
 
 

Delft University of Technology

Constrained maximum flow in stochastic networks

Kuipers, FA; Yang, S; Trajanovski, S; Orda, A

DOI
10.1109/ICNP.2014.63
Publication date
2014
Document Version
Accepted author manuscript
Published in
22nd IEEE International Conference on Network Protocols

Citation (APA)
Kuipers, FA., Yang, S., Trajanovski, S., & Orda, A. (2014). Constrained maximum flow in stochastic
networks. In J. Kaur (Ed.), 22nd IEEE International Conference on Network Protocols (pp. 397-408). IEEE.
https://doi.org/10.1109/ICNP.2014.63

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ICNP.2014.63
https://doi.org/10.1109/ICNP.2014.63


Constrained Maximum Flow in Stochastic Networks
Fernando A. Kuipers, Song Yang, Stojan Trajanovski

Delft University of Technology
Delft, The Netherlands

{F.A.Kuipers, S.Yang, S.Trajanovski}@tudelft.nl

Ariel Orda
Technion

Haifa, Israel
ariel@ee.technion.ac.il

Abstract—Solving network flow problems is a fundamental
component of traffic engineering and many communications
applications, such as content delivery or multi-processor schedul-
ing. While a rich body of work has addressed network flow
problems in “deterministic networks,” finding flows in “stochastic
networks,” where performance metrics like bandwidth and delay
are uncertain and solely known by a probability distribution
based on historical data, has received less attention. The work
on stochastic networks has predominantly been directed to
developing single-path routing algorithms, instead of addressing
multi-path routing or flow problems.

In this paper, we study constrained maximum flow problems
in stochastic networks, where the delay and bandwidth of links
are assumed to follow a log-concave probability distribution,
which is the case for many distributions that could represent
bandwidth and delay. We formulate the maximum-flow problem
in such stochastic networks as a convex optimization problem,
with a polynomial (in the input) number of variables. When an
additional delay constraint is imposed, we show that the problem
becomes NP-hard and we propose an approximation algorithm
based on convex optimization. Furthermore, we develop a fast
heuristic algorithm that, with a tuning parameter, is able to
balance accuracy and speed. In a simulation-based evaluation
of our algorithms in terms of success ratio, flow values, and
running time, our heuristic is shown to give good results in a
short running time.

Index Terms—Maximum flow, Stochastic networks, QoS, Con-
vex optimization.

I. INTRODUCTION

The ability to solve network flow problems is crucial to the
successful operation of many different kinds of applications
and networks, e.g. transportation networks, energy networks
and communication networks. The precise problem could
differ per application domain and for instance range from
unconstrained to constrained flow or from single commodity
to multi-commodity flow. Particularly within the field of
communication networks, much research, already since 1955,
has been directed to developing network flow algorithms (an
excellent discourse of the subject is presented by Ahuja et
al. [1]). These studies typically consider deterministic net-
works, in which the link weights (such as bandwidth and
delay) are fixed. However, in many real-life networks, the
delay or the available bandwidth of a link usually varies and
is uncertain. For example, due to the size and complexity of
data communication networks, it is difficult and expensive to
obtain an accurate view on the states of the links. Another
example is that the delay and available bandwidth are affected
by diurnal patterns, interference in wireless networks, or by

failure and maintenance events. In this paper, we consider
so-called stochastic networks, where the link capacities and
delays are characterized by a stochastic/probabilistic model
(introduced in Section II) and therein study the maximum-
flow problem.

In deterministic networks, the maximum-flow problem asks
to send as much flow (information or goods) from a source
to a destination, without exceeding the capacity of any of the
used links. Solving maximum-flow problems is for instance
important to avoid congestion and improve network utilization
in computer networks or data centers, or to improve fault toler-
ance. Fortunately, the maximum-flow problem in deterministic
networks is solvable in polynomial time [2]. The delay-
constrained maximum-flow problem in deterministic networks
[3] is to find a set of paths, each path obeying a given delay
constraint, over which as much flow as possible is to be
transported. This problem for instance appears in (real-time)
video delivery over bandwidth-limited networks.

TABLE I: Hardness of computing network flows.

max-flow deterministic stochastic
without delay constraint P [1], [2] P∗

with delay constraint NP-hard [3], [4] NP-hard∗

* This paper, for the considered stochastic model.

We will consider these two problems in stochastic networks.
Our main contributions are as follows (also see Table I):
• We prove that the maximum-flow problem in stochastic

networks with log-concave probability distributions and
some integrality assumptions is polynomially solvable.

• We prove that the delay-constrained maximum-flow prob-
lem in stochastic networks is NP-hard and propose an
approximation algorithm and a faster heuristic.

• We evaluate the algorithms in terms of acceptance ratio,
flow values, and running time.

The remainder of this paper is organized as follows: Sec-
tion II introduces the considered stochastic link model and
presents the unconstrained stochastic maximum-flow problem.
We formulate this problem as a convex optimization problem
with a polynomial (in the input) number of variables and
discuss its computational complexity. Section III defines the
stochastic maximum-flow problem with a delay constraint im-
posed on the used paths. We prove that this delay-constrained
problem is NP-hard. Sections IV and V provide an approxima-
tion algorithm and a heuristic algorithm, respectively, for the



NP-hard stochastic delay-constrained maximum-flow problem.
We evaluate the approximation and heuristic algorithms in
Section VI. An overview of related work is presented in
Section VII and we conclude in Section VIII.

II. STOCHASTIC MAXIMUM FLOW

In this section, we introduce our stochastic network model,
define the maximum-flow problem in stochastic networks,
present a corresponding convex optimization formulation and
discuss the computational complexity of the problem.

A. Stochastic Link Model

For completeness, we first present the standard defini-
tions [5] of a convex set and a convex function. We define
Rn to be the set of n-dimensional real vectors.

Definition 1: Convex Set. A subset C ofRn is called convex
if αx+ (1− α)y ∈ C, ∀x, y ∈ C, ∀α ∈ [0, 1].

Definition 2: Convex Function. Let C be a convex subset
of Rn. We say that a function f : C → R is convex if f(αx+
(1− α)y) ≤ αf(x) + (1− α)f(y), ∀x, y ∈ C,∀α ∈ [0, 1].

A function f is said to be concave if and only if −f is
convex. If the second derivative of f is always nonnegative,
then f is convex. Linear functions can be regarded to be
convex or concave.

Many common (complementary) cumulative distribution
functions (C)CDF 1 are log-concave (e.g., see [6] or [7] for
more information). In convex analysis, a nonnegative function
f : Rn → R is logarithmically concave or log-concave if
its domain is a convex set, and if it satisfies the following
inequality:

f(θx+ (1− θ)y) ≥ f(x)θf(y)1−θ (2.1)

for all x, y ∈ dom f and 0 < θ < 1. If f is strictly positive,
then Eq. (2.1) can be rewritten as:

log f(θx+ (1− θ)y) ≥ θ log f(x) + (1− θ) log f(y) (2.2)

Since bandwidth and delay values, and consequently their dis-
tributions, cannot be negative, several representative nonneg-
ative log-concave distributions are the exponential, uniform,
and chi-square distributions, although our results apply to all
nonnegative distributions with log-concave (convex) CDF and
CCDF .

B. Problem Definition

We consider a directed network G(N ,L), where N
represents a set of N nodes and L denotes a set of L links.
For each link l ∈ L the allocated bandwidth has a known
cumulative distribution function cl(bl), which gives the
probability of being able to allocate no more than bl units
of bandwidth. Moreover, if the possible bandwidth allocated
on each link l ranges from 0 to bmax

l (0 < bmax
l ), then the

probability of allocating a bandwidth out of this range is 0,

1A CCDF is defined as F (x) = Pr[X > x], where the right-hand side
represents the probability that the random variable X takes on a value greater
than x. In the literature [6], it is sometimes referred to as reliability function.

i.e. cl(bmax
l ) = 1.

Definition 3: The Maximum Flow in Stochastic Networks
(MFSN) problem is to push as much flow F as possible from
a source node s to a terminal node t as long as the probability
of actually realizing that flow is no less than a user-defined
value PB .

The MFSN problem is considered in the setting where
the maximum flow F is computed upfront, i.e., before the
realization of the random variables cl(bl), l ∈ L; then, the
computed links/paths are used to (try to) send the flow F . The
random variables are assumed to be independent. Although,
the utilized bandwidth of the links used is correlated if only
one flow is sent through a network, a network is typically used
to transport many flows between various source-destination
pairs. In such a setting the correlation, if any, is much less,
and our independence assumption justified.

In our scenario, the total flow will not be realized if one
link, out of the set of links that are used to transport the flow,
is not able to deliver its portion of the total flow. Hence, in
order to realize a maximum flow with probability at least PB ,
the product of all the individual link probabilities needs to be
bounded by PB .

0.7F, 0.7

0.6F, 0.8




0.7F, 0.4

0.6F, 0.5




0.4F, 0.5

Fig. 1: An example to illustrate that all the link probabilities
need to be included.

For instance, in Fig. 1, let us consider a network of 3 nodes,
s, i, t, directed from s to t. The maximum flow F that obeys
PB = 0.2 pushes 0.4F over link (s, t) with probability 0.5
and 0.6F over path s− i− t with probability 0.4. If the direct
link (s, t) does not deliver its portion of the flow, then it might
still happen that the path s− i− t can deliver 0.7F . However,
the probability of this occurring is smaller than 0.4, otherwise
1.1F could have been transported with PB = 0.2. In fact, since
− log(CCDF ) is convex, a decrease of ∆F flow on one link
being compensated by an increase in ∆F flow on another link
leads to a smaller total probability. The same holds if either
(s, i) or (i, t) fails to deliver its portion of the flow, which
indicates that the links can be considered independently.

As a result, the traditional min-cut max-flow theorem [8]
does not apply anymore in stochastic networks, since all link
probabilities (instead of only those of the minimum cut) play a
role in realizing the maximum flow. Instead, the minimum cut
in a stochastic network gives an upper bound on the amount
of flow that can be pushed from source to destination with
probability no less than PB .

Fortunately, the topological independence of the MFSN
problem greatly simplifies solving it. We will show that



the MFSN problem can be formulated as a simple convex
optimization problem. The latter is a problem in which the
objective function is either a maximization of a concave func-
tion or a minimization of a convex function, and its constraints
are all convex. Convex optimization problems can usually
be solved quickly and accurately with convex optimization
solvers. The convex optimization formulation of the MFSN
problem is as follows:

Objective:
max F (2.3)

Constraints:

∑
v:(u,v)∈L

f(u, v)−
∑

v:(v,u)∈L

f(v, u) =

 F
0
−F

u = s
∀u ∈ N\{s, t}
u = t

(2.4)

−
∑

(u,v)∈L

log
[
CCDF(u,v)(f(u, v))

]
≤ − log(PB) (2.5)

The variable f(u, v) denotes the flow through link (u, v)
and F is the amount of flow from s to t. The objective can be
regarded as a maximization of a concave function. Constraints
(2.4) are flow conservation constraints and they are linear.
CCDF(u,v)(f(u, v)) denotes the probability of allocating at
least f(u, v) bandwidth on link (u, v), i.e., 1−c(u,v)(f(u, v)).
Constraint (2.5) is equivalent to∏

(u,v)∈L

CCDF(u,v)(f(u, v)) ≥ PB

which reflects the condition to have a flow F with probability
at least PB . As explained, the product of the CCDF s does
not depend on the network topology. The network topology is
included in the flow conservation constraints (2.4). The link
capacity constraints are implicitly defined by the CCDF .

Given that the CCDF is log-concave, we obtain that
constraint (2.5) is convex, therefore the MFSN problem is a
convex optimization problem.

In Appendix A, we also present a convex optimization
formulation for the min-cut in stochastic networks problem.

C. Computational Complexity

The convex optimization formulation of the MFSN prob-
lem has O(L) variables and constraints. Convex optimization
problems can be solved to ε-optimality in polynomial time
if certain computability conditions (as stipulated in [9]) are
satisfied. We will provide an alternative (simpler) proof of
polynomial solvability of the MFSN problem. We will prove
that when a piecewise linear convex function2 is used, or,
alternatively, when it is a convex function where the feasible
solution needs to be integral (both models are introduced and
justified in [1, Ch. 14]), the MFSN problem can be solved in

2A continuous convex function can, with arbitrary precision ε, be approx-
imated by a piecewise linear convex function.

polynomial time. In [1, Ch. 14] a (weakly) polynomial-time
algorithm is provided that solves the following problem:

Objective:
min

∑
(u,v)∈L

Cuv(f(u, v)) (2.6)

Constraints:

∑
v:(u,v)∈L

f(u, v)−
∑

v:(v,u)∈L

f(v, u) =

 F
0
−F

u = s
∀u ∈ N\{s, t}
u = t

(2.7)

0 ≤ f(u, v) ≤ b(u, v) for all (u, v) ∈ L (2.8)

f(u, v) is integer for all (u, v) ∈ L (2.9)

where Cuv(f(u, v)) is a convex cost function of the flow
f(u, v) on link (u, v) and b(u, v) is the capacity of link (u, v).

As a starting point for the amount of flow to be sent from
source s to destination t, let us take the minimum cut of the
network when considering the maximum possible bandwidth
values bmax

l of the links. The link costs are set similarly as be-
fore to Cuv(f(u, v)) = −

∑
(u,v)∈L

log
[
CCDF(u,v)(f(u, v))

]
.

Via a binary search on the flow value F to be transported
from source to destination, one can search for the largest
flow F whose cost is still within the constraint − log(PB),
which demonstrates that the MSFN problem is solvable in
polynomial time.

III. STOCHASTIC DELAY-CONSTRAINED FLOW

In this section, we add a delay constraint to the MFSN
problem. Each link l ∈ L now has two known CDF s, namely,
(1) cl(bl), the probability of being able to allocate no more
than bl units of bandwidth and (2) pl(dl), the probability of
transporting data with no more than dl units of delay. We
assume that the bandwidth allocated on each link l ranges
from 0 to bmax

l , and the delay on each link l ranges from
dmin
l > 0 to dmax

l . For ease of notation we will sometimes
write cl and pl to denote cl(bl) and pl(dl).

Definition 4: The Maximum Delay-Constrained Flow
(MDCF) problem in stochastic networks is to find a set of
paths Ψ from s to t such that:

1) The flow F transported by all paths in Ψ is maximum
under the condition that the probability to realize that
flow F is no less than PB .

2) Each path in Ψ should have a delay no more than D
and the probability of transporting it within at most D
time is no less than PD.

Contrary to the MFSN problem, the MDCF problem is NP-
hard (as will be proved in Section III-A).



A. Computational Complexity

To prove that the MDCF problem is NP-hard, we first
introduce the NP-hard partition problem [10], defined as
follows: Given a set A that consists of elements a1, a2, ..., a2n,
where the size S(ai) of ai is a nonnegative number and n ≥ 1.
The problem is to find a subset A′ ⊆ A such that A′ contains
exactly one element of {a2i−1, a2i} for every 1 ≤ i ≤ n and∑
a∈A′ S(a) =

∑
a∈A\A′ S(a).

0 0 0

S(a1)
u1 u2

v2

un-1 un

v1

u0

vn

S(a3) S(a2n-1)

S(a2) S(a4) S(a2n)

Fig. 2: A reduction to the partition problem.

Theorem 5: The MDCF problem is NP-hard.
Proof: We construct a graph G(N ,L) (as exemplified in

Fig. 2), where the node set N = {u0,v1, u1, ..., un−1, vn,un}.
The links (ui, ui+1), (ui, vi+1), for all i = 0, 1, ..., n−1, have
a Gamma distributed delay in the range 0 to S(a2i+1), and
from 0 to S(a2i+2), respectively, and the links (vi, ui+1), for
all i = 0, 1, ..., n − 1, have zero delay (with probability 1).
The allocated link bandwidth is Gamma distributed and ranges
from 0 to 1. The maximum possible (unconstrained) flow is
2. Suppose we want to find, with probability no less than 0,
a flow from s to t of at least 2 and for which each used path
has a delay no more than

∑
a∈A S(a)

2 with probability of 1.
Hence, we need to find two link-disjoint paths, such that the
delay of each path is no greater

∑
a∈A S(a)

2 . Each path either
passes through (a) (ui, ui+1) or (b) (ui, vi) and (vi, ui+1).
If both paths have a delay no more than

∑
a∈A S(a)

2 each,
then they have to be exactly

∑
a∈A S(a)

2 , which means that
solving the MDCF problem would provide a solution to the
NP-hard partition problem (the links in one path correspond
to the elements in one set).

IV. APPROXIMATION ALGORITHM

We propose, in this section, an approximation algorithm for
the MDCF problem. The algorithm consists of three parts:

1) we round and scale the link weights (in Sections IV-A
and IV-B) to have a polynomial number of variables;

2) we create a transformation graph (in Sections IV-C and
IV-D) that captures the delay constraint and probability
values as nodes in the graph;

3) we present a convex optimization formulation (in Sec-
tion IV-E) that aims to solve the maximum-flow problem
in this transformation graph, such that the requested
bandwidth and delay probabilities are met.

The resulting flow in the transformation graph can directly
be mapped to a flow in the original graph.

We first explain the procedure of rounding and scaling
to obtain new delay and probability values. The rounding
and scaling depends on two input parameters, namely ε,
which quantifies the desired accuracy in the delay probability

constraint PD, and η, which quantifies the desired accuracy
in the delay constraint D. The new link probabilities will be
defined as

wl =
⌊
− log(1+ ε

N )(pl)
⌋

and the corresponding new requested delay probability as

W =
⌈
− log1+ ε

N
PD

⌉
.

The new link delay values will be defined as

δl =

⌊
dlN

Dη

⌋
and the new requested delay constraint as

∆ =

⌈
N

η

⌉
.

In Sections IV-A and IV-B, we will prove that solving MDCF
based on such rounded and scaled values results in returned
paths ψ for which it holds that

∑
l∈ψ dl ≤ (1 + η)D with

probability at least PD
(1+ε) . A solution satisfying these relaxed

constraints is called an (ε, η)-solution. If only one parameter
of accuracy is required, one could simply set η = ε.

A. Rounding the Requested Delay Probability

For the rounding of the requested delay probability, we
make use of a technique presented in [11]. For each probability
pl, there exists an integer wl, such that:(

1 +
ε

N

)−(wl+1)

< pl ≤
(

1 +
ε

N

)−wl
which implies wl ≤ − log(1+ ε

N )(pl) < wl+1, or equivalently

wl =
⌊
− log(1+ ε

N )(pl)
⌋

. Instead of considering pl, we will
use wl. The same is done for PD, but rounded slightly
differently(

1 +
ε

N

)−W
≤ PD <

(
1 +

ε

N

)−(W−1)

(4.1)

which gives W =
⌈
− log(1+ ε

N )(PD)
⌉

. Therefore, if a path ψ
satisfies the probability constraint

∏
l∈ψ

pl ≥ PD, we have

∏
l∈ψ

(
1 +

ε

N

)−wl
≥
∏
l∈ψ

pl ≥ PD ≥
(

1 +
ε

N

)−W
.

Hence, we obtain
∑
l∈ψ

wl ≤W .

For the total probability θ, we will show that θ =∏
l∈ψ

(
1 + ε

N

)−wl ≥ PD
(1+ε) . Given that the maximum hopcount

in the network is Hmax ≤ N − 1. Then:

θ ≥
∏
l∈ψ

(
1 +

ε

N

)−(wl+1)

=
(

1 +
ε

N

)−∑
l∈ψ wl

(
1 +

ε

N

)∑
l∈ψ 1

≥
(

1 +
ε

N

)−(W+Hmax)

(4.2)



Using (4.1) into (4.2), we arrive at

θ ≥
(

1 +
ε

N

)−W (
1 +

ε

N

)−Hmax

=
(

1 +
ε

N

)−(W−1) (
1 +

ε

N

)−Hmax−1

≥ PD
(

1 +
ε

N

)−N
=

PD(
1 + ε

N

)N
≈ PD

1 + ε
NN

=
PD

1 + ε

B. Rounding and Scaling the Delay Constraint

The delay values dl will be scaled and rounded to δl =⌊
dlN
Dη

⌋
and the delay constraint is set to ∆ =

⌈
N
η

⌉
. If a path

ψ satisfies the delay constraint
∑
l∈ψ dl ≤ D, then∑

l∈ψ δl ≤
∑
l∈ψ

dlN
Dη ≤

N
η ≤ ∆. If we find a path ψ for

which
∑
l∈ψ δl ≤ ∆, then also

∑
l∈ψ(dlNDη − 1) ≤ N

η + 1.
Considering there are at most N−1 links in a path, we obtain∑
l∈ψ

dlN
Dη ≤

N
η +N . It follows that

∑
l∈ψ dl ≤ (1 + η)D.

After rounding and scaling, we proceed to build a trans-
formation graph that has at most (∆ + 1)(W + 1)N nodes.
In order to construct the transformation graph, we first create
an auxiliary graph that, by its construction, ensures that every
feasible path from s to t will have a delay no bigger than
∆, but it does not involve the requested probability PD or
W . The transformation graph builds on the auxiliary graph by
including the probability PD in W .

C. Auxiliary graph

The auxiliary graph GA(NA
,LA) is constructed as follows:

1) For each node u ∈ N , NA contains (∆ + 1) nodes
u0, u1, ..., u∆.

2) For each link (u, v) ∈ L, LA has at most ∆ + (∆ −
1) + · · · + 1 = ∆2+∆

2 links in the form of (ui, vi+j),
where i = δmin

l , ...,min{∆, δmax
l } − 1 and j = i +

1, ...,min{∆, δmax
l }

3) There are also ∆ links in the form of (ti, ti+1) where
0 ≤ i ≤ ∆− 1. These links can allocate any bandwidth
and zero delay with probability 1. Alternatively, the
nodes ti could be considered as one node t.

Fig. 4 gives the auxiliary graph of the graph in Fig. 3. The
source and the destination are s0 and t∆, respectively. In this
example, a ∆ = 3 constrained flow is requested from s to t
in the original graph.

b t

a

s

Fig. 3: Original network.

t0b0a0

a1

a2

s1

s2

s3 a3 b3

b2

t3

t2

t1b1

s0

Fig. 4: Auxiliary graph for the network in Fig. 3.

D. Transformation Graph

We proceed to extend the auxiliary graph GA to reach our
transformation graph GT (N T ,LT ).

1) For each node ui ∈ NA, where i = 0, 1, ...,∆, N T

contains (W + 1) nodes ui0, ui1, ..., uiW .
2) For each link (ui, vj) ∈ LA, LT has at most W −

w(ui, vj) + 1 links (uir, vj(r+w(ui,vj))), where r =
0, 1, ...,W − w(ui, vj).

3) There are W links (tir, ti(r+1)), for i = 0, 1, ...,∆ and
r = 0, ...,W−1. These links can allocate any bandwidth
and zero delay with probability 1.

s00

s01

s02

s03

s10

s11

s12

s13

s20

s21

s22

s23

a00

a01

a02

a03

a10

a11

a12

a13

a20

a21

a22

a23

b00

b01

b02

b03

b10

b11

b12

b13

b20

b21

b22

b23

t00

t01

t02

t03

t10

t11

t12

t13

t20

t21

t22

t23

s30

s31

s32

s33

a30

a31

a32

a33

b30

b31

b32

b33

t30

t31

t32

t33

Fig. 5: Transformation graph for the network in Fig. 3.

The source and destination nodes in GT are s00 and t∆W ,
respectively. Redundant nodes could be pruned for faster
solvability by, for instance, redirecting the links and computing



a shortest paths tree rooted at t∆W : nodes not in that tree can
be pruned and if s00 is not in the tree, a solution does not exist.
In Section VI, we demonstrate that significant time savings can
be reached by pruning redundant nodes.

The delay of each feasible path is no more than ∆ (similarly
as in the auxiliary graph). Hence, if an index i = ∆ is achieved
for a node different from t, then the maximum delay is
achieved and the path is considered to be unfeasible. Similarly,
the sum of the link weights wl cannot exceed W .

Let us continue the example based on Fig. 3. Assume all
links have a − log(probability) of 0 (i.e., probability 1) for
having delay within 3 time units, 0.001 for delay within 2
time units and 0.002 for delay within 1 time unit. The smaller
− log(probability), the higher the probability. The requested
− log(probability) is 0.003. Assume further, for simplicity,
that these values are rounded and scaled with an ε in such
a way that it is equivalent to multiplying by 1000. Under
these assumptions, Fig. 5 presents the transformation graph,
where node uij corresponds to u ∈ N . Node uij has two
numbers i and j. The first number i is at most ∆ and indicates
the (rounded and scaled) delay from the source node (which
should not exceed ∆), and the second number j, with value
not exceeding W , represents the (rounded and scaled) log-
probability at which delay i can be realized.

The final part is a convex optimization formulation that
aims to solve a maximum-flow problem in this transformation
graph. The resulting flow in the transformation graph can
directly be mapped to a flow in the original graph that obeys
the requested bandwidth and delay probabilities with (ε, η)-
accuracy, as will be shown in the following section.

E. Convex Optimization Formulation

We first introduce some notation.
G(N ,L): original graph.
GA(NA,LA): auxiliary graph of G(N ,L) with rounded

and scaled delay values.
GT (N T ,LT ): transformation graph of G(N ,L) with

rounded and scaled delay and probability values.
fT (u, v): the total flow along link (u, v) in the transforma-

tion graph GT (N T ,LT ).
fA(u, v): the total flow along link (u, v) in the auxiliary

graph GA(NA,LA).
f(u, v): the total flow along link (u, v) in the original graph

G(N ,L).
Objective:

max F (4.3)

Constraints:

∑
(u,v)∈LT

f(u, v)−
∑

(v,u)∈LT
f(v, u) =

 F
−F
0

u = s00

u = t∆W
else

(4.4)

fA(u, v) =

i≤W−1∑
m=0

j≤W∑
n=i+1

f∆(uim, vjn) (4.5)

∀(u, v) ∈ LT , (ui, vj) ∈ LA

f(u, v) =

i≤∆−1∑
i=0

j≤∆∑
j=i+1

fA(ui, vj) (4.6)

∀(u, v) ∈ L, (ui, vj) ∈ LA

−
∑

(u,v)∈L

log(CCDF(u,v)(f(u, v))) ≤ − log(PB) (4.7)

0 ≤ f(u, v) ≤ bmax
(u,v) ∀(u, v) ∈ L (4.8)

Constraint (4.4) represents the nodal flow conservation
constraint in the transformation graph GT . Constraint (4.5)
calculates the total flow on each link (ui, vj) ∈ LA, and
Constraint (4.6) calculates the total flow on each link (u, v) ∈
LT . Constraint (4.7) ensures that the probability of allocating
bandwidth in the original graph is not smaller than requested.
With Constraint (4.8) we obey the link capacity.

To find the set of paths Ψ, requested in the MDCF problem,
that obey the delay constraint, we deploy a conventional flow
decomposition algorithm (e.g., see [1, pp. 79-83]).

We conclude by demonstrating that a maximum-flow in the
transformation graph translates to an (ε, η)-approximate solu-
tion to the MDCF problem in the original graph. In Sections
IV-A and IV-B, we have proved that rounding and scaling
leads to an (ε, η)-solution, hence it remains to demonstrate
that the translation to (and from) a maximum-flow problem in
the transformation graph is equivalent to solving the rounded
and scaled MDCF problem directly on the original graph.

The rounding and scaling step has discretized the convex
functions and all possible values for the delay and delay
probability are expressed as nodes. For instance, node u in
the original graph has (∆ + 1)(W + 1) corresponding nodes
uij in the transformation graph, where i = 0, ...,∆ reflects
the (rounded and scaled) delay from the source node to u,
and j = 0, ...,W , represents the (rounded and scaled) log-
probability at which delay i can be realized. Consequently, all
possible rounded and scaled delays and log-probabilities of the
original graph are represented via links in the transformation
graph, provided they do not exceed ∆ and W . If a feasible
path does not exist in the transformation graph, i.e. a path can
only achieve one of the “upper nodes” without outgoing links,
this means either a delay of ∆ and/or a value of W is already
spent. Since paths from s to t in the transformation graph
obey ∆ and W , and therefore safe-guard the (ε, η)-solution,
it remains to show that a maximum flow from s to t in the
transformation graph corresponds to an (ε, η)-solution for the
MDCF problem in the original network.

Our convex optimization explicitly takes the link capacity
constraints of the original network into account (in Constraint



(4.8)). Since nodes are linked in the transformation graph
if and only if their corresponding nodes are linked in the
original graph and the link capacities are not exceeded, a
maximum flow in the transformation graph corresponds to an
(ε, η)-solution to the MDCF problem in the original network.
The nodes in the transformation graph are directly mapped to
nodes in the original graph, which means that the paths in the
transformation graph are also directly mapped to the original
graph.

F. Computational Complexity

According to [5], the computation time for solving a
convex optimization problem is (roughly) proportional to
max{n3, n2m,φ}, where n reflects the number of variables,
m the number of constraints, and φ is the cost of evaluating
the first and second derivatives of the convex functions. In our
convex optimization formulation there are O(∆2WL) vari-
ables and constraints, which for the approximation algorithm
corresponds to O

(
N2

η2

⌈
− log1+ ε

N
PD

⌉
L
)

, i.e., a polynomial
expression of the input size and the accuracy parameters (ε, η).

V. HEURISTIC ALGORITHM

Although the approximation algorithm has a polynomial
number of variables, its running time for large networks may
be too high. Therefore, we also propose a faster heuristic algo-
rithm, called Multi-Constrained Maximum Flow (MCMF), for
the MDCF problem. The idea of MCMF is that it discretizes
the stochastic network and then iteratively (similar to an
augmenting flow approach) runs a heuristic multi-constrained
routing algorithm. We have chosen a heuristic, since multi-
constrained path selection is an NP-hard problem [12].

The network discretization is as follows: k samples are
taken (uniformly, at random, or non-uniformly, such as more
samples from the low-bandwidth or high-delay regimes) from
each link probability distribution, where k is determined by the
user. For instance, for the delay we would end up, per link,
with k (delay, -log(probability)) pairs, and similarly for the
bandwidth. With these 2k pairs per link, we transform all links
in the network as illustrated in Fig. 6. We make the following
observations indicating that it is wise to keep k small:

1) Increasing k does not always lead to better results (as
explained in Appendix B).

2) Including 2k pairs per link, as illustrated in Fig. 6,
increases the search space of possible paths between two
nodes exponentially.

Subsequently, we run TAMCRA [13], a heuristic multi-
constrained path selection algorithm. The delay constraint is
D, the delay probability constraint is −log(PD), and the
bandwidth probability constraint is −log(PB). There is no
constraint on the bandwidth. Instead, we modify the length
function of TAMCRA slightly, by choosing to minimize∑
l∈ψ

1
bl

, which is a function that strives to increase bandwidth
while minimizing the hopcount. TAMCRA never returns paths
that exceed one of the constraints, but it is heuristic in the sense
that it may fail to find a feasible path. TAMCRA is tunable

in how many paths it stores per node, a parameter that we set
equal to q = ck, a constant c times the number of samples k.

..

.
.

.
.

10 20 30

0.2

0.5

0.8

1.0

0 bmax
l

P
r[

b
l >

x
]

x
40

.

.

.
.

.
.

2 4 6

0.3

0.5

0.7

1.0

0 dmax
l

P
r[

d
l ≤

 x
]

x
8

vu

(∞, 0, 2, -log(0.3))
u vu’

(∞, 0, 4, -log(0.5))

(∞, 0, 6, -log(0.7))(10, -log(0.8), 0, 0)

(20, -log(0.5), 0, 0)

(30, -log(0.2), 0, 0)

k = 3

l

Fig. 6: Link transformation for the heuristic algorithm.

In the discretized network, we will iteratively run TAM-
CRA, prune its selected path, and adjust the remaining net-
work. Since the delay probabilities and constraint are per path,
they need not be adjusted. The bandwidth values do however.
We decrease the bandwidth values of the traversed links by
the bandwidth of the path. We do that for all k parallel links
and prune the links with zero or negative values. To prevent
the -log(probability) to be counted twice, we reduce the max k
parallel links by the probability of the link that was used. An
example is given in Fig. 7 for k = 1. In step 1, the network

b t

a

s

(2
0,

 0
.2

, 5
, 0

.2
)

(10, 0.2, 5, 0.2)

(100, 0.2, 5, 0.2)

(100, 0.1, 5, 0.1)

D = 15

-log(PD) = 0.5

-log(PB) = 0.7

f(s-a-b-t) = 20

1)

b t

a

s
(10, 0.2, 5, 0.2)

(80, 0, 5, 0.2)

(80, 0, 5, 0.1)

D = 15

-log(PD) = 0.5

-log(PB) = 0.7-0.5 = 0.2

f(s-b-t) = 10

2)

Fig. 7: An example of the heuristic link changes after an
iteration for k = 1.

of Fig. 3 is discretized. To not clutter the figure, we have
chosen to merge the two 4-tuples into one 4-tuple (we have
used fictitious values) and to omit the extra node per link as
illustrated in Fig. 6. TAMCRA returns path s − a − b − t
with bandwidth 20 and which satisfies the constraints. In step
2, the bandwidth along the links of this path is reduced by



20 and the corresponding probabilities are also adjusted. In
the new graph, TAMCRA is executed again and returns path
s − b − t with bandwidth 10. In a third iteration, s would
get disconnected and hence no more paths exist. The resulting
flow therefore is 20 units of bandwidth via s− a− b− t and
10 units of bandwidth via s− b− t.

For four parameters (delay and bandwidth probabilities and
constraints), TAMCRA has a complexity of O(qN log(qN) +
q2kL). Since TAMCRA is iterated at most kL times, the total
complexity becomes O(qkNL log(qN) + q2k2L2).

VI. SIMULATION-BASED EVALUATION

A. Simulation Setup

We conduct simulations on two networks: USANet, dis-
played in Fig. 8, which is a realistic carrier backbone network
consisting of 24 nodes and 43 links, and GÉANT, shown in
Fig. 9, which is a pan-European communications infrastructure
consisting of 40 nodes and 63 links.

We present simulation results for three representative log-
concave distributions, namely the exponential, uniform, and
chi-square distributions. In the exponential distribution 1 −
e−λx, we choose λ ∈ [0.001, 0.01] for the bandwidth dis-
tributions of different links and λ ∈ [0.5, 1.5] for the delay
distributions of different links. In the uniform distribution
x−α
β−α , we choose α = 0 for both bandwidth and delay, and
β ∈ [12, 20] for bandwidth and β ∈ [4, 8] for delay. In
the chi-square distribution Γ(κ2 ,

x
2 ), where Γ() denotes the

regularized gamma function, we choose κ = 1 for bandwidth
and κ ∈ [4, 9] for delay.

We generate 100 different requests, whose source and
destination nodes are randomly selected. If constraints are
set too tight, no solutions will exist, and if they are set too
loose, the problem turns into the simpler MFSN problem.
Our aim is to set constraints from loose (exponential) to
medium (uniform) to tight (chi-square). We have set, for both
topologies, the constraints for the exponential distribution to
PB = 0.5, D = 12, and PD = 0.5, for the uniform distribution
to PB = 0.1, D = 12, PD = 0.5, and for the chi-square
distribution to PB = 0.01, D = 12, PD = 0.5. In all cases
dminl = 0, dmax

l ∈ [4, 8], bmax
l ∈ [12, 20]. The simulation is

run on a desktop PC with 3.00 GHz CPU and 4 GB memory.
We use CVX in Matlab, a package for specifying and solving
convex optimization problems [14].

8

4

5

1

2

3

6

7

10

11

9

14

12

13

18

16

17

24

21

23

22

15 20

19

Fig. 8: USA carrier backbone network.

We compare the approximation algorithm with ε = η = 0.1,
and our heuristic algorithm MCMF with k = 1, 4, 8, 16

8

4

5

1 2
3

6

7

10
11

9

14

12

13

18

16

17

24

21
23

22

15

20
19

29 28

30
32

31

38

33 27

26

34
36

37

39

40

25

35

Fig. 9: GÉANT pan-European research network.

uniformly chosen samples per link. As remarked before, better
(than uniform) sampling methods may exist for a specific
distribution. For each k in MCMF, the maximum number of
stored paths q for each node is set to q = k when compared
to the approximation algorithm. Later for a fixed k = 8, we
will vary q in order to further evaluate the heuristic algorithm.
The heuristic algorithm guarantees to only return results that
obey (PB , D, and PD), while the heuristic does not guarantee
to always find a result when one exists. The approximation
algorithm also obeys PB and guarantees to return a result
when a feasible one exists, but may violate D and PD by
a factor of (1 + η) and (1 + ε), respectively. To have a fair
comparison, we (1) run the approximation algorithm with the
constraints D and PD, which leads to an upper bound, and
(2) we use constraints D′ = D

1+η and P ′D = (1 + ε)PD, in
which case the returned paths are guaranteed to obey D and
PD, but due to the stricter constraints, a solution may not be
found, i.e. we have a lower bound.

B. Simulation Results

Figures 10 and 11 present our simulation results in terms
of Acceptance Ratio (AR), Feasible Flow (FF) and Running
Time.

Figures 10(a) and 11(a) depict the Acceptance Ratio, which
is defined as (the number of times the algorithm returned a fea-
sible result, i.e. obeying the three constraints) divided by (the
total number of requests). As expected, the algorithms have
the highest AR for the exponential distribution and the lowest
AR for the chi-square distribution (where k = 1 did not return
a feasible flow). Moreover, since we have chosen a small error
parameter (ε = η = 0.1) for the approximation algorithm, its
upper and lower bound values are quite close, which suggests
that it has near-optimal performance. For MCMF, when k
increases, its achieved AR approaches that of the (close-to-
optimal) approximation, but much faster. However, this trend
is not always increasing with k, as explained in Appendix B.



(a) Acceptance Ratio (AR) (b) Feasible Flow (FF) (c) Running Time

Fig. 10: (a) Acceptance Ratio (AR) (b) Feasible Flow (FF) (c) Running Time for 100 requests on USANet for q = k.

(a) Acceptance Ratio (AR) (b) Feasible Flow (FF) (c) Running Time

Fig. 11: (a) Acceptance Ratio (AR) (b) Feasible Flow (FF) (c) Running Time for 100 requests on GÉANT for q = k.

(a) Acceptance Ratio (AR) (b) Feasible Flow (FF) (c) Running Time

Fig. 12: Simulation results over 100 requests on USANet for k = 8 and q = c · k, where c = 1, 2, 5, 10, 20: (a) Acceptance
Ratio (AR) (b) Feasible Flow (FF) (c) Running Time.

Figures 10(b) and 11(b) plot the Feasible Flow (FF), which
is defined as the total amount of flow returned by the algo-
rithm that obeys the constraints. We observe that the lower
bound of the approximation algorithm has achieved the same
value as the upper bound of the approximation algorithm for
the exponential distribution. This is due to the loose delay
constraint. For the heuristic algorithm, again the flow values
increase with k (most of the time) and approach the FF values
of the approximation algorithm.

The running times of the algorithms are shown (on a log-
scale) in Figures 10(c) and 11(c). The running time of the

heuristic is much smaller than the approximation algorithm
and therefore is the preferred choice for when flows need to
be computed fast.

We notice in the above figures that when q is equal to k,
the performance (either AR or FF) of the heuristic algorithm
does not always increase with k. One reason is explained in
Appendix B and another reason is the exponentially increasing
search space. The latter could be solved by increasing the
maximum number of stored paths q in MCMF. We therefore
fix k = 8 in q = ck, and vary c = 1, 2, 5, 10, 20.

Figures 12 and 13 show the AR, FF and Running Time for



(a) Acceptance Ratio (AR) (b) Feasible Flow (FF) (c) Running Time

Fig. 13: Simulation results over 100 requests on GÉANT for k = 8 and q = c · k, where c = 1, 2, 5, 10, 20: (a) Acceptance
Ratio (AR) (b) Feasible Flow (FF) (c) Running Time.

MCMF. We can see from these figures that when q increases,
the performance values indeed increase.

Finally, in Tables II and III, we study the effect of pruning
the redundant nodes from the transformation graph. Since the
approximation algorithm without pruning nodes takes too long
for ε = η = 0.1, we have set it to ε = η = 0.5 instead, while
we use ε = η = 0.1 for the case with pruning.

TABLE II: Running time per request for USANet (sec).

Exponential Uniform Chi-square
Approx. (UB) (With Pruning) 252.3 96.4 79.1
Approx. (LB) (With Pruning) 183.6 79.6 61.3
Approx. (UB) (No Pruning) 350.2 805.6 842.7
Approx. (LB) (No Pruning) 206.3 450.9 470.8

TABLE III: Running time per request for GÉANT (sec).

Exponential Uniform Chi-square
Approx. (UB) (With Pruning) 921.7 211.1 112.5
Approx. (LB) (With Pruning) 566.8 128.5 93.8
Approx. (UB) (No Pruning) 1386.6 1271.4 1003.6
Approx. (LB) (No Pruning) 621.7 818.8 592.9

As can be seen, our approximation algorithm with pruning
and ε = η = 0.1 outperforms the approximation algorithm
with ε = η = 0.5 but without pruning both in terms of
accuracy and speed.

VII. RELATED WORK

A small overview of techniques for dealing with stochastic
networks and traffic uncertainty in general is provided in [15].

A. Flows

Although there is work on stochastic flow problems, e.g.
see the work of Tahmasbi et al. [16] and the references
therein, the stochastic model there differs from that in our
paper and is concerned with a reliability perspective, where
the expected maximum flow is computed under a random link-
failure model. Contrary to our model, these problems have an
implicit topological dependence, hence are NP-hard to solve.

Also the class of fuzzy flow problems, e.g. see the work of
Diamond [17], deals with the maximum-flow problem under
uncertainty. There, the uncertainty in capacity is represented
by a fuzzy number.

Another class of (slightly) related network flow problems
are dynamic (discrete or continuous) network flow problems,
in which the capacities of the links vary over time (e.g., see
a survey by Kotnyek [18]). Orda and Rom [19] extended
dynamic network flow problems by also including time-
dependent link delays d(u,v)(x), i.e. a flow leaving node u on
link (u, v) at time x will arrive at node v at time x+d(u,v)(x).
In dynamic flow problems, the time-dependent bandwidth and
delay functions should be precisely known, which is difficult to
realize in practice. Instead, probability distribution functions,
as used in our paper, can be easily based on historical data
and take uncertainty into account.

Sarangan et al. [20] studied how to estimate the maximum
flow in a domain, where the domains are regarded as stochastic
networks, and devised a capacity-aware inter-domain routing
algorithm. However, their work does not take the requested
probability (PB) into account.

B. Path Selection

The stochastic models more closely related to our work have
focused on finding a single path. Korkmaz and Krunz [21]
considered the case where link delays are represented by non-
negative Gaussian random variables. In that case, given a delay
constraint D, the probability πD(ψ) that the delay of a path
is no larger than D is

πD(ψ) ≈ Φ

(
D − µ(ψ)

σ(ψ)

)
,

where Φ(x) is the Probability Density Function (PDF) of a
Gaussian distribution, and µ(ψ) and σ(ψ) denote the mean
and standard deviation of the delay in path ψ. Since Φ(x) is
an increasing function, to maximize πD(ψ) is to maximize
D−µ(ψ)
σ(ψ) . Korkmaz and Krunz referred to the problem of

finding a path for which D−µ(ψ)
σ(ψ) is maximum as the Most

Probable Delay Constrained Path (MPDCP) problem, and
proposed a heuristic algorithm to solve it. Xiao et al. [22]



subsequently proved that the MPDCP problem is NP-hard and
developed a Fully Polynomial Time Approximation Scheme
(FPTAS) for when there exists a path whose mean delay is no
more than D and an approximation scheme for when no such
path exists.

Lorenz and Orda [23] considered the more general case
where each link (i, j) has a function πij(Dij) that represents
the probability that link (i, j) introduces a delay of no more
than Dij time units. This so-called Delay-Based Routing
(DBR) problem is to find a path that has the biggest probability
of not exceeding D. Lorenz and Orda proved that the DBR
problem is NP-hard, and by decomposing the end-to-end delay
constraint D into local delay constraints, managed to develop
an FPTAS.

C. Bandwidth and Delay Constraints

Banner and Orda [11] addressed the Restricted Multipath
(RMP) problem, which is to find a set of paths Ψ that minimize
network congestion, while each path ψ ∈ Ψ should have a
length no more than a given value. Misra et al. [3] studied
the Multipath routing with Bandwidth and Delay constraints
problem (MPBD), where the objective is to find a set of paths
Ψ such that the total bandwidth is no less than a given value
and the delay of each path ψ ∈ Ψ should be minimized.
Based on the MPBD problem, Zhang et al. [4] studied the
Reliable Adaptive Multipath Provisioning (RAMP) problem,
which refers to finding a set of paths Ψ such that the total
bandwidth is no less than a given value, the delay of each
path ψ ∈ Ψ should be within some range and the bandwidth
of each path ψ ∈ Ψ should not exceed a given value. All
these three problems are studied in deterministic networks
and are proved to be weakly NP-hard. Accordingly, pseudo-
polynomial time algorithms and polynomial approximation
algorithms have been devised.

VIII. CONCLUSION

In this paper, we have studied the maximum-flow problem
without and with delay constraints in stochastic networks.
Under a general log-concave probability distribution model
to represent bandwidth and delay and some mild assumptions,
we have shown that the maximum-flow problem in stochastic
networks is polynomially solvable and presented a convex
optimization formulation. When a delay constraint is imposed
on each path, the problem becomes NP-hard. To solve it,
we have proposed a convex optimization formulation for
an approximation algorithm and developed a faster tunable
heuristic algorithm. We have performed simulations that show
that our heuristic is fast and tunable to return close-to-optimal
results.

ACKNOWLEDGEMENT

This research has been partly supported by the EU FP7
Network of Excellence in Internet Science EINS (project no.
288021).

REFERENCES

[1] R. Ahuja, T. Magnanti, and J. Orlin, Network flows: theory, algorithms,
and applications. Prentice Hall, 1993.

[2] A. V. Goldberg and R. E. Tarjan, “Efficient maximum flow algorithms,”
Communications of the ACM, vol. 57, no. 8, pp. 82–89, 2014.

[3] S. Misra, G. Xue, and D. Yang, “Polynomial time approximations for
multi-path routing with bandwidth and delay constraints,” in INFOCOM.
IEEE, 2009, pp. 558–566.

[4] W. Zhang, J. Tang, C. Wang, and S. De Soysa, “Reliable adaptive mul-
tipath provisioning with bandwidth and differential delay constraints,”
in INFOCOM. IEEE, 2010, pp. 1–9.

[5] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY,
USA: Cambridge University Press, 2004.

[6] M. Bagnoli and T. Bergstrom, “Log-concave probability and its appli-
cations,” Economic Theory, vol. 26, no. 2, pp. 445–469, 08 2005.

[7] G. R. Mohtashami Borzadaran and H. A. Mohtashami Borzadaran,
“log-concavity property for some well-known distributions,” Surveys in
Mathematics and its Applications, vol. 6, pp. 203–219, December 2011.

[8] L. R. Ford and D. R. Fulkerson, “Maximal flow through a network,”
Canadian Journal of Mathematics, vol. 8, pp. 399–404.

[9] Y. Nesterov and A. Nemirovskii, Interior-Point Polynomial Algorithms
in Convex Programming. SIAM Studies in Applied and Numerical
Mathematics, 1994.

[10] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. New York, NY, USA: W. H.
Freeman & Co., 1979.

[11] R. Banner and A. Orda, “Multipath routing algorithms for congestion
minimization,” IEEE/ACM Trans. on Netw., vol. 15, no. 2, pp. 413–424,
2007.

[12] F. A. Kuipers and P. Van Mieghem, “Conditions that impact the
complexity of qos routing,” IEEE/ACM Transactions on Networking,
vol. 13, no. 4, pp. 717–730, 2005.

[13] P. Van Mieghem and F. Kuipers, “Concepts of exact quality of service
algorithms,” IEEE/ACM Trans. on Netw., vol. 12, no. 5, pp. 851 – 864,
2004.

[14] CVX Research, Inc., “CVX: Matlab software for disciplined convex
programming, version 2.0.”

[15] S. Yang and F. A. Kuipers, “Traffic uncertainty models in network
planning,” IEEE Communications Magazine, vol. 52, no. 2, pp. 172
– 177, 2014.

[16] R. Tahmasbi, E. Nasrabadi, and S. M. Hashemi, “The value of informa-
tion in stochastic maximum flow problems,” Computers & Operations
Research, vol. 40, no. 7, pp. 1744 – 1751, 2013.

[17] P. Diamond, “A fuzzy max-flow min-cut theorem,” Fuzzy Sets and
Systems, vol. 119, pp. 139 – 148, 2001.

[18] B. Kotnyek, “An annotated overview of dynamic network flows,”
INRIA, Tech. Rep. RR-4936, Sep. 2003. [Online]. Available:
http://hal.inria.fr/inria-00071643

[19] A. Orda and R. Rom, “On continuous network flows,” Operations
Research Letters, vol. 17, no. 1, pp. 27 – 36, 1995.

[20] V. Sarangan, D. Ghosh, and R. Acharya, “State aggregation using
network flows for stochastic networks,” in GLOBECOM. IEEE, vol. 3,
2002, pp. 2430–2434.

[21] T. Korkmaz and M. Krunz, “Bandwidth-delay constrained path selection
under inaccurate state information,” IEEE/ACM Trans. on Netw., vol. 11,
no. 3, pp. 384–398, 2003.

[22] Y. Xiao, K. Thulasiraman, X. Fang, D. Yang, and G. Xue, “Computing
a most probable delay constrained path: NP-hardness and approximation
schemes,” IEEE Trans. on Computers, vol. 61, no. 5, pp. 738–744, 2012.

[23] D. Lorenz and A. Orda, “QoS routing in networks with uncertain
parameters,” IEEE/ACM Trans. on Netw., vol. 6, no. 6, pp. 768–778,
1998.

[24] A. Tamir, “Polynomial formulations of min-cut problems,” Manuscript,
Department of Statistic and Operations Research, Tel Aviv University,
Israel, 1994.

APPENDIX A
MIN-CUT IN STOCHASTIC NETWORKS

Definition 6: The Min-Cut in Stochastic Networks (MCSN)
problem is to find a cut C which partitions G into two
disjoint subsets X (X ∈ N ) and N −X such that the source



s and the terminal t are in different subsets and the sum of
allocated bandwidth for the links belonging to the cut should
be as small as possible as long as the probability of realizing
that bandwidth is no less than PC .

According to the definition, we should use a CDF (instead
of a CCDF in the MFSN problem) to represent its realizing
probability: ∏

(u,v)∈L:u∈Xv∈N−X

c(u,v) (f(u, v)) ≥ PC (1.1)

where f(u, v) denotes the allocated bandwidth for link (u, v).
According to [24], the min-cut problem in a deterministic

network can be solved by the following Linear Programming
(LP) formulation:

Objective:
min

∑
(u,v)∈L

bmax
(u,v) · yu,v (1.2)

Constraints:

ys,t ≥ 1 (1.3)

yu,v + yv,w ≥ yu,w, ∀u, v, w ∈ N : u 6= v 6= w (1.4)

yu,v ≥ 0, ∀u, v ∈ N : u 6= v (1.5)

where bmax
(u,v) stands for the capacity of link (u, v) in the de-

terministic network and yu,v is an indicator denoting whether
(u, v) belongs to the cut. Similarly, the MCSN problem can
be solved by the following convex optimization formulation:

Objective:

min
∑

(u,v)∈L

f(u, v) · yu,v (1.6)

Constraints:

−
∑

(u,v)∈L

log
[
CDF(u,v)(f(u, v))

]
≤ − log(PC) (1.7)

0 ≤ f(u, v) ≤ bmax
(u,v) ∀(u, v) ∈ L (1.8)

ys,t ≥ 1 (1.9)

yu,v + yv,w ≥ yu,w, ∀u, v, w ∈ N : u 6= v 6= w (1.10)

yu,v ≥ 0, ∀u, v ∈ N : u 6= v (1.11)

where f(u, v) indicates the flow through link (u, v). According
to [7], if the density function of a distribution is log-concave,
then its CDF and CCDF are also log-concave. Since we
consider a log-concave CDF and CCDF distribution for the
allocated bandwidth in this paper, constraints (1.7)-(1.11) are
convex. In particular, Eq. (1.7) ensures that the probability of

realizing the sum of allocated bandwidth of the min-cut is no
less than PC . Although Eq. (1.7) takes the sum of the − log
over all the links in the network, if link (u, v) does not belong
to the cut in the optimal solution, the convex optimization
formulation will “force” it to achieve its maximum value with
probability equal to CDF (bmax

(u,v)) = 1. In this sense, Eq. (1.7)
only calculates the bandwidth allocating probability of the
links belonging to the cut.

It remains to show that Eq. (1.6) is convex. In general,
the product of two convex functions is not always convex,
however, according to [5, pp. 119], one special case is:
“If functions f and g are convex, both nondecreasing (or
nonincreasing), and positive (nonnegative) functions on an
interval, then f · g is convex.” Therefore, for each (u, v) ∈ L,
f(u, v) · yu,v is convex.

APPENDIX B
MORE SAMPLES MAY REDUCE PERFORMANCE

Although, typically, increasing the number of samples k
leads to better performance, we will illustrate that in some
cases it may reduce the performance.

In the uniform distribution, the Complementary Cumulative
Density Function (CCDF ) of a link l with maximum band-
width value bmaxl can be expressed as:

CCDF =
bmaxl − bl
bmaxl

(2.1)

where b represents the allocated bandwidth.
In Fig. 14, there are three nodes and two links with bmaxl =

17. Our aim is to find a maximum flow from node 1 to node
3 with requested probability PB = 0.1. We compare k = 2
with k = 4.

Fig. 14: An example graph to illustrate that a bigger k does
not necessarily lead to more flow.

When k = 4, the bandwidth of the links is sampled into 3.4,
6.8, 10.2 and 13.6. Since there is only one path (1-2-3) from
node 1 to node 3, the algorithm will choose this path. The
maximum bandwidth 13.6 of this path cannot be chosen since
the total probability of allocating this value for these two links
according to Eq. (2.1) is equal to 17−13.6

17 × 17−13.6
17 = 0.04,

which is less than PB = 0.1. Instead, the algorithm will select
10.2 with probability equal to 17−10.2

17 × 17−10.2
17 = 0.16.

When k = 2, the bandwidth of the links is sampled into 5.6
and 11.3. Again, since there is only one path (1-2-3) from node
1 to node 3, the algorithm will choose this path. If each link
allocates 11.3 bandwidth, then the total probability is equal to
17−11.3

17 × 17−11.3
17 = 0.112, which is greater than PB = 0.1,

and greater than with k = 4.


