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ABSTRACT

A wide range of practical problems involve computing multi-dimensional integrations.
However, in most cases, it is hard to find analytical solutions to these multi-dimensional
integrations. Their numerical solutions always suffer from the ‘curse of dimension’, which
means the computational complexity grows exponentially with respect to the dimen-
sion.

There is an existing approach that approximates multivariate functions by a tensor
of truncated multi-dimensional Fourier series coefficients, and uses the Stochastic Gra-
dient Descent method to solve the lower-rank CPD model, which is used to reduce the
computational complexity of the coefficient tensor. In contrast to this work, this the-
sis project extends its application to solve multi-dimensional integrations, utilizing the
Fourier-cosine series expansion to represent the integrand. This project also replaces the
SGD method with the Conjugate Gradient method, which improves the function match-
ing accuracy significantly and also has great integration accuracy. The computational
cost is reduced regardingly as well.

This thesis also tests an expectation operator related to the COS method, which can
be used to compute the expectation of functions of several random variables with much
less computational complexity. This method filters out insignificant Fourier-cosine ba-
sis functions of the marginal distribution functions, and uses the selected ‘principal’ ba-
sis functions to compute Fourier-cosine coefficients of the joint density function by the
high-dimensional COS method. The test results show that more than half of the Fourier-
cosine series terms can be dropped per dimension while the expectation accuracy is
kept, and the correlation does not influence the expectation accuracy significantly for
target functions of normally distributed random variables.
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1
INTRODUCTION

This chapter aims to give the background and the main motivation for this research. We
start with a general dilemma of computational complexity for high-dimensional integra-
tions, followed by several well-known numerical integration methods and some poten-
tial dimension-reduction solutions, including the specific approach that this research
focuses on. Lastly, the contributions of this thesis are summarized in a concise conclu-
sion.

1.1. PROBLEM DESCRIPTION
Numerical integration methods are often utilized when analytically we fail to derive a
closed-form solution or the analytical expression is so sophisticated that a straightfor-
ward implementation of it does not outperform the numerical solution. The topic of nu-
merical integration has attracted great interest from mathematicians who then created
an abundance of methods over a hundred years since the name ‘numerical integration’
first appeared in 1915 [1].

Note that the numerical integration is needed to solve the integrations not only in
one dimension, but also in many cases, over more than one variable. Problems like the
valuation of financial derivatives under certain model assumptions, the simulation of
physics phenomenons, the evaluation of health big data with many features, etc, often
require numerically solving high-dimensional integrals. The computation can be ex-
tremely complex and can inevitably lead to the so-called "curse of dimension". That
is, the cost to compute the integral numerically with a prescribed accuracy grows expo-
nentially w.r.t. the number of dimensions, which not only makes the calculation time
unbearably long but can also lead to memory overflow.

There have been a lot of efforts in literature endeavored to improve the performance
of numerical integration, but those methods usually suit one-dimensional situations
better. When solving a multi-dimensional integration problem, we often need methods
or strategies for avoiding the curse of dimension.

What we are aiming for in this project is to find efficient methods to alleviate the

1
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curse of dimension. Some existing solutions in literature designed for this purpose will
be briefly discussed in Chapter 2.

1.2. OVERVIEW OF NUMERICAL METHODS FOR INTEGRATION
The classical but still actively studied methods for numerical integration are quadrature
rules. The simplest ones of this type make use of an equidistant grid for discretizing the
integration interval, such as the rectangle rule and the trapezoidal rule [2]. The trape-
zoidal rule is exact for linear functions; since it utilizes first-order polynomials, or in
other words, the error convergence is of the second order, i.e. ah2 +O(h3), whereby h
is the gird size and a is a constant. Another simple method is Simpson’s rule, which
is exact for the integration of the 3rd-order polynomial. Next to the simple methods,
there are more advanced quadrature methods, such as Gaussian quadrature formulas
and Clenshaw-Curtis quadrature rule[3]. These methods no longer rely on equidistant
grid points and usually have exponential error convergence when the integrand is in-
finitely differentiable.

Nowadays, efficient implementation of these methods is available in different pro-
gramming languages. For example, NumPy and Scipy from Python have built-in func-
tions to calculate integrations, which provide fast and satisfactory results for one-dimensional
integrations. However, it’s tougher to compute integrations in higher dimensions be-
cause the number of grid points, and thus the computational complexity involved, grows
exponentially with respect to the number of dimensions. Quadrature rules applied in
higher dimensions result in multiplications of a hyper-cube with a number of vectors,
which consumes a considerable amount of memory and time. Hence, researchers are
exploring means to break or alleviate the dimensionality bottleneck. There are effec-
tive dimension-reduction techniques developed in recent literature, especially the low-
order tensor based methods, such as Canonical Polyadic Decomposition (CPD) method.
These are detailed later in Section 2.2 and are the main research target of this thesis
project.

A second type of numerical method often used in practice for computing integra-
tions is the Monte Carlo (MC) simulation method, which is in particular suitable for
multi-dimensional integrations. The computational complexity only grows linearly w.r.t.
the number of dimensions, and thus, the MC method can be conveniently applied to
many fields. The main drawback of the MC method is in the calculation accuracy, for
which improvements have been made in literature, e.g. by importance sampling method
[4]. What’s more, machine learning methods are also engaged in improving the perfor-
mance of MC simulation, such as boosted decision trees, GANs [5], and neural network
based methods.

1.3. RESEARCH OBJECTIVES
This report aims to reduce the computational complexity of numerical integrations, es-
pecially by exploring the methods based on Fourier-cosine series expansion. The main
idea is to replace the integrand by its Fourier-cosine series expansion and then exchange
the order of summation and integration, which transforms the original integration into a
summation of weighted sine functions. Hence, this approach in essence transforms the
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original integration problem into the problem of computing the Fourier-cosine series
coefficients of the integrand. And in multidimensional cases, the number of coefficients
grows exponentially w.r.t. the number of dimensions. Hence, it is crucial to find an ef-
ficient way to solve the coefficients without too much computational cost, which is the
main goal of this thesis project and we have combined a lower-rank tensor decomposi-
tion technique with a supervised machine learning method to achieve this goal.

In order to be in a position to compare the computed value with an exact value, we
test on integrals that can be evaluated analytically. Although this may give an impression
of undesirable simplicity, more practical examples are chosen to illustrate the applica-
bility of this method for more general integrand functions. For the proof-of-concept, we
use the Gaussian probability density function as the integrand since its analytical solu-
tion of the integration is one exactly.

1.4. CONTRIBUTIONS
This thesis targets at developing new but efficient solutions for solving high-dimensional
numerical integrations. As mentioned earlier, the main idea is to transform the integra-
tion problem into the problem of solving the Fourier-cosine coefficients of the integrand.
We contribute two dimension-reduction methods along this line of research.

The key idea of the generic solution method we developed in this thesis is to decom-
pose the hyper-cube of the coefficients into lower-rank factor matrices by tensor decom-
position technique and employ a supervised machine learning method to solve these
lower-rank matrices directly. Near the end of this thesis research, we also explored a
method for a special but very often-seen case of multi-dimensional integration, namely
the expectation operator. It is the combination of the high-dimensional COS method
and our innovative idea that one can select principal Fourier terms and leave out the
"non-important" cosine basis functions.

To be more precise, our contributions have two folds:
1. A generic dimension-reduction method: We reproduced the methods in [6] and

then improved their methods by means of finding the lower-rank representation of Fourier
coefficients by the Conjugate Gradient (CG) method, instead of the originally adopted
Stochastic Gradient Descent (SGD) solution. This improvement has been tested to out-
perform the original methods significantly.

2. A dimension-reduction method for an often-seen special case - expectation op-
erator: Our innovative approach is to filter out non-important cosine basis functions in
the high-dimensional COS method. It has been tested to greatly reduce computational
complexity.

1.5. THESIS OUTLINE
This chapter provides a general introduction to this thesis. A literature review related to
the keywords of this thesis is given in Chapter 2, such as the Fourier series, Tensor ap-
proaches, and appropriate Machine Learning methods. Chapter 3 gives basic definitions
of tensors and a few useful tensor operations. Moreover, a tensor-based decomposition
method, the Canonical Polyadic Decomposition (CPD) method, is introduced. We use a
2D toy example to illustrate how CPD is done based on Fourier-cosine series expansion.
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In chapter 4, we apply a machine learning method to compute the lower-rank tensors
resulted from CPD. More insights into this method are also discussed. A further attempt
of employing the machine learning method to find the lower-rank tenors is illustrated
in Chapter 5, following a method developed in [6], we further replace the SGD method
with CG as a new solver. The model efficiency is tested in both 2D and 3D, which shows
superior performance to the SGD method. Chapter 6 describes our innovative idea of
founding the ’principal’ cosine terms based on 1D Fourier expansion to reduce compu-
tational complexity. Finally, Chapter 7 gives a conclusion of the project and a summary
of the two methods we have developed and tested, as well as future research work.



2
INGREDIENTS OF OUR SOLUTION

Multi-dimensional numerical integration methods suffer from the curse of dimension,
as we mentioned in the previous chapter. This chapter provides an overview of three in-
gredients involved in our solution to this problem. The first one is Fourier-cosine series
expansion, which transforms the integration problem into the computation of Fourier-
cosine coefficients as we mentioned before. As the second ingredient, some tensor-
based dimension-reduction techniques which are popular in literature are introduced.
One of such techniques is employed to decompose the multi-dimensional Fourier coef-
ficients expressed as a high-order tensor, by a few lower-rank factor matrices. At last, we
present the third ingredient of a supervised machine learning method, which we utilize
to solve the lower-rank factor matrices efficiently.

2.1. FOURIER-COSINE SERIES EXPANSION
Roughly speaking, the celebrated Fourier series expansion constructs any smooth func-
tion by cosine and sine basis functions, and the amplitude of the basis functions is de-
termined by Fourier coefficients.

Fourier series is usually used to represent periodic functions, and those square-integrable
functions even have a unique representation of Fourier form [7]. However, non-periodic
functions with a compact support can also be resembled by Fourier series expansion. In
that case, we actually reconstruct a periodic extension of the original function [6]. And
our work focuses on the Fourier-cosine series expansion, which is obtained by applying
Fourier series expansion on the even extension of the target function.

For smooth functions, the error of approximation converges exponentially w.r.t. the
number of leading terms. And it is worth noting that in the context of calculating the
expectation of the function of a few random variables, we need to truncate the integra-
tion range in the first place, to be able to apply Fourier series expansion on the integrand,
which introduces the integration range truncation error. Moreover, there is a balance be-
tween the wideness of the integration truncation range and the number of needed terms
of the series expansion: the larger the domain, the more terms in the series expansion
are needed to reach a certain accuracy.

5
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There are different means for solving coefficients of cosine terms. A straightforward
approach is to apply advanced numerical integration methods such as Clenshaw-Curtis
quadrature rule, and it is also possible to speed up the calculations by utilizing the al-
gorithm of discrete cosine transforms (DCTs). For example, authors in [8] apply the
Fourier-cosine series expansions for pricing several options in 2D. They use the 2D-COS
method to compute Fourier-cosine coefficients for the conditional density function of
which the characteristic function is known, and 2D Fourier coefficients of the payoff
functions can be approximated by using DCTs if no exact representation is available. [9]
extends the use of cosine series expansions in three-dimensional pricing problems with
the 3D-COS method and DCTs to compute coefficients. In our solution, we resemble the
coefficients via tensor-based Canonical Polyadic Decomposition of which the composi-
tion of lower-rank tensors is found via a supervised machine learning method. Details
are given in the following sections.

2.2. TENSOR BASED DIMENSION-REDUCTION TECHNIQUES
Tensors are general forms of multidimensional arrays. We are familiar with their low-
dimensional representations: matrices and vectors. Calculations involving higher-order
tensors always raise troubles because of high dimensionality. In literature, there are var-
ious tensor decomposition techniques designed to tackle this problem. Two typical de-
composition methods that are popular in literature are: Canonical Polyadic Decompo-
sition (CPD) [10] and Higher-Order Singular Value Decomposition (HOSVD). The CPD
reconstructs a tensor as a sum of rank-one tensors, and HOSVD is actually a principal
component approach applied in high dimensions [11], with Tucker method [12] being a
typical example of the latter.

In the last two decades, interests in tensor-based calculations not only rose in nu-
merical linear algebra, but also in the field of signal processing (speech [13], communi-
cations [14], radar [15], biomedical [16]), data mining (handwritten digit [17], text repre-
sentation [18], streams and graphs [19] [20]), Psychometrics, Chemometrics, and so on.
At the same time, a number of improvements to the CPD and Tucker method have been
made to cope with the particular needs of these different application fields.

Though the idea of CPD was first invented in 1927 [21], it did not become popular un-
til 1970 when Carroll and Chang [22] brought it to the psychometrics community, in the
form of the summation of rank-one tensors. They also proposed the Alternating Least
Squares (ALS) [22] method to solve the CPD model as a linear problem. The standard
ALS is generally powerful and outperforms many existing algorithms. However, the im-
provement of the ALS method is still ongoing. For instance, instead of alternatively up-
dating factor matrices, damped Gauss-Newton and a variant named PMF3 can optimize
all factor matrices simultaneously [23]. Recently, CPD has also been applied for solving
large-scale, sparse tensors [24], not only via ALS, but also other adapted methods, like
the generalized Rayleigh-Newton iteration method [25].

Tucker decomposition follows the idea of higher-order Principal Component Anal-
ysis. Unlike the CPD model, Tucker has a core tensor with matrices multiplied along
each direction of the hypercube. And another essential difference is the way that el-
ements interact with each other. For instance, a three-order tensor has Tucker factor
matrices A, B and C, then each column of A interacts with every column of B and C, with
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weights of these interactions recorded in the core tensor, while CPD only allows interac-
tions between corresponding columns of A, B and C. Hence, the Tucker method fits the
framework of HOSVD and thus can be implemented as a HOSVD [26].

Lastly, CPD holds uniqueness under certain weak conditions [27], while the unique-
ness of Tucker decomposition is not guaranteed. This is because the core tensor can be
modified without affecting the fit. And such flexibility leads to some transformations
that simplify the core tensor, reducing as many elements of the core tensor to zero as
possible. Since these elements represent the interactions between corresponding com-
ponents, more zero improves the uniqueness (to create orthogonality).

2.3. MACHINE LEARNING(ML) METHODS
With the arising popularity of machine learning techniques, proposals for utilizing ma-
chine learning methods to solve tensor decomposition have been made in the literature.
The problem of finding the best decomposition is in essence an optimization problem,
with the object of minimizing the Mean Square Error (MSE) between the exact factor
matrices and the approximated factor matrices.

The Gradient Descent (GD) method is a classical solver for Least Square Error prob-
lems, making use of the convex property of the loss function. For example, [28] derives a
positive-preserving gradient descent algorithm for finding a non-negative n-dimensional
tensor factorization, and applies it to the computer vision field. Another famous applica-
tion of ML is to decompose the user(A) × item(B) × context(C) rating tensor [16], which
is popular in the applications in recommendation systems.

In [16] the author also introduces a well-known ML approach, Stochastic Gradient
Descent (SGD), which can be used even in solving non-convex optimization problems.
This is a very inclusive algorithm and can handle missing data relatively well. However,
its randomness is a problem for signal processing, and thus, needs intelligent caching
strategies. [6] applies SGD to a generalized CPD method, and the authors demonstrate
the SGD method outperforms many networks based on their datasets. However, the
errors they show are still rather large and they do not conduct any error analysis. Our
work starts by replicating their methods for a better understanding of the methods and
then continues with improving their methods based on our insights and analysis.





3
OVERVIEW OF TENSOR AND

CANONICAL POLYADIC

DECOMPOSITION (CPD)

This chapter gives the definitions and properties of tensors related to our research, and
introduces Canonical Polyadic Decomposition (CPD). Tensor is a convenient represen-
tation for high dimensional data and CPD is a typical method to reduce the computa-
tional complexity by factorizing a tensor into a sum of lower-rank representations. At
the end of the chapter, we give a two-dimensional example to illustrate how CPD works
with Fourier-cosine coefficient tensors.

3.1. TENSOR: BASICS

This section provides a basic introduction to tensors, including definitions and structure
of the tensor. In addition, we also introduce some commonly used matrix operations for
the tensor calculation to build a necessary knowledge base for subsequent work.

3.1.1. DEFINITION AND STRUCTURE

Definition 3.1 An Nth-order tensor X ∈RI1×I2×...×IN is a real N-dimensional array, where
the index range in the k-th mode is from 1 to Ik [29].

Tensor is a general way of representing arrays. For example, a vector is a first-order
tensor, a matrix is a second-order tensor, and a third-order or even higher-order array
shares the name of the tensor. Figure 3.1 visualizes the structure of a third-order tensor.

9
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Figure 3.1: A third-order tensor: X ∈RI×J .×K [11], the element at position (i , j ,k) can be represented by xi j k .

In the following, we collect the definitions of components of tensors[11] and a signif-
icant type of tensor, i.e. rank-one tensors .

Entries : Similar as ai j is the (i , j )-th element of matrix A, xi j k denotes the (i , j ,k)-th
entry of a tensor.

Fibers : Fibers are the higher-order analogue of matrix rows and columns. Third-order
tensors have the column, row, and tube fibers, denoted by x: j k , xi :k , and xi j :.

Slices: Slices are 2-dimensional components of a tensor, and only one of the indices
is fixed. For example, there are three dimensions in a third-order tensor, slices can be
extracted from 3 directions, denoted by Xi:: (horizontal), X:j: (lateral), and X::k (frontal),
respectively.

Definition 3.2 An Nth-order tensor X ∈ RI1×I2×...×IN is rank one if it can be written as
the outer product of N vectors, i.e.,

X = a(1) ◦a(2) ◦ ...◦a(N ). (3.1)

here "◦" denotes the outer product of vectors, which means that each entry of a tensor is
represented by the product of the corresponding vector elements:

xi1i2...iN = a(1)
i1

a(2)
i2

...a(N )
iN

, for all1 ≤ in ≤ In . (3.2)

Figure 3.2 shows the construction of a rank-one tensor. Note that the CPD method
assumes that a tensor can be approximated by the sum of rank-one tensors, which we
will go into details later.
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Figure 3.2: A rank-one model of a third-order tensor, X = a ◦b ◦ c., The (i , j ,k)th entry of X is calculated by
xi j k = ai ·b j · ck . [11]

3.1.2. MATHEMATICAL FOUNDATION
Tensor decomposition is a powerful technique to reduce computational complexity by
finding lower-rank representations for tensors. Before we delve into decomposition ap-
proaches, let us review some matrix operations. Firstly, we introduce the unfolding tech-
nique that transforms a tensor into matrices. Then we give some common matrix prod-
ucts in the tensor calculation, including Kronecker product (⊗), Khatri-Rao product (⊙),
and Hadamard product (⊛) [29], as well as the Frobenius norm, which is used to evalu-
ate errors.

Unfolding
Unfolding a tensor is rearranging its slices into a matrix from different directions, also
known as flattening. Compared to higher-order tensor calculations, matrix computa-
tions are much less abstract. Indeed, operations between tensors can be reformulated
as matrix computations between unfolded matrices. There are various ways to flatten
a tensor, but an essential type that is the most relevant to our discussion is the mode-k
unfolding.

Given a tensor X ∈ RI1×I2×...×IN , I1, I2, · · · , IN ∈ I , a mode-k unfolding is defined by
an Ik ×(I /Ik ) matrix whose columns are the mode-k fibers [29]. To illustrate the concept
clearer, we give an example of unfolding a third-order tensor X ∈ R4×3×2. Then the 3
mode-k unfolded matrices are constructed as

X(1) =


x111 x121 x131 x112 x122 x132

x211 x221 x231 x212 x222 x232

x311 x321 x331 x312 x322 x332

x411 x421 x431 x412 x422 x432

 (3.3)

X(2) =
x111 x211 x311 x411 x112 x212 x312 x412

x121 x221 x321 x421 x122 x222 x322 x422

x131 x231 x331 x431 x132 x232 x332 x432

 (3.4)

X(3) =
[

x111 x211 x311 x411 x121 x221 x321 x421 x131 x231 x331 x431

x112 x212 x312 x412 x122 x222 x322 x422 x132 x232 x332 x432

]
(3.5)
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X(1) is reshaped in a way that permutes the three slices of size (4×2) matrices side-by-
side. X(1) connects four (3×2) matrices and X(3) is the reorganization of four (2×3) slices.
Though there are such rules for unfolding, it does not have a strong physical meaning,
for it is just used to simplify the computation process.

Kronecker Product
Kronecker product is widely used in tensor calculation since it provides a bridge to con-
nect matrix computations and tensor computations. For matrices A ∈ RI×J ,B ∈ RK×L ,
the Kronecker product denoted by A⊗B ∈R(I K )×(JL) gives a matrix as follows:

A⊗B =


a11B a12B · · · a1J B
a21B a22B · · · a2J B

.
...

...
. . .

...
aI 1B aI 2B · · · aI J B

 (3.6)

Note that A⊗B ̸= B ⊗ A, and (A⊗B)T = AT ⊗B T .

Khatri-Rao Product
Khatri-Rao and Hadamard products are actually submatrices of Kronecker products. An
important instance of the Khatri-Rao product is based on column partitionings [29] and
it requires input matrices to have the same number of columns. This operation is just
compatible with tensor decomposition, and thus, this product is very practical in imple-
mentation. Given A ∈RI×K ,B ∈RJ×K , the Khatri-Rao product A⊙B is defined by:

A⊙B = [a1 ⊗b1, a2 ⊗b2, · · · , aK ⊗bK ] (3.7)

Hadamard Product
The Hadamard product is a pointwise (elementwise) product, and thus, matrices A and
B need to be of the same size. For A,B ∈ RI×J , the Hadamard product denoted by A⊛B
∈RI×J gives:

A⊛B =


a11b11 a12b12 · · · a1J b1J

a21b21 a22b22 · · · a2J b2J

.
...

...
. . .

...
aI 1bI 1 aI 2bI 2 · · · aI J bI J

 (3.8)

Frobenius norm
Given a tensor X ∈ RI1×I2×...×IN , its F-norm is defined as the square root of the sum of
the squares of all its elements:

∥X ∥F =<X ,X >=
√√√√ I1∑

i1=1

I2∑
i2=1

· · ·
IN∑

iN=1
x2

i1i2···iN
. (3.9)

Actually, many optimization problems for tensor decomposition often involve mini-
mizing the sum of squares of the residual tensor elements, and the objective function is
often written in the form of the square of the F-norm.
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3.2. CANONICAL POLYADIC DECOMPOSITION(CPD)
Tensor models have overcome the limitation of matrix models for expressing high-dimensional
data and have become an efficient tool in data analysis. Tensor decomposition tech-
niques, which have also been well adopted in data mining, signal processing, and statis-
tics [16], are proven to have more flexibility in finding the proper constraints that match
with data properties and representative components in the data than matrix-based meth-
ods. And an effective application of tensor decomposition is dimension reduction.

In this section, we introduce Canonical Polyadic Decomposition (CPD), also known
as Parallel Factor Analysis (PARAFAC) [30] in multilinear algebra, which has been applied
successfully for modeling large-scale multi-dimensional and multi-relational data [31],
[32].

3.2.1. CPD INTRODUCTION

Definition 3.3 A Polyadic Decomposition represents an Nth-order tensor X ∈ I1×I2×···×IN

as a linear combination of rank-1 tensors in the form

X ≈ �A(1),A(2), · · · ,A(N )�R ≡
R∑

r=1
a(1)

r ◦a(2)
r ◦ ...◦a(N )

r . (3.10)

where A(n) is a factor matrix, a(n)
r is the r -th column of corresponding A(n), R is the tensor

rank, which is a positive integer defined as the smallest value when the equation holds
exactly. The minimum rank PD is called canonical PD (CPD) [16].

Remark 3.1 It is also noteworthy that the product of ABT , where A,B ∈RK×R is the same
as the R sum of rank-1 tensors of A,B. i.e

ABT =


a11 a12 · · · a1R

a21 a22 · · · a2R
...

...
. . .

...
aK 1 aK 2 · · · aK R

 ·


b11 b21 · · · bK 1

b12 b22 · · · bK 2
...

...
. . .

...
b1R b2R · · · bK R



=


a1

a2
...

aK

 · [bT
1 bT

2 · · · bT
K

]

=a(1) ◦b(1) +a(2) ◦b(2) +·· ·+a(R) ◦b(R)

where ai ,bi , i = 1,2,3, ...,K , denote the rows of A and B, ‘·’ is the dot product. a(i ) ◦b(i )

denotes the outer product of each column of A and B, an outer product is a rank-1 tensor,
and the sum of R rank-1 tensors forms up a tensor ABT .

Remark 3.2 As we can see from the definition, CPD can capture the low-dimension
patterns of multi-dimensional data, as R is generally smaller than the number of full
columns of each factor matrix An . Indeed, the lower-rank CPD model is widely applied
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to break the dimensionality curse. Another advantage of CPD is that under some mild
conditions on factor matrices, the CPD is unique and can be found algebraically[27].

Remark 3.3 The tensor rank is a different concept from the matrix rank, as the former is
the number of the rank-one tensors for the sum in the decomposition algorithms.

3.2.2. ALTERNATING LEAST SQUARE ALGORITHM (ALS)
Now we need to solve these factor matrices given a tensor, by evaluating the least square
error between the product of An and tensor X , i.e. the F-norm:

min
{An }N

n=1

||X −�A(1),A(2), · · · ,A(N )�R ||2F (3.11)

This optimization problem seems sophisticated since there are more than one matrix
involved in the optimization objective. Hence, we will introduce an algorithm called
Alternating Least Square (ALS) that transforms it into a linear problem.

To illustrate how ALS works, hereby we provide a 3D example. Considering a decom-
position problem for the prototype tensor X and its factor matrices A,B and C, whereby
ar ,br ,and cr are the r -th column, respectively:

min
{An }N

n=1

||X −
R∑

r=1
ar ◦br ◦cr ||2F (3.12)

Now we can combine the technique of tensor unfolding and Khatri-Rao product to
build up a neat connection between tensor modes and factor matrices [29]:

X(1) = A · (C⊙B)T

X(2) = B · (C⊙A)T

X(3) = C · (B⊙A)T

Note that minimizing the F-norm of the above three equations above is equivalent to
Eq (3.12). Hence, we can consider

min
A,B,C

||X(1) −A · (C⊙B)T ||2F (3.13)

This is actually a trilinear problem, for A,B and C are all unknown. However, if fixing
B and C, Eq (3.13) is linear w.r.t. A. So it becomes possible to update each factor matrix
one by one until the stopping criterion is satisfied, i.e.

A ← arg min
A

||X(1) −A · (C⊙B)T ||2F

B ← arg min
B

||X(2) −B · (C⊙A)T ||2F

C ← arg min
C

||X(3) −C · (B⊙A)T ||2F
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The above calculation process is the well-known ALS algorithm, turning a multilin-
ear problem into highly structured least square problems., and it is a popular algorithm
for solving factor matrices for lower-rank CPD models. It’s interesting to see that ALS is
actually very easy to implement but can help a lot with thinking in ‘multi-dimension.’

3.3. GCPD WITH A 2D TOY EXAMPLE

In this section, we introduce a generalized form of CPD involving the Fourier-cosine
series expansion, which is called GCPD in [6]. The method proposed by [6] only requires
the prototype to be a multivariate function that has compact support and continuous
derivatives, which can be well approximated by multidimensional Fourier series. Such
generalization gives a strategy to decompose the Fourier series expansion of a function,
which also endows the decomposition with more flexibility and the possibility to solve
the decomposition via machine learning methods.

To illustrate the idea of GCPD, we implement an example of approximating two-
dimensional Gaussian probability density functions in this section. The main process is
to approximate the 2D Gaussian pdf by Fourier-cosine series expansion, whereby the se-
ries coefficients tensor is firstly computed by Clenshaw-Curtis quadrature rule [3], then
is decomposed into lower-rank factor matrices via CPD.

3.3.1. GAUSSIAN 2D PDF

First of all, let us have a brief review of the Gaussian pdf, Fourier series, as well as its co-
sine expansion. Notably, the Gaussian pdf has a superior property that its integration is
always one regardless of the number of dimensions, which can be used to directly check
the accuracy level of the numerical integration.

Definition 3.4 The probability density function of a two-dimensional Gaussian distri-
bution is given by:

fX (x1, x2) =
(
2πσ1σ2

√
1−ρ2

)−1

exp

[
− 1

2(1−ρ2)
(

(x −µ1)2

σ2
1

− 2ρ(x −µ1)(y −µ2)

σ1σ2
+ (y −µ2

2)

σ2
2

)

]
(3.14)

fX (x1, x2) can also be denoted by X ∼ N (µ,Σ), where µ= (µ1,µ2) is the mean vector,

Σ =
[

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]
is the covariance matrix, σ1 and σ2 are the standard deviation,

and ρ is the correlation coefficient.

3.3.2. 2D FOURIER SERIES

Since the Gaussian pdf decays to zero values when the variables move away from the
mean values in each dimension, we can truncate the pdf function such that it is defined
on a finite support. Let us denote the truncation domain as D = {x1 ∈ [−l , l ], x2 ∈ [−h,h]},
then the Fourier series of the truncated pdf can be written as:
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f (x1, x2) =
∞∑

m,n=0
λmn[Amn cos

πmx1

l
cos

πnx2

h
+Bmn sin

πmx1

l
cos

πnx2

h

+Cmn cos
πmx1

l
sin

πnx2

h
+Dmn sin

πmx1

l
sin

πnx2

h
].

. (3.15)

And we need to introduce the series truncation error here since we do not compute
the infinite sum of the series terms. Instead, we truncate the series by the first K terms
in each dimension without losing significant accuracy.

f (x1, x2) ≈
K∑

m,n=0
λmn[Amn cos

πmx1

l
cos

πnx2

h
+Bmn sin

πmx1

l
cos

πnx2

h

+Cmn cos
πmx1

l
sin

πnx2

h
+Dmn sin

πmx1

l
sin

πnx2

h
]

(3.16)

λmn =


1
4 m = n = 0
1
2 m > 0,n = 0,or m = 0,n > 0

1. m > 0,n > 0

the coefficients are double integrals of f and basis functions:

Amn = 1

lh

∫ l

−l

∫ h

−h
f (x1, x2)cos

πmx1

l
cos

πnx2

h
d x1d x2

Bmn = 1

l h

∫ l

−l

∫ h

−h
f (x1, x2)sin

πmx1

l
cos

πnx2

h
d x1d x2

Cmn = 1

lh

∫ l

−l

∫ h

−h
f (x1, x2)cos

πmx1

l
sin

πnx2

h
d x1d x2

Dmn = 1

lh

∫ l

−l

∫ h

−h
f (x1, x2)sin

πmx1

l
sin

πnx2

h
d x1d x2

In this section, we solve these integrals simply by an advanced numerical integra-
tion method, Clenshaw–Curtis quadrature rule [3], based on expanding the integrands
regarding Chebyshev polynomials. As mentioned in the Introduction, the advantage of
such advanced quadrature rules is that we do not need many points to ensure approxi-
mation accuracy.

However, the expansion above seems verbose and troublesome, and actually, it can
be simplified by Fourier series expansion of the even extension f (·), also known as Fourier-
cosine series expansion, i.e.

f (x1, x2) =∑′K
m,n=0[Amn cos

πm(x1 + l )

2l
cos

πn(x2 +h)

2h
] (3.17)

And the computation formula for coefficients changes accordingly, i.e.

Amn = 1

lh

∫ l

−l

∫ h

−h
f (x1, x2)cos

πm(x1 + l )

2l
cos

πn(x2 +h)

2h
d x1d x2 (3.18)
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Compared with Eq (3.16), this cosine expansion saves quite some computations. The
prime here has the same effect as λmn , i.e., denoting the first term of the summation for
m and n has a weight of 1/2.

We show the efficiency of Fourier-cosine series expansions in Figure 3.3. The right-
hand side picture is the reconstruction of the function while the K 2 elements of the co-
efficient matrix are computed by the Clenshaw-Curtis quadrature rule. And for multi-
dimensional functions, the number of Fourier coefficients grows exponentially. Hence
the crucial task is to find a lower-rank representation of the Fourier coefficients in high-
dimensional situations so that the computational cost can be reduced. We will look into
such solutions based on CPD in the following chapters.

Figure 3.3: A Gaussian probability density function in 2D and a approximated one based on Fourier se-
ries with truncation number K = 80, Clenshaw-Curtis quadrature points T = 200, leading to L∞ error
=5.2138004297695477e-11.

3.3.3. IMPLEMENTATION OF CPD AND SENSITIVITY ANALYSIS

This section gives a 2D example of how to decompose a matrix filled with Fourier-cosine
series coefficients via CPD.

Starting from the training dataset, given a 2D Gaussian distribution N
(
x1, x2;µ,Σ

)
,

the sample points are drawn uniformly on a 2D plane by constructing equidistant mesh
points, and the target function values are obtained by matching the values on the sample
points with a given probability density function.

Then the coefficient matrix, also known as the 2D ‘tensor’, can be calculated by Eq(3.18).
With this ‘tensor prototype’, we can obtain the lower-rank factor matrices A1 and A2 via
the ALS algorithm. And here we choose the Conjugate Gradient method to solve the least
square problem.

The whole process is described as Algorithm1 below. Since we need to populate the
coefficient tensor explicitly in this algorithm, it is named Fourier Series Approximation
with Explicit Tensor (FSA-ET).
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Algorithm 1 FSA-ET

Input: X ,y,R,K

Initialize
{

An ∈RK×R
}N

n=1
repeat

for n=1 to N do
Solve for each An by Conjugate Gradient method
Update An by ALS as stated in section 3.2.2

end for
until stopping criteria is satisfied
return An

N
n=1

In this experiment, we define the integration truncation range by the percent point
function (PPF), which can also be explained as the inverse of cdf (cumulative distribution
function) percentiles: a lower input for PPF results in a broader truncation range.

Next, we conduct convergence analysis w.r.t. the number of cosine terms K , and
quadrature points T used for Clenshaw-Curtis, which helps in determining a proper
value of each parameter. To clearly observe the error behavior, we need to suppress the
error from K (or T ) as small as possible while testing T (or K ). The error convergence
w.r.t. K is plotted in Figure 3.4.

Figure 3.4: L∞ error among the increasing truncation terms, where the Fourier coefficients are computed by
the Clenshaw-Curtis quadrature rule with 200 quadrature points, which is very adequate for the integration.
And when K is 25 the cutoff error reaches 10−10, which is consistent with the integration truncation range
since it is chosen as ppf(10−10).

An exponential error convergence rate is observed, since the y-axis is in log-scale,
which is consistent with the convergence theory of Fourier series expansion on suffi-
ciently smooth functions. The elbow point at K equals 25 means 25 Fourier-cosine ex-
pansion terms are enough to recover our target function in this example.
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Another error source depends on the number of quadrature points T when estimat-
ing the integration for each Fourier coefficient. Note that there is a much faster way to
calculate the Fourier-cosine coefficients for density functions, i.e. the COS method [33],
as we will emphasize in Chapter 6. However, we keep this generic method of solving the
coefficients using a quadrature rule here, since the solution we develop here is designed
for more general integrand functions than the density functions. Figure 3.5 shows that,
when fixing K at 50 to suppress the series truncation error, we obtain the error conver-
gence w.r.t. T :

Figure 3.5: L∞ errors of the increasing quadrature points for integration, where K =50, which is supported by
the conclusion from Figure 3.4. Again the error converges to 10−10.

Note that here the L-infinity error comes from comparing the exact function val-
ues and approximated function values recovered by Fourier-cosine series expansion,
whereby the coefficients are computed numerically using the Clenshaw-Curtis quadra-
ture rule.

The testing results above indicate that setting the parameters (K ,T ) as (50, 100) is
conservative enough to accurately recover the Gaussian density function from its Fourier-
cosine series expansion using numerically computed coefficients K2D .

Now we are ready to apply CPD having the key X2D in our hands. In other words, we
aim to find the lower-rank factor matrices A1 and A2, which can minimize the objective
function as below.

f = 1

2
||X2D −A1AT

2 ||2F . (3.19)

Calculate for the partial derivative w.r.t. A1 and set it to 0, we have

∂ f

∂A1
= (X2D −A1AT

2 )A2 (3.20)

A1AT
2 A2 =X2D A2. (3.21)
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Then we can solve for factor matrix A1 in Eq (3.22) via CG method, with A2 fixed.
Then repeat the same solving process for A2 in the next round. A1 and A2 are updated
alternatively until the reconstructed tensor is close enough to the original tensor.

Note that when A1 and A2 are of full rank, i.e. A1,A2 ∈ RK×K , there is no error intro-
duced in the CPD, and thus, the reconstruction error is dominated by the integration
truncation error because we have chosen very conservative choices of K and T . Next,
we gradually reduce the rank R so that A1 and A2 ∈RK×R , where R ≤ K , aiming at finding
the smallest R which ensures a sufficiently high level of accuracy. As Figure 3.6 suggests,
we obtain A1 and A2 with rank of 15 instead of 50.

Meanwhile, the algorithm suggests that the computational complexity is O(2K R),
i.e. it is linear in R, which is confirmed by our experiment results in Figure 3.7. This
reduction in computational costs is more prominent in higher dimensions, whereby
the Fourier-cosine coefficients can be computed with complexity O(N K R), instead of
O(K N ).

Figure 3.6: The error while lowering the rank of factor matrices. R less than 10 diverges

Figure 3.7: Time spend on reconstructing function values with coefficient tensor made of factor matrices,
which is generally consistent with the computational complexity regarding to the change of R.
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However, the downside of this approach is that we still need to generate the Fourier
coefficient tensor explicitly first, which requires K N times of integrations by the Clenshaw-
Curtis quadrature rule and is unbearable when N is big. Hence we would like to find the
lower-rank factor matrices directly without the need to populate the coefficient tensor
in the next chapters.





4
AN EXISTING METHOD: HIDDEN

TENSOR FACTORIZATION AND

MACHINE LEARNING

4.1. HIDDEN TENSOR FACTORIZATION
Recall that at the end of the last chapter, we provided a toy example of implementing
CPD, which is not effective to reduce the computational complexity, since the popula-
tion of the coefficient tensor still suffers from the curse of dimension. To solve this prob-
lem, the authors of [6] propose to minimize the distance between the function values
approximated by truncated Fourier-cosine series expansion, of which the Fourier coef-
ficient tensor is replaced by its representation using the lower-rank factor matrices, and
exact function values. Since this approach bypasses the population of the explicit coeffi-
cient tensor, it is named ‘Hidden Tensor Factorization’ (HTF). Furthermore, they utilize
a supervised machine learning method, Stochastic Gradient Descent (SGD), to solve the
lower-rank matrices.

4.1.1. REPLICATION OF THE EXISTING MODEL
Our work starts with reproducing the model of [6]. The authors aim to find optimized
lower-rank factor matrices that can help recover function values the best. The objective
function can be formulated as:

1

M

M∑
m=1

L(ym − f (xm))+G( f ). (4.1)

Here L(·) denotes the loss function, ym is the exact function value at xm , and f (xm) is an
approximated function value based on the Fourier-cosine series expansion, m denotes
the index of sampling points, and M is the total number of sampling points. G(·) is a
regularization function, which is used to prevent overfitting.

23
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Next, we we write out f (xm) explicitly. Let the cosine basis functions for n-th dimen-
sion evaluated at all M sample points be collected in matrix Vn ∈ RK×M as Vn[k,m] =
φk (xm[n]), whereby K is again the number of leading terms in the series expansion,φk (·)
is the k-th cosine basis function. That is, there are M columns in a Vn , each representing
a K -length vector of cosine basis functions evaluated at xm . Let Ai be the factor matrix
defined by CPD.

We choose the MSE as the loss function and rewrite the optimization problem as:

min
{An }N

n=1

1

M
∥y− (⊙N

n=1Vn)T (⊙N
i=1Ai )1∥2

2 +
N∑

n=1
ρ∥An∥2

F (4.2)

where ⊙ denotes the Khatri-Rao product, and ρ is a regularization parameter. In fact,
the regularization term is not involved in our application of integration, since the coeffi-
cients are used to solve the integration problem of the corresponding specific function,
and thus the loss function does not need to be regularized over datasets and find the
generally best fit.

Eq (4.2) combines the cosine basis functions Vn and factor matrices An exquisitely
and briefly just by product operations, which can be seen as a representative example
that there are many flexible and versatile uses of matrix products in tensor applications.

Note that the coefficient tensor reorganized by HTF is different from the one com-
puted by the Clenshaw-Curtis quadrature rule, for the first terms of Fourier coefficients
generated in HTF have already been scaled because they are fitted from the function
value matching, while in the last chapter we still need to halve the first column/row of
the coefficient tensor. The computation details of how the Khatri-Rao product connects
the cosine basis functions and coefficient factor matrices can be found in the appendix.

And if we compute the function value pointwisely, we can also avoid the Khatri-Rao
product by writing it in scalar form [6]:

min
{An }N

n=1

1

M

M∑
m=1

(
ym − (

⊛N
n=1

(
Vn[:,m]T An

))
1
)2

(4.3)

where ⊛ denotes the Hadamard product. This scalar formula is helpful when imple-
menting SGD. And we can also apply ALS to compute A1 and A2 respectively, which is
[6]:

min
An

1

M

M∑
m=1

(
ym −Vn[:,m]T An Qn[:,m]

)2
(4.4)

where Qn = (
⊛i ̸=n

(
AT

i Vi
)) ∈ RR×M . This notation shows that the item needs to be up-

dated each time is only An , for other Ai ̸=n are locked in Qn temporarily. Now we are pre-
pared to use the supervised machine learning method, SGD, to solve this optimization
problem and investigate its performance.

4.2. MACHINE LEARNING APPROACH
In this section, we first use SGD to solve the optimization problem, i.e. Eq (4.4), and test
the algorithm’s convergence and parameter settings via experiments. Then we transform
the original problem, which is function fitting, into our application need: integration. At
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the end of the section, we give some performance analysis of SGD and decide to improve
the algorithm.

4.2.1. SOLVING LOSS FUNCTION WITH SGD
We begin by introducing the Gradient Descent (GD) method, a useful tool for solving
convex linear equations. It is an iterative method, which updates the approximations by
going a specific step toward the negative gradient:

xk+1 = xk −αk∇
(

M∑
i=1

fm(xk )

)
(4.5)

And when the number of sampling points (M) is vast, we prefer using Stochastic Gradi-
ent Descent (SGD) to save computational cost. The difference is that GD updates all the
approximations at one time, while SGD only updates one randomly chosen point so that
it is capable of reducing the computational complexity while still utilizing the gradient
information. Here we take an intermediate strategy that samples a batch of training data
points stochastically each time and updates them toward gradient descent direction si-
multaneously with a prescribed step size α, i.e.

An ← An −αGn (4.6)

where Gn is the gradient w.r.t An :

Gn = 1

|F |
∑

m∈F

(
Vn[:,m]T An Qn[:,m]

)
Vn[:,m]QT

n [:,m]

− 1

|F |
M∑

m=1
ym V[:,m]QT [:,m].

(4.7)

F is a batch with size |F | and m is the index of points in F . So the computational
complexity has been reduced to O(K R|F |) for each iteration.

Notably, SGD does not guarantee that each step goes toward the minimum since it
updates a batch of randomly sampled points each time, so there are probably fluctua-
tions in errors during the iteration process. And the choice of step size is also important
because a wide step can cause the solver to miss the minimum and the error thus can
bounce to infinity.

In this subsection, we implement two methods computing An with SGD in 2D: Algorithm 2
and Algorithm 3, with the latter being a modification of the former.



4

264. AN EXISTING METHOD: HIDDEN TENSOR FACTORIZATION AND MACHINE LEARNING

Algorithm 2 FSA-HTF (SGD)

Input: X,y,R,K , |F |
Initialize

{
An ∈RK×R

}N
n=1

repeat
Sample |F | data points
for n=1 to N do

Update An via Eq(4.7)
Update Qn via Eq(4.8)

end for
Compute MSE using X,y

until maxiter is reached or MSE is not imporoved
Return An

Figure 4.1: Gradient descent process when he number of cosine terms K = 40, step size α= 0.01

Algorithm 2 is based on a fixed number of K . Taking K = 40 as an example, we exam-
ined how the gradients w.r.t. A1 and A2 decrease in the SGD method.

Figure 4.1 shows the descent is not a smooth curve since each step is taken randomly,
and the direction can be back and forth but goes down as the number of iterations in-
creases. However, when K is fixed during the whole training, it’s not efficient to update
the gradient since we begin from a large coefficient matrix, and we have to implement
a relatively small step size to ensure the initial guess does not cause divergence. More-
over, A1 and A2 have different convergence rates, while simultaneous descent for both
variables is expected.

Hence, we modify our implementation by starting with a small K , then increasing K
with a certain integer b after enough iterations each time, and ending when K reaches
the prescribed maximum value. This modification is described in Algorithm 3.
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Algorithm 3 FSA-HTF (SGD-modified K)

Input: X,y,R,K0,b,K , |F |
Initialize

{
An ∈RK0×R

}N
n=1

repeat
Sample |F | data points
for n=1 to N do

Update An via Eq(4.7).
Update Qn via Eq(4.8).

end for
Compute MSE using X,y
if K0 < K and MSE has not improved, then

for n=1 to N do

An ←
[

An

0T

]
end for
K0 = K0 +b

end if
until maxiter is reached or MSE is not imporoved
Return An

Figure 4.2: Gradient descent process with increasing K, step size = 0.025

In this way, the gradient drops synchronously in Figure 4.2, and we can have a rela-
tively larger step size since we start from a smaller initial matrix.

Indeed, a reasonably larger step size is beneficial to speed up the descent process.
However, it can’t be arbitrarily large, for the landing point may jump over the minimum
and end up with an infinitely large error. To study this sensitivity, we test the descent
speed with various step sizes. The plot on the left shows the gradient can be incredibly
large if an overly wide step size is chosen. And it also does not mean that we need to set
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the length of steps as small as possible for guaranteed convergence, since a too-small
step size decelerates converge speed obviously, as shown in Figure 4.3 (b).

(a) Exploded gradient with a large step size (b) Gradient curves with different step sizes

Figure 4.3: Various step sizes show different descent speeds

Now we have a basic idea of how to make SGD work with appropriate parameters.
Next, we explain how it can be applied to compute the integration.

4.2.2. APPLY SGD TO INTEGRATION AND RESULTS ACHIEVED
Recall that we approximate the integrand by its Fourier-cosine series expansion, and
integrate this expansion on a truncated domain, then the Fourier coefficients and cosine
series are finite and thus can be exchanged by Fubini’s Theorem [34]:

∫ b1

a1

∫ b2

a2

∑′K
k1,k2=0Ak1k2 cosk1x1 cosk2x2d x1d x2

Fubi ni= ∑′K
k1,k2=0Ak1k2

∫ b1

a1

∫ b2

a2

cosk1x1 cosk2x2d x1d x2

= 1

4
(b2 −a2)(b1 −a1)A00

= (b2 −a2)(b1 −a1)A′
00

(4.8)

Note that A00 denotes the coefficient computed in the traditional way, while A′
00 is

gained by the machine learning method so it is already scaled as we have explained be-
fore. Eq (4.8) proves the integration can be transferred to the computation of Fourier-
cosine coefficients. Moreover, it is interesting to see there is a great simplification in this
application: although all the coefficients are involved in training, only A00 is used for the
integration need. Mathematically, this seems a detour, as A00 by definition corresponds
to the integral we aim to solve. However, linking an integral to the coefficient of the first
term in the Fourier-cosine series expansion of the integrand is the key to utilize machine
learning methods to solve the integral.
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Hence, we are already at the destination after we solve the Fourier-cosine coeffi-
cients by SGD, and this desirable connection between numerical integration and ma-
chine learning is made via Fourier-cosine series expansion and CPD. Now, we can look
into the results of SGD. Firstly we will look at the convergence speed of the algorithm.

Usually, machine learning algorithms are used to learn an unknown mapping from
the given data, then it’s better to have as much information from the training and vali-
dation as possible with acceptable time consumption. And we followed the convention
of machine learning in previous experiments, with relatively large datasets, which corre-
sponds to a lengthy training process. However, we can not just let the machine run for a
longer time and ignore the possible optimization of time consumption.

Note that we already know the probability density function of the Gaussian distribu-
tion, and what we need to solve is the coefficient matrix of size K ×R, which contains
K R unknown elements. Based on the number of unknowns, we design experiments to
figure out whether the training cost can be reduced.

To suppress the error from Fourier series truncation, we choose K = 55 following the
conclusion from Chapter 3. And because of the stochastic nature of the algorithm, we
repeat the test 10 times and record the average of the 10 measurements.

The test results in Table 4.1 show the decrease of sampling points does not increase
the function error, while the computational time is indeed reduced. Notice that the inte-
gration error change is not regular, which may be caused by the function not being fitted
accurately enough, because such irregularity disappears when we use a better optimizer
in the next chapter. The reason for taking K 2 into account is that the unknown coeffi-
cients are in the form of a matrix with size K ×K when R = K, so we just draw K 2 samples
in the integration truncation domain.

K = 55, R = 55 iteration = 1000
T 2 function error integration error CPU time(sec)

2002 0.0016875335 0.009405922 425.73384984
1502 0.0016985815 0.004916333 235.49313409
1002 0.0016884715 0.007633706 106.11341623
K 2 0.0016958506 0.005084954 40.97256137

Table 4.1: The number of grid points in each dimension is T , with total iteration times = 1000.
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Based on the number of sampled points being K 2, which does not introduce the
lower-rank error yet, we decrease the number of iterations monotonically in order to
abandon unnecessary iterations.

K = 55, R = 55 T 2 = K 2

iteration function error integration error CPU time(sec)
1000 0.0016958506 0.005084954 40.97256137
800 0.00169183901 0.007014089 34.64054515
600 0.0017084173 0.004420803 26.75869117
400 0.0019311009 0.015517829 16.5032237

Table 4.2: The iteration numbers vary when the number of grid points in each dimension is T = K = 55.

Compared with 1000 iterations, the function error does not increase significantly
when iterating 600 times in Table 4.2, while the calculation time is nearly halved. There
is always a subtle trade-off between accuracy and time consumption. Since the sacrifice
on error is still acceptable, we choose K 2 samplings and 600 iterations as the baseline for
the following experiments.

Considering that we adjust the algorithm to draw a batch of points stochastically
each time, of which the size is |F |, we can also test the effect of various batch sizes.

K = 55, R = 55 iteration = 600
|F | function error integration error CPU time(sec)
50 0.0017084173 0.004420803 26.75869117
40 0.0017327550 0.007414279 23.32856766
30 0.0017623425 0.007873943 22.27834607
20 0.0018239328 0.007128875 20.6408789
15 0.0285444075 0.425194181 20.06425794
10 0.0203284150 0.430241075 19.11257073

Table 4.3: Implementation results with 55×55 samplings and 600 iterations for each F .

As seen from Table 4.3, the computational time decreases as |F | reduces, without in-
fluencing the function error. However, the convergence collapses when |F | is too small
(less than 20). The following plots visualize the function error drawn from the table. To
this end, it is better to choose |F | around 20 to 30.
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(a) sample 55×55 points, batch size = 50 (b) sample 55×55 points,batch size = 40

(c) sample 55×55 points, batch size = 30 (d) sample 55×55 points, batch size = 20

(e) sample 55×55 points, batch size = 15 (f) sample 55×55 points, batch size = 10

Figure 4.4: L2 function error when |F | decreases.
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We continue with the lower-rank test, based on the experimental results that reduc-
ing training data size to K ×K does not lose the accuracy. We fix the values of other
parameters than the tensor rank according to the tests before and vary the tensor rank
value. We can fix |F | = 30 with 600 iterations considering the outcomes from Table 4.2
and Table 4.3.

Sampling strategy: K ×K K = 55, |F | = 30 iteration = 600
R function error integration error CPU time(sec)

R = K= 55 0.001755357 0.005539071 23.58637767
45 0.001786917 0.005718527 27.01278413
40 0.001952586 0.009259844 29.25595766
35 0.002818757 0.010615879 29.69673709
30 0.003348965 0.015767389 30.40672392
25 0.0066356291 0.0404400067 29.79918631
20 0.011169203 0.035130067 29.80676714
15 0.036395637 0.224068644 26.81936796
10 0.070233826 0.210576595 25.03277316

Table 4.4: Implementation of reduced rank with 55×55 samplings and 600 iterations for |F |= 30.

The decrease of R indicates a loss of information from the real coefficient tensor. The
decreasing trend of accuracy is also consistent with the results we have in the toy exam-
ple. However, the best rank for tensor decomposition is an NP-hard problem [35], which
means there is no algorithm for determining the best tensor rank. Hence in practice, the
rank can be estimated by fitting different numbers of rank-1 tensors by the CPD model.

Lastly, since now Fourier-coefficient matrix with lower rank is of size K ×R, we can
test another time for only sampling K ×R points.

Sampling strategy: K ×R, K = 55, |F | = 30 iteration = 600
R function error integration error CPU time(sec)

R = K= 55 0.001755357 0.005539071 23.58637767
45 0.001799183 0.010366755 21.14877568
40 0.001855471 0.012386979 20.49000502
35 0.002761207 0.018168613 18.86270292
30 0.003582007 0.022662432 18.32986945
25 0.006448219 0.040881785 17.31500931
20 0.013507681 0.09761292 15.82239724
15 0.048813471 0.619796172 12.96152817
10 0.071886444 0.60369236 11.59706865

Table 4.5: Implementation results with 55×R samplings and 1000 iterations for |F | = 30.

Compared with Table 4.4, the new sampling strategy in Table 4.5 indeed reduces the
time cost without losing the corresponding function accuracy but the integration error
increases compared to the same rank level in Table 4.4.
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From all these tables, we can see the function match accuracy given by SGD is at
most 10−3, which is undesirable, and we can also see that the integration accuracy is
unstable and irregular, which is caused by the SGD solver. This will become clear in the
next chapter.

It’s meaningful that we make attempts in speeding up the algorithm, which helps us
to understand it better. However, we also know that it is not the best solution in essence.
Figure 4.5 visualizes the results achieved by SGD, which indicates that the SGD solution
does not fit the prototype function very well. This inaccuracy can influence the lower-
rank analysis greatly since the error in estimating the lower-rank tensors is still domi-
nant. Hence, in the next section, we delve into the SGD algorithm itself to have more
insights.

Figure 4.5: Comparison between exact function values and approximated function values obtained by CPD-
SGD algorithm.

4.2.3. INSIGHTS INTO SGD
Although SGD is quite popular for solving optimization problems in machine learning,
especially for multivariate functions, it still has apparent deficiencies. Recall that SGD is
derived from the Gradient Descent method. Let us see why it is effective under proper
circumstances.

The loss function Eq (4.4) is in the quadratic form, which can be generalized as Eq
(4.9), where An is solved as x:

f (x) = 1

2
xT Ax −bT x + c (4.9)

The minimum of f (x) is also the solution to the linear equation Ax = b if A is symmetric
positive definite (SPD), because f ′(x) = 0 is equivalent with Ax = b, and the SPD property
of A ensures the stationary point is the global minimum. Figure 4.6 shows an example of
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a quadratic function in which A is SPD, and the lowest line of the surface is the solution
of Ax = b.

Figure 4.6: The 3D image of a quadratic function with A symmetric positive definite, the solution is the lowest
part of this convex surface.

However, in practice, A can be more general with irregular shapes, and GD is likely
to be trapped in the local minimum since the gradient is also small there. In fact, SGD
introduces the possibility to escape from the local minimum since the gradient compu-
tation is based on stochastically chosen batches, but still has the limitation of GD itself.

There are two main aspects of SGD: search direction and step size. Hence we would
like to go a step further to know more about both.

Figure 4.7: The search process of Gradient Descent method.

On the one hand, such a negative gradient may not be the optimal search direction
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since it is just a first-order approximation by tangent lines in the local area, which limits
global accuracy and has comparatively poor robustness. For a general quadratic func-
tion, if the condition number κ(ratio of maximum eigenvalue to minimum eigenvalue)
of A is big, then it would lead to unnecessarily tortuous searching steps, as shown in
Figure 4.7.

A better approximation for search direction could be the second order derivative with
the Hessian matrix, which leads to the Newton method or quasi-Newton method. There
are also other methods adapting the search direction [36]. But second-order methods
often face serious problems such as heavy dependence on the initial guess.

On the other hand, a commonly used strategy for choosing the step size for SGD is
fixing a prescribed α. However, it is difficult to pick a good value, not only for each de-
scent step, but also in the initial step since individual steps are not checked for robust-
ness at the time they are taken. Actually many methods of adapting search directions
also have such high sensitivity on the step size, such as the celebrated Adagrad algorithm
[37].

To conclude, the model needs to be modified for a better performance. And based on
the analysis above, we deicide to use the Conjugate Gradient (CG) method to overcome
the problem existing in search directions and step size.





5
OUR 1ST SOLUTION: CPD WITH

CONJUGATE GRADIENT (CG)
METHOD

5.1. A FURTHER STEP: CG SOLVER

We mentioned at the end of the last chapter that there are different ways to improve SGD,
a famous one that is commonly used in Neural Networks is to add momentum to the
gradient. This physics idea helps the descent process escape from the local minimum
or plateau. And the authors of [38] point out that the momentum method is a time-
invariant version of the Conjugate Gradient (CG) method. Although there are lots of
papers analyzing choices for step sizes and momentum, applying the named ‘optimal
parameter’ tuned for the momentum algorithm is just the same as using the CG method.

In this chapter, we replace SGD with CG since the latter uses conjugate search direc-
tions with adaptive step sizes computed by exact line search, which may help us to find
the solution more accurately and faster. The result achieved by CG is indeed promis-
ing, compared to the ‘Gibb’s phenomenon’ in Figure 4.5, Figure 5.1 shows a more precise
fitting. Moreover, it even needs much less time to obtain such good matching.

37
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Figure 5.1: The match results of Conjugate Gradient method.

5.1.1. ANALYSIS ABOUT THE STANDARD CG
Figure 4.7 shows that there are many repetitive search steps in the GD method, which
means the corresponding iterations do not completely eliminate the component of the
error vector in this direction. CG manages to prevent this problem by requiring conju-
gacy among search directions.

Conjugate direction
We first introduce the conjugate direction assuming A is symmetric positive definite,
again for the linear equation

Ax = b (5.1)

using the iterative method, i.e. :

xk+1 = xk +αk ·dk (5.2)

where xk is the current approximation, αk is the next step size, and dk is the next move
direction. Then we can derive the following facts from Eq (5.2) and Eq (5.1):

Error vector: ek = xk −x
Residual vector: rk = b −Axk

And: Aek = rk

If the error vector ek+1 is always orthogonal to the search direction dk , i.e.

d T
k ·ek+1 = 0 (5.3)

which avoids searching in this direction again later, and also provides the solution to the
step size. The step size αk can be computed by substituting Eq (5.3) into Eq (5.2):
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αk = d T
k ek

d T
k dk

(5.4)

However, it is almost impossible to compute αk using Eq (5.4) as the exact solution
x is unknown, thus ek is not determined. Instead, we use ‘A-orthogonal’ to replace ‘or-
thogonal’, which also means conjugate:

d T
k Aek+1 = 0 (5.5)

This is also the definition of conjugate directions: di and d j are conjugate to each
other if d T

i Ad j = 0, i ̸= j . And note that rk+1 = Aek+1, we can rewrite Eq(5.5) as:

d T
k rk+1 = 0 (5.6)

Now we are able to derive the Conjugate Gradient (CG) method. The CG is an ap-
proach to realizing conjugate directions with the help of gradient information.

Recall we have mentioned that for GD method the gradient f ′(x) is exactly the resid-
ual, where f ′(x) = Ax −b. So for CG, starting from an initial condition x0, search the di-
rections that are conjugate to each other with the line search determining the step size,
then the gradient at xk+1, i.e. gk+1, is orthogonal to all the previous search directions
d1,d2,d3, ...,dk−1, which spans the Krylov subspace step by step (The proof can be found
in [29]). That is:

g T
k+1d j = 0, j = 0, ...,k (5.7)

Next, we give the derivation of the search direction and the step size for the CG
method.

Search direction
Following the requirement that all the search directions are conjugate to each other, and
new search direction dk+1 is the linear combination of gk and dk , then dk+1 can also be
expressed in an iterative way:

dk+1 =−gk+1 +βk dk (5.8)

Then the only task left is to determine βk since the first search direction d0 is given
by g0. According to the conjugate direction definition, i.e. d T

k Adk+1 = 0, we can multiply

both sides with d T
k A then we have:

βk = g T
k+1Adk

d T
k Adk

(5.9)

Moreover , since gk+1 − gk = A(xk+1 −xk ) =αk Adk , Eq (5.9) can be rewritten as :

βk = g T
k+1(gk+1 − gk )

d T
k (gk+1 − gk )

(5.10)

We can modify this expression further to ensure there is only gradient information in β.
Transposing Eq (5.8) and multiplying gk+2 on both sides we have:
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d T
k+1gk+2 =−g T

k+1g T
k+2 +βk d T

k gk+2 (5.11)

According to the fact that the new gradient is orthogonal to all the previous search direc-
tions, we have:

d T
k+1gk+2 = d T

k gk+2 = 0 (5.12)

This also means that in the CG method, the gradients obtained from two adjacent searches
are orthogonal to each other. In the end, we have the following expression for search di-
rections, which is also known as Fletcher Reeves formula [39].

βk = g T
k+1gk+1

g T
k gk

(5.13)

Step size
Now we can easily compute the value of step size based on the equations we derived
above. Reuse gk+1−gk = A(xk+1−xk ) =αk Adk , we multiply d T

k to the both sides to have:

αk = d T
k (gk+1 − gk )

d T
k Adk

= g T
k gk

d T
k Adk

(5.14)

It is efficient and convenient to update the approximations using the CG method to
solve linear equations when A is symmetric positive definite, but Eq (5.13) also makes it
possible to apply the CG method in more general practices. Nevertheless, it still needs
some modification to completely fit our problem. Since in our case, the solution is in the
form of matrices ∈RK×R , not the standard vector x ∈Rn .

5.1.2. ADJUST CG TO FIT MATRIX EQUATIONS
The minimization problem Eq (4.4) is in fact not a standard form of a linear equation
Ax = b, whereby the solution x should be an n-length vector, and A ∈ Rn×n . Eq (4.4)
can be seen as a matrix equation and we derive the matrix equation formula for the
CG method by unfolding the matrix into vectors, as we introduced in Chapter 3. This
is indeed a common-used tool in tensor decomposition. For a K ×R factor matrix An ,
define

vec(An) =


An(:,1)
An(:,2)
An(:,3)

...
An(:,R)


K R×1

(5.15)

which is equivalent to stacking all the columns of An vertically in order. Next, recall the
Kronecker Product that we introduced in Chapter 3, denoting the column of matrices A
and B by a and b, there is a helpful property that bT ⊗a = abT . Applying the definition of
vec(·), it follows that vec(abT ) = b⊗a.
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Consider the matrix product Vn[:,m]T An Qn[:,m] in Eq (4.5), where Vn[:,m]T ∈R1×K ,
An ∈RK×R , Qn[:,m] ∈RR×1, and

Vn[:,m]T An Qn[:,m] =
K∑

k=1

R∑
r=1

(Vn[:,m]T )(:,k)An(k,r )Qn[:,m](:,r ). (5.16)

Applying vec(abT ) = b⊗a and the linearity of the vec(·) operator, we have:

vec(Vn[:,m]T An Qn[:,m]) =
K∑

k=1

R∑
r=1

An(k,r )Qn[:,m](:,r )T ⊗ (Vn[:,m]T )(:,k)

= (Qn[:,m]T ⊗Vn[:,m]T )vec(An)

(5.17)

where (Qn[:,m]T ⊗Vn[:,m]T ) is of size (1 ·1×K ·R). In this way, we represent Eq(4.4) in a
more familiar form, which is

min
An

||ym − (Qn[:,m]T ⊗Vn[:,m]T )vec(An)||22 (5.18)

That is, we have generalized the matrix equation to the normal form Ax = b, and
vec(An) is the x ∈RK R that we try to solve, and (Qn[:,m]T ⊗Vn[:,m]T ) is A.

Write the matrix equation in a generalized form as:

f (A,X) = B (5.19)

And now we can give the algorithm of vectorized CG and the modified CPD-CG algo-
rithm:

Algorithm 4 Vectorized CG

Initialize: X0,g0 = vec(B)− f (A,X0),d0 = g0, ϵ> 0
for k=0 to ... do

αk = gT
k gk

dT
k f (A,Dk )

, where Dk recovers dk back to matrix.

xk+1 = xk +αk dk

rk+1 = rk + f (A,Dk )
if ||rk+1||/||vec(B)|| < ϵ then

stop
else

βk = gT
k+1gk+1

gT
k gk

dk+1 =−gk+1 +βk dk

end if
end for

Theoretically, CG is able to converge within at most K R steps if ‘A’ here is positive
definite, for the optimal vec(An)∗ ∈ RK R . However, as it is derived from different m, i.e.,
each sample point has a corresponding ‘A’, it is impossible to ensure every ‘A’ is positive
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Algorithm 5 CPD-CG

Input: X0,y,R,K ,ϵint > 0, integration error = 1
while Integration error > ϵint do

Initialize
{

An ∈RK×R
}N

n=1
for n=1 to N do

Update An and Qn via vectorized CG
if The iteration number reaches K ×R then

stop
end if

end for
Reconstruct the coefficient tensor by An .
Compute the integration by coefficient tensor.
Update the integration error.

end while

definite. Though the standard requirement for the quadratic coefficient matrix may not
be satisfied, our experiments still show that CG finally converges to an ideal minimum.

Note that in the last chapter we choose the number of sampling points for each di-
mension to be the same as K intuitively, and it’s hard to check this sampling strategy ef-
ficiently because the model error is dominant. However, since the CG method provides
much better performance on the accuracy, we are able to explore the sampling strategy
now.

Here we fix K as 30 to suppress the Fourier series truncation error. Next, as the cosine
basis functions are represented discretely by mesh points, also known as training data,
there can be a risk that the solution does not cover the non-training data, i.e. over-fitting.
So we test a range of numbers of sampling points of each dimension, T , to see the fitting
effect for both training data and non-training data.

Figure 5.2: Fitting results for different numbers of the mesh point of each dimension.
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It is obvious that there are 2 different fitting behaviors for training data and non-
training data when T is greater than K and T is smaller than K , while the integration er-
ror is always consistent with the accuracy obtained by training data. As we visualize the
function plots via Figure 5.3 and Figure 5.4, they present that when the sampling num-
ber T is less than K , then it is not sufficient to reconstruct a correct probability density
function, as the computer rather stops early at the pointwise fitting level than looking
for a completely correct curve. So it is necessary to feed the solver with more training
points, at least as many as K . so that a global solution can be found as in Figure 5.4, and
the minimum of T can be determined to be the same as K as shown in Figure 5.2.

Figure 5.3: Pdf reconstructed by Fourier-cosine series expansion when T = 25, K= 30.

Figure 5.4: Pdf reconstructed by Fourier-cosine series expansion when T = 35, K= 30.
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5.1.3. RESULTS ACHIEVED BY CG
For the CG method, there are 2 layers of stopping criteria. The out layer limits the maxi-
mum number of iterations, which is the size of the vectorized solution, K ×R, while the
inner layer is used to stop the iteration when there is little update for each factor ma-
trix, which is also when it converges. For the ALS part, the stopping criterion can be set
as little progress in updating the integration. However, as the integral of the example
function, Gaussian pdf, is exactly one, we can also measure the distance between the
approximated integral and one. So in our tests, ALS stops when the distance is smaller
than the prescribed accuracy, which is 10−8.

Starting from testing CPD-CG for a two-dimensional Gaussian pdf, the number of
points sampled for each dimension of the training dataset is determined by the con-
clusion before, with T = K = 30. And CG stops while the improvement for each factor
matrix is less than 10−10. After all the factor matrices converge, the integral is computed
by the coefficient tensor that is synthesized by these factor matrices, and then it is com-
pared with 1 to check whether the integration accuracy criterion is met. The following
plot shows that under such stopping criteria this algorithm is able to find an accurate
solution for each rank.

Figure 5.5: Function error and Integration error under different ranks.
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Next, we visualize the convergence behavior when the rank of A1 = 1, 5, 10,15. The
standard CG method, which solves linear equation Ax = b, with A being SPD, has a lin-
ear convergence behaviour, or even superlinear convergence. In our application, the
convergence rate can be seen as an approximation of linear convergence or superlinear
convergence.

(a) Convergence rate of rank = 1 (b) Convergence rate of rank = 5

(c) Convergence rate of rank = 10 (d) Convergence rate of rank = 15

Figure 5.6: Convergent behaviours when rank R varies.

The CPD-CG algorithm can not only find the solution every time, but also solve the
integration much faster than the SGD method, especially for very low-rank factor ma-
trices, which only takes around 0.003s. Indeed, CG needs more iteration times as the
number of ranks grows. Hence, the computational time also increases. For 2D Gaussian
pdf, it costs more iterations for the first factor matrix, A1 when the rank is higher, and A2

converges rapidly after A1 is ready. However, both of them never achieve the maximum
iteration number K ×R, which is labeled in the yellow bars in Figure 5.7. The total it-
eration numbers (after all factor matrices are iterated to convergence) for each rank are
presented in Figure 5.8, including the specific CPU time.
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Figure 5.7: Iterations used for updating factor matrices, while the maximum of iteration is determined by K ×R.

Figure 5.8: Total iterations used for each rank and the corresponding time consumed.

In general, though each rank gives a desirable solution for the factor matrices, we
need to stick to the lower-rank representation goal. And following the results of our ex-
periments, the performance of rank-one factor matrices is good enough. In this way,
we decrease the computing complexity from O(K 2) to at least O(K ×1×6) for the coeffi-
cient tensor, for there are only 6 CG iterations, which is indeed a great reduction for the
computational cost.
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5.2. 3D COUNTERPART MODEL
In the previous sections, we discuss different methods of reducing the computational
complexity for computing the coefficient matrix for Fourier-cosine series expansion in
2D. However, to really solve the high-dimensional problem, we at least need to move on
to 3D. In this section, we turn to 3D space and implement the CPD-CG algorithm to see
its efficiency in a higher dimensional situation.

The Fourier-cosine series expansion in 3D can be generated in a similar way as in 2D,
which also needs a sufficient integration truncation range [a1,b1]×[a2,b2]×[a3,b3] ⊂R3.

f (x) =∑′K
k1=0

∑′K
k2=0

∑′K
k3=0Ak1,k2,k3 (x)cos

(
k1π

x1 −a1

b1 −a1

)
cos

(
k2π

x2 −a2

b2 −a2

)
cos

(
k3π

x3 −a3

b3 −a3

)
(5.20)

And the coefficient tensor is organized as a cube in 3D, which can be computed as
Eq( 5.21), and again after the exchange of summation and integration, the key behind is
A000.

Ak1,k2,k3 (x) ≡
(

3∏
i=1

2

bi −ai

)∫ b1

a1

∫ b2

a2

∫ b3

a3

f (x)cos

(
k1π

x1 −a1

b1 −a1

)
×

cos

(
k2π

x2 −a2

b2 −a2

)
cos

(
k3π

x3 −a3

b3 −a3

)
dx

(5.21)

Firstly we give the convergence curve of the 3D Fourier-cosine series truncation terms,
to determine the value of K that we use in 3D tests.

Figure 5.9: Convergence of series truncation error for Fourier-cosine series expansion as K increases.

This supports that choosing K to be 30 is also safe for 3D Fourier-cosine series ex-
pansion for our testing function, i.e. Gaussian density. And the following plot verifies
the same sampling conclusion drawn from 2D: the error is global when T is equal to or
larger than K .
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Figure 5.10: Fitting results for different sizes of the training set.

Next, we continue searching for the best experimental rank by looking at their corre-
sponding integration accuracy. We test a range of ranks from 1 to 10, as shown in Figure
5.11. The accuracy is quite good enough, so it is not necessary to raise the rank to a very
high level.

Figure 5.11: Function error and Integration error under different ranks.

We also give the number of iterations for each factor matrix as it satisfies the stopping
criterion. Again none of the factor matrices actually iterates to K ×R times. The specific
time costs are shown in Figure 5.13, which indicates that rank-one factor matrices are
again the fastest fitting with high accuracy for our testing function, i.e. Gaussian density.
And the computational complexity is reduced from O(K 3) to O(K ×1×10) regarding the
coefficient tensor.
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Figure 5.12: Function error and Integration error under different ranks.

Figure 5.13: Function error and Integration error under different ranks.

5.2.1. APPLICATION TO COMPUTE EXPECTATIONS
As this new method has a good performance in computing the integration of the smooth
Gaussian pdf, we continue to apply it to compute the expectation of some general func-
tions whose variables are normally distributed. Given the formula of function expecta-
tion:
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E(g (x)) =
∫ b1

a1

∫ b2

a2

g (x) fX (x)d x1d x2 (5.22)

we compute the expectation of an example function g (x) = ex1+ex2

2 , where (x1, x2) ∼
N (0,1). This testing function is chosen because it represents the payoff function of a
basket option in the field of quantitative finance.

The analytical expectation of g (x) can be simply computed by Moment Generating

Function. Since for normally distributed x, MX (t ) = E(e t X ) = e tµ+ t2
2 σ

2
, and here t = 1,

E(g (x)) = e
1
2 .

Next, we compute with applying its expectation by the CPD-CG integration method
and compare this numerical solution with the analytical solution as the integration error
in Table 5.1, from which we can see it is sufficient and fast to compute the integration
when rank = 1.

K = 30, T = 30, 2D
rank expectation error CPU time(sec)

1 9.875774531487025e-08 0.004648
2 9.86047701267978e-08 0.005195
3 9.861229099961122e-08 0.008275
4 9.861528904586692e-08 0.008991
5 9.860876226674975e-08 0.010080

Table 5.1: Accuracy and time cost of computing expectation of ex1+ex2
2 by CPD-CG method.

Samely, for g (x) = ex1+ex2+ex3

3 , where x ∼ N (0,1) in 3D, we summarize the results in
Table 5.2. The table shows the algorithm needs a bigger rank to give an accurate result in
3D than in 2D, but the iteration number does not grow monotonically with rank, which
again indicates the real rank of tensors is NP-hard and needs to be searched by decom-
position algorithms.

K = 30, T = 30, 3D
rank expectation error CPU time(sec)

1 0.0030854176068879635 0.81815
2 0.0006333410086563074 2.21082
3 3.550936298335472e-06 4.19175
4 9.908346121356715e-08 2.38794
5 9.91124169402724e-08 3.71954

Table 5.2: Accuracy and time cost of computing expectation of ex1+ex2+ex3
3 by CPD-CG method.
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OUR 2ND SOLUTION:

PRINCIPAL-COS METHOD

In the previous chapters, we make efforts to find a lower-rank representation of a multi-
dimensional tenor containing Fourier-cosine coefficients. The method of HTF with ma-
chine learning gives the insight that a numerical integration problem can be transformed
into another one that can be learned by machine, via applying Fourier-cosine series ex-
pansion on the integrand. A further analysis on the Fourier-cosine series coefficients
of the example function we used before, i.e. the Gaussian density function, reveals that
only a fraction of the coefficients are significantly different from zero, which we name
as principal cosine terms from here onwards. This observation inspires us to only use
the principal cosine basis functions to generate a smaller coefficient hyper-cube in high
dimensions.

Based on this idea, we developed a second solution method which is designed to
compute the expectations of functions of several random variables. Recall that expecta-
tions are mathematically defined as multi-dimensional integrations, of which integrands
are the multiplications of the target functions and the joint density functions of relevant
random variables. This solution method works as follows: instead of representing the
joint density function with normal K N Fourier-cosine basis functions, whereby N is the
number of total dimensions, we only use the ‘principal’ cosine basis functions to recon-
struct the joint density function. Here the ‘principal’ terms are referred to those cosine
basis functions of which the Fourier coefficients are greater than a pre-defined threshold.
We further take the assumption that the non-principal terms of marginal distributions
do not become principal terms in the Fourier expansion of the joint density function.

More precisely, we first compute the Fourier coefficients of the marginal distribu-
tions of the involved random variables by the COS method [33], then select the ‘princi-
pal’ basis functions of which the Fourier-cosine expansion coefficients are larger than
a certain threshold, and at last those principal basis functions are used in the recon-
struction of multi-dimensional Fourier-cosine series expansion of the joint density func-
tion. Hence, this way we effectively utilize much smaller-sized vectors that contain the

51
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principal cosine basis functions and a much dense tensor (hyper-cube) consists of the
Fourier-cosine coefficients. We compute these coefficients by the high-dimensional COS
method [8], and thus, we name this innovative idea as the Principal-COS method. Now
getting back to the goal of calculating the expectation of a function defined for a few
random variables, we then follow the same derivation as in [33]. That is, by inserting this
modified reconstruction of the joint density function into the integration that defines
the expectation, and interchanging the order of integration and the summation, we ef-
fectively transform the inner product of the target function and the joint density function
into the inner product of their Fourier-cosine coefficients. Since the Fourier-cosine co-
efficients of the joint density can be accurately approximated via the COS method, what
is remaining is to compute the Fourier-cosine coefficients of the target function.

Here we already give some justification of the assumption made in this method,
namely, why we can assume that the ‘non-principal’ terms as identified in the construc-
tion of the marginal distributions can be deemed non-important in the construction
of the joint density function. Those ‘unimportant’ cosine basis functions usually have
coefficients less than 10−10, which means such coefficients can greatly dampen the cor-
responding Fourier-cosine basis terms of the target function via the inner product of
the two sets of coefficients. As a result, we reduce the number of cosine basis functions
not only for the joint density function, but also for the function of random variables,
which leads to smaller coefficient tensors. The multi-dimensional Fourier coefficients
of general functions are again computed by Clenshaw-Curtis quadrature rule, although
in many cases analytical solution might exist.

6.1. RECONSTRUCTION FOR GAUSSIAN PDF
We still implement conceptual tests with the two-dimensional Gaussian probability den-
sity function. Firstly, we compute the Fourier-cosine coefficients for the one-dimensional
marginal distribution of Gaussian density by the COS method:

f (x) =∑′∞
k=0 Ak ·cos

(
kπ

x −a

b −a

)
(6.1)

Ak = 2

b −a
Re

{
ϕ

(
kπ

b −a

)
·exp

(
−i

kaπ

b −a

)}
(6.2)

where (a,b) is the integration truncation interval, Ak denotes the vector of Fourier-cosine
coefficients, andϕ(·) is the characteristic function of random variables. Re(·) means only
taking the real part of the complex input.

Then we can select the ‘principal’ Fourier-cosine coefficients that are larger than var-
ious thresholds, such as 10−8, 10−6, etc. Note that after this step the indices of cosine
basis functions are not continuous anymore, since those insignificant ones are filtered
out. Next, we can use these selected basis functions to generate the Fourier coefficients
of the original Gaussian pdf, utilizing the COS method.

As a result, we replace the full-sized Fourier coefficient tensor with a smaller princi-
pal coefficient tensor, and thus, the computational complexity is reduced.

As we only use marginal distribution functions as one-dimensional representations
for high-dimensional joint density functions, we tested three sampling strategies to check
whether the sampling method matters for the correlation.
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I. Uniform sampling

Figure 6.1: The uniform sampling strategy with equidistant mesh grids

µ2D = [1,1], Σ2D =
[

1.0 0.0
0.0 1.0

]
, correlation = 0, Nr. of series truncation terms K = 50.

‘principal’ threshold Number of principal terms L∞ error
1.00E-01 (2,2) out of (50,50) 0.111738992
1.00E-02 (5,5) out of (50,50) 0.007782515
1.00E-03 (7,7) out of (50,50) 0.000376692
1.00E-04 (8,8) out of (50,50) 5.83E-05
1.00E-08 (12,12) out of (50,50) 3.10E-09
1.00E-12 (15,15) out of (50,50) 1.21E-10

Table 6.1: Select cosine basis functions from marginal distributions N (1,1) and N (1,1) to reconstruct joint
distribution N (µ2D ,Σ2D ) when the correlation is 0. L∞ error denotes the error between exact 2D distribution
values and values approximated by principal Fourier-cosine basis functions.

µ2D = [1,1], Σ2D =
[

1.0 0.05
0.05 1.0

]
, correlation = 0.05, Nr. of series truncation terms K = 50.

‘principal’ threshold Number of principal terms L∞ error
1.00E-01 (2,2) out of (50,50) 0.11193687
1.00E-02 (5,5) out of (50,50) 0.007845235
1.00E-03 (7,7) out of (50,50) 0.003141096
1.00E-04 (8,8) out of (50,50) 0.002955253
1.00E-08 (12,12) out of (50,50) 0.002932286
1.00E-12 (15,15) out of (50,50) 0.002932285
1.00E-20 (29,29) out of (50,50) 1.78E-07

Table 6.2: Select cosine basis functions from marginal distributions N (1,1) and N (1,1) to reconstruct joint
distribution N (µ2D ,Σ2D ) when the correlation is 0.05.
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µ2D = [1,1], Σ2D =
[

1.0 0.5
0.5 1.0

]
, correlation = 0.05, Nr. of series truncation terms K = 50.

‘principal’ threshold Number of principal terms L∞ error
1.00E-01 (2,2) out of (50,50) 0.136216191
1.00E-03 (7,7) out of (50,50) 0.034943017
1.00E-05 (9,9) out of (50,50) 0.034809537
1.00E-10 (14,14) out of (50,50) 0.034803765
1.00E-15 (17,17) out of (50,50) 0.034803764
1.00E-20 (23,23) out of (50,50) 1.56E-05
1.00E-30 (41,41) out of (50,50) 2.41E-08

Table 6.3: Select cosine basis from marginal distributions N (1,1) and N (1,1) to reconstruct joint distribution
N (µ2D ,Σ2D ) when the correlation is 0.5.

Table 6.1 shows when there is no correlation in the joint distribution, the reconstruc-
tion is accurate as the integration truncation error (10−10) even with only 152 Fourier-
cosine basis functions, while the full size is 502, which is a great reduction for the com-
putational cost. However, the error is only at 10−7 with 292 cosine basis functions in Ta-
ble 6.2, when a small correlation is engaged. Table 6.3 presents that a larger correlation
results in more principal basis functions to reconstruct the correlated joint distribution
function. Note that here we didn’t present the relation between the number of sampling
points T and the ultimate error on non-training data, and we just used the conclusion
we drew in Chapter 5 that T should be greater or equal to K to avoid overfitting.

To verify whether the way of sampling the points may have an influence on the re-
construction efficiency, next we continue testing two more different sampling strategies.
The first one puts more weights on the central area and, since the numbers of points are
assigned according to the weights, generates more points in the central area, which is vi-
sualized in Figure 6.2. The weight is computed by the integration value on each equally
distant interval. However, this sampling means gives the same error performance as the
uniform sampling.

II. More points in the center, fewer toward the boundary

Figure 6.2: More points in the center, fewer points toward the boundary.
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µ2D = [1,1], Σ2D =
[

1.0 0.0
0.0 1.0

]
, correlation = 0, Nr. of series truncation terms K = 50.

‘principal’ threshold Number of principal terms L∞ error
1.00E-01 (2,2) out of (50,50) 0.111738992
1.00E-02 (5,5) out of (50,50) 0.007782515
1.00E-03 (7,7) out of (50,50) 0.000376692
1.00E-04 (8,8) out of (50,50) 5.83E-05
1.00E-08 (12,12) out of (50,50) 3.10E-09
1.00E-12 (15,15) out of (50,50) 1.21E-10

Table 6.4: Select cosine basis from marginal distributions N (1,1) and N (1,1) to reconstruct joint distribution
N (µ2D ,Σ2D ) when the correlation is 0.

µ2D = [1,1], Σ2D =
[

1.0 0.05
0.05 1.0

]
, correlation = 0.05, Nr. of series truncation terms K = 50.

‘principal’ threshold Number of principal terms L∞ error
1.00E-01 (2,2) out of (50,50) 0.11193687
1.00E-02 (5,5) out of (50,50) 0.007845235
1.00E-03 (7,7) out of (50,50) 0.003141096
1.00E-04 (8,8) out of (50,50) 0.002955253
1.00E-08 (12,12) out of (50,50) 0.002932286
1.00E-12 (15,15) out of (50,50) 0.002932285
1.00E-20 (29,29) out of (50,50) 1.78E-07

Table 6.5: Select cosine basis from marginal distributions N (1,1) and N (1,1) to reconstruct joint distribution
N (µ2D ,Σ2D ) when the correlation is 0.05.

µ2D = [1,1], Σ2D =
[

1.0 0.5
0.5 1.0

]
, correlation = 0.05, Nr. of series truncation terms K = 50.

‘principal’ threshold Number of principal terms L∞ error
1.00E-01 (2,2) out of (50,50) 0.136216191
1.00E-03 (7,7) out of (50,50) 0.034943017
1.00E-05 (9,9) out of (50,50) 0.034809537
1.00E-10 (14,14) out of (50,50) 0.034803765
1.00E-15 (17,17) out of (50,50) 0.034803764
1.00E-20 (23,23) out of (50,50) 1.56E-05
1.00E-30 (41,41) out of (50,50) 2.41E-08

Table 6.6: Select cosine basis from marginal distributions N (1,1) and l N (1,1) to reconstruct joint distribution
N (µ2D ,Σ2D ) when the correlation is 0.5.

The third sampling method is a reverse of method II by an intuitive inspiration. We
use the logarithm of weights computed in sampling strategy II to inverse the weight and
multiply a certain scale to control the number of points.
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III. Fewer points in the center, more toward the boundary

Figure 6.3: Fewer points in the center, more toward the boundary

µ2D = [1,1], Σ2D =
[

1.0 0.0
0.0 1.0

]
, correlation = 0, Nr. of series truncation terms K = 50.

‘principal’ threshold Number of principal terms L∞ error
1.00E-01 (2,2) out of (50,50) 0.052740431
1.00E-02 (5,5) out of (50,50) 0.003803434
1.00E-03 (7,7) out of (50,50) 0.00023323
1.00E-04 (8,8) out of (50,50) 4.30E-05
1.00E-08 (12,12) out of (50,50) 1.30E-09
1.00E-12 (15,15) out of (50,50) 9.431E-11

Table 6.7: Select cosine basis from marginal distribution N (1,1) and N (1,1) to reconstruct joint distribution
N (µ2D ,Σ2D ) when the correlation is 0.

µ2D = [1,1], Σ2D =
[

1.0 0.05
0.05 1.0

]
, correlation = 0.05, Nr. of series truncation terms K = 50.

‘principal’ threshold Number of principal terms L∞ error
1.00E-01 (5,5) out of (50,50) 0.006555928
1.00E-04 (8,8) out of (50,50) 0.002760237
1.00E-06 (10,10) out of (50,50) 0.002760120
1.00E-10 (14,14) out of (50,50) 0.002759815
1.00E-15 (17,17) out of (50,50) 0.002759815
1.00E-18 (25,25) out of (50,50) 5.76E-05
1.00E-20 (29,29) out of (50,50) 2.21E-07

Table 6.8: Select cosine basis from marginal distribution N (1,1) and N (1,1) to reconstruct joint distribution
N (µ2D ,Σ2D ) when the correlation is 0.05.
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µ2D = [1,1], Σ2D =
[

1.0 0.5
0.5 1.0

]
, correlation = 0.05, Nr. of series truncation terms K = 50.

‘principal’ threshold Number of principal terms L∞ error
1.00E-03 (7,7) out of (50,50) 0.032412315
1.00E-05 (9,9) out of (50,50) 0.032028207
1.00E-10 (14,14) out of (50,50) 0.032027205
1.00E-15 (17,17) out of (50,50) 0.032027205
1.00E-20 (29,29) out of (50,50) 1.50E-05
1.00E-25 (35,35) out of (50,50) 4.31E-09
1.00E-30 (41,41) out of (50,50) 4.08E-09

Table 6.9: Select cosine basis from marginal distribution N (1,1) and N (1,1) to reconstruct joint distribution
N (µ2D ,Σ2D ) when the correlation is 0.5.

For the third sampling strategy, there are almost no differences between the 0 corre-
lation and 0.05 correlation situations. When the correlation increase to 0.5, this sampling
method needs fewer cosine basis functions to reach a small error. For example, the for-
mer two sampling methods need about 402 basis functions to reach the accuracy level of
10−8, while the third sampling method takes only 352 basis functions to have a smaller
error of 4.3−9.

Note that these conclusions are just based on experimental results of reconstructing
the two-dimensional Gaussian density function with the principal Fourier-cosine basis
functions of its marginal distributions. We need to continue exploring this idea and find-
ing more theoretical support to make this method a solid solution method. FF Quant Ad-
visory B.V. is researching further into this direction in another Master thesis at the time
being.

Next, we repeat the same tests to recover the 3D Gaussian joint density function,
with the uniform sampling strategy. And the correlation still plays a significant role in
affecting the reconstruction accuracy.

IV. 3D implementation

µ3D = [1,1,1], Σ3D =
1.0 0.0 0.0

0.0 1.0 0.0
0.0 0.0 0.1

, correlation = 0.0, K = 50.

‘principal’ threshold Number of principal terms L∞ error
1.00E-01 (2,2,2) out of (50,50,50) 0.054856728
1.00E-03 (8,8,8) out of (50,50,50) 0.000308028
1.00E-06 (12,12,12) out of (50,50,50) 2.63E-07
1.00E-08 (14,14,14) out of (50,50,50) 3.31E-09
1.00E-10 (16,16,16) out of (50,50,50) 2.26E-11
1.00E-14 (19,19,19) out of (50,50,50) 8.40E-12

Table 6.10: Select cosine basis from 3 marginal distributions N (1,1) to reconstruct joint distribution
N (µ3D ,Σ3D ) when the correlation is 0.
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µ3D = [1,1,1], Σ3D =
 1.0 0.05 0.05

0.05 1.0 0.05
0.05 0.05 0.1

, correlation = 0.05, K = 50.

‘principal’ threshold Number of principal terms L∞ error
1.00E-01 (2,2,2) out of (50,50,50) 0.055284133
1.00E-03 (8,8,8) out of (50,50,50) 0.002116377
1.00E-06 (12,12,12) out of (50,50,50) 0.00229184
1.00E-08 (14,14,14) out of (50,50,50) 0.002291992
1.00E-10 (16,16,16) out of (50,50,50) 0.002291993
1.00E-14 (19,19,19) out of (50,50,50) 0.002291993
1.00E-18 (30,30,30) out of (50,50,50) 2.35E-05

Table 6.11: Select cosine basis from 3 marginal distributions N (1,1) to reconstruct joint distribution
N (µ3D ,Σ3D ) when the correlation is 0.05.

µ3D = [1,1,1], Σ3D =
 1.0 0.05 0.0

0.05 1.0 0.0
0.0 0.0 0.1

, correlation = 0.05 between 2 of the dimensions ,K = 50.

‘principal’ threshold Number of principal terms L∞ error
1.00E-01 (2,2,2) out of (50,50,50) 0.055004485
1.00E-03 (8,8,8) out of (50,50,50) 0.00121238
1.00E-06 (12,12,12) out of (50,50,50) 0.001136214
1.00E-08 (14,14,14) out of (50,50,50) 0.001136099
1.00E-10 (16,16,16) out of (50,50,50) 0.001136097
1.00E-14 (19,19,19) out of (50,50,50) 0.001136097
1.00E-18 (30,30,30) out of (50,50,50) 9.98E-06

Table 6.12: Select cosine basis from 3 marginal distributions N (1,1) to reconstruct joint distribution
N (µ2D ,Σ2D ) when only 2 random variables are correlated with correlation 0.05.

The only difference between Table 6.11 and Table 6.12 is the number of correlated
random variables. In Table 6.11, all random variables are mutually correlated, while
there are only two random variables correlated in Table 6.12. And the former shows a
relatively worse reconstruction accuracy than the less correlated situation.

6.2. A TRIAL ON ONE EXPECTATION OPERATOR

Now after testing the idea of utilizing the principal Fourier-cosine basis function of the
marginal distributions in reconstructing the Gaussian joint density function, we con-
tinue with testing the often-seen application of multi-dimensional integration, the ex-
pectation operator.
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6.2.1. METHODOLOGY
As we know, the expectation of a function g (X ), given that X has a probability density
function fX (x), is given by the inner product of f and g :

E[g (X )] =
∫
R

g (x) fX (x)d x (6.3)

And for multi-variate functions, this formula still holds, and f is the joint density
function.

We then follow the same line of derivation as in [33] to derive the approximation for-
mula for the 2D expectation operator: Truncate the ranges of integration into the domain
[a1,b1]× [a2,b2] without lost of significant accuracy, and apply Fourier-cosine series ex-
pansion for the joint density function f (x1, x2), to yield:

E[g (x1, x2)] ≈
∫ b2

a2

∫ b2

a1

g (x1, x2)
∞∑

k1=0

∞∑
k2=0

Ak1k2 cos

(
k1π

x1 −a1

b1 −a1

)
cos

(
k2π

x2 −a2

b2 −a2

)
d x1d x2

(6.4)
As proved in Chapter 4, we can exchange the summation and the integration to move

Ak1k2 outside the integration. Then the integration part becomes the Fourier-cosine co-
efficients of g (x1, x2) if multiplied with 2

b1−a1

2
b2−a2

:

Bk1k2 := 2

b1 −a1

2

b2 −a2

∫ b2

a2

∫ b2

a1

g (x1, x2)cos

(
k1π

x1 −a1

b1 −a1

)
cos

(
k2π

x2 −a2

b2 −a2

)
d x1d x2

(6.5)
Truncating the series expansion with the number of cosine terms K gives:

E[g (x1, x2)] ≈ b1 −a1

2

b2 −a2

2

∑′K
k1=0

∑′K
k2=0Ak1k2 Bk1k2 (6.6)

The authors of [8] derive an analytical solution to compute Ak1k2 , which is the 2D-
COS method. We use Sk1k2 to denote the coefficients obtained by the 2D-COS method:

Sk1k2 := 2

b1 −a1

2

b2 −a2

∫ ∫
R2

f (x)cos

(
k1π

x1 −a1

b1 −a1

)
cos

(
k2π

x2 −a2

b2 −a2

)
d x1d x2 (6.7)

2D-COS is based on goniometric relation that transforms the product of cosine func-
tions into a summation of new cosine functions:

2cos(α)cos(β) = cos(α+β)+cos(α−β) (6.8)

Accordingly, Sk1k2 can also be written as:

2Sk1k2 = S+
k1k2

+S−
k1k2

(6.9)

where

S±
k1k2

:= 2

b1 −a1

2

b2 −a2

∫ ∫
R2

f (x)cos

(
k1π

x1 −a1

b1 −a1
±k2π

x2 −a2

b2 −a2

)
d x1d x2 (6.10)
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Next, the coefficients S±
k1k2

can be computed as:

S±
k1k2

= 2

b1 −a1

2

b2 −a2
Re

(∫ ∫
R2

f (x)exp

(
i k1π

x1 −a1

b1 −a1
± i k2π

x2 −a2

b2 −a2

)
dx

exp

(
i k1π

x1 −a1

b1 −a1
∓ i k2π

x2 −a2

b2 −a2

))
= 2

b1 −a1

2

b2 −a2
Re

(
ϕ

(
k1π

x1 −a1

b1 −a1
,±k2π

x2 −a2

b2 −a2

)
exp

(
i k1π

x1 −a1

b1 −a1
∓ i k2π

x2 −a2

b2 −a2

))
(6.11)

where Re(·) means taking the real part of the complex input, and ϕ is the characteristic
function of random variables. For example, if X ∼ N (µ,Σ), then its characteristic func-
tion is:

ϕ(t) = E(e i tX ) = e i tT µ− 1
2 tTΣt (6.12)

With the help of the 2D-COS method, we can derive the principal coefficients for
the joint distribution function quickly, since we know the selected indices. Then we
can compute Bk1k2 with the same cosine basis functions by Clenshaw-Curtis quadrature
rule. Then Eq (6.6) turns to:

Ē[g (x1, x2)] ≈ b1 −a1

2

b2 −a2

2

∑′K̃
k̃1=0

∑′K̃
k̃2=0Ak̃1k̃2

Bk̃1k̃2
(6.13)

where k̃1, k̃2 denote the selected indices for principal basis functions and K̃ is the smaller
total number of principal cosine basis functions. And Ē[·] is the approximated expecta-
tion.

6.2.2. RESULTS

We give results of computation of two example function expectations by the Principal-
COS method in this section.

Given g1(x) = ex1+ex2

2 , where x ∼ N (0,1), of which expectation we have computed in
Chapter 5 and showed its analytical solution. In this chapter, we use a different method
to approximate its exact solution. We compute the baseline expectation by Eq (6.6) with
K = 100, which is a very conservative choice, to ensure the accuracy of the expectation.
Then we use a smaller but efficient K , and increase the threshold gradually to filter out
‘unimportant’ cosine basis functions and compute expectations via Eq (6.13).
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g1(x) = (ex1 +ex2 )/2, x ∼ N (0,1), K = 30
‘principal’ threshold Number of principal terms L∞ error of expectation time

0 (30, 30) 1.93667e-12 0.02829
1e-10 (14, 14) 7.57518e-11 0.007856
1e-09 (13, 13) 2.34097e-09 0.007119
1e-08 (12, 12) 5.72244e-08 0.006617
1e-07 (11, 11) 1.10796e-06 0.005544
1e-06 (10, 10) 1.70215e-05 0.004993
1e-05 (9, 9) 0.00020797 0.004382
1e-04 (8, 8) 0.002027 0.003673

Table 6.13: The expectation results of (ex1 +ex2 )/2 by Principal COS method.

Table 6.13, shows only 142 cosine basis functions are important for computing the
expectation of g1(x) = (ex1 + ex2 )/2, without losing significant accuracy. And it is a great
computation reduction compared to the full 302 basis functions. Note that E(g1(x)) =
(E(ex1 )+E(ex2 ))/2, so there is no influence of correlation to compute the function expec-
tation by Principal-COS method. So next we give an example that involves correlation.

Given g2(x) = ex1 ∗ex2 , where x ∼ N (0,1),this time we make x1 and x2 correlated and
test different correlations.

g1(x) = ex1 ∗ex2 , x ∼ N (0,1), K = 30

prncipal terms
correlations

corr = 0 corr = 0.1 corr = 0.2 corr = 0.4 corr = 0.6
(30, 30) 6.9980e-12 4.4498e-11 7.7605e-11 1.2399e-10 1.4938e-10
(14, 14) 2.5027e-10 1.6533e-09 2.8645e-09 4.6431e-09 5.6944e-09
(13, 13) 7.7163e-09 4.8142e-08. 8.3558e-08 1.3713e-07 1.7046e-07
(12, 12) 1.8870e-07 1.1040e-06 1.9170e-06 3.1845e-06 4.0135e-06
(11, 11) 3.6534e-06 1.9947e-05 3.4617e-05 5.8158e-05 7.4330e-05
(10, 10) 5.6127e-05 0.0002842 0.0004923 0.0008357 0.001083

(9, 9) 0.0006858 0.003199 0.005519 0.009454 0.01242
(8, 8) 0.006680 0.02847 0.04882 0.08425 0.1122
(7, 7) 0.05244 0.2001 0.3414 0.5920 0.7985

Table 6.14: The expectation results of ex1 ∗ex2 by Principal COS method.

From Table 6.14 we can find the correlation does have an impact on the expectation
accuracy obtained by the Principal-COS method, and the higher the correlation, the big-
ger the influence. However, these undesirable effects are not significant when the num-
ber of principal terms is big enough, such as 13 basis functions per dimension, which is
still a great reduction in the total computational complexity compared to using the full
cosine series.

Now we can compare the performance of computing integration of two methods we
developed in this thesis project, the CPD-CG and Principal-COS, with two traditional nu-
merical integration methods, the Trapezoidal rule and the Clenshaw-Curtis quadrature
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rule.

Comparision among different numerical integration methods in 2D cases
Numerical integration method Integration error Time cost

Trapezoidal rule 4.0140e-10 0.00076465
Clenshaw-Curtis quadrature rule 4.9785e-10 0.00056746

CPD-CG method 9.8765e-08 0.0032097
Principal COS method 4.44089e-16 0.0021777

Table 6.15: Integration performance of different numerical integration methods.

Note that as the Principal-COS method is an expectation operator, the g (x) hereby is
set to be 1 when we use it to compute the integral of the joint density function, which
is a 2D Gaussian pdf. Table 6.15 illustrates that the traditional methods are better in
two-dimension for Gaussian pdf, while our new CPD-CG method also has good per-
formance. The timing deficiency can also be caused by coding since there are mature
python functions for these traditional numerical integration methods, while the codes
for these new algorithms are written by ourselves. Moreover, these two new methods are
still under development. The CPD-CG method can be extended to higher dimensions,
with the modified coding strategy, which is expected to outperform the straight forward
implementation of the quadrature rules in high dimensions. And we have focused on de-
veloping and testing the concept via experiments for the Principal-COS method in this
thesis report, which needs to be researched further.

In the end, we also give the comparison of expectation computation performance
and their computational complexity in Table 6.16 and Table 6.17 as a reference.

Comparision among different numerical integration methods in 2D cases
Numerical integration method Expectation error Time cost

Trapezoidal rule 6.9624e-11 0.001627
Clenshaw-Curtis quadrature rule 6.5701e-11 0.0006717

CPD-CG method 9.9176e-08 0.005125
Principal COS method 5.7224e-08 0.007186

Table 6.16: Expectation performance of different numerical integration methods.

Computational Complexity
Numerical integration method Theoretical complexity Practical complexity

Trapezoidal rule O(T N ) O(6002)
CC quadrature rule O(T logT )+O(T N ) O(35log35)+O(352)

CPD-CG O(K RS)∗O(m
p
κ) O(30 ·2 ·21)∗O(m

p
κ)

Principal COS O(K̃ N ·T logT )+O(K̃ N ·T N ) O(122 ·40log40)+O(122 ·402)

Table 6.17: Computational complexity of different numerical integration methods.

Here T denotes the number of quadrature points, N is the number of dimensions, K
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is the number of Fourier-cosine basis functions, R is the lower rank, S is the total itera-
tion number used in CPD-CG. And for the CG method, the computational complexity is
O(m

p
κ) [40], where m is the number of nonzero entries for the coefficient matrix of the

linear equation, and κ is its condition number. For the Clenshaw-Curtis quadrature rule,
the computation for its weights is O(T logT ), and the integration part is O(T N ). The K̃
for Principal COS is the number of principal cosine basis functions after filtering by the
threshold 10−8. And the value of the practical K is chosen based on the convergence
tests in the previous chapters, and the convergence tests for T here can be found in the
appendix.
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7.1. CONCLUSION
As multi-dimensional numerical integration methods always suffer from the curse of
dimension, this thesis project aims to find possible solutions to alleviate this issue. Based
on Fourier-cosine series expansion, we can transfer the integration problem into solving
the Fourier-cosine coefficients, which can be solved via supervised machine learning
methods and of which the first coefficient is all we need to approximate the integral.

The multi-dimensional array expression, tensor, is compatible with the form of Fourier-
cosine coefficients in high-dimension cases. Hence, it is indeed a smart and natural idea
to reduce the computation of coefficients by tensor decomposition techniques, such as
CPD, which gives a lower-rank representation of coefficient tensors. From recent liter-
ature, we found a method that applies a supervised machine learning method, SGD, to
solve CPD as an optimization problem, which avoids instantiating the coefficient tensor.
We first replicated their work from approximating the multivariate function, analyzed
the error behaviors, improved their approach and extended it to generically solving the
multi-dimensional integration.

The function convergence error of SGD is only at 10−3, which, based on our anal-
ysis, is the limitation in the original method and may be caused by the insufficient ro-
bustness of the search direction and the inflexible step size. We, therefore, proposed
to use the CG as the solver instead of SGD, which has been tested to greatly improve
the function approximation accuracy to at most 10−14, and the integration error is as
low as 10−8. This improved method can decompose the Fourier coefficient tensor for
multi-dimensional Gaussian distribution into rank-1 factor matrices, which reduces the
computational complexity from K N to K N in this case. We can also apply the CPD-CG
method to compute general integrations such as the expectation of a function of random
variables, which has also been tested to have good performance with accuracy at 10−8.

In the end, we developed a second method, the Principal-COS method, as a fast nu-
merical solver for an expectation operator. It utilizes the fast decay property of Fourier-
cosine coefficients of smooth density functions and the fact that a big fraction of those

65
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Fourier coefficients can be smaller than 10−10. Thus the principal Fourier coefficients of
the joint density function also dominate the Fourier coefficients of the target function of
random variables.

By assuming that the non-important basis functions identified in the construction
of marginal distributions remain unimportant in the construction of the joint density
function, we manage to reduce computational complexity by only using the principal
basis functions for each of the marginal distributions to compute the Fourier coefficients
of the multi-dimensional joint density function, combined with high-dimensional COS
method. The tests prove that we can drop over half of the cosine basis functions per
dimension to speed up the computation. And we also see good results while testing the
function with correlation. However, in this thesis project, we merely prove that this idea
is conceptually feasible, and more future work needs to be done to really put this method
into practice.

7.2. FUTURE WORK
We only apply the CPD-CG method at most in 3D situations in this thesis project, and
it is far from enough to be really ‘multi-dimensional’. At the moment, another thesis at
FF Quant is already ongoing, which has already extended the CPD-CG method to high
dimensions such as 6 or more with a detailed theoretical and experimental error analysis.
A working paper will be drafted soon, which combines the results of this thesis and the
continued analysis from that project and introduces the CPD-CG method as an efficient
numerical solver for high-dimensional integration.

For the Principal-COS method, there are still a few important questions to be an-
swered. For example, how big is the error when assuming the non-important cosine
basis functions as seen in the construction of the marginal distributions remain unim-
portant for the construction of the joint density function? Is there room to improve the
calculation of the Fourier coefficients of the target function, such as using CPD-CG or
utilizing FFT plus an equidistant quadrature rule?

These future works will be picked up by other Msc thesis projects within FF Quant
Advisory.
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CONVERGENCE TESTS FOR N IN TABLE 6.17

Figure 8.1: Quadrature points convergence test for Trapezoidal rule.

Figure 8.2: Quadrature points convergence test for Clenshaw-Curtis quadrature rule.

67
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Figure 8.3: Quadrature points convergence test for Clenshaw-Curtis quadrature rule in Principal-COS.

KHATRI-RAO PRODUCT DETAILS

V1
′⊙V2

′ =



1
2 cos0x1[1] cos0x2[1] · · · cos0xM [1]
cos1x1[1] cos1x2[1] · · · cos1xM [1]

cosk1x1[1] cosk1x2[1] · · · cosk1xM [1]
...

...
. . .

...
cosK x1[1] cosK x2[1] · · · cosK xM [1]



⊙
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cos0x1[2] cos0x2[2] · · · cos0xM [2]
cos1x1[2] cos1x2[2] · · · cos1xM [2]
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...
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...
cosK x1[2] cosK x2[2] · · · cosK xM [2]
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=
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