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Abstract

In aeronautics, the camber variation of the airfoil profile of the wing is an important means of flight control
as it is used to generate high lift coefficients during take-off and landing. In conventional aircrafts, lift control
is achieved by using flap systems. However, conventional flap systems contain discontinuous sections that
cause aerodynamic losses. It would therefore be beneficial if flap systems could be replaced by a variable-
camber morphing wing. It has been shown that variable-camber morphing wings can significantly improve
the aerodynamic performance of the aircraft due to the smoothness of the surface, making it possible to fly
more efficiently, reduce fuel consumption and reduce the impact on the environment. However, the design
of such a variable-camber morphing wing is challenging due to the conflicting requirements of the structure.
The wing should be flexible so it can morph, stiff so it can withstand aerodynamic pressures and light weight
to reduce fuel consumption.

The aim of this work is to provide a method for the density-based topology optimization of compliant
morphing structures. The method includes a novel formulation for the objective function which compares
the deformed shape of the structure with a desired deformed shape by using a dot product. This dot-
product objective proved to be more capable of realising shape morphing structures which obtained their
desired output shapes than the commonly used least-squares-error objective does. The dot-product objective
converges to an optimum better than the least-squares-error objective does. For even a relatively simple
optimization with up to 500 variables the dot-product found the optimum roughly 15 times as fast as the
least squares error objective did. The developed method is applied to obtain an optimized design of a
compliant variable-camber morphing wing. The dot-product objective aims to optimize the structure for a
quadratic output shape of the top surface of the trailing edge. The skin of the airfoil profile is included in
this optimization as a non-design domain and not considered a separate structure. By using the dot-product
objective function, the optimization yielded a design which was able to obtain a quadratic shape of the
deformed top-surface of the trailing edge, while also complying with the constraints on flexibility, stiffness
and mass of the structure.

The obtained design was converted to a prototype by 3D printing and an experiment was performed
to assess if the deformed shapes of the prototype were similar to the ones predicted by the analysis in the
topology optimization. The experiment showed that for small deformations the output shape matched the
predicted output shape. For larger deflections, there was a slight difference. However, the obtained shapes
were still quadratic-like and so it is expected that for larger deformations the designed trailing edge will still
have superior aerodynamic performance than conventional flap systems.

In conclusion, the proposed density-based topology optimization with a dot-product objective function is
able to obtain structures which comply well with desired shape changes. This was also shown in the designed
variable-camber morphing wing, which as able to obtain the desired quadratic shape when deformed, while
also complying with the constraints.
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Chapter 1

Introduction

In aeronautics, the camber of an airfoil is a measure of the curvature of the airfoil. It is the asymmetry
between the curvature of the top- and bottom surface [1]. Camber variation of the airfoil profile of a wing is
an important means of control in aircrafts as it is used to generate high lift coefficients during take-off and
landing [2]. In conventional aircrafts, lift control is achieved by using flap systems. However, conventional flap
systems contain discontinuous sections that cause aerodynamic losses [3]. Therefore, it would be beneficial if
these systems could be replaced by a morphing wing. The term morphing refers to seamless shape changes
that are continuous. A morphing wing would therefore not rely on the movement of discrete parts, but
rather consist of one continuously deforming structure that can change its shape to fit the conditions present
during flight [4] [5]. There are different types of morphing wings concerned with different parameters such as
span, sweep, twist and camber. For the purpose of lift control, a variable-camber morphing wing is needed
[6]. In a variable-camber morphing wing, the flaps will be replaced by an airfoil section that can change its
camber due to shape morphing of the structure (see Fig. 1.1). It has been shown that this can significantly
improve the aerodynamic performance of the wing due to the smoothness of the surface [7]. The morphing
wing can increase the lift with a very low drag-penalty, making it possible to fly more efficiently, reduce fuel
consumption and reduce the impact on the environment.

The main requirements in a variable-camber morphing wing design are that the structure should be
flexible so it can morph, stiff so it can withstand aerodynamic pressures and light weight to reduce fuel
consumption [9]. The challenge is that these three properties are inherently contradictory. In order to stiffen
a structure, one usually adds material which can be problematic if a structure needs to be light weight.
Furthermore, when one stiffens a structure one inherently loses flexibility and yet a morphing wing requires
both of these qualities. These three properties together make a variable-camber morphing wing a challenging
design problem. In this thesis, the focus will be on the design of a morphing trailing edge that could replace
trailing edge-flap systems as they are applied in modern conventional aircrafts. The leading edge will not be
considered in the design.

Figure 1.1: A variable-camber morphing wing, with a morphing trailing edge. The dashed lines represent
the morphed configuration of the wing. In these morphed configurations, the top and bottom surface remain
smooth, and do not contain any sharp corners [8].
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Various structures such as lattice structures, multi-stable structures and compliant structures have been
researched for applicability in a variable-camber morphing wing. For an overview of the research in this area,
take a look at reviews such as Barbarino, Bilgen, Ajaj, et al. [5] and Sun, Guan, Liu, et al. [10]. Of these
structures, compliant mechanisms seem to offer many advantages. In the next Section, compliant mechanisms
and their possible applicability to a variable-camber morphing wing are discussed.

1.1 Compliant mechanisms

A compliant mechanism is defined as a monolithic structure that achieves a desired deformed shape by elastic
deformation within the structure [11]. This means no discrete elements such as hinges are necessary. This
has many advantages such as eliminating backlash error and reducing maintenance as well as assembly costs.
Additionally, compliant mechanisms can also create a more smooth and evenly distributed deformation than
their rigid body counterparts [11]. These properties make compliant structures an interesting candidate for
the design of a variable-camber morphing wing.

A compliant mechanism can rely on different types of compliance, which are generally divided into two
groups: lumped compliance and distributed compliance. Compliance is here referred to as the way in which
a mechanism elasticly deforms. Mechanisms with lumped compliance essentially are conventional, rigid body
mechanisms in which the hinges are replaced by solid-state hinges. A solid-state hinge is a short-length
region with a reduced thickness and therefore a low bending stiffness [12]. While this type of compliance
yields mechanisms with clearly defined kinematics, they also imply poor load-carrying capability. Mechanisms
with distributed compliance can avoid this problem [12]. In distributed compliant mechanisms, long-length
pivots are used to produce smooth changes of the geometry [13]. This results in reduced stress concentrations
within the structure. The behaviour of a distributed compliant mechanism is mainly load dependent, i.e.
different deformation patterns can be obtained by changing the loads acting on the mechanism [13]. Since
part of the loads are not controllable, this can negatively influence the systems reliability and precision.
Hasse et al [14] introduce a third group of compliance: selective compliance. Selective compliant mechanisms
enable smooth shape changes by keeping a high degree of stiffness in other deformation components. This
implies that the mechanisms will be flexible with respect to the deformation it was designed for, while being
stiff with respect to other deformation modes. Selective compliance combines the advantages of both lumped
and distributed compliance, namely reduced stress concentrations, a smooth deformation pattern and defined
kinematics. This is also what is aimed for in a variable-camber morphing wing: a smooth deformation pattern
with a high degree of stiffness in other directions.

To further classify the compliant variable-camber morphing wing, it should be noted that there are
three different types of compliant mechanisms: the path generator, the function generator and the motion
generator. Cao, Dolovich, and Zhang [15] define these different types of mechanisms as follows. (1) A path
generator is a mechanism in which a point is controlled such that it follows a prescribed path. (2) A function
generator is a mechanism in which there is a correlation of an input motion with an output motion. (3) A
motion generator is a mechanism in which the goal is to design a mechanism which can guide a (flexible)
segment from an original configuration to a desired morphed configuration [5], see Fig. 1.2.

A compliant variable-camber morphing wing can be classified as a motion generating compliant mecha-
nism. Compliant motion generators can be designed through structural optimization. This is an interesting
technique for designing such a mechanism especially when the design problem is complex, which is the case
for a variable-camber morphing wing. This complexity makes the result of this design problem dependent
on the experience of the designer and creates difficulty in finding an optimal solution. Therefore, a struc-
tural optimization of the design problem would be a powerful tool. Structural optimization will be further
discussed in the next Section.
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Figure 1.2: Representation of the goal of a flexible motion-generator. The goal is to design a mechanism
which can convert the segment from the original configuration (AB) into the final, morphed configuration
(ab). [15].

1.2 Structural optimization

Structural optimization is the design method which involves an optimization of a specific performance measure
of the structure (for example maximize stiffness or minimize mass under a certain load system), while including
the constraints which inevitably must be imposed on the structure to satisfy the requirements. The motivation
to use structural optimization, or just optimization in general, is to exploit limited resources in such a way
that the output or profit is maximized [16].

There are three different types of structural optimization: sizing optimization, shape optimization and
topology optimization [17]. Each of these classes address different aspects of the structural design problem.
In a typical sizing optimization problem, the design variables are some type of structural thickness, e.g.
cross-sectional area of truss members or the thickness distribution of a plate (see Fig. 1.3a), while the initial
structure is assumed [18]. In a shape optimization problem the goal is to find the optimum shape of this
design domain. A number of topological properties is assumed (e.g. a fixed number of holes) and their shape
is optimized (see Fig. 1.3b) [17]. Topology optimization of solid structures involves the determination of
features such as the number, shape and location of holes and the connectivity within a predefined design
domain [17]. For the design of the compliant variable-camber morphing wing, topology optimization is
suggested in literature as a design approach [19].

Figure 1.3: The three categories of structural optimization. a) Sizing optimization: an initial structure
is assumed, the sizes are determined by the optimization. b) Shape optimization: a number of holes is
prescribed, the shape of these holes is optimized. c) Topology optimization: the generation of a structure
within a specified domain. [17].

A topology optimization is based on the principle of removing and adding material in a design domain.
This design domain is discretized into finite elements. Typically, the design variables in a topology optimiza-
tion are the density x of element e, xe. Where:

0 ≤ xe ≤ 1.
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During the optimization, this density value is used to interpolate the Young’s modulus of the element.
This implies that a density xe = 0 indicates the absence of material, these elements are called void elements.
When xe = 1 there is material present in the element. It should be noted that in reality there is always
material present in an element, it is the Young’s modulus of the element (Ee) that is the variable and
dependent on the density of that element according to Ee = ρ(xe)E, where ρ(xe) is the design function which
often includes some type of filtering of the design variables, and E is the Young’s modulus of the chosen
material.

The optimization itself is an iterative process in which the values of the design variables are updated
at every iteration. Within each iteration, an analysis of the obtained structure for the current density
distribution is performed. This is necessary because the estimation of the performance of the structure is
only locally valid. That is to say, for every new density distribution the behaviour of the structure will be
different and needs to be analyzed. The optimizer that will be used for this process is the Method of Moving
Asymptotes (MMA) [20]. MMA is a gradient based optimizer that uses the sensitivities of the objective and
constraint functions to update the design variables. MMA is often used in topology optimization and has
proven to be reliable in combination with multiple complex, non-linear constraints [21].

While research has been done in the topology optimization of compliant mechanisms, not much of it
is focused on shape-morphing compliant mechanisms. The next section will present the state-of-the-art in
the topology optimization of shape-morphing structures and then specifically the topology optimization of
compliant variable-camber morphing wings.

1.3 State-of-the-art of the topology optimization of variable-camber
morphing wings

In the literature, different types of objective functions are proposed for the topology optimization of shape
morphing mechanisms. Lu and Kota [22] propose a least-squares error objective in which the obtained
deformed surface of the generated mechanism is compared against a prescribed curve. The topology op-
timization involves a domain parameterization method that utilizes the load path of the structure. The
variables are the existence of connections between several nodes within the domain and the cross-sectional
dimensions of those connections. The load path parameterization method was also applied to a variable
camber trailing edge, however the amount of design variables is limited and this results in a rudimentary
design for such a structure [22]. Santer and Pellegrino [23] propose a similar approach for the optimization
of a morphing leading edge, which is the front part of the airfoil profile. While it has been shown that this
approach works with a limited amount of variables, it also limits the optional outcomes of the optimization to
a specific type of structure where nodes are connected through beam elements. This eliminates the possibility
of a structure where for example a part of the skin is thickened slightly. By limiting the optimization to these
types of structures, there is a risk of eliminating the optimal structure from the possibilities.

Another option is a modified Fourier transformation as an objective function [11]. This objective function
is especially applicable in a symmetric setting since this formulation focuses on the change in shape, instead
of solely on the exact location of the sampling points.

Hasse and Campanille [24] propose a different approach to the topological optimization of motion generat-
ing compliant mechanisms. They formulate an objective based on a modal procedure in which they prescribe
the desired deformation mode. This method offers the possibility to decouple the synthesis of the structure
from the design of the actuator system. Hasse et al [13] used this modal synthesis procedure to design a
belt-rib airfoil. The idea of this belt-rib structure is that there is a flexible outer belt. The interior of this
belt consists of spokes that connect two points of the belt and thus create some stiffness in the mechanism.
However, this method has the same limitation as the methods presented above, namely that the structure is
limited to a specific type of mechanism where nodes are connected through beam elements.

Furthermore, research has been done into density-based topology optimization of variable-camber morph-
ing wings. Density-based topology optimization refers to the setting where the variables in the optimization
are the densities of the elements. Several studies performed density-based optimization of morphing leading-
and trailing-edges in which they included the necessary constraints for stiffness with respect to aerodynamic
pressures on the airfoil profile [19], [25], [26]. These optimizations resulted in mechanisms which were able to
guide a separate morphing skin into the correct morphed shape. However, designing a separate skin to cover

4



Figure 1.4: The belt-rib variable-camber morphing wing as designed by Hasse et al [13]

such morphing structures is a great challenge due to the orthotropic stiffness properties this skin should
exhibit (see Thill, Etches, Bond, et al. [27] for more information on the morphing skin design problem).
Jensen, Wang, Dimino, et al. [28] have performed a 3D density-based topology optimization of a variable
camber morphing wing. They use a minimal compliance objective, while the desired deformed shape is
constrained. The obtained 3D variable-camber morphing wing design was able to comply to desired shape
changes reasonably well. While these results show the promise of using density based topology optimization
for designing a variable-camber morphing wing, it would be beneficial if the skin could be designed as a part
of the compliant mechanism.

In conclusion, some research has been done in the topology optimization of a variable-camber morphing
wing. However, often it is not a density-based topology optimization, but a somewhat more limited version
with fewer design variables that limit the possible outcomes of the optimization and that result in more
rudimentary results of the wing. The obtained designs are often not manufactured and tested. Density-based
topology optimization research has been performed and proved to be effective, but the wing skin was seen
as a separate mechanism. The designed mechanism was meant to guide this skin into a desired morphed
configuration. This adds the problem of designing a morphing skin, which is a challenging design problem.

This thesis presents a method that can be used to perform density-based topology optimization of com-
pliant shape-morphing structures. This includes the definition of a novel objective function definition based
on a dot-product, which focuses on the difference in shape between the deformed state and a defined, desired
shape. This method is then used to perform density-based topology optimization of a compliant variable-
camber morphing wing that, in contrast to previously published work, incorporates the wing skin as part
of the compliant mechanism. As such, the model solves both the problem of variable camber as well as the
morphing skin design problem. This design was manufactured and used to evaluate the performance of the
wing to validate the method.

The remainder of this thesis is set-up as follows. In Chapter 2, the method for the topology optimization
of shape-morphing structures is described, including the modelling assumptions made and an explanation of
the analysis that happens at every iteration of the optimization. In Chapter 3, the objective function for the
optimization will be investigated. In Chapter 4, numerical examples for a variable-camber morphing wing
will be discussed and in Chapter 5, the experimental results of a 3D printed prototype of the design will be
presented. Finally, in Chapter 6 the conclusions and recommendations for further research will be discussed.
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Chapter 2

Methods

In this Chapter, an approach for the density-based topology optimization of compliant shape-morphing
structures will be discussed. The design problem of morphing structures will be discussed and the modelling
assumptions presented in Section 2.1. In Section 2.2, the analysis of the obtained structure that is to be
performed in each iteration of the optimization is discussed. In Section 2.3, the method which is used to
evaluate the sensitivities that are necessary for the optimization is discussed.

2.1 Modelling assumptions for compliant shape-morphing struc-
tures

The term morphing refers to seamless shape changes that are continuous. Compliant shape-morphing struc-
tures are thus structures that can change their shape by continuously deforming their body [5]. The goal
in such a structure is to obtain a prescribed shape from a specified input. This would also be the objec-
tive of an optimization of such a structure. In order to quantify how well a morphing structure performs,
a function should be developed that can evaluate how well the obtained structure adheres to the required
shape changes. This can be done based on the displacement field of the structure in deformed configuration.
The displacement of several nodes could be compared with the displacement they should have in the desired
shape-morphed state. The set-up of an objective function that can make this comparison in an efficient way
is discussed in Chapter 3. This objective function is a key part of the method presented in this thesis, since it
determines the performance of the optimization. It is especially important that this objective function per-
forms well in combination with contradictory constraints, which is the case for a variable-camber morphing
wing in which flexibility, stiffness and weight of the structure all need to be considered simultaneously.

To be able to perform a topology optimization of shape-morphing structures, several modelling assump-
tions were made. These assumptions are presented below. For the topology optimization, a density-based
approach with a structured mesh is used. This means that the design domain of the optimization is meshed
using rectangular finite elements. The design domain refers to the area of the domain where the densities of
the elements are the variables of the optimization. A structured mesh with rectangular elements was chosen,
because of the relatively low computational effort this implies. This is due to the fact that the stiffness matrix
for each element is the same and as such calculating one stiffness matrix suffices, instead of having to indi-
vidually calculate all matrices for all elements. To find the individual stiffness matrix of an element, it only
needs to be multiplied by the Young’s modulus of that element. How this Young’s modulus is determined is
discussed in Section 2.2. In the structured mesh-type, all elements are the same rectangular shape. There-
fore, this type of meshing is generally only applicable to rectangular design domains. All structures in this
thesis are modelled in 2D, since a 3D model would be much more extensive and involve more computational
effort. The goal here is to see if the density-based topology optimization yields a satisfactory result in 2D
before extending to 3D simulations. Non-linearities of the structures will not be taken into account. A linear
analysis will be used, since this is less computationally intensive. The focus is on small displacements and
rotations for which it is assumed that a linear analysis will give a sufficient approximation.

The rest of this this Chapter will focus on the steps that are necessary, within each design iteration
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of the topology optimization process, to extract the displacement field of the obtained structure for the
current values of the design variables so this can be used for the objective function and thus to evaluate the
performance of the structure.

2.2 Analysis of the obtained structure within each iteration

A gradient based optimizer, MMA, will be used to update the values of the design variables for each iteration
in the optimization. This is done based on current values and sensitivities of the objective and constraint
functions. To evaluate the objective and constraint functions, several steps are incorporated in every iteration
to obtain the displacement field of the structure resulting from the current values of the design variables. This
Section will discuss these steps in detail. The full process is visualized in Fig. 2.1. The vector x represents a
density distribution over the design domain. These densities are the design variables of the problem.

The first step is to filter this density distribution. Filtering is necessary to avoid checkerboarding and
mesh-dependency [17]. The filter will define a filtered density x̃ as a weighted average of the design variables
in a neighbourhood of radius rfil. The filtered variables x̃ will look like [29]:

x̃ = DIx (2.1)

In this equation, the matrix DI is a matrix that includes the weights and constant parameters associated
with the filter. For more background on how this matrix is set-up, refer to Fernández, Yang, Koppen, et al.
[29].

To further improve on the manufacturability of the design, a robust design approach is adopted that
adds eroded, dilated and intermediate density distributions [30]. The eroded distribution (x̄ero )represents
a uniformly thinned structure, the dilated distribution (x̄dil) represents a uniformly thickened structure and
the intermediate distribution (x̄int) represents the intended design. These three designs are obtained from
the filtered density field using the following smoothed Heaviside function [29]:

x̄e = H(x̃e, β, µ) =
tanh(βµ) + tanh(β(x̃e − µ))

tanh(βµ) + tanh(β(1− µ))
. (2.2)

In this equation, x̃e represents the filtered variable. The parameter β controls the steepness of the
Heaviside function and decreases the number of grey elements in the design. The parameter µ controls the
threshold of the projection. The eroded, dilated and intermediate designs are obtained for the same β while
µ is varied. The Heaviside projection is implemented in such a way that over the course of the iterations β is
exponentially increased until a specified final value is reached. This way, the optimization is forced towards a
0-1 configuration, meaning that elements either have density 0 or density 1. To keep this section brief, from
here on out the process will be described using only variables x̄. The three designs will not be further used
in the equations. For the objective and constraint functions it will be clarified in the text which design (i.e.
dilated, eroded or intermediate) is involved as well as in the final optimization formulation.

After the projection the Young’s modulus of the elements is determined by the modified simplified isotropic
material with penalization (SIMP) approach [31]:

x̂e = xmin + x̄pe(1− xmin)). (2.3)

In this formulation, xmin is the minimal density that can be prescribed to an element, which is defined as
xmin = Evoid/E. Here, Evoid signifies the Young’s modulus that is prescribed to a void element and E is the
Young’s modulus of the material. p is the penalty factor (usually set to 3) and xmin is usually set to a small
positive number, to avoid singularity of the stiffness matrix. The density variables x̂e are linearly translated
to the Young’s modulus by: Ee = x̂eE.

In the next steps, the system stiffness matrix K is assembled and the following finite element problem is
solved:

Ku = p. (2.4)

In this equation, u indicates the nodal displacement field of the structure and p indicates the external nodal
loads. The obtained nodal displacement field can than be used to evaluate the performance of the structure
in this iteration. More on this performance evaluation can be found in Chapter 3.
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Figure 2.1: A graphical representation of the analysis in each iteration of the topology optimization process

2.3 Sensitivities

To enable the optimizer to improve the functionality of the design, sensitivity information is required. These
sensitivities are used by the gradient based optimizer to update the design variables. Please note that in
this section, for the purpose of clarity and brevity, the dependencies of each function are not written down
explicitly. The sensitivities of the responses, that is the objective function and constraints, need to be
evaluated with respect to the design variables. In order to do that, the sensitivity of the output of each
block in the flowchart of Fig. 2.1 with respect to the input of that block needs to be calculated. Using the
chainrule, the final sensitivity of a function can then be found. The sensitivity of the objective function (f)
can be calculated as:

df

dx
=
df

du

du

dK

dK

dx̂

dx̂

dx̄

dx̄

dx̃

dx̃

dx
. (2.5)

In the first step, the sensitivities of the density filter and Heaviside projection can be calculated as [29]:

dx̄

dx
=
dx̄

dx̃

dx̃

dx
= DIJ. (2.6)

Here J is the Jacobian of the Heaviside function defined as J = diag(H ′(x̃1), ...,H ′(x̃N )). Here H ′(x̃i) is
the derivative of H with respect to x̃i. The sensitivity of the SIMP interpolation is fairly straightforward:

∂x̂

∂x̄e
= px̄p−1

e (1− xmin). (2.7)

The sensitivities du
dK

dK
dx̂ can be directly calculated as du

dx̂ , via differentiation of Ku = p:

dK

dx̂
u + K

du

dx̂
=
dp

dx̂
. (2.8)

Which yields:
du

dx̂
= K−1(

dp

dx̂
− dK

dx̂
u). (2.9)

Where dp
dx̂ = 0. However, du

dx̂ is usually not directly calculated because of the computational effort this
involves. Instead, the adjoint method is used, which results in the following sensitivity for the objective
function:

df

dx
= −λT dK

dx̂
u
dx̂

dx
(2.10)

Where λ can be found from solving the adjoint equation:

Kλ =
df

du
(2.11)

For more information on this, please refer to Tortorelli and Michaleris [32].
To complete the sensitivity analysis, the sensitivities of the objective function f and constraint functions

gk should be evaluated. These are set-up for the compliant variable-camber morphing wing design problem
in Chapter 4.
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Chapter 3

Objective function investigation

In this Chapter, an investigation into an objective function that can evaluate the shape of a shape-morphing
structure is presented. First, the least-squares-error (LSE) objective function that is often suggested in
the literature for this application is discussed in Section 3.1. This is done based on a numerical example
involving a shape-adaptable surface mechanism. In Section 3.2, the performance of the LSE objective function
in the more complex case is compared to the performance of a dot-product objective and in Section 3.3, an
optimization of the stiffnesses of several springs in series is performed in order to explain the difference
between performance of the two objective function formulations.

3.1 Shape-adaptable surface mechanisms with a LSE objective
function

In the literature, a least squares error (LSE) is frequently suggested as an objective function for the opti-
mization of compliant shape-morphing structures, look for example at Lu and Kota [22] and Tong, Ge, Sun,
et al. [25]. A typical LSE objective is defined as:

LSE =

√√√√ N∑
i=1

(xdef
i − xtar

i )2 +

N∑
i=1

(ydef
i − ytar

i )2. (3.1)

In this equation, xdef and ydef define the coordinates of several sample points on the surface in the
deformed state. xtar and ytar are the coordinates of these same sample points in the desired deformed shape.
This way, the position of the sample points in the deformed state here obtained from the finite element analysis
in the iteration, can be compared to their desired position and be improved upon by the optimization.

To test the effectiveness of this objective, a test case was set up for a compliant shape-adaptable surface
mechanism. This is a mechanism which should change the shape of its top surface as a response to a
prescribed input displacement. Two different loading conditions were considered in this optimization. First
of all, see Fig. 3.1a. The goal of the optimization is to obtain a compliant mechanism that can deform the
top surface into a cosine shape, as defined by the blue line, for a prescribed unit input displacement at input
1. The top surface of the mechanism is a non-design domain with element densities xe = 1, and both sides
are fixed. When elements are part of the non-design domain, the elements densities xe are fixed and are not
part of the variables of the optimization. This loading case is clarified in further equations by subscript 1.
The second load case (see Fig. 3.1b) is used in the optimization to impose a compliance constraint that will
ensure a certain amount of stiffness between the input and output. For this constraint, the compliance of the
structure (C(x)) should be smaller than a certain amount Cmax. The compliance of the structure is imposed
on the eroded design and can be calculated by:

C(x) = u(x)TK(x)u(x) = u(x)Tp. (3.2)
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(a) boundary conditions, design domain and objec-
tive for the shape adaptable complaint mechanism.
A mechanism should be obtained of which the top
surface gains the shape described by the blue line,
for an input displacement at input 1

(b) The boundary conditions for the loadcase for
which a compliance constraint was implemented. For
input for F, there should be a maximal amount of
compliance.

Figure 3.1: The two loadcases for the optimization of the shape-adaptable surface mechanism. a) shows the
loadcase for which the system is optimized, b) shows the loadcase for which the compliance constraint was
implemented.

Since p is the prescribed load on the input, this basically places a constraint on the displacement of the
node at which the force is applied. This constraint is imposed on the load condition as shown in Fig. 3.1b,
this load case will be clarified in equations with the subscript 2.

A volume constraint, which restricts the total amount of volume of the obtained structure, was also
imposed. This is done by placing a constraint on the volume of the structure, in which the volume may not
exceed a specified maximum volume. This is included in the optimization by placing a constraint on the
mean volume fraction of the design domain as follows:

N∑
e=1

xe

N
≤ Vmax. (3.3)

In this equation, Vmax represents the maximum mean volume fraction of the design domain and N is the
total number of design variables.

The optimization problem in negative-null form then is defined as:

min f(x) =

√√√√ M∑
i=1

(udef,int
1.i − utar

i )2,

s.t.
u2(xero)Tp

Cmax
− 1 ≤ 0,

N∑
e=1

xe

NVmax
− 1 ≤ 0,

0 ≤ xmin ≤ xe ≤ 1, e = 1, ....., N.

(3.4)

Where M is the total amount of nodes on the top surface, udef
1,i is the obtained nodal displacement in

vertical direction for node i on the top surface as predicted by the finite element analysis for the first load
case and utar

i is the target nodal displacement of node i.
The values chosen for the several constants in the optimization can be found in Table 3.1. The material

constants were assumed to be Young’s modulus E = 69 GPa, Poissons ratio ν = 0.32 and density ρ = 2710
kg/m3. The compliance constraint was implied for the second load case. The goal here is to ensure that a
maximum amount of displacement of 1e − 5 m of this node is obtained if the force is set to F = 1 N. The
maximum volume fraction Vmax was set to 0.4.
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The obtained structure for this problem is shown in Fig. 3.2a. These are the scaled results of the linear
analysis, this will be true for all deformed structures shown in this Chapter. As can be seen in Fig. 3.2b, the
output shape of the top surface is indeed a cosine, which indicates that the LSE objective function performs
well here.

Table 3.1: Constant values for the topology optimization of the shape-adaptable surface mechanism

Constant Value

E 69e9 GPa
ν 0.32
ρ 2710 kg/m3

F 1 N
Cmax 1e− 5
Vmax 0.4
β 0.5
µ 0.5

(a) The obtained mechanism in the topology opti-
mization.

(b) The expected deformed state of the shape adapt-
able surface mechanism. The red line indicates the
target shape it was optimized for.

Figure 3.2: The obtained shape adaptable surface mechanism in both undeformed (a) and deformed (b) state

Next, the LSE was tested for a more complex case in which a second input was added for which the top
surface should obtain a different shape than for input 1. This was done to see if the LSE objective is also able
to obtain good results for complex cases relevant to the compliant variable-camber morphing wing design.
The location of the second inputs and the shapes are defined in Fig. 3.3. The first input should now obtain
a cosine of double the wavelength than before, while inputs 2 (which are simultaneously actuated) should
obtain the original cosine shape. When input 1 is actuated, inputs 2 are fixed and vice versa. The boundary
conditions and compliance load case do not change. The obtained mechanism in this case can be seen in
Fig. 3.4, and the deformed shapes in Fig. 3.5.

As can be seen, the deformed shapes for the more complex case are not very satisfactory. For input 1,
the top surface does not resemble the preferred output shape at all. Inputs 2 do slightly better as the output
shape is recognizable, but still very different from the prescribed shape.
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Figure 3.3: The second, more complex situation for the shape adaptable compliant mechanism. The two
different input displacements should produce a different shape of the top surface. A displacement at input 1
should produce the blue target curve. Input displacements at inputs 2 should produce the red target curve.

Figure 3.4: The shape adaptable mechanism obtained for 2 different inputs and outputs for the LSE objective
function, as defined in Fig. 3.3

(a) The deformed state of the shape-adaptable sur-
face mechanism with the LSE objective function
when input 1 is actuated. The red line indicates the
desired deformed shape of the top surface.

(b) The deformed state of the shape-adaptable sur-
face mechanism with the LSE objective function
when inputs 2 are actuated. The red line indicates
the desired deformed shape of the top surface.

Figure 3.5: The deformed states of the shape-adaptable surface mechanisms for the two different inputs
obtained from the optimization with a LSE objective function. in (a) input 1 is active, while in (b) inputs 2
are active.
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3.2 Comparison LSE and dot-product objective function for a
shape-adaptable surface mechanism

To improve on the performance of the topology optimization, a different type of objective function was
proposed and implemented for the shape-adaptable surface mechanism. The objective function f(x) is
developed using a dot-product, where the magnitudes of the displacement vectors are divided out. This
formulation is defined as:

f(x) = 1− utar · udef(x)

|utar||udef(x)|
. (3.5)

Where 0 ≤ f(x) ≤ 1. This objective purely focuses on the shape of the deformed surface, while the
magnitude of the total deformation is not taken into account. The minimal magnitude of the deformation
will be specified by a constraint. Since the deformed state is not completely fixed, there is some freedom in
the output displacement magnitude. The optimization then becomes:

min f(x) = 1− utar · udef
1 (xint)

|utar||udef
1 (xint)|

,

s.t. −
uint

maxinp1,1

umin
+ 1 ≤ 0,

−
uint

maxinp2,1

umin
+ 1 ≤ 0,

u2(xero)Tp

Cmax
− 1 ≤ 0,

N∑
e=1

xe

NVmax
− 1 ≤ 0,

0 ≤ xmin ≤ xe ≤ 1, e = 1, ....., N.

(3.6)

Here, umaxinp1,1 indicates the displacement of the node at the top of the prescribed cosine shape for input
1 and umaxinp2,1 indicates the displacement of the node at the top of the prescribed cosine shape for inputs
2. For the obtained structure see Fig. 3.6 and for the deformed shapes see Fig. 3.7. As can be seen in these
figures, the dot-product objective obtained much better results that the LSE objective did as the shapes for
both input 1 and inputs 2 match the prescribed shapes nearly perfectly.

The question now remains why is this dot-product objective more effective than the LSE objective. One
of the reasons might be that the LSE is very restrictive as there is not only a specific shape prescribed, but
also an exact displacement of all sample points is required. The dot-product has a bit more freedom here,
since the exact displacements are filtered out. The goal of the objective is to gain a certain shape, where
a minimum amount of output displacement is prescribed in a constraint. This displacement is not entirely
fixed, but has only a lower bound. This means that, even if the displacement is a bit bigger, while the
output shape remains similar to the prescribed shape, the objective still goes towards zero. This way, the
dot product has multiple optimums while the LSE objective has strictly one minimum. This should make it
easier for the optimizer to find a minimum in the dot-product case. To gain understanding of how these two
different types of objective functions behave, a minimum working example with two variables was analysed.
The results of this can be found in Section 3.3.
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Figure 3.6: The shape adaptable mechanism obtained for 2 different inputs and outputs as defined in Fig. 3.3,
for the dot product objective

(a) The deformed state of the shape-adaptable sur-
face mechanism when input 1 is actuated, for the dot-
product objective. The red line indicates the desired
deformed shape of the top surface.

(b) The deformed state of the shape-adaptable sur-
face mechanism when inputs 2 are actuated, for the
dot-product objective. The red line indicates the de-
sired deformed shape of the top surface.

Figure 3.7: The deformed states of the shape-adaptable surface mechanisms for the two different inputs, with
a dot product objective. in (a) input 1 is active, while in (b) inputs 2 are active.

3.3 A minimum working example

To analyze the behaviour of the two different objective functions an example was set up using two springs in
series, see Fig. 3.8. For the first optimization, the stiffnesses k1 and k2 are the design variables. This problem
is optimized for a target displacement utar of the two nodes, while the system is subjected to force F . This
optimization is performed using fmincon in Matlab [33], with a sequential quadratic programming (SQP)
algorithm. This is gradient based, in which the sensitivities are calculated using finite differences. The code
for this optimization can be found in Appendix A.0.1. The following optimizations were performed:

min f(k) = 1− utar · udef(k)

|utar||udef(k)|
,

s.t.
u2

utar
2

− 1 = 0,

ki > 0 i = 1, 2,

(3.7)

min f(k) =

√√√√ 2∑
i=1

(udef
i − utar

i )2,

s.t. ki > 0 i = 1, 2.

(3.8)
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Figure 3.8: The example used to analyse the behaviour of the two different objective functions. Two linear
springs in series, with a force F applied in horizontal direction to the second node.

The constraint on the output displacement for the dot-product objective (Eq. (3.7)) is here placed as
an equality constraint, to make sure both cases iterate towards the same optimum. This will allow for a
comparison of their convergence speed and performance. For this optimization, utar = [0.1 0.15], with initial
values for k = [1 1]. The results are displayed in Fig. 3.9. The contour plots of the objective functions show
a clear difference between the shapes of the two objectives. While the LSE objective has one clear optimum
located in a slender valley, the dot-product objective has a complete line of optima and the optimum is
constrained by the equality constraint. This equality constraint has the same shape as the valley of the
LSE objective (see Fig. 3.9b). Both formulations resulted in the (correct) optimum of k = [10 20]. The
dot-product formulation obtained this optimum in 19 iterations, and the LSE formulation obtained it in 44
iterations. The dot-product thus finds the optimum more than twice as fast as the LSE formulation. Please
note that different values for the target displacement and initial design were tried, but all yielded similar
results.

(a) In this figure, a contour plot of the LSE objective func-
tion for the spring example is shown. The stars indicate
the values of k1 and k2 for the different iterations in the
optimization process.

(b) In this figure, a contour plot of the dot-product ob-
jective function for the spring example is displayed. The
blue line is the equality constraint on the magnitude of the
output displacement (as defined in Eq. (3.7)). The stars
indicate the values of k1 and k2 for the different iterations
in the optimization process.

Figure 3.9: Contour plots of the two different objective functions including constraints and iterations for an
optimization of the stiffnesses of two springs in series. in a) the plot for the LSE objective function, in b) the
plot of the dot-product objective function
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To make the example more equivalent to the topology optimization, the spring stiffnesses were assumed to
be depended on density x, where ki = x3

i . The results of this can be found in Fig. 3.10 (for the Matlab script,
see Appendix A.0.2). For this example the difference in number of iterations is even more profound. While
the LSE formulation needs 29 iterations in order to find the optimum, the dot-product formulation only
needs 11. These results all seem to indicate that the dot-product formulation creates an objective function
which is easier to minimize, than the LSE formulation. While the dot-product has a line at which it becomes
zero and always one clear direction in which to move in order to decrease the value of the objective value,
the optimum of the LSE is located in a slender valley. The shape of this valley seems to be what causes
the difficulty in finding the optimum for the LSE case. Once the objective function value for an iteration is
located in the valley, it can be seen that many, small steps in variable value are needed before the optimizer
reaches the optimum (see Fig. 3.11).

Finally, the optimization was extended to include more springs in series, to asses how this influences the
results of the different objectives (for the Matlab script, see Appendix A.0.3). For this utar was quadratically
increased for each point according to:

utar
i = 0.05(i− 1)2 + 0.1 (3.9)

Where i is the number of springs in the optimization. The results are displayed in Table 3.2. It can be
seen that if the number of springs, and therefore the number of variables, is increased the LSE formulation
consistently requires more iterations to reach the optimum than the dot-product formulation does. In the
lower regions (N = 2, 3, 4, 10, 50, 100, with N signifying the number of springs and thus the number of design
variables) the ratio between number of iterations for the LSE-objective and the dot-product objective stays
between 0.9 and 3. However, when the complexity of the optimization is increased by increasing the number of
design variables up to 500, the difference in performance becomes much more pronounced. The optimization
with the dot-product objective gets to the optimum up to 15 times faster than the LSE optimization. The
dip in the ratio for 50 variables is a coincidence, when the optimization is run with slightly different starting
conditions, the number of iterations for the LSE immediately jumps up to 377, while the amount of iterations
for the dot-product stays roughly the same at 271. These results are a clear indication that the dot-product

(a) In this figure, a contour plot of the LSE objective
function for the spring example is shown, where ki = x3

i .
The stars indicate the values of x1 and x2 for the different
iterations in the optimization process

(b) In this figure, a contour plot of the dot-product objec-
tive function for the spring example is displayed, where
ki = x3

i . The blue line is the equality constraint on
the magnitude of the output displacement (as defined in
Eq. (3.7)). The stars indicate the values of x1 and x2 for
the different iterations in the optimization process

Figure 3.10: Contour plots of the two different objective functions including constraints and iterations for an
optimization of the stiffnessess of two springs in series. In a) the plot for the LSE objective function, in b)
the plot for the dot-product objective function.
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Figure 3.11: A zoom of the valley of the LSE objective function from Fig. 3.10a. It can be seen that in
the valley many iterations are needed, with very small steps, in order to find the optimum of the objective
function

objective performs better than the LSE objective. While for simple cases this difference is only noted in the
amount of iterations needed to find the optimum, it is hypothesized that once the optimization becomes more
complex, including more constraints, this could result in the LSE optimization not reaching an optimum,
while the dot-product still does. This can explain why the dot-product objective produces better results in
complex topology optimizations than the LSE objective function does.

It can be concluded from the above that for the density-based topology optimization of compliant shape-
morphing structures the dot-product objective function is the best option. It converges faster than its LSE
counterpart and is more capable to reach an optimum in complex cases.

Table 3.2: This table contains the number of iterations needed for the different objective function formula-
tions, with a different amount of springs in series. Each spring equals one design variables, so the amount of
springs is equal to the number of design variables in the optimization.

Number of springs Number of iterations LSE Number of iterations dot-product Ratio LSE:dot-product

3 44 15 2.9333
4 43 22 1.9545
10 88 74 1.1892
50 266 284 0.9366
100 414 242 1.7107
500 1959 130 15.0692
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Chapter 4

Numerical examples

In this Chapter, the suggested method for the topology optimization of shape-morphing structures will be ap-
plied to the design of a compliant variable-camber morphing wing in two numerical examples. In Section 4.1,
the problem definition of the variable-camber morphing wing will be discussed, the final optimization formu-
lation including the objective function and constraint functions and their sensitivities will be discussed and
the constants used during the topology optimization will be presented. In Section 4.2, a numerical example
is presented, in which a problem arose with the value of xmin. Finally in Section 4.3, the final design of the
variable-camber morphing wing will be presented and analysed.

4.1 The design problem of a variable-camber morphing wing

In this Section, the design problem of a variable-camber morphing wing will be further defined. In Sec-
tion 4.1.1, the problem is defined, and in Section 4.1.2 the optimization formulation is presented, including
the sensitivities of the objective and constraint functions.

4.1.1 Problem definition of a variable-camber morphing wing

The morphing trailing edge will be designed using the NACA 2412 airfoil shape with a chord length of
200 mm, which is suitable for an unmanned, small aircraft. Since the focus is on the trailing edge, only the
second half of the profile is considered. In the optimization, two different loading conditions are taken into
account. First, there is the loading condition where the actuator provides an input force (see Fig. 4.1a). Here
it is assumed that the top left side of the skin is where the morphing trailing edge is rigidly attached to the
front part of the airfoil profile. The actuation of the trailing edge is located at the bottom left. This is a
slider system which is why this part of the wing is constraint in vertical direction. The actuator provides an
input force in horizontal direction. The second loading condition, as presented in Fig. 4.1b, is the case where
the dynamic pressure on the wing is modelled. In order to have a representation of dynamic pressure on the
surface of the wing that the trailing edge should be able to endure, it is calculated based on a fixed airspeed
of v = 20 m/s. This airspeed is equivalent to airspeeds for small, unmanned aircrafts [34]. The pressure on
the airfoil can then be calculated via [35]:

q =
1

2
ρv2. (4.1)

In this equation, q represents the dynamic pressure on the wing and ρ = 1.225 kg/m3 represents the
density of air. This results in a dynamic pressure of 245 Pa. In reality, the pressure profile differs over
the airfoil, however for simplicity it is here assumed that the pressure is equally distributed over the airfoil
surface.

The desired deformed shape of the airfoil is a quadratic shape with constant curvature. It has been shown
that such a parabolic flap has good aerodynamic performance as it can increase the lift coefficient with a low
drag penalty [2], [7], [36]–[38]. The desired deformed shape can be seen in Fig. 4.2. It should be noted that
for the purpose of the topology optimization only the shape of the top surface is considered in the objective
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(a) The boundary conditions for the first loading condition
considered in the topology optimization. Fin represents
an actuator force. The left bottom edge is constraint as a
slider: no rotation, and no displacement in vertical direc-
tion.

(b) The representation of the dynamic pressure, which is
the second loading condition considered in the topology
optimization. A static equally distributed load, based on
a constant airspeed of 20 m/s. This distributed load is
modelled as point loads equally distributed over the top
and bottom surface of the trailing edge

Figure 4.1: Schematics of the boundary conditions (a) and the representation of the dynamic pressure (b).

Figure 4.2: A graphical representation of the desired shape of the morphing trailing edge. The dashed line
indicates the original, neutral shape of the airfoil, the solid line represents the desired deformed shape of the
airfoil. Adapted from [38]

function. The topology optimization is therefore concerned with creating a structure with a top surface that
has a quadratic shape after deformation, i.e. the top surface should follow a curve defined by y = −ax2,
where y is the vertical displacement of a node on the top surface at location x. The a is a constant.

As was mentioned in the previous Chapter, a structured mesh with rectangular elements is used to mesh
the design domain. This is usually applicable to rectangular design domains. However, the design domain
of the NACA 2412 airfoil is not rectangular. To circumvent this problem, the shape of the airfoil can be
projected onto the rectangular mesh, see Fig. 4.3. The elements outside the airfoil are then selected as a
non-design domain, comprising of void elements. The elements on the edge of the domain, i.e. the skin of the
morphing wing, are also designated non-design domains, but are assigned as containing material (xe = 1).
This is graphically represented in Fig. 4.3.

4.1.2 Optimization formulation

The optimal final configuration for the top surface of the variable-camber morphing wing is the quadratic
shape which is defined by utar. utar is a displacement vector that contains the target displacements in vertical
direction of the nodes on the top surface of the trailing edge. This displacement field needs to be compared
with the displacement field of those degrees of freedom obtained from the finite element analysis in the current
iteration of the optimization. The relevant degrees of freedom, that is to say the vertical degrees of freedom
of the nodes on the top surface of the trailing edge, are selected from u(x) and stored in vector utop(x). This
is done via:

utop = Lu (4.2)

In this equation, L is a selection vector which selects the vertical displacements of the nodes on the top
surface of the trailing edge.
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(a) The NACA 2412 airfoil shape drawn on a design domain
with a structured mesh

(b) The domain divided into design and non-design do-
mains: dark blue indicates void elements in a non-design
domain. Red indicates material in a non-design domain.
Grey indicates the design domain of the topology optimiza-
tion.

Figure 4.3: The build-up of the design and non-design domains of the optimization. in a) the shape of the
NACA 2412 airfoil drawn on the structured mesh. in b) the build up of the design and non-design domains
is shown.

Please note that u implicitly depends on K and K is dependent on x̂ and so on. However, for ease
of notation we will here write a direct dependency on x. These vectors are then used in the dot-product
objective function as described in the previous Chapter.

The constraints of the optimization revolve around the three main requirements of the morphing wing
namely flexibility, stiffness and weight. First, a constraint is placed on the magnitude of the output displace-
ment. This constraint ensures that the structure is flexible enough to obtain a certain amount of output
displacement for a specified actuator input force. This constraint is formulated as a minimal amount of
displacement (umin) for the tip of the trailing edge (utip(x)). It is placed on the dilated design, since this is
the most stiff design and for the loadcase as represented in Fig. 4.1a. Second, a compliance constraint was
integrated for the dynamic pressure as presented in Fig. 4.1b in which the compliance of the structure (C(x))
should be smaller than a certain amount Cmax. This ensures that the shape of the trailing edge does not
change while it is subjected to dynamic pressure during flight.

Finally, to ensure a light-weight structure, a constraint should be placed on the maximum allowed mass
of the structure. This is done by placing a constraint on the volume of the structure, in which the volume
may not exceed a specified maximum volume. This is included in the optimization by placing a constraint on
the mean volume fraction. The topology optimization of the compliant trailing edge can then be expressed
in negative null-form as:

min f(x) = 1−
utar · uint

top,1(x)

|utar||uint
top,1(x)|

,

s.t. −
udil

tip,1(x)

umin
+ 1 ≤ 0,

uero
2 (x)Tp

Cmax
− 1 ≤ 0,

N∑
e=1

xe

NVmax
− 1 ≤ 0,

0 ≤ xmin ≤ xe ≤ 1, e = 1, ....., N.

(4.3)

For the sensitivity of the objective with respect to the design variables, we look at ∂f
∂uj

. Using the quotient

rule, the following derivative is found:

∂f

∂uj
= −Lj

|utar||Lu|utar
j − utar · Lu|utar| 1

2|Lu|2Ljuj

|utar|2|Lu|2
(4.4)

Finally, the sensitivities of the constraint functions should be evaluated. The constraint functions will be
referred to as gk, with k = 1, 2, 3 for respectively the magnitude, compliance and volume constraints.
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For the sensitivity of the magnitude constraint, please note that utip is obtained from u in a similar way
as in Eq. (4.2), but with a different selection vector M. The sensitivities of the constraints are given below:

∂g1

∂ui
= −Mi

1

Miui
, (4.5)

∂g2

∂ui
=

pi
Cmax

, (4.6)

∂g3

∂xe
=

1

NVmax
. (4.7)

4.1.3 Optimization constants

Before the first numerical example is performed the values of the different constants need to be selected.
These can be found in Table 4.1 and will be further explained here. First of all, a material was chosen of
which the material parameters are given in Table 4.1. This material is light weight and reasonably flexible.
It is not a highly flexible material since that would make it difficult to create the stiffness that the variable-
camber morphing wing needs. It was determined that for an input force Fin of 5 N, the tip of the wing should
displace 0.01 m in vertical displacement. This ensures that for reasonable actuation forces (between 5 and
20 N) a camber of up to 20◦ can be reached. The value of the compliance constraint was chosen in such a
way that for the given dynamic pressure of 245 Pa the deflection of the skin was less than 0.003 m. This is
necessary to ensure that the airfoil will not deform drastically under the dynamic pressure, but will maintain
its shape. The maximum allowed volume fraction Vmax is set to 0.1, in order to ensure the structure is light
weight. The parameters of the Heaviside projection were set to β = 0.5 and µ = 0.5. The parameter xmin is
not listed in this table, since it varies between the different numerical examples. Its value will be provided
for each example separately.

Table 4.1: Constant values for the topology optimization

Parameter Value

E 0.4 GPa
ν 0.45
ρ 1100 kg/m3

Fin 5 N
utip 0.01 m
Cmax 1e− 8
Vmax 0.1
β 0.5
µ 0.5

4.2 The influence of element densities on expected deformations

In the first numerical example, the topology optimization was performed with the constants as shown in
Table 4.1 and xmin = 0.001. The resulting structure of the optimization can be seen in Fig. 4.4a. The
predicted deformed shape of the structure is displayed in Fig. 4.4b. The optimizer converged to an optimum
where the top surface of the trailing edge has a parabolic shape. This result was then verified with the
finite element software COMSOL Multiphysics. A linear 2D model was used with the exact same boundary
conditions and Fin as were used in the topology optimization. The resulting deformed profile was plotted
and is displayed in Fig. 4.5. The displacement profile as predicted by the COMSOL analysis does not match
the profile predicted by the optimization. Instead of a parabolic curve, the biggest part of the displacement
takes place in the tip of the profile while the first half is relatively stiff and hardly deforms at all.

It is hypothesised, that the reason for this discrepancy can be found in the void elements. The domain
contains many of these elements and thus they can have a profound influence on the displacement, especially
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(a) The obtained structure from the optimization with xmin = 0.001.

(b) The deformed state of the structure, as approximated by the finite ele-
ment analysis. Note the deformation is scaled from the linear analysis.

Figure 4.4: The obtained structure from the optimization problem as defined in Eq. (4.3) in its undeformed
(a) and deformed (b) configuration.

Figure 4.5: The predicted deformed configuration of the profile, calculated by COMSOL Multiphysics. Please
note that the deformation is scaled, in order to make it visible. The deflection values can be found in the
legend of this graph.

in a bending-based problem such as this. When the density, and thus the Young’s modulus, of these void
elements is not low enough, they can add significantly to the bending stiffness of the problem and therefore
influence the outcome of the optimization. To test this, a simple analysis was performed on a beam in
bending. This analysis will be discussed in Section 4.2.1.

4.2.1 Beam in bending

To test the hypothesis that xmin has a significant influence on the displacement profile, an analysis was
performed for a beam in bending. In this analysis, the beam is fixed on the left side and a distributed load
is imposed on the top surface (see Fig. 4.6). First, one can consider a domain which entirely consists of the
beam (see Fig. 4.7a), or one can consider a larger domain in which the exact same beam is surrounded by
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void elements (see Fig. 4.7b). This simple problem can be used to show the effect of void elements on the
bending stiffness of a structure by analysing the tip displacement utip of the beam for different values of xmin.
This displacement can then be compared with the tip displacement of the model of the beam without voids,
to see if and how the void element density influences the displacement by evaluating:

ε =
∆utip

usolid
tip

(4.8)

where:

∆utip = usolid
tip − uvoid

tip (4.9)

In these equations, usolid
tip corresponds to the tip displacement of the beam without void elements around

it and uvoid
tip is the tip displacement of the beam with void elements around it. ∆utip is divided by usolid

tip to
gain a more thorough understanding of how big the difference between the displacements is as a percentage
of usolid

tip . The result of this analysis can be seen in Fig. 4.8. It is indeed true that the void element density
has a significant influence on the displacement of the beam as for xmin = 0.001 the difference is > 10%. It
is likely that this is thus also the cause of the incorrect bending profile of the morphing trailing edge. To
verify that the void element densities were indeed the cause for the bad prediction of the deformed profile,
the void element densities for the optimized trailing-edge were replaced by the value of xmin = 1e − 9 in
post-processing. The deformation was then calculated and is displayed in Fig. 4.9. This deformed profile is
similar to the deformation as predicted by the COMSOL analysis. It is thus important to make sure that for
the optimization the value of xmin is chosen sufficiently low, so that the stiffness of the void elements does
not influence the deformation of the structure. Based on the beam in bending result a maximum value of
xmin = 1e− 8 is suggested for future optimizations.

Figure 4.6: A graphical representation of the beam in bending test-case. The beam is fixed on the left, and
is subjected to a distributed load.

(a) The modelled beam, without
void elements

(b) The modelled beam, sur-
rounded by void elements

Figure 4.7: The two different models (a, b) which are used to analyse the influence of void elements on the
stiffness of a beam in bending.
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Figure 4.8: The result of the analysis. For different xmin, difference in tip displacement (∆utip) is displayed
as a percentage of usolid

tip , between the model with an without void elements.

Figure 4.9: The expected deformed profile of the optimized trailing edge for xmin = 1e − 9. Note the
deformation is scaled from the linear analysis.

4.3 Final design

For this numerical example, the topology optimization was performed with a minimal density value of
xmin = 1e − 8. The design that was obtained from the optimization and its expected deformed state can
be found in Fig. 4.10. This profile complied with all constraints and it shows the quadratic deformed shape
that was aimed for, with only a small deviation roughly in the middle of the shape. This deviation, where
the obtained shape is slightly less convex than the desired shape, is caused by the stiffness of the structure.
To further assess this result, its deformed state was compared to a COMSOL model of the same profile and
an eigenvalue analysis was done to gain a better understanding of the behaviour of the structure when the
actuator is either active or fixed. This can give information both about the stiffness of the structure and
about the deformation modes one might expect to see.

First, the structure was imported in COMSOL and its deformation calculated. This result can be seen
in Fig. 4.11. Notably, COMSOL shows the parabolic shape of the deformed top surface, indicating that the
prediction of the deformed state in the topology optimization is accurate. Also, for an input force of 5 N the
total tip displacement as predicted by COMSOL is 0.010907 m, this complies with the magnitude constraint
set in the optimization and indicates that the profile can be actuated with low actuation forces.

Second, the eigenvalue analysis was performed. First with the actuator input free, to see what the
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(a) The undeformed trailing-edge, as obtained by the topology optimization.

(b) The deformed state of the trailing-edge, as predicted by the optimization.
The red line indicates the desired, quadratic shape. Note the deformation is
scaled from the linear analysis.

Figure 4.10: The obtained trailing-edge in its neutral (a) and deformed (b) configurations.

Figure 4.11: The deformed profile as calculated by COMSOL. The colour map represents the amount of
displacement in [m].

eigenfrequency of the desired deformation mode is and what other modes are that might be excited and how
their stiffness is as compared to the desired deformation mode. Next, the modes of the structure when the
actuator input is fixed are analyzed, to see what kind of frequencies would interfere with the trailing-edge
while it is fixed in a certain state.

For the eigenvalue analysis with the free actuator input it was found that the first eigenmode is the
desired deformation mode and that it is located at an eigenfrequency of λ1 = 21.9 Hz. This indicates that
this mode is flexible and will require low actuation energy. This would also make the design suitable for
an active turbulence damping application. In such an application, the wing would be actuated in order to
actively dampen in-flight turbulence. This would have many advantages such as less wake turbulence at
take-off and landing, more comfort and better safety. For this type of damping, the actuation frequency is
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often up to 20 Hz since these are the frequencies at which turbulence is most severe [39]. This is also near
the frequency of the desired deformation mode, making it very energy efficient to actuate the system. The
other eigenfrequencies of the structure are in the range of 100 − 325 Hz, indicating that these modes are
significantly stiffer than the desired deformation mode and will not interfere with the actuation. For the
precise eigenfrequencies and mode shapes corresponding to those frequencies, see Appendix B.

If the actuation input is completely fixed, the first eigenfrequency is at µ1 = 71.3 Hz, which is relatively
low as compared to the other eigenfrequencies in this case, that are in the range of 200 − 400 Hz. These
are stiff modes and unlikely to cause problems. The mode shapes and exact frequencies can be found in
Appendix B. As mentioned before, airflow turbulence is most severe at low frequencies of up to 20 Hz. It is
therefore unlikely that the first eigenmode here will cause issues with respect to turbulence. It might however
interfere with aero-elasticity phenomena such as flutter and buffeting, but this is outside of the scope of this
thesis.

It was observed during the numerical examples that there is a big trade-off between the stiffness and the
obtained output shape of the wing. When the required stiffness was increased, the shape suffered. This also
shows that it is very complex to have both the required stiffness and flexibility of the profile with the allotted
maximum amount of material.

In conclusion, the obtained design seems to be a promising candidate for a morphing trailing edge, as it
shows the desired displacement profile and complies with the different demands of a morphing wing. Including
the skin in the design might have increased the complexity of the optimization, but it did not obstruct the
possibility of a promising design. Including the skin resolves the problem of designing a separate morphing
skin and allowed us to include the compliance of this part as well. The optimal design was 3D printed and
tested, to see if it shows the same promising qualities in real life as predicted by the optimization. The
experimental validation can be found in the following Chapter.
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Chapter 5

Experimental validation

A prototype of the designed variable-camber morphing wing was 3D printed and it was assessed whether
the deformed shape of the prototype matched the output shape as predicted by the linear analysis in the
optimization. The wing was printed using RS TPC Flex 45 filament, a highly flexible material with E = 95
MPa. This is a different material than included in the topology optimization, as the latter material was
unavailable. The 3D printed structure was based on a total chord length of 38 cm and the total length of the
designed trailing-edge is therefore 19 cm. This scaling was necessary to ensure that the 3D printers minimal
feature size would not interfere with the small connections in the trailing edge.

The experimental set-up is depicted in Fig. 5.1. Various deformed shapes, as predicted by the linear
analysis that was part of the optimization, were colour coded and printed. These predicted deformed shapes
ranged from blue, which is the neutral position of the trailing edge, green with a deflection angle of 6◦ and
yellow with a deflection angle of 12◦. The deflection angle keeps increasing with steps of 6◦ until the final
grey profile with a deflection angle of 30◦. The deflection angle is defined as the angle between a horizontal
line, drawn from the top of the neutral (blue) state and a line from the tip of the deformed profile to the
place where the horizontal line intersects the middle of the airfoil profile. The prototype of the variable-
camber morphing wing was fixed on the top left and the bottom left was mounted on a slider. Using the
slider, the prototype was deformed until the tip displacement matched that of one of the coloured predicted
deformed shapes. The profile of the prototype was then compared to the profile of that predicted deformed
shape. This process was repeated for all coloured predicted deformed shapes. It was hypothesized that
for small deformations (represented by the green and yellow predicted profiles) the profile of the prototype
would match the predicted profiles, while for larger deformations (represented by the red, black and grey
predicted profiles) the profile of the prototype would start to differ from the predicted profiles as linear
modeling assumptions become less valid with increased deformation. In this chapter only the pictures needed
to support the conclusions that are drawn are included, for the complete set of pictures of the experiment,
see Appendix C.

It was found that the deformed prototype matched the green predicted deformed profile (see Fig. 5.2).
However, from the yellow predicted profile onwards the profile of the prototype did not match the predicted
profiles perfectly, see for example Fig. 5.3 where the prototype is deformed according to the black profile.
The prototype appears stiffer than expected as the deformed top surface of the prototype is less convex
than the predicted profiles. This could be caused by the fact that the slider allowed for some rotation of
the bottom surface of the prototype. Additionally, it is possible that non-linear effects come into play when
larger deformations are reached. Apart from small differences in convexity of the top surface of the prototype
however, the deformation profile of the prototype showed a quadratic-like behaviour that could result in
superior performance during flight as compared to the traditional flap system.

It should be noted that, for large deformations, the slider structure experiences relatively large forces
perpendicular (in-plane) to the sliding direction. This is due to the inclination of the bottom surface to
rotate when deformed. The slider connection blocks this rotation, but does experience a force because of it.
In the prototype set-up, this caused problems because from a certain amount of deformation onwards, the
slider blocks itself. For future prototypes it is therefore recommended to use a slider or linear bearing that
is capable of dealing with these counter forces without blocking.
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Figure 5.1: The set-up for testing the predicted output shape. The 3D printed model is fixed on the top left
corner. The bottom left is fixed to a slider which slides through a metal profile. Behind the prototype, a
print out of expected output shapes is attached for different degrees of deformation.

Figure 5.2: The prototype deformed according to the green profile, with an angle of 6◦ with respect to the
neutral camber line.

Figure 5.3: The prototype deformed according to the black profile, with an angle of 24◦ with respect to the
neutral camber line.
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Chapter 6

Conclusions and recommendations

6.1 Conclusions

The design of variable-camber morphing wing is an active topic of research. This is a challenging design
problem because of the three inherently contradictory properties that are desired in a variable-camber mor-
phing wing namely flexibility, stiffness and a light-weight structure. Compliant mechanisms are a promising
candidate for application in a variable-camber morphing wing. The aim of this thesis was to design a com-
pliant variable-camber morphing wing using density based topology optimization. In the optimization, the
wing skin was included as a non-design domain. Including the wing skin as a part of the designed mechanism
solves not only the problem of the variable-camber morphing wing design, but also the challenging design
problem of a morphing skin.

The method presented in this thesis for the density-based topology optimization of compliant shape-
morphing structure, has shown to be able to obtain shape-morphing structures that adhere well to the
prescribed shape changes. The proposed objective function is a dot-product which focuses purely on the
output shape, while the magnitude of the output displacement is filtered out. This novel objective function
formulation based on a dot-product has much quicker convergence to the optimum than a LSE objective does.
This results in superior performance (i.e. the obtained structures with the dot-product objective comply with
the desired output shape better than the structures obtained with the LSE objective) of optimizations using
the dot-product objective function, especially when the optimized problem becomes more complex involving
multiple input-output relations or multiple contradictory constraints. This makes the dot-product objective
function a good candidate for application in the optimization of shape-morphing structures.

It has been shown that, in 2D, the proposed method produces good results for the variable-camber
morphing wing design problem: a design of the variable-camber morphing wing was obtained that resulted
in a quadratic deformed shape of the top surface, while it was also stiff enough to withstand the pressures
present during flight. It is important that the densities of the void elements are chosen sufficiently low to avoid
that these elements influence the stiffness of the obtained structure. It should be noted that the required
stiffness and the obtained output shape of the morphing wing are a trade-off. It was observed that as soon
as the required stiffness was increased, the obtained output shape of the profile became less quadratic-like.

A prototype of the obtained design for the morphing trailing edge was 3D printed and tested to see if the
deformed shape of the prototype was as predicted by the linear analysis. This was checked for different linear
scalings of the deformed profile as expected by the linear analysis, ranging from small deformations to much
larger deformations. The prototype performed well, i.e. the deformed shape matched the predicted deformed
shapes well. When the deformation increases, some deviation is seen as the deformed shape of the prototype
is slightly less convex than the expected deformed shape. This is probably caused by two things. First, the
slider has some play which allowed some rotation of the bottom surface of the wing. This might influence
the deformed profile. Additionally, when the deformation is bigger it is probable that non-linearities come
into play which may cause the prototype to differ from the predicted profile, since for the analysis linearity
was assumed.

In sum, the topology optimization of a compliant variable-camber morphing wing that includes the mor-
phing skin has proved to be an effective method that can obtain compliant shape-morphing structures that
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adhere well to required shape changes well. The dot-product objective function performs well, with quick
convergence to an optimum. The experimental validation shows that the obtained structure behaves as
predicted by the optimization for small deformations.

6.2 Recommendations for future research

Based on the work presented here several recommendations can be made for future research. First, it is
recommended that the methodology presented in this thesis is extended to a 3D topology optimization for a
variable-camber morphing wing. It is hypothesized that when performing a 3D topology optimization it be-
comes easier to obtain a quadratic output shape while maintaining stiffness due to the optional asymmetrical
placement of stiffening structures in spanwise direction. 3D modelling also has the advantage that the entire
trailing edge can be modelled, instead of only a cross-section. Aero-elasticity analysis should be considered
in the model as well, since effects such as flutter and buffeting are important to consider as they can cause
serious flight hazards when unaccounted for.

With respect to the production and testing of prototypes, it is recommended that the prototype is printed
using the material it was designed with. Furthermore, it is recommended that not only the deformed shape
of the prototype is assessed, but also the aerodynamic performance of the prototype is tested. This could be
done by performing windtunnel experiments, during which one can see what influence a compliant variable-
camber morphing wing has on lift- and drag coefficients. This would allow for the option to test the design
for stiffness under different dynamic pressures and other elasticity effects.
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Appendix A

Matlab code

A.0.1 Variables k

1 %% This matlab file contains a simple analysis of LSE vs Dot-product
2 % model: 2 linear springs in series
3 clear, close all
4

5 %% setting parameter values
6 umin = 0.15; % Minimum amount of displacement for magnitude constraint
7 F = 1; % Force of 1 N on end
8 u tar = [0.1 ; 0.15]; %target displacements of the nodes
9

10 %% Optimization with fmincon for LSE
11 % set the options of fmincon
12 options = optimoptions('fmincon','Display','iter','Algorithm','sqp', ...

'OutputFcn',@outputFcn global);
13 f LSE = @LSE;
14 k = fmincon(f LSE, [1, 1], [], [], [], [], [1, 1], [50,50], [], options)
15

16 % obtain output data of every iteration
17 global outputFcn global data
18 Values =[outputFcn global data.x];
19 k1 LSE = [];
20 k2 LSE = [];
21

22 % Store the spring stiffnesses at each iteration in vectors
23 for i = 1:length(Values)
24 if rem(i, 2) == 0
25 k2 LSE(end+1) = Values(i);
26 eLSE
27 k1 LSE(end+1) = Values(i);
28 end
29 end
30

31 %% optimization with fmincon for dot
32 % Set options for fmincon
33 options = optimoptions('fmincon','Display','iter','Algorithm','sqp', ...

'OutputFcn',@outputFcn global);
34 nonlincon = @dotconstraints;
35 f dot=@DOT;
36 q = fmincon(f dot, [1, 1], [], [], [], [], [], [], nonlincon, options)
37

38 % obtain output data of every iteration
39 global outputFcn global data
40 Values =[outputFcn global data.x];
41 k1 dot = [];
42 k2 dot = [];
43

44 % Store the spring stiffnesses at each iteration in vectors
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45 for i = 1:length(Values)
46 if rem(i, 2) == 0
47 k2 dot(end+1) = Values(i);
48 eLSE
49 k1 dot(end+1) = Values(i);
50 end
51 end
52

53 %% Create the functions that need to be plotted
54 % Grid of values for k 1 and k 2
55 K1 = linspace(1, 50, 100);
56 K2 = linspace(1, 50, 100);
57 [k1 plot, k2 plot] = meshgrid(K1, K2);
58

59 % Values of the different objectives and constraints on this grid
60 f LSE plot = sqrt(((F./k1 plot) - u tar(1)).ˆ2 + ((F*((1./k1 plot) + (1./k2 plot)))- ...

u tar(2)).ˆ2);
61 f dot plot = 1-(u tar(1).* (F./k1 plot) + u tar(2)* F*((1./k1 plot) + ...

(1./k2 plot)))./(sqrt(u tar(1)ˆ2+u tar(2)ˆ2)*sqrt(((F./k1 plot)).ˆ2 + (F*((1./k1 plot) ...
+ (1./k2 plot))).ˆ2));

62 g2 mag = -((F*((1./k1 plot) + (1./k2 plot)))./umin) +1;
63

64

65 %% Create Contour plots
66 figure
67 hold on
68 contour(k1 plot, k2 plot, f LSE plot, [0 .0500 .01000 .02000 .1 .5000], 'showtext', 'on');
69 plot(k1 LSE,k2 LSE, '*')
70 title('LSE objective function with iteration values')
71 xlabel('k 1')
72 ylabel('k 2')
73 legend('f {LSE}', 'Iterations values for k 1 and k 2')
74

75

76 figure
77 hold on
78 contour(k1 plot, k2 plot, f dot plot, [0.0 0.0 0.0001 0.001 .0500 .01000 .02000 .1 .5000], ...

'showtext', 'on')
79 contour(k1 plot, k2 plot, g2 mag, [0.0 0.0], 'LineColor', 'b', 'LineWidth', 2);
80 plot(k1 dot, k2 dot, '*')
81 title('Dot-product objective function with constraint and iteration values')
82 xlabel('k 1')
83 ylabel('k 2')
84 legend('f {LSE}','g {mag}', 'Iterations for k 1 and k 2')
85

86 %% Functions for optimizations
87 % LSE objective function
88 function [f LSE]=LSE(k)
89 F = 1;
90 u tar = [0.1 ; 0.15];
91 f LSE = sqrt((F/k(1)-u tar(1))ˆ2 + (F/(1/((1/k(1))+(1/k(2))))-u tar(2))ˆ2)/2;
92 end
93

94 % dot-product objective function
95 function [f dot] = DOT(q)
96 F = 1;
97 u tar = [0.1; 0.15];
98 f dot = 1 - ((u tar(1)*F/q(1)+ ...

u tar(2)*F/(1/((1/q(1))+(1/q(2)))))/(sqrt((F/q(1))ˆ2+(F/(1/((1/q(1))+(1/q(2)))))ˆ2)*
99 sqrt((u tar(1))ˆ2+(u tar(2))ˆ2)));

100 end
101

102 % non-linear constraints of dot-product objective
103 function [c, ceq] = dotconstraints(q)
104 F = 1;
105 umin = 0.15;
106 ceq(1) = -(F/(1/((1/q(1))+(1/q(2)))))+umin;
107 c=[];
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108 end

A.0.2 Variables x

1 %% This matlab file contains a simple analysis of LSE vs Dot-product
2 % model: 2 linear springs in series
3 clear, close all
4

5 %% setting parameter values
6 umin = 0.15; % Minimum amount of displacement for magnitude constraint
7 F = 1; % Force of 1 N on end
8 u tar = [0.1 ; 0.15]; %target displacements of the nodes
9

10 %% Optimization with fmincon for LSE
11 % set the options of fmincon
12 options = optimoptions('fmincon','Display','iter','Algorithm','sqp', ...

'OutputFcn',@outputFcn global);
13 f LSE = @LSE;
14 % nonlincon = @LSEconstraints;
15 k = fmincon(f LSE, [1, 1], [], [], [], [], [1, 1], [50,50], [], options)
16

17 % obtain output data of every iteration
18 global outputFcn global data
19 Values =[outputFcn global data.x];
20 k1 LSE = [];
21 k2 LSE = [];
22

23 % Store the spring stiffnesses at each iteration in vectors
24 for i = 1:length(Values)
25 if rem(i, 2) == 0
26 k2 LSE(end+1) = Values(i);
27 eLSE
28 k1 LSE(end+1) = Values(i);
29 end
30 end
31

32 %% optimization with fmincon for dot
33 % Set options for fmincon
34 options = optimoptions('fmincon','Display','iter','Algorithm','sqp', ...

'OutputFcn',@outputFcn global);
35 nonlincon = @dotconstraints;
36 f dot=@DOT;
37 q = fmincon(f dot, [1, 1], [], [], [], [], [], [], nonlincon, options)
38

39 % obtain output data of every iteration
40 global outputFcn global data
41 Values =[outputFcn global data.x];
42 k1 dot = [];
43 k2 dot = [];
44

45 % Store the spring stiffnesses at each iteration in vectors
46 for i = 1:length(Values)
47 if rem(i, 2) == 0
48 k2 dot(end+1) = Values(i);
49 eLSE
50 k1 dot(end+1) = Values(i);
51 end
52 end
53

54 %% Create the functions that need to be plotted
55 % Grid of values for k 1 and k 2
56 K1 = linspace(1, 5, 100);
57 K2 = linspace(1, 5, 100);
58 [k1 plot, k2 plot] = meshgrid(K1, K2);
59
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60 % Values of the different objectives and constraints on this grid
61 f LSE plot = sqrt(((F./(k1 plot.ˆ3)) - u tar(1)).ˆ2 + ((F*((1./(k1 plot.ˆ3)) + ...

(1./(k2 plot.ˆ3))))- u tar(2)).ˆ2);
62 f dot plot = 1-(u tar(1).* (F./(k1 plot.ˆ3)) + u tar(2)* F*((1./(k1 plot.ˆ3)) + ...

(1./(k2 plot.ˆ3))))./
63 (sqrt(u tar(1)ˆ2+u tar(2)ˆ2)*sqrt(((F./(k1 plot.ˆ3))).ˆ2 + (F*((1./(k1 plot.ˆ3)) + ...

(1./(k2 plot).ˆ3))).ˆ2));
64 g2 mag = -((F*((1./(k1 plot.ˆ3)) + (1./(k2 plot.ˆ3))))./umin) +1;
65

66

67 %% Create Contour plots
68 figure
69 hold on
70 contour(k1 plot, k2 plot, f LSE plot, [0 .0500 .01000 .02000 .1 .5000], 'showtext', 'on');
71 plot(k1 LSE,k2 LSE, '*')
72 title('LSE objective function with constraints and iteration values')
73 xlabel('x 1')
74 ylabel('x 2')
75 legend('f {LSE}', 'Iterations values for x 1 and x 2')
76

77

78 figure
79 hold on
80 contour(k1 plot, k2 plot, f dot plot, [0.0 0.0 0.0001 0.001 .0500 .01000 .02000 .1 .5000], ...

'showtext', 'on')
81 contour(k1 plot, k2 plot, g2 mag, [0.0 0.0], 'LineColor', 'b', 'LineWidth', 2);
82 plot(k1 dot, k2 dot, '*')
83 title('Dot-product objective function with constraints and iteration values')
84 xlabel('x 1')
85 ylabel('x 2')
86 legend('f {dot}','g {mag}', 'Iteration values for x 1 and x 2')
87

88 %% Functions for optimizations
89 % LSE objective function
90 function [f LSE]=LSE(k)
91 F = 1;
92 u tar = [0.1 ; 0.15];
93 f LSE = sqrt((F/(k(1)ˆ3)-u tar(1))ˆ2 + (F/(1/((1/(k(1)ˆ3))+(1/(k(2)ˆ3))))-u tar(2))ˆ2)/2;
94 end
95

96 % dot-product objective function
97 function [f dot] = DOT(q)
98 F = 1;
99 u tar = [0.1; 0.15];

100 f dot = 1 - ((u tar(1)*F/(q(1)ˆ3)+ ...
u tar(2)*F/(1/((1/(q(1)ˆ3))+(1/(q(2)ˆ3)))))/(sqrt((F/(q(1)ˆ3))ˆ2+(F/(1/((1/(q(1)ˆ3))+(1/(q(2)ˆ3)))))ˆ2)*

101 sqrt((u tar(1))ˆ2+(u tar(2))ˆ2)));
102 end
103

104 % non-linear constraints of dot-product objective
105 function [c, ceq] = dotconstraints(q)
106 F = 1;
107 umin = 0.15;
108 ceq(1) = -(F/(1/((1/(q(1))ˆ3)+(1/(q(2)ˆ3)))))+umin;
109 c=[];
110 end

A.0.3 Multiple springs

1 %% This matlab file contains a simple analysis of LSE vs Dot-product
2 % model: 2 linear springs in series
3 clear, close all
4

5 %% setting parameter values
6 N=500 % Number of springs in series
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7 F = 1; % Force of 1 N on end node
8 u tar = randomu(N); % Target displacements of the nodes, randomized increasing between 0 ...

and 1
9 start = ones(1,N); % Vector with starting point for optimization

10

11 %% Optimization with fmincon for LSE
12 % set the options of fmincon
13 options = ...

optimoptions('fmincon','Display','iter','Algorithm','sqp','MaxFunctionEvaluations', ...
500000, 'MaxIterations', 10000);

14 f LSE = @(k) LSE(k, F, u tar, N);
15 % nonlincon = @LSEconstraints;
16 k = fmincon(f LSE, start, [], [], [], [], [], [], [], options)
17

18 %% optimization with fmincon for dot
19 % Set options for fmincon
20 options = optimoptions('fmincon','Display','iter','Algorithm','sqp', ...

'MaxFunctionEvaluations' ,500000 ,'MaxIterations' , 10000);
21 nonlincon = @(q) dotconstraints(q, F, u tar, N);
22 f dot=@(q) DOT(q, F, u tar, N);
23 q = fmincon(f dot, start, [], [], [], [], [], [], nonlincon, options)
24

25 %% Functions for optimizations
26

27 % LSE objective function
28 function [f LSE]=LSE(k, F, u tar, N)
29 for i=1:N
30 for j=1:i
31 k part(j) = 1/(k(j)ˆ3);
32 end
33 keq(i) = sum(k part);
34 end
35

36 for m=1:N
37 LSE part(m) = (F*keq(m)-u tar(m))ˆ2;
38 end
39

40 f LSE = sqrt(sum(LSE part))/N;
41 end
42

43 % dot-product objective function
44 function [f dot] = DOT(q, F, u tar, N)
45 for i=1:N
46 for j=1:i
47 k part(j) = 1/(q(j)ˆ3);
48 end
49 keq(i) = sum(k part);
50 end
51

52 for m=1:N
53 num(m) = u tar(m)*F*keq(m);
54 den tar(m) = u tar(m)ˆ2;
55 den var(m) = (F*keq(m))ˆ2;
56 end
57

58 f dot = 1 - ((sum(num))/(sqrt(sum(den tar))*sqrt(sum(den var))));
59 end
60

61 % non-linear constraints of dot-product objective
62 function [c, ceq] = dotconstraints(q, F, u tar, N)
63 umin = u tar(N);
64

65 for i=1:N
66 for j=1:i
67 k part(j) = 1/(q(j)ˆ3);
68 end
69 keq(i) = sum(k part);
70 end
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71

72 ceq(1) = -(F*keq(N))+umin;
73 c=[];
74 end
75

76 %Set up randomized u tar
77 function [u tar] = randomu(N)
78 u tar = sort((1-0.001)*rand(N,1), 'ascend')
79 end
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Appendix B

Eigenfrequency analysis

Table B.1: The eigenfrequencies and modes in the case where the actuator input is free

Eigenfrequency λi Eigenmode

λ1 = 21.9 Hz

λ2 = 98.7 Hz

λ3 = 198.6 Hz

λ4 = 323.5 Hz
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Table B.2: The eigenfrequencies and modes in the case where the actuator input is fixed

Eigenfrequency µi Eigenmode

µ1 = 71.3 Hz

µ2 = 197.3 Hz

µ3 = 322.6 Hz

µ4 = 393.5 Hz
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Appendix C

Experimental images

Below, the output shapes of the prototype, as compared to print-outs of the different expected shapes can
be found. It can be seen that the deviation from the expected shapes gets bigger, when the total amount of
deformation is increased.

Figure C.1: Neutral position
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Figure C.2: 1st (green) deformed position

Figure C.3: 2nd (yellow) deformed position
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Figure C.4: 3rd (red) deformed position

Figure C.5: 4th (black) deformed position
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Figure C.6: 5th (grey) deformed position
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