-day retention test - - 5 runs
90-day retention test - 5 runs -
120-day retention test - - 5 runs
180-day retention test 25 runs 25 runs 25 runs

Finally, for potential correlation with the measured retention performance data [20] accumulated demographic data
of all participants through a pre-experiment survey. However, no statistically significant correlation at the group level
was identified, see the corresponding Appendix of [24] for details.

B. Data Structure
In this paper, the dataset collected in the experiment of [20] is used to extract a model that predicts individuals’ skill

decay. Table 2 lists all candidate features – i.e., characteristics/metrics that quantify a participant in the experiment –
considered for this prediction. Table 2 lists the (coded) name of each feature and its unit, as well as the ‘feature class’ it
was assigned to in our analysis. To see which types of data best facilitate accurate prediction of individual skill retention,
the following feature classes are considered: 1) Performance Data, 2) Learning Curve Data, 3) Retention Data, 4)
Experimental Data, 5) Demographic Data and 6) Cybernetic Data. Below each class is described in detail:
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Table 2 Candidate features from [20] dataset.

Feature class Feature Unit Feature class Feature Unit
Performance
Data RMSe@First5Trainingruns deg Demographic

Data GamingExperienceIO -

RMSu@First5Trainingruns deg GamingExperience years
RMSe@Last5Trainingruns deg StillGaming -
RMSu@Last5Trainingruns deg RetirdOfGaming -
RMSe@trainingrun100 deg Hobbies -
RMSu@trainingrun100 deg OtherHobbies -

Learning Curve
Data

Learning curve
p_0 deg Sport -

Learning curve
p_a deg Still_executing -

Learning curve f - NonTrackingTaskGaming -
Retention Data RMSe@retenttest deg FineMotorSkill -

RMSu@retenttest deg GrossMotorSkill -
kp@retenttest - CognitiveDemandLow -
TL@retenttest - CognitiveDemandAverage -
tv@retenttest - CognitiveDemandHigh -
wnm@retenttest rad/s PhysicalDemandLow -
dnm@retenttest - PhysicalDemandAverage -

Experiment Data Retention
Interval days PhysicalDemandHigh -

Retentietest
Number - RandomInfluencingfactor -

Group Number - Cybernetic Data kp@Last5Trainingruns -
Subject Number - TL@Last5Trainingruns -
Roll(0) or
Pitch(1) - tv@Last5Trainingruns -

Demographic
Data Age years wnm@Last5Trainingruns rad/s

(fe)male (1)/0 - dnm@Last5Trainingruns -
AE-student - kp@First5Trainingruns -
CS-student - TL@First5Trainingruns -
Study year years tv@First5Trainingruns -
DriversLicenseobtained - wnm@First5Trainingruns rad/s
DriversLicenseYears years dnm@First5Trainingruns -
EstimatedKm/y Km/years kp@trainingrun100 -
GamesNever - TL@trainingrun100 -
GamesTwicePerYear - tv@trainingrun100 -
GamesMonthly - wnm@trainingrun100 rad/s
GamesWeekly - dnm@trainingrun100 -
GamesDaily -

1) The class of Performance Data, as often considered in HO research [20, 25], quantifies participants’ skill
performance during the training phase, see Table 2. This class contains features, e.g., RMSe@First5Trainingruns
and RMSu@Last5Trainingruns, that quantify task performance and control effort averaged over the first and
last five training runs. This five-run average is used to reduce feature sensitivity to HO noise and randomness
present in single samples and thereby accurately represent participants’ performance profile during training. In
addition, the features RMSe@trainingrun100 and RMSu@trainingrun100 are used to also include a single-run
end-of-training performance snapshot from the 100th training run. These features are included because the
amount of progression during training, as well as the final level of task performance, are known to affect skill
retention [24].

2) The class Learning Curve Data in Table 2 represents a reduced dataset based on the training phase performance
(𝑅𝑀𝑆(𝑒)) data at the individual level. The performance variation across all training runs was quantified using
an exponential learning curve model as defined in Eq. (3) and as also applied in [20, 25]:

𝑦𝑙𝑐 (𝑖) = 𝑝𝑎 + (1 − 𝐹)𝑖 (𝑝0 − 𝑝𝑎) (3)

In Eq. (3), 𝑝𝑎, 𝑝0, and 𝐹 represent the final asymptotic performance level, the initial performance level, and
the learning rate, respectively. These learning curve parameters are all considered as potential features, i.e.,
Learning curve 𝑝_𝑎, Learning curve 𝑝_0 and Learning curve f in Table 2. This training phase data is illustrated
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in Fig. 3, which shows the individual training phase roll tracking performance data for participant 12 in Group 3
(yellow markers), as well as fitted learning curves for a selected participant from each group (solid lines) and
group-averaged 𝑝0 and 𝑝𝑎 data (boxplots).

Learning curve p 0
0 25 50

Training phase, run 1-100
75 100

Learning curve p a

0.0
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5.0
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S
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φ
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d
eg
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Learning curve p a

1

2

3

Fig. 3 Example features for Learning Curve Data.
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Fig. 4 Example Retention Data features.

3) The class Retention Data in Table 2 consists of the dependent measures from the experiment’s retention phase,
see Section II.A.3. To avoid capturing the effects of ‘refresher training’ due to the retention test schedule of
Table 1, this class of features was calculated from only the first tracking run in each retention test. In this paper,
we consider the RMSe@retenttest feature from the Retention data class as the output of the proposed model for
predicting individual retention phase performance, i.e., we want to predict RMSe@retenttest (output) after a
certain retention interval (input). For training the model, the data from all first retention test runs – i.e., multiple
retention test runs for the participants from Groups 2 and 3, see Table 1 – are used. For the RMSe@retenttest
feature, this is shown in Fig. 4 for all 3 groups over different Retention Intervals for the roll tracking task (𝜙) data.
As the groups all had different retention schedules, see Table 1, the 60-, 90-, and 120-day Retention Intervals only
show RMSe@retenttest data for a single group. Fig. 4 shows that, as expected, tracking performance worsens for
all Retention Intervals compared to the end-of-training 𝑅𝑀𝑆(𝑒) data.

4) The feature class Experiment Data in Table 2 lists all experiment settings pertaining to the data from each
participant, such as the Retention Interval. While the features from this class mostly represent the factors in the
experiment that are not expected to strongly correlate with retention test performance, the Retention Interval
feature is defined as the key input variable for the developed predictive model.

5) The classDemographic Data in Table 2 was derived from the participant survey data from [20]. TheDemographic
Data includes the participants’ personal attributes that could influence skill retention of the tracking task. To
enable interpretation and use as (numeric) input features, some of the Demographic Data features were encoded
using a binary representation.

6) Finally, the class Cybernetic Data in Table 2 represents the estimated HO model parameters obtained with
the HO model from Section II.A.2 during both the training phase and retention test(s). As also done for the
Performance Data features, for the training phase the averages over the first and last five tracking runs, as well as
the 100th training run values are considered as separate features.

C. Individual Experiment Performance
To be able to develop a model that can accurately predict skill retention, the data used for training the model must

include sufficient skill decay for the model to pick up on. Fig. 5 shows correlation plots where the end-of-training
performance level (RMSe@Last5Trainingruns) is plotted as a function of the performance in the first retention tests
(RMSe@retenttest). The data for the roll and pitch axes in the two-axis tracking task of [20] are shown in Fig. 5(a) and
(b), respectively. For the expected degraded retention test performance compared to end-of-training, markers should be
below the solid black 1-to-1 line included in Fig. 5; the legends in Fig. 5 show the numbers of participants with improved
retention test performance, i.e., the opposite of what is expected when assumed that all individuals have reached their
optimal performance. Overall, Fig. 5 shows that roll performance on average decays more than in pitch. Also, more
participants show a performance increase in pitch than in roll. These observations are consistent with [21, 26–29],
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where participants performing a similar dual-axis tracking task always prioritize pitch control. Given that skill decay
occurs in 87.8% of roll-axis data points – compared to 74.3% for pitch – in this paper only the roll-axis data is used to
develop and train a model for predicting individual skill retention.
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(b) Overview of skill decay per retention interval per
individual in RMS(𝑒𝜃 ).

Fig. 5 Participants’ task performance compared between end-of-training and the first retention test, for roll 𝜙
(a) and pitch 𝜃 (b).

III. Machine Learning Methods

A. Extreme Gradient Boosting (XGBoost)
When Machine Learning (ML) methods are used to classify or regress data, in general an approach as illustrated in

Fig. 6 is followed. First, a selected model structure is trained for predicting the output data y_train from the available
input data x_train. The trained model can then be used for applications, where previously unseen input data x_test can
be used to predict corresponding model output data y_test.
In this paper, Extreme Gradient Boosting (XGBoost) decision tree models, as proposed in [30], are applied to

predict the skill retention of individuals for the experiment data described in Section II.C. XGBoost is an enhanced
random forest estimating technique compared to the ‘original’ Gradient Boosting Regression Tree (GBRT) method,
and is based on a statistical decision tree model. GBRT models can describe complex nonlinear relationships between
input and output [31, 32]. This is achieved by dividing the input features over different trees in different layers and
determining binary splits in which linear relationships are established. This method allows regression trees to return
accurate regression predictions even with small datasets and high dimensionality [31, 32]. For our application, this
characteristic is important as our dataset is small and has a relatively high number of features (67) compared to the
number of samples (37). Also, decision tree models enable direct visual insight into the internal model structure and
how the input-output relation is modeled, i.e., they provide an inherently interpretable model structure.

1. Gradient Boosting Tree Architecture
This section will briefly summarize the gradient boosting regression tree architecture and the XGBoost model

structure as described in detail in [31–35]. GBRT is an advanced decision tree model that uses the concept of boosting,
i.e., combining weak learners with other, iteratively formed, weak learners (decision trees) to form a strong predictor. A
decision tree, of which an example is shown in Fig. 7, aims to divide all samples into two different groups according to
specific, strategically chosen, features and cut-off criteria. Between these two groups, a certain threshold determines
how all samples will be divided towards the next layer of the tree. After one or more layers, the sample will end at
a ‘leaf’ with a certain number (depending on the XGBoost settings) of other samples. The average of these grouped
samples represents the prediction for this specific leaf. Next, gradient boosting optimization is applied by adding more
trees to the model’s architecture to minimize residuals of the loss function, as visually shown in Fig. 8.
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Fig. 6 Schematic representation of the gen-
eral use of machine learning models.

< ≥

Fig. 7 Example visual representation of a single XG-
Boost regression tree RMSe@retenttest feature.

2. Gradient Boosting Tree Algorithm
In gradient boosting, the loss function 𝐿 (𝑦, 𝐹 (𝑥)) is defined to minimize the error between the predicted model

output 𝐹 (𝑥) and the true measured output data 𝑦. This loss function, defined in Eq. (4), is a direct sum-of-squares error
across all 𝑁 samples of the dataset. A gradient boosting tree model 𝐹 (𝑥) is then generated starting from an initial model
𝐹0 (𝑥) that will be extended to 𝐹𝐽 (𝑥) after 𝐽 iterations, as defined in Eq. (5).

𝐿 (𝑦, 𝐹𝑗 (𝑥)) =
𝑁∑︁
𝑖=1

(𝑦𝑖 − 𝐹𝐽 (𝑥𝑖))2 (4)

𝐹𝑗 (𝑥) = 𝐹𝑗−1 (𝑥) + 𝜌 𝑗ℎ(𝑥;𝛼 𝑗 ) (5)

As shown by Eq. (5), for each iteration 𝑗 = 1, .., 𝐽 𝐹𝑗 (𝑥) will be updated by an increment 𝜌 𝑗ℎ(𝑥𝑖;𝛼 𝑗 ). Thereby, another
decision tree is added to the total model, as visually shown in Fig. 8. Here ℎ(𝑥𝑖;𝛼 𝑗 ) is called the ‘base learner’, i.e., the
newly added decision tree, and is a function of the set of input features 𝑥𝑖 . The model’s coefficients 𝛼 𝑗 and 𝜌 𝑗 are both
adjusted to achieve the best fit of the output 𝑦𝑖 . The coefficients 𝛼 𝑗 and 𝜌 𝑗 are set through optimization, as explained in
[34].

3. XGBoost Characteristics
As an extension of the standard GBRTmethod, XGBoost was designed to improve accuracy and reduce computational

cost [30, 36]. The most important characteristics are: 1) sparsity-aware split finding, and 2) cache-aware access.
Sparsity-aware split finding allows the model to compensate for missing values in the dataset by using the most common
value as a default. The cache-aware access characteristics allow the model to pre-sort the data in buffers before it is
provided to the cache threads, which reduces read/write dependencies [30]. These characteristics are beneficial additions
to the XGBoost model with respect to the GBRT package of SciKit-learn [37], since they allow XGBoost models to
more accurately and efficiently handle sparse, small, and highly dimensional datasets.

B. SHapley Additive exPlanations (SHAP)
A drawback of machine learning models is that they are generally complex and difficult to verify and interpret,

due to convoluted model structures and very high numbers of model parameters. For machine learning models, a
well-known tension exists between accuracy and interpretability [38]. As for many applications, including our focus in
this paper, the need for model transparency exists, the SHapley Additive exPlanations (SHAP) method was developed
to gain quantitative insight into the contribution of each feature [39]. SHAP stems from the cooperative game theory
domain and is a method for detecting the magnitude of the contribution of individual features to a model’s prediction
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Fig. 8 Schematic representation of a complete boosted regression tree model architecture as used in XGBoost,
here shown for the prediction based on the RMSe@retenttest feature.

[40]. These feature contributions are called SHAP values and give insight into the feature’s importance for prediction
[39]. In this manner, the model prediction 𝑔 (𝑥 ′) can be broken down into the SHAP values for all considered input
features, according to Eq. (6):

𝑔 (𝑥 ′) = 𝜙0 +
𝑀∑︁
𝑖=1

𝜙𝑖𝑥
′
𝑖 (6)

In Eq. (6), 𝑥 ′ ∈ {0, 1}𝑁 is a binary array for 𝑁 input features and 𝜙𝑖 is the SHAP value of feature 𝑖 for which holds:
𝜙𝑖 ∈ R. Consequently, SHAP is also capable of analyzing XGBoost models based on a feature dataset 𝑀 with 𝑚
features using Eq. (7). The SHAP method is applied after the XGBoost model has been constructed and trained. Hence,
SHAP will only be used to analyze the final XGBoost model 𝐹𝐽 (𝑥). Since SHAP is an additive model, it only uses
linear methods to analyze nonlinear models. This implies that SHAP does assume that all features are independent,
which, however, is not always true. SHAP determines the SHAP value for all features by constructing subsets of features
𝑆 ∈ 𝑁 , as shown in Eq. (7).

𝜙𝑖 =
∑︁
𝑆∈𝑀

|𝑆 |!(𝑚 − |𝑆 | − 1)!
𝑚!

[𝐹𝐽 (𝑆 ∪ {𝑖}) − 𝐹𝐽 (𝑆)] (7)

The combination of XGBoost and SHAP is widely used for regression problems [36, 40]. This is because this
combination enables users to regress complex nonlinear data sets, visualize the modeled relations using decision trees,
and quantify each feature’s importance accurately. In contrast, other ML models, such as recurrent neural networks [41]
or support vector machines, do not facilitate the same level of model interpretation as obtained with the combination of
XGBoost and SHAP.

IV. Methods

A. Model Performance Metrics
To evaluate the XGBoost model’s performance and accuracy, the regression prediction �̂� is evaluated using the

Mean Absolute Error (MAE) as defined in Eq. (8). Here, matching our application of the XGBoost model, the true

8

D
ow

nl
oa

de
d 

by
 T

U
 D

E
L

FT
 o

n 
Ja

nu
ar

y 
26

, 2
02

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
3-

05
42

 



output data to be matched by the model is indicated by the 𝑚 samples of RMSe@Retenttest.

MAE( �̂�, 𝑅𝑀𝑆𝑒@𝑅𝑒𝑡𝑒𝑛𝑡𝑡𝑒𝑠𝑡) = 1
𝑚

𝑚∑︁
𝑖=1

| �̂� − 𝑅𝑀𝑆𝑒@𝑅𝑒𝑡𝑒𝑛𝑡𝑡𝑒𝑠𝑡 | (8)

For evaluating XGBoost model performance, a baseline for its prediction performance is defined. In this paper, we
use the MAE of a ‘constant’ prediction, i.e., for which no skill loss occurs and RMSe@Retenttest is thus equal to
RMSe@Last5Trainingruns, as the baseline. This baseline is separately calculated for each participant in the dataset.
However, to quantify overall prediction performance across the whole data set, the model performance metrics are
averaged across all participants.

B. Hyperparameter Tuning
Next to the features and ML model, the chosen hyperparameter settings are essential for an accurate regression

prediction. A hyperparameter is a predefined setting for a ML method [42]. The important hyperparameters and their
operating value ranges that are tuned in this study are listed in Table 3. In Table 3, the general operating ranges of the
hyperparameters are included, except for the hyperparameter Objective, as this hyperparameter defines an evaluation
method. The hyperparameter settings in this research, including the different types of objectives, will be presented in
Section V.

Table 3 Hyperparameters and range of settings for the XGBoost model.

Hyperparameter Lower range value Upper range value
Objective - -

Learning rate 0 1
Number of trees 1 ∞

Max depth 0 ∞
Subsample 0 1

Min child weight 0 ∞
Colsample bytree 0 1

The performed hyperparameter tuning was split into two steps to pursue a semi-greedy approach, which was
implemented as follows: 1) determining the optimal and smaller hyperparameter range in the hyperspace of hyper-
parameters, and 2) applying a grid search (Gridsearch CV [42]) on the different data subsets combined with the
optimal hyperparameter range. During the first step, an iterative greedy approach is used to determine the optimal
hyperparameter range for only two hyperparameters per iteration. The second step is executed by using Gridsearch CV,
an exhaustive search method for the optimal hyperparameter settings given a grid of allowed parameter values [42].
As explained in Section II.B, the different feature classes considered in this paper vary significantly in their number

of features. For this reason, it was found that a ‘universal’ set of hyperparameters could not accommodate optimal
prediction performance for all feature classes, which complicates comparing between the different feature classes.
However, by applying the semi-greedy approach to hyperparameter tuning to each feature class separately, we compare
between the optimal effectiveness of the different feature classes when they minimize the computational costs. As a
consequence, however, any performance differences observed between feature classes can result from two different
factors: the features’ informativeness for explaining the output feature data, or the hyperparameter settings.

C. Synthetic Data
The dataset introduced in Section II possesses a relatively low number of samples (𝑁 = 74) and a high number of

features (𝑚 = 67). This makes the data highly dimensional, which complicates recognizing consistent patterns in the
dataset. Hence, for the analysis in this paper, we also generate additional synthetic data, based directly on the statistical
properties of the experiment data, to help analyse the performance of the XGBoost model approach. To achieve this, a
multivariate Gaussian process is applied to generate synthetic data samples. Based on the mean and covariance present
in the experiment data, this approach produces additional feature samples while retaining the spread and covariance
between the features, assuming normal distributions. However, some of our feature values should not go below specific
thresholds, which for a Gaussian process will always be possible for features with high variances. Hence, to avoid
unrealistic data patterns, minimum thresholds were applied to the generated synthetic data to exclude unrealistic feature
values.
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An example result of applying the multivariate Gaussian process on experiment data is shown in Fig. 9, where a
comparison between 2849 synthetic generated samples (blue) and the 74 samples of experiment data (orange) is shown
for the RMSe@retenttest, RMSe@Last5Trainingruns and Retention Interval features. The 2849 synthetic samples in
Fig. 9 were obtained from 80,000 generated samples after application of the exclusion thresholds. As intended, the
values of the synthetic data overlap with the experiment data range. As shown in Fig. 9, the synthetic data is generated
such that also more samples with varying Retention Intervals are available to train the XGBoost model.
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Fig. 9 Synthetic data generated using a multivariate Gaussion process for the RMSe@retenttest,
RMSe@Last5Trainingruns and Retention Interval features.

D. Model Construction Workflow
In this paper, we follow a five-step workflow for deriving individual skill retention prediction models from our

experiment and synthetic datasets, see Fig. 10.

Step 1: SHAP analysis In Step 1, the data is pre-processed and split into training and test datasets as described in
Section II. Then, the XGBoost model is fitted to the data to determine the SHAP value for each candidate feature. For
the feature rank analysis, we generate 100 regression tree models and sum the (positive and negative) SHAP values
across the repeated model fits. For each repetition, the train and test data is randomly split to ensure a valid analysis.
The final outcome of Step 1 is the SHAP feature rank, from which the features with the highest absolute SHAP values
can be considered the most influential (and important) features for the model’s prediction.

Step 2: Hyperparameter tuning In Step 2, the experiment data from [20] is used to determine the optimal XGBoost
model hyperparameter ranges. Since we compare XGBoost models with multiple different input feature classes, see
Section II.B, we optimize settings for each feature class. Therefore, in this Step, the most influential hyperparameters are
determined heuristically, so that emphasis can be placed on tuning these hyperparameters. The resulting hyperparameter
ranges are chosen based on the resulting model performance, as well as, their potential for interaction with other
hyperparameters.

Step 3: Optimize number of features & performance analysis With Steps 1 and 2 completed, in Step 3 we use the
experiment data to extract models for individual performance prediction. For this, first the number of features used in the
XGBoost model is optimized. Based on a performance analysis of the different feature classes described in Section II,
the minimum number of features is determined for which the models still show acceptable (asymptotic) performance in
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Fig. 10 Model construction workflow followed in this paper.

terms of the cross-validated MAE. For comparing models with varying numbers of features included, an approach
similar to stepwise regression [43] is used. In this paper, the stepwise regression is implemented as follows: from a
baseline model where only the best-ranked feature from Step 1 is included, at every iteration the next lower-ranked
feature is added to the model’s input feature set. This process results in the selected XGBoost model structure, which is
then trained on the experiment data for a final performance comparison. Finally, the experiment-data trained model is
used to predict individual retention curves, using the methodology explained in detail below under Step 5.

Step 4: Generating synthetic data As the experiment data size was found to limit the results of Steps 1 to 3, which
may impact our assessment of the XGBoost method for predicting skill retention, in Step 4 we show the results of
our proposed synthetic data generation as explained in Section IV.C. To analyse and validate that the synthetic data
is suitable for the retention prediction in comparison to the experiment data, both experiment and synthetic data are
compared based on the outcomes of Steps 1-3 with a matching number of samples.

Step 5: Constructing retention curves from synthetic data In Step 5, the synthetic datasets generated in Step 4 are
used to select optimal features and hyperparameter settings for synthetic data, train an XGBoost model, and extract
individual retention curve predictions from the trained model. As opposed to the experiment, which contain a very
sparse set of Retention Intervals for model training, the synthetic data used here include a much more informative variety
in training data, as explained in Section IV.C. The trained XGBoost model’s output prediction of RMSe@retenttest as a
function of its Retention Interval input feature value, while keeping all other test data input features constant, see Table 4,
provides the predicted retention performance per participant. Furthermore, the XGBoost model predictions are fitted
with a second-order polynomial to smooth the XGBoost model’s inherently discontinuous predictions. To conclude Step
5, the performance of the approach is analyzed over all participants in the dataset and the extent to which an improved
prediction is achieved compared to the (no skill loss) baseline prediction, as defined in Section IV.A, is verified.

V. Results

A. Step 1: SHAP Analysis
As the main result of Step 1 of our analysis, as introduced in Section IV.D, Fig. 11 shows the top ten largest (positive

and negative) SHAP values identified for the roll-axis (𝜙) and pitch-axis (𝜃) data in blue and orange, respectively.
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Table 4 Input feature dataset for extracting an individual retention curve.

Sample
number

Roll(0)
or
Pitch(1)

. . . Retention
Interval . . . dnm@trainingrun

100

1 0 1 0.52
2 0 2 0.52
. . . . . . . . .
198 0 198 0.52
199 0 199 0.52

Fig. 11 shows the ranked features such that the most influential features are on top, with independent rankings for 𝜙 and
𝜃. We only show the top 10 ranking features in Fig. 11, accounting for a total of 69.6% of the model’s predictions,
for brevity. As SHAP values scale directly with the magnitude of the predicted values, and in our data 𝑅𝑀𝑆(𝑒)
was considerably lower in pitch than in roll (see Fig. 5), the SHAP values in Fig. 11 are also feature-wise higher for
roll than for pitch. It should be noted that for the SHAP analysis, all features in the dataset are used, i.e., including
features that are more or less equivalent. For example, Fig. 11 shows that for both the roll and pitch datasets both the
features RMSe@Last5Trainingruns and Learning curve p_a are ranked in the top 10. As both features quantify the
end-of-training level of task performance, the presence of both features affects the SHAP values and, consequently,
increases or decreases their relative rank compared to other features. This implies that if one of these features would be
excluded, the remaining feature would have an even higher SHAP rank in our analysis.
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Fig. 11 SHAP values and rank for the top 10 contributing features for the roll (𝜙) and pitch (𝜃) experiment data.

Fig. 11 thus directly shows the importance of Performance Data features that quantify the level of task performance
in the training phase. For example, the features RMSe@First5Trainingruns and RMSe@Last5Trainingruns occupy two of
the first three ranks for both roll (𝜙) and pitch (𝜃). Furthermore, also comparable features to those from the Performance
data class, such as Learning curve p_a and Learning curve p_0 also appear high on the feature ranking. Overall,
Fig. 11 thus shows that the XGBoost model’s prediction is strongly dependent on the feature classes Performance
Data and Learning Curve Data. As the extent to which control skills are retained is known to be affected by the level
of performance, as well as the performance improvement, during initial skill acquisition, the fact that these features
significantly contribute to prediction of the retention test performance is not surprising.
In addition, the class of Cybernetic Data features, obtained from human operator model fits to experiment data, has

at least five features ranked in the top 10 for both 𝜙 and 𝜃. This indicates the potential benefit of this class of features,
that directly quantify specific aspects of the participants control skills, for retention performance prediction. Lastly,
while Fig. 11 does not show many features from the Demographic Data class, the GamingExperience and Age features
are found to significantly contribute to the retention prediction for the roll task data. Overall, the Demographic Data
and also the Experiment Data feature classes seem to contribute to less to the retention prediction than anticipated.
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These results will be revisited in Step 3 (Section V.C), where the XGBoost model with optimized input features and
hyperparameter settings is analyzed.

B. Step 2: Hyperparameter Tuning
In Step 2 of our model construction workflow (see Section IV.D), a hyperparameter tuning was performed for the

XGBoost model. Fig. 12 shows the cross-validated MAE for the retention test 𝑅𝑀𝑆(𝑒) prediction by the XGBoost
model for varying hyperparameter settings for the Number of trees (x-axis) and the Learning rate (different lines).
These hyperparameters together most strongly affect the training of the XGBoost model, see Table 3. Fig. 12 shows
a clear pattern, where higher Learning rates are seen to require a lower Number of trees for reaching a minimum
prediction error. Still increasing the size of the model (Number of trees) beyond this point will result in worse prediction
performance value (higher MAE). In addition, the higher the learning rate, the quicker the model performance drops
with an increasing number of trees, see inset in Fig. 12. Hence, using a lower learning rate tends to yield more stable
and accurate XGBoost model performance. Table 5 lists the hyperparameters that were tuned for each feature class for
the experiment data, as well as their upper/lower limits and increment as considered in the search grid.

0 200 400 600 800 1000 1200

Number of Tree’s

0.6

0.8

1.0

1.2

1.4

1.6

1.8

C
ro

ss
va

li
d

at
io

n
M

A
E

sc
o
re

,
R

M
S

(e
φ
)

d
eg

Max depth = 4

Learning rate: 0.001

Learning rate: 0.002

Learning rate: 0.005

Learning rate: 0.01

Learning rate: 0.02

Learning rate: 0.05

Learning rate: 0.08

Learning rate: 0.1

Learning rate: 0.15

Learning rate: 0.2

Learning rate: 0.25

0 250 500 750 1000 1250

0.58

0.59

Fig. 12 Cross-validated MAE for the XGBoost model (all features are included) for varying Learning rate and
Number of trees. The Objective is ’regression:squaredlogerror’, while Max depth is set to 4.

Table 5 Sensitivity analysis hyperparameter ranges used in Step 3.

Hyperparameter Upper limit Lower limit Increment
Learning rate 0.02 0.005 -

Number of trees 800 200 100
Max depth 4 1 1
Subsample 0.95 0.5 0.1

Min child weight 4 0 1
Colsample bytree 0.95 0.5 0.1

For performing the hyperparameter optimization with Gridsearch CV, the most suitable regression objectives were
found to be: 1) pseudo-Huber, 2) squared log, and 3) gamma. Furthermore, it was found from the analysis that any
potential relationships between the hyperparameters in relation to the training data set were difficult to pinpoint due to
the selected greedy approach described in Section IV.B. The hyperparameter analysis aims to reach stable and optimal
hyperparameter settings for each feature class while minimizing computational costs. It should be noted that truly
optimal prediction performance is not guaranteed, due to the limited-resolution parameter space grid fed to Gridsearch
CV, see Table 5. Consequently, this also complicates the comparison of prediction performance for the different feature
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class, since both the used hyperparameters and the dataset are varied concurrently. Still, during Steps 3 to 5 of our
analysis, we compare these different optimized XGBoost models for the different feature classes.

C. Step 3: Optimize Number of Features & Performance Analysis

1. Optimal Number of Features
For selecting the optimal number of features for each feature class, the SHAP rank as previously also considered

in Section V.A is used. Fig. 13 shows the 15-fold cross-validated MAE for the XGBoost model’s prediction of the
retention test 𝑅𝑀𝑆(𝑒𝜙) with optimized hyperparameters for each feature class, see Section V.B. The different feature
classes as defined in Table 2 are shown with different colored lines. Using stepwise regression, the first feature with the
highest SHAP rank is first added to the model, while for the next iterations the features are added in descending order of
their SHAP rank. Fig. 13 shows the results of this analysis for the (at most) 10 features with the highest SHAP rank
in each feature class. For classes that consist of less than 10 features (e.g., Learning Curve Data only includes three
features), the MAE is shown up to when all features are included.
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Fig. 13 Cross-validated XGBoost model performance for the different feature classes as a function of the
number of included features.

Fig. 13 shows that increasing the number of features used in the XGBoost model does not improve the performance
in all classes. For example, with only the classes of Demographic Data and Experiment Data the XGBoost model
never achieves MAE values lower than the baseline (no drop in 𝑅𝑀𝑆(𝑒𝜙) compared to the end-of-training value),
which implies that capturing the skill decay in the data with only these features is not possible. Furthermore, for the
Demographic Data the MAE is lowest when only a single feature is included. The cross-validated performance of the
optimized XGBoost model is better than the average baseline MAE of 0.71 for the other four feature classes. For these
feature classes that do achieve prediction performance better than the baseline, the largest incremental improvement
occurs up to the addition of four features. With more features, the MAE does not improve anymore or even worsens, a
sign of overfitting. Overall, the best combination of feature class and number of features shown in Fig. 13 is the Overall
Top 10 with all 10 features included, which results in an MAE of 0.49.
Overall, the results shown in Fig. 13 for the XGBoost models with optimized hyperparameters are highly consistent

with the observations made in Section V.A. The feature classes that result in the best achieved prediction performance
include measures of task performance (e.g., Performance Data and Learning Curve Data), but also the Cybernetic Data
shows the same acceptable performance. A more surprising outcome is that in Fig. 13 the feature class Performance
Data performs best with only a single feature, as the MAE increases when more features are included.
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2. Performance Analysis
In this section, the performance of a single (non-cross-validated) prediction of the XGBoost model for the data

from Group 1 is analyzed to provide the potential accuracy for practical applications. Fig. 14 shows the prediction
accuracy of the XGBoost model for a random train and test dataset and the different considered feature classes. In
Fig. 14, the measured retention test level of task performance (i.e., RMSe@retenttest) of each sample is plotted against
the corresponding prediction of the XGBoost model. The diagonal line indicates a 1-to-1 correlation and a histogram of
the deviations of all samples from the 1-to-1 line is shown in the inset. Finally, the corresponding MAE value for each
feature class is listed in the legend. It should be noted that the predictions shown in Fig. 14 are not cross-validated,
which explains the lower MAE values compared to Fig. 13 (averaged over fifteen different test sample sets).
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Fig. 14 Retention prediction of the XGBoost model trained and evaluated for all feature classes for the roll-axis
data of Group 1.

Similar to Fig. 13, the Learning Curve Data class performs very accurately, i.e., with an MAE value just below that
for the Top 10 Data. Surprisingly, the classes of Performance Data and Cybernetic Data perform the worst, together
with the All Data case where all feature classes are included. This result may be explained by the fact that it is obtained
for a single train and test set, for which the specific characteristics of the training samples strongly influence which
features are affect the model’s prediction. Furthermore, as opposed to previously presented results, the prediction shown
in Fig. 14 includes the data from Group 1 of the experiment only, which may also contribute to this reduced importance
of these classes. Finally, for the set of test samples shown in Fig. 14, the model slightly underestimates RMSe@retenttest,
as most samples are found above the diagonal line. However, especially for participants that perform well in the retention
tests (i.e., low RMSe@retenttest values) the predictions are quite accurate and positioned close to the 1-to-1 line.

3. Retention Curve Prediction
The main goal of the research described in this paper is to develop an approach to predict the skill retention curve

(i.e., how quickly control skills are lost after initial training) for an individual. As explained in Section IV.D, in this
paper we extract a retention curve prediction from the trained and optimized XGBoost model by evaluating its predicted
output for the (individual) input feature sequence of Table 4. As explained before, the model is trained on only the
(end-of-)training data features combined with the measured (degraded) performance in the first retention test to capture
non-confounded skill retention. With this approach we ensure the XGBoost model predicts a retention curve dependent
on an individual’s specific characteristics, which is expected to correspond with the corresponding retention test data
available in the dataset of [20]. Fig. 15 shows seven different skill retention predictions and fitted curves for participant
12, for the different considered feature classes. The black triangles show the measured 𝑅𝑀𝑆(𝑒𝜙) during the retention
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tests of the experiment (RMSe@Retenttest) for this specific participant. Data for the 60-, 120-, and 180-day retention
tests is shown for this participant, as he/she was in Group 3 of the experiment.
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Fig. 15 Predicted retention curves for participant 12
for all feature classes compared to experiment data.
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Fig. 16 Prediction errors for participant 12 for feature
classes compared to the experiment data.

Fig. 15 shows that the performance level predicted by the XGBoost model (circular markers) as well as the fitted
curves (lines) follow a parabolic trajectory for all feature sets. This parabolic pattern is not expected for a skill retention
prediction, as the predicted drop after a retention interval of around 100 days would suggest skills improve (instead of
deteriorate) over extended periods of time. This result is directly caused by the available training data for this study, for
which a number of participants – especially in Group 1 of the experiment [20] – performed surprisingly well in the
180-day retention test. Fig. 15 shows that the same occurs in the measured data for participant 12 (black triangles),
hence the predicted retention curves show a reasonable match with the experiment data. Finally, Fig. 15 also shows that
the raw predictions from the XGBoost model have quite low resolution, as they consist of only four different segments
across the range considered for the retention interval. This is a direct result of the low variety in retention intervals in the
training data, which, in turn, implies the XGBoost model will only learn to provide separate performance predictions
over 60-day intervals.
Fig. 16 shows the corresponding prediction errors for all feature classes. The black dashed lines indicate the

prediction error level for the baseline prediction that assumes RMSe@Retenttest is equal to the end-of-training value of
𝑅𝑀𝑆(𝑒𝜙). For participant 12 the retention curve predictions have superior accuracy than the baseline at all moments
where retention test experiment data is available. This was found to not be the case for the data from all participants,
as not for all of them the parabolic shape of the predicted retention curve matches the experiment outcomes. Overall,
it was found that the low resolution in the available retention test data for XGBoost model training is insufficient for
extracting a meaningful individual retention curve for all participants, due to significant between-subject variability.

D. Step 4: Synthetic Data Generation
Section V.C.3 has shown that the experiment data from [20] lacks variety and resolution in the retention interval

for XGBoost model training. Hence, to still verify the methodology, an extended synthetic dataset was generated
using the methods described in Section IV.C. Fig. 17 shows the distributions and correlations of RMSe@retenttest,
our XGBoost model’s output, and the three highest ranked features for the experiment data – i.e., Learning curve
p_0, RMSe@Last5Trainingruns, and kp@Last5Trainingruns. The experiment data is indicated in orange, while the
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synthetic data (shown here with the same number of samples as available in the experiment data) is shown in blue. The
figures on the diagonal of Fig. 17 show a comparison of the experimental and synthetic data distribtions, where the
listed p-values indicate whether both distributions are statistically different. The off-diagonal figures show how these
different selected features correlate. Overall, Fig. 17 shows that the synthetic data provides a reasonable match to the
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Fig. 17 Comparison of equal samples of experimental and synthetic data for RMSe@retenttest and three of the
Top 10 contributing input features.

experiment data. The synthetic data shows more variety, as intended, but does retain the crucial correlations (e.g., of
RMSe@Last5Trainingruns and kp@Last5Trainingruns with RMSe@retenttest). Furthermore, Fig. 17 shows that the
experiment data distributions are all skewed towards zero compared to the generated (Gaussian) synthetic data. The
higher-valued synthetic samples generated for Learning curve p_0 can be attributed to the presence of outliers in the
experiment data that increase the feature’s measured mean used to generate the synthetic data. Overall, Fig. 17 shows
that the experiment data distributions are all non-Gaussian, which also explains the fact that all listed p-values are very
small, and hence the experimental and synthetic data distributions are found to be statistically different.
Similar to the analysis in Section V.A, the generated synthetic data was analyzed to determine the SHAP ranks of all

included features for comparison to the experiment data. For an accurate match between experiment and synthetic data,
also the extent to which the different features contribute to the XGBoost model’s predictions is expected to be similar.
Fig. 18 shows the SHAP ranks of all features for the experiment (Real rank) and synthetic data (Syn rank). The most
important features are ranked close to 1 and Fig. 18 shows all features (for both datasets) ordered in descending rank
following the experiment data results.
As shown in Fig. 18, 6 out of the 10 features in the top 10 ranked positions for the experiment data are also ranked

in the synthetic data’s top 10. Furthermore, also for the synthetic data the importance of the Demographic Data and
Experiment Data feature classes for retention prediction remains low. The one exception is the Retention Interval,
which is ranked 10th for the synthetic data (14 for experiment data): this is the desired result, as the synthetic data was
generated to train the XGBoost model with a more high-resolution retention interval dataset. The most surprising
difference between the experiment and synthetic data in Fig. 18 is that the Learing curve p_0, which was the number 1
ranked feature for the experiment data, is only ranked 16 for the synthetic data. This difference may be at least partially
explained by the higher rank of the other main feature that captures the performance at the start of the training phase,
RMSe@First5Trainingruns.
Overall, the results in this section show that our generated synthetic data provides a reasonable match to the

experiment data, but does also show key differences due to assumptions made in the data generation, e.g., different
statistical properties. In spite of these differences at the data distribution level, when training the XGBoost model with
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synthetic data and analyzing the feature importance with SHAP a similar model with similar feature importance is
obtained. Therefore, the synthetic data is still useful for verifying the potential of our propsed XGBoost model approach
for individual retention prediction.
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Fig. 18 Comparison of SHAP ranks for all features in the experimental and synthetic data (roll-axis data).

E. Step 5: Synthetic Data Retention Curve Prediction
Using the generated synthetic data from Step 4 of our workflow (see Fig. 10), in the final analysis step we further

investigate our approach’s capacity for retention curve prediction. For the analysis in this section, an XGBoost model
that was trained on a dataset with all features from all feature classes was used. To evaluate the XGBoost retention
curve construction, the results for two participants, 12 and 35, are analyzed and shown side-by-side in Fig. 19 and 20,
respectively. In both figures, subfigure (a) shows the predicted retention curve with a parabolic fitted curve, while
subfigure (b) shows the corresponding prediction errors compared to the experiment data. The black triangles represent
the measured RMSe@retenttest of both participants at the retention intervals they tested in the experiment of [20], i.e.,
60, 120, and 180 days for participant 12, and 90 and 180 for participant 35. Again, the prediction error figures show the
baseline MAE value (dashed black lines), as also shown in Fig. 16, for reference.

18

D
ow

nl
oa

de
d 

by
 T

U
 D

E
L

FT
 o

n 
Ja

nu
ar

y 
26

, 2
02

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
3-

05
42

 



0 15 30 45 60 75 90 105 120 135 150 165 180 195

Retention Interval, days

1.5

2.0

2.5

3.0

P
re

d
ic

te
d

p
er

fo
rm

a
n

ce
,

R
M

S
(e
φ
),

d
eg

Performance prediction Subject: 12

All Data, ρ = 0.99

Experiment Data, ρ = 0.90

Demographic Data, ρ = 0.94

Cybernetic Data, ρ = 0.97

Learning Curve Data, ρ = 0.96

Performance Data, ρ = 0.98

Top 10 Data, ρ = 0.96

Observed subject performance

XGB prediction All Data

XGB prediction Experiment Data

XGB prediction Demographic Data

XGB prediction Cybernetic Data

XGB prediction Learning Curve Data

XGB prediction Performance Data

XGB prediction Top 10 Data

(a) Retention curve prediction

0 15 30 45 60 75 90 105 120 135 150 165 180 195

Retention Interval, days

−1.0

−0.5

0.0

0.5

1.0

1.5

P
re

d
ic

ti
on

er
ro

r
R

M
S

(e
φ
),

d
eg

Error of performance prediction subject: 12

Error Baseline, MAE = 0.76

All Data

Experiment Data

Demographic Data

Cybernetic Data

Learning Curve Data

Performance Data

Top 10 Data

(b) Prediction error

Fig. 19 Synthetic data retention curve predictions for participant 12 (roll-axis data) for all feature classes.
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Fig. 20 Synthetic data retention curve predictions for participant 35 (roll-axis data) for all feature classes.
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First, Fig. 19 and 20 show that for the synthetic data the predicted performance retention from the XGBoost model
is still discontinuous and somewhat erratic, which is a characteristic of decision tree models. Compared to Fig. 15,
however, the resolution of the prediction is much higher than obtained with the experiment data. Furthermore, for the
synthetic data the predicted skill retention curves are found to be roughly linear, which not only holds for the examples
shown in Fig. 19 and 20, but for all participants (see [44]). While this result is due to the assumptions made in the
synthetic data generation, it is also more in line with the expected shape of a skill retention curve than the parabolic
trajectory shown in Fig. 15.
Furthermore, Fig. 19 and 20 show that the shape of the predicted retention curves for all feature classes are equivalent

for both subjects. This is directly explained by our methodology, where the XGBoost model is trained on the data from all
participants, and then ‘individualized’ for individual retention prediction based on input feature values. This also causes
different feature classes to be better predictors for some participants than for others: for example, while the Cybernetic
Data features enable a reasonable fit (with prediction error well below the baseline value) for participant 35, the XGBoost
model strongly under-predicts RMSe@retenttest for participant 12. Overall, the quality of the retention curve prediction
was found to be dependent on the magnitude of the drop in performance (increased RMSe@retenttest compared to
RMSe@Last5Trainingruns) for the different participants. Participant 35’s performance (𝑅𝑀𝑆(𝑒𝜙)) degraded by a factor
1.62 and XGBoost predictions for this participant are considered good, as the predictions are better than baseline in
95.8% of the cases. Participant 12 showed much less skill decay and the XGBoost model only improves on the baseline
prediction in 67.5% of the data points. Overall, these results thus show the capacity for individual predictions of skill
retention curves using XGBoost, but also that the success for individual predictions strongly relies on the training data,
as well as the extent to which participants match the ‘average’ trends in the training data.
Fig. 21 summarizes the quality of the retention curve prediction by XGBoost, averaged over all participants, for all

feature classes. The color-coded boxplots in Fig. 21 show the MAE between the experiment data (RMSe@retenttest) and
the XGBoost model’s prediction, with a different color for the different retention interval values. The baseline MAE of
0.71 is again indicated with a horizontal black dashed line, for reference, to see where performance is improved/degraded
compared to the baseline. The results are grouped for the different considered feature classes, and the total MAE values
for all retention intervals (RI) and feature classes are listed in the figure legend.
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Fig. 21 Synthetic data prediction error boxplot for all participants and feature sets, separated for different
retention intervals (RI).
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Fig. 21 shows that, on average, the feature class with the lowest MAE (0.56) is the Learning Curve Data. With
the smallest number of features (3), this feature class facilitates a prediction that is improved by 21% compared to
the baseline. This result is consistent with the observations on the experiment data, where also the Learning Curve
Data class was found to be important for the XGBoost model’s predictions. Overall, this result also indicates that the
most accurate individual XGBoost retention predictions may be obtained with only a relatively low number of input
features. Furthermore, Fig. 21 shows that on average the lowest MAE values (0.57, averaged over all participants and
feature classes) are obtained at the 90-day retention interval. This result may be explained by a central tendency of the
XGBoost algorithm, which starts its prediction at an average across the whole training dataset, and adds branches and
leaves to model trends and details in each constructed tree, see Fig. 7. For our training data, the average retention test
performance data is centered on the retention interval at 90 days.

VI. Discussion
The goal of this paper is to determine the capabilities of XGBoost decision tree models for individual performance

skill retention prediction for skill-based manual control behavior. For this research, use was made of the training and
retention dataset collected for a two-axis (pitch/roll) tracking task in [20], with a focus on the roll-axis data for which the
strongest performance degradation after training was observed. The XGBoost model was setup to only use features
collected up to the end-of-training as model inputs, while it was trained to predict the (degraded) task performance in
the first retention test measurement (RMSe@retenttest). Since the experiment dataset was found to be sparse and highly
dimensional, the XGBoost and SHAP methods were selected as suitable tools for prediction model implementation and
the analysis of its results, and use was made of a generated extended synthetic dataset next to the experiment data.
In our analysis, features that capture the level of tracking performance during initial training (Performance Data

feature class) – such as RMSe@Last5Trainingruns, Learning curve p_0, and Learning curve p_a – were consistently
found to have a high SHAP rank and were thus important for the XGBoost model’s predictions. This expected dominant
presence of training performance as a predictor of skill retention is in accordance with earlier findings in literature
[6, 13, 45, 46]. The better the level of performance at the end-of-training, and the larger the performance improvement
during training, the longer skills are generally maintained [20]. This also explains the success of the XGBoost model
with the Top 10 feature class considered in our paper, which includes a number of the initial and final training run
performance features and is found to explain the model’s predictions for 69.6% when trained with the experiment data.
While these results indicate that such training performance-related features are crucial for predicting skill retention,
further research is required to further optimize this and, for example, verify the effects of eliminating the multiple
correlated features in our Performance Data class.
Based on literature on skill retention [6, 12–16, 47], the feature class of Demographic Data considered in this

paper was expected to have a crucial role in predicting skill retention at the individual level. Our analysis based on the
experiment data of [20], however, showed that the SHAP rank of the Demographic Data features was generally low,
indicating they only had a marginal contribution to the XGBoost model’s prediction. This low impact on retention
prediction was consistently found based on both our experiment and synthetic datasets. While clear from our analysis
of the data of [20], in our view this result is not expected to generalize to other tasks and datasets. Hence, it is of the
utmost importance for further research on skill retention and its prediction with ML models that demographic data on
the participants’ background is still collected and included.
Overall, the analysis in our paper suggests that the XGBoost model achieves the best prediction performance with

a small number of input features. For example, Fig. 13 shows that the model’s retention predictions improve when
successively adding up to four features. This suggests that the XGBoost model when applied to this type of data may be
quite prone to overfitting, as with more features included also more features will contribute to the model’s prediction,
but at an overall decreasing SHAP rank, which may reduce consistency and susceptibility to data noise. This preferred
low number of features is also consistent with the good prediction performance obtained with the class of Learning
Curve Data features (see, e.g., Fig. 19) and the overall lowest MAE obtained by this class (0.56 𝑅𝑀𝑆(𝑒𝜙)) across the
complete synthetic dataset. To further investigate this point, future work should directly compare XGBoost models with
small matched sets of high and low SHAP-ranked features, to separate the effects of the number of input features and the
input feature SHAP rank.
In this paper, the XGBoost model is trained and tested both on the original experiment data of [20], but also on

a generated (and matched) synthetic dataset. In this paper, the different sizes of these two datasets, as well as key
assumptions that had to be made when generating the synthetic data, complicate a direct comparison between the
results obtained with both datasets. In this paper, our choice to use a multivariate Gaussian process tuned to match
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the experiment data for synthetic data generation was found to result in mismatched data distributions, as well as
inconsistencies in the identified importance of certain key data features (e.g., Learning curve p_0). As the use of
synthetic data for model training would greatly benefit an inherently sparse data application as individual retention
prediction, improved methods for synthetic data generation, such as advanced statistical bootstrapping methods or
generative neural networks, should be investigated.
A skill retention curve – i.e., the trajectory along which task performance degrades during periods of inactivity – has

been reported have a linear, positively-accelerating, or negatively-accelerating shape in literature [2, 20]. In this paper,
we model the retention curves extracted from the XGBoost models as second-order polynomials, which are found to
describe a parabolic and linear relation with the retention interval for our experiment and synthetic datasets, respectively.
While the parabolic retention curves found when using the experiment data are an artefact resulting from the very good
performance of many participants in the final (180-day) retention test in [20], especially the linear retention curves found
from our synthetic data match the theory of [2]. Furthermore, extreme care should be taken using a one-dimensional
fitted retention curve model as performed in this paper [16], as this occludes the model’s inherent sensitivity to the
underlying features besides the retention interval. For example, [48] states that skill decay is not only a function of
time, but rather of external processes that occur over time. For this reason, using a true data-driven model, such as our
considered XGBoost model, for retention prediction is clearly the safest, and superior, approach.
The selected greedy approach to determining the XGBoost model’s hyperparameter ranges for the different feature

classes restricts the freedom of the GridSearch CV approach and thereby eases application due to reduced computational
cost. Moreover, due to the selected (large) step size (increment), the performed hyperparameter optimization was not
fully optimal. A second difficult aspect in our analysis is the XGBoost model’s hyperparameters needed to be optimized
separately for each considered feature class. This implies that the comparisons between different feature classes in this
paper may also be influenced by different hyperparameter settings between compared cases. To limit this effect, in this
paper we always compare optimal XGBoost settings for all feature classes, to still see the overall best-performing feature
classes. For follow-up studies, we advise to conduct a more in-depth and complete hyperparameter analysis, which
would also enable for a single optimally-tuned XGBoost model to be compared across all feature classes. Furthermore,
the use of Bayesian optimization techniques [49, 50] may be of use to further improve the prediction performance of the
XGBoost model.
Overall, the XGBoost model structure considered in this paper for the prediction of individual retention curves

shows some promise for further development. This study was performed as part of a collaboration between TU Delft
and the Royal Netherlands Aerospace Centre (NLR), which focuses on skill training and retention to develop optimal
training programs and novel approaches to ‘learning analytics’ [51]. While in the current paper we focus on the retention
of purely skill-based manual control skills [20], for many practical applications, in- and outside of aerospace, this often
is only one dimension of the more complex skills involved. While it may be expected that features falling into our
classes of Performance Data and Learning Curve Data would also be important for skill retention prediction in more
complex tasks, more research is needed to verify if the required additional number of input features would still enable
meaningful and consistent XGBoost model predictions. For this, a similar approach as followed in this paper, making
use of SHAP and generated synthetic data, could be applied.

VII. Conclusion
The goal of this paper was to determine the effectiveness of individual skill retention performance predictions

obtained for a skill-based tracking task using XGBoost decision tree models. For this, a prediction model structure is
used that only considers participant data up to the end-of-training, compared across six different feature classes, as
the candidate input features to predict the resulting (degraded) level of task performance as a function of the retention
interval (inactivity period). Since the considered experiment dataset is sparse and highly dimensional, the importance of
the different considered input features for the XGBoost model’s prediction was assessed using the SHAP method. From
the performed SHAP analysis, it was found that especially the features that quantify the participants’ performance during
training and their learning curves are important for the model’s retention performance prediction. In particular the
considered feature class of Learning Curve Data is found to improve individual skill retention prediction over the full
180-day retention interval by 21% (0.56 RMS(𝑒𝜙) MAE) compared to a baseline for which no skill decay is assumed. For
both the experiment (cross-validated) and synthetic data (non-cross-validated), unexpectedly negligible contributions
were found for features that encode participants’ individual characteristics (Demographic Data). Overall, with a full set
of 60 input features, the Top 10 in terms of their SHAP rank were found to account for 69.4% of the model’s prediction
and XGBoost was found to be most accurate and consistent with 4 or less input features. The approach to skill retention
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prediction considered in this paper thus shows great potential for predicting an individual’s performance over a period
of inactivity and should be further developed towards more complex tasks and real-world applications in future work.
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