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Abstract

Vehicle control automation is the next step in the development of vehicle active safety sys-
tems. One of the challenges in this development is to extend the operational range of the
control systems beyond stable behaviour of the vehicle to handle extreme emergency situ-
ations. Drift motion is a vehicle state outside the stable regime. Automated drift control
system design for autonomous vehicles is a recently investigated topic in the field of vehicle
engineering. Stability analyses revealed the existence of unstable drift equilibria, for which
control methodologies have been developed by multiple research groups around the world.

A lack of investigation was noticed in the literature into feasible sideslip estimation tech-
niques for implementation in a production setting, using solely on-board stock sensors. The
aim of this thesis was to develop a state estimation technique for reliable sideslip estimation
to support drift control using only on-board stock sensors: encoders (ENC), an inertial mea-
surement unit (IMU) and a camera. A computer vision algorithm (CVA) has been developed
that is able to track features on the ground surface with the camera. A small-scale vehicle
has been built to serve as an experimental testbed for state estimation. The vehicle motion
was tracked with high precision with an external camera which served as a benchmark for the
state estimator.

The raw signals of the sensors provided sideslip estimates with accuracies of 70-80% (IMU)
and 80-90% (CVA). However, the estimates based on the IMU are subject to drift while
the CVA shows significant outliers. To improve the estimates, two sensor fusion approaches
were developed: one where the CVA measurements were processed individually (individual
approach) and another where they were combined (combined approach). Fusing the mea-
surements improved the estimates significantly (above 90%). The combined method proved
to be superior to the individual method. The combined method was tested against valida-
tion experiments and obtained the same accuracy (90-100%), minimising the probability of
over-fitting the algorithm parameters.
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1-1 State of the Art Technologies and corresponding Challenges and Solutions.
Autonomous vehicle operation comprehends three stages. Perception (green) is
currently achieved with extensive sensor suites but they should be simplified to be
implemented on large-scale. Decision (blue) currently requires powerful computers
because of the complex human actors that are involved in traffic. The execution
stage (red) is how the system acts on the decisions, with mostly electronic actu-
ators. Electrical energy storage is difficult to implement on a large scale because
of the lack of infrastructure. Also, the bottleneck of advanced vehicle control
is usually the vehicle model of which the identification is still difficult in a mass
production setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1-2 Obstacle avoidance at high velocity. The green area represents the set of
potential paths on which the vehicle would have small slip angles. Outside of this
region, the steep steering angle input would lead to high amplitude sideslip, in
which the vehicle becomes unstable. The dotted black line represents the path on
which the vehicle would just barely avoid a collision. This situation thus requires
the vehicle to be handled in the unstable regime. . . . . . . . . . . . . . . . . . 3

1-3 Tire Model Parameters: Definitions. Subfigure a) shows the forces that are
exerted on the road surface at the tire-road contact point, b) and c) show a side-
and top-view to visualise the dynamic parameters used to describe the tire behaviour. 4

1-4 Tire Model Parameters: Dynamic Relationships. It can be clearly observed in
the right plot that the lateral friction decreases with longitudinal slip. This is an
important phenomenon in drifting, since it implies that the lateral motion of the
vehicle can be indirectly influenced by a longitudinal input on the wheels. . . . . 5

1-5 Steady-State Cornering Motion. The vehicle corners around a centre of rotation
CR at a cornering radius ρ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1-6 Friction Limit Circle. The outer red circle describes the theoretical maximum
forces the tire can transmit between the ground and the vehicle. In longitudinal
direction the practical maximum (yellow line) is limited by the maximum drive
force that can be effectively delivered by the powertrain (driving). In lateral direc-
tion (cornering) the vehicle geometry limits the possible acceleration as well. For
braking however, the limit is equal to the tire maximum, since the wheels can be
locked and the tires will slide over the surface inducing the maximum deceleration
to the vehicle. In a drift the rear tires move outside of the circle. . . . . . . . . . 6
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1-7 Steady-State Cornering Motion. The grey area represents a corner with a
constant radius to visualise the differences between over- and under-steer in terms
of that variable. The yellow line visualises an increasing cornering radius and the
red line a decreasing radius. This phenomenon is leveraged by professional rally
drivers to take sharper corners. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1-8 Steady-State Cornering Motion. Subfigure (a) shows stable cornering motion
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1-9 Empirical Schematic Description of the Trail-Braking Manoeuvre. At point
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introduced in the corner exit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1-10 Drift Equilibria Examples. Subfigure (a) shows two linear sets of equilibria, one
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2-1 Sideslip Estimation Process (a) Shows a general schematic of how process states
that can not be directly measured can be estimated by measuring inputs and
outputs with sensors and a state observer. (b) Shows the process to be estimated:
the CG-states of a drifting vehicle on a global X − Y -plane. . . . . . . . . . . . 17

2-2 Rotary Encoder Schematic. (a) Shows the placement of the encoders on the
front- and rear axles. (b) Shows a sideview and the directly measured quantity:
the wheel angular rate ωw. (c) Shows the front view of the encoder. The displayed
disk is located on the centreline. . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2-3 Inertial Measurement Unit Schematic. (a) Shows the placement of the sensor
housing at the (approximate) CG of the vehicle. (b) Shows the linear accelerations
measured by the accelerometer triad, (c) shows the the angular velocity sensor triad
outputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2-4 On-Board Camera Schematic. (a) Shows the placement of the camera on the
vehicle in a side view. (b) Shows an abstract representation of the image. The
CVA detected a feature in the previous image (yellow point location), and tracked
it into the current image (green point location). The algorithm projects the image
point locations p in pixels to ground surface locations q in meters. (c) Shows for
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2-7 Motion Capture System. Subfigure (a) shows a schematic side-view of the setup:

the ceiling holds the MCS camera 3 m above the test surface. Subfigure (b) shows
the top view MCS camera image. The red markers were used to calibrate the
homography. The green markers on the vehicle were used to track its position and
heading. The phone on the floor shows a stopwatch which is also visible on the
on-board camera image. This was used to align the MCS with the on-board data. 25

3-1 Drift Experiment: Drive Inputs. Subfigure (a) shows the motor torque step
input to 100%, (b) shows the steering step input to 15 deg. The wheels are turned
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Chapter 1

Introduction

1-1 Automated Driving

1-1-1 Origin in Vehicle Safety

Road traffic accidents account for more than a million deaths per year globally [2]. To tackle
this problem, car manufacturers heavily invest in research and development in the area of
vehicle safety. Vehicle safety encompasses passive, active, as well as pre- during- and post-
crash elements to minimise the probability of an accident as well as the severity of injury [3].
Especially the active component of vehicle safety system development has lead to a better
understanding of vehicle dynamics and the introduction of vehicle dynamic control systems.
The anti-lock braking system (ABS) in 1978 [4] was one of the first vehicle active safety
systems that reached the market. In the past 40 years innovation has continued to further
improve vehicle active safety. Motorsport has always been a contributor to the understanding
and mastery of all performance related vehicle elements as well. Vehicle dynamic control
systems have not been an exception when it came to the improvement of vehicle performance.
Traction- [3] and stability control [5] are examples of what motorsport has brought to improve
road safety by leveraging vehicle dynamic control. As the innovation in vehicle active safety
continues, it becomes evident that at some point the human driver, who is in many cases the
cause of an accident [6], should be assisted or even be entirely replaced by the active safety
system. This innovation within vehicle engineering is called vehicle control automation, or
better known in popular terms as autonomous driving, and is currently of particular interest
to the general public. The field of vehicle control automation is a fusion between vehicle
engineering and computer science as it involves the use of mechatronics, artificial intelligence,
and multi-agent systems to replace the human vehicle operator [7].
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decision

Perception: Sensors 
LIDAR, Radar, Cameras, Ultrasound

Decision: Algorithms 
Computer Vision, Machine Learning, Multi-Agent Systems

Execution: Actuators 
Electric Powertrain, Model Predictive Control 

Cost effectiveness, large scale implementation, 
communication between vehicles and infrastructure.

Reduce complexity, increase computing power, efficient 
algorithms, better understanding of human actors.

Renewable energy infrastructure, increase storage 
efficiency, more advanced on-line vehicle models.

State of the Art Technologies Challenges & Solutions

Figure 1-1: State of the Art Technologies and corresponding Challenges and Solutions.
Autonomous vehicle operation comprehends three stages. Perception (green) is currently achieved
with extensive sensor suites but they should be simplified to be implemented on large-scale.
Decision (blue) currently requires powerful computers because of the complex human actors that
are involved in traffic. The execution stage (red) is how the system acts on the decisions, with
mostly electronic actuators. Electrical energy storage is difficult to implement on a large scale
because of the lack of infrastructure. Also, the bottleneck of advanced vehicle control is usually
the vehicle model of which the identification is still difficult in a mass production setting.

1-1-2 State of the Art and Future Challenges

Vehicle operation in general could be divided in three stages [8], as shown in Figure 1-1. To
perceive the environment an intelligent vehicle needs advanced sensors. Current autonomous
vehicles are equipped with very extensive sensor suites that are not yet ready for mass pro-
duction due to cost and complexity. With the perceived information from the sensors the
software needs to analyse and interpret the situation and make decisions on what control
actions to take. This is referred to as high-level control. Automating this stage is challeng-
ing, since it requires some form of intelligence. The resulting product is therefore called an
intelligent vehicle. There is an entire field of computer science research focussed on artificial
intelligence in general, of which the resulting insight can be applied to tackle this problem.
Once the decisions are made, the control actions need to be executed by actuators, which need
to be individually controlled as well, referred to as low-level control. This field within vehicle
engineering is more mature since it has been applied in the earliest active safety systems.
Still, difficulties remain in pushing the boundaries of the vehicle when it comes to executing
on control actions.

The operation differs significantly between the urban- and highway environment. In urban
environments the velocities are low, there are many different road-users and the traffic struc-
ture is less strict. The problem here is that the implementation of intelligent vehicle systems
requires the software to recognise the intentions of complex road users such as pedestrians and
cyclists to make high-level control decisions [9]. The solutions to these problems lie more in
the realm of computer science and human behaviour studies than that of vehicle engineering,
as it applies to a multitude of actors and involves the application of artificial intelligence [10].
The highway environment on the contrary, is different: at the one hand the velocities are high,
at the other hand there are both fewer and more homogeneous road users, who adhere to a
clear traffic structure. In an emergency situation on the highway, where an obstacle needs to
be avoided for example, it is challenging for the intelligent active safety system not to lose
control over the vehicle. The vehicle should be operated at the handling limits if the collision
is to be avoided in such a situation [11], as visualised in Figure 1-2. This topic is strongly
related to vehicle dynamics because it requires a thorough understanding of tire- and vehicle
dynamic behaviour to develop control systems for the limits of vehicle handling.
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vehicle obstacle

stable regime minimum to avoid obstaclehandling limits

Figure 1-2: Obstacle avoidance at high velocity. The green area represents the set of potential
paths on which the vehicle would have small slip angles. Outside of this region, the steep steering
angle input would lead to high amplitude sideslip, in which the vehicle becomes unstable. The
dotted black line represents the path on which the vehicle would just barely avoid a collision. This
situation thus requires the vehicle to be handled in the unstable regime.

1-1-3 Vehicle Control at the Handling Limits

The handling limits of a vehicle are defined by its tire-road interaction, which is the main
interaction between a vehicle and its environment. In stable operation, the tires adhere to
the road and the vehicle is easily controllable. The handling limits of a vehicle are reached
when the tires lose grip at a point where they start sliding over the road surface. This
phenomenon is referred to as tire slip. Once the tire slip is at its maximum, there is hardly
any adhesion between the tires and the road and this causes the vehicle behaviour to become
highly unstable [12]. Historically, this vehicle behaviour has been undesirable and to be
avoided with a human driver behind the wheel. The problem is that an average human driver
is not capable of controlling the vehicle in this unstable operational regime [13]. Many vehicles
on sale today are capable of assisting a human driver during highly dynamic manoeuvres to
minimise the slip and maximise the vehicle handling stability. This has also been the main
purpose of research and development in vehicle dynamic control in the past (such as in [14]
and [15]).

Vehicle instability on itself can be desirable however, especially where it provides higher
manoeuvrability in some situations, as the one described in Figure 1-2. Experienced race
drivers have developed the skills to control vehicles in the unstable operation regime and
‘drifting’ is an established form of motorsport. Drifting is not for showing off; rally drivers in
the world rally championship [16] have proven for years that drifting through some very sharp
corners is faster than driving with minimal slip. The rise of vehicle control automation opens
up new possibilities to expand the vehicle operation regime, provided a computer has the
ability to achieve vehicle control with far better precision and aggression [17] than a human.
In the past decade, research has been conducted on both human- and computer controlled
drifting to better understand vehicle control at the handling limits [18] [19] [20]. Expanding
the operating region of an intelligent vehicle opens up possibilities for avoiding collisions by
leveraging the full capacity of the tires and beyond.
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1-2 Tire and Vehicle Dynamics
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Figure 1-3: Tire Model Parameters: Definitions. Subfigure a) shows the forces that are
exerted on the road surface at the tire-road contact point, b) and c) show a side- and top-view
to visualise the dynamic parameters used to describe the tire behaviour.

1-2-1 Tire-Road Interaction

To understand the handling limits of vehicles and to support the motivation behind the study
of drift control, the tire-road interaction needs to be described. Whereas aerodynamics are
important when driving in a straight line, the tire-road interaction is the most significant
interaction between the vehicle and its environment in cornering and thus essential to un-
derstand in the context of drift control. The understanding of the basic principles of tire-
and vehicle behaviour originates from modelling the fundamental dynamics, as done by Hans
Pacejka [12]. Figure 1-3 shows definitions of dynamic parameters of a tire that are important
within the scope of this thesis. The tire with nominal radius Rnom presses upon the ground
surface due to the vertical load Fz resulting in a contact patch CP and an effective rolling
radius Reff . The vertical load Fz is induced by the weight of the body, which is dynam-
ically distributed over the wheels. The longitudinal and lateral forces, Fx and Fy, are the
main forces that influence the planar vehicle body motion. An important parameter in a tire
model is the friction coefficient µ which defines how the longitudinal and lateral forces relate
to the load:

µx = Fx
Fz
, µy = Fy

Fz
(1-1)

The tire travels at a velocity V , not necessarily parallel to the longitudinal vehicle axis x,
resulting in lateral slip, defined by the sideslip angle α. The wheel has an angular velocity ω
around its central axis. The longitudinal response of a tire is mainly generated by a relative
motion between tire elements in contact with the road surface and tire body which causes
slippage between the tire and the road; thus ω is not necessarily analogous to the longitudinal
velocity Vx. This results in the longitudinal tire slip λ in (1-2) given by λa for accelerating
where ωReff > Vx and λb for braking where ωReff < Vx.
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1-2 Tire and Vehicle Dynamics 5

λa = ωReff − Vx
ωReff

, λb = ωReff − Vx
Vx

(1-2)

There are many different tire models, and depending on the application they can have a few
to thousands of parameters. The models always contain however, either directly or indirectly,
the dynamic parameters that have just been given. The resulting tire forces are thus a function
of the previously defined inputs:

[Fx, Fy] = µ (Fz, α, λ) (1-3)

A model that has been developed by Howard Dugoff [21] will be referred to here as an example
to visualise the dynamic relationship between the slip parameters α and λ and the friction
parameters µx and µy. Figure 1-4 shows the model output for a range of α and λ.
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Figure 1-4: Tire Model Parameters: Dynamic Relationships. It can be clearly observed
in the right plot that the lateral friction decreases with longitudinal slip. This is an important
phenomenon in drifting, since it implies that the lateral motion of the vehicle can be indirectly
influenced by a longitudinal input on the wheels.

1-2-2 Cornering Motion

The lateral tire forces are the most dominant factor in cornering motion because they provide
the only resistance to the centrifugal force on the centre of gravity CG. The previously
described tire models can be used in a vehicle motion model to analyse its cornering stability.
The simplest kinematic description of planar vehicle motion that captures the lateral dynamics
well enough to understand stability is the single-track model, which is also known as the
‘bicycle model’ [22]. It is used in Figure 1-5 to provide insight into cornering motion of
vehicles and the related stability.
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Figure 1-5: Steady-State Cornering Motion. The vehicle corners around a centre of rotation
CR at a cornering radius ρ.

The bicycle model contains a mass m at the CG. The front axle is located at a longitudinal
distance of lf from the CG, the rear axle at lr. The front wheel is oriented under a steering
angle δ. The cornering at velocity V results in a yaw angular rate ωz. As can be seen
in Figure 1-4, tire behaviour is linear for small slip values. This linear behaviour can be
approximated by the cornering stiffness given in (1-4).

Cα = ∂Fy
∂α

∣∣∣∣
λ=0,α=0

(1-4)

The cornering stiffness is defined by the tire adhesion limit. The maximum tire force limits
velocities and accelerations in any planar direction of motion, not only cornering. This can
be insightfully visualised using a friction ellipse [23], shown in fig. 1-6.

Fx

Fy

adhesion limit

stability limit

normal driving

Figure 1-6: Friction Limit Circle. The outer red circle describes the theoretical maximum forces
the tire can transmit between the ground and the vehicle. In longitudinal direction the practical
maximum (yellow line) is limited by the maximum drive force that can be effectively delivered by
the powertrain (driving). In lateral direction (cornering) the vehicle geometry limits the possible
acceleration as well. For braking however, the limit is equal to the tire maximum, since the wheels
can be locked and the tires will slide over the surface inducing the maximum deceleration to the
vehicle. In a drift the rear tires move outside of the circle.
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1-2-3 Stability Analysis

under-steer

neutral-steer

over-steer

Figure 1-7: Steady-State Cornering Motion. The grey area represents a corner with a constant
radius to visualise the differences between over- and under-steer in terms of that variable. The
yellow line visualises an increasing cornering radius and the red line a decreasing radius. This
phenomenon is leveraged by professional rally drivers to take sharper corners.

The cornering stiffness given in (1-4) can be used to describe cornering stability by means of
the under-steer gradient, from the SAE definition in [24]:

KUS =
(
Fz
Cα

)
f
−
(
Fz
Cα

)
r

(1-5)

The cornering stability can be defined as: under-steer US for KUS > 0, neutral-steer NS
for KUS = 0 and over-steer OS for KUS < 0. Figure 1-7 shows the vehicle response for a
vehicle that accelerates through a corner while maintaining a constant steering angle δ. The
response differs for the understeer gradient as follows:

• neutral-steer: constant cornering radius, equal slip angles

• under-steer: increasing cornering radius, larger front slip angle

• over-steer: decreasing cornering radius, larger rear slip angle

Basic stability analysis performed by Winkler (1998) [25] revealed a stable steady-state corner-
ing motion for vehicles with under-steer characteristics. For vehicles with over-steer, stability
is lost for:

V > Vcrit =
√
−L
KUS

(1-6)
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1-3 Drift Motion and Control

X

Y

 

ω zaCR

 

Vβ

aCR ω z

α r
Vr

Vf

α fδ

V

Vf

δ

Vr

a) b)

Figure 1-8: Steady-State Cornering Motion. Subfigure (a) shows stable cornering motion
while Subfigure (b) shows unstable cornering (drifting) where β is large. Also, (b) shows a
counter-steer configuration, where δ is opposite to ωz.

1-3-1 Drift Motion Analysis

In Section 1-1-3 it was described how in some emergency situations an obstacle can only be
avoided when an oversteer vehicle would move outside of the stable operating regime. As the
previous section showed, the boundary of the stability region is where the tires lose grip and
start sliding, a phenomenon referred to as drifting. Abdulrahim (2006) [18] explored physical
parameters affecting drift motion through simulation and experimentation. Edelmann et al.
(2009) [26] performed similar research as Abdulrahim and discussed handling characteristics
of vehicle drift motion, and validated the theory in an experiment. Figure 1-8 shows a
schematic representation of the difference between stable and unstable cornering motion.
Both Abdulrahim and Edelmann concluded that equilibria exist, in both case a) with minimal
slip, and in case b) with high tire slip α and a large vehicle sideslip angle β. The difference
between the two equilibria is the stability: a) is stable, b) is unstable. Another difference,
apart from the large slip angles, is the longitudinal slip saturation in the rear tires, which
causes the lateral friction from (1-1) to decrease significantly allowing for the lateral motion
of the rear tires (as was explained in Section 1-2-1). Looking at the slip curves in Figure 1-4,
it can be seen that the lateral force decreases with an increasing longitudinal slip. Therefore
the lateral friction of (1-1) decreases, which destabilises the equilibrium.
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1-3-2 Race Driver Behaviour Studies

When inexperienced drivers encounter a situation where they have to control their vehicle
at a large sideslip angle β, they usually lose control and are not able to follow their desired
cornering trajectory. Experienced race-drivers have developed the skills to control the vehicle
in the unstable region of high sideslip. While Edelmann [26] and Abdulrahim [18] provided
fundamental insight into the dynamics of a drifting vehicle, Dr. E. Velenis (with international
collaborators) at the School of Engineering and Design, Brunel University, United Kingdom,
approached the problem from a motorsports perspective. He compared numerical optimal
corner solutions with expert race driver control inputs in simulation environments (CarSim,
[27]). The work started with a mathematical analysis in 2005 [28]. Two rally-racing techniques
for high-speed cornering were analysed: the trail-braking (see Figure 1-9, taken from [29]) and
the pendulum-turn. Although these techniques were extensively used since the 1980’s in rally
racing, until the publication of this paper it had not been proven that these are in fact the
optimal cornering solutions for certain situations. A single-track model was incorporated in a
numerical optimisation scheme which was compared with minimum-time cornering problems
‘solved’ by expert rally drivers in action. The numerical optimal solution results were similar
to the trail-braking technique for single 90 degree turns. The pendulum-turn technique would
be better at coping with consecutive corners on low friction surfaces.
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Figure 1-9: Empirical Schematic Description of the Trail-Braking Manoeuvre. At point 1
the driver initiates the corner after having stepped on the brakes for an amount of time depending
on the length of the straight before the corner. The brake is released slowly until point 4 (the
corner apex). While the steering angle is applied as a sinusoid, representing ‘sliding mode control’
behaviour. The throttle is gently introduced in the corner exit.
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Figure 1-10: Drift Equilibria Examples. Subfigure (a) shows two linear sets of equilibria,
one for a positive, the other for negative sideslip angle. The trajectory indicated with the arrow
in (a) at the right-top corner corresponds to the left-top corner in (b). A counter-steer drift
configuration as visualised in Figure 1-8 (b) is defined as a state where the sign of δ is opposite
to the sign of β. This can be clearly be observed in Subfigure (a).

1-3-3 Automated Drift Control Development

A research group at Stanford was the first to implement a drift controller on experimental
vehicles. These vehicles were designed and built by researchers at Stanford. Unstable drift
equilibria gave been numerically solved for models of the setups, of which an example is given
in Figure 1-10. Voser et al. (2010) [20] had the objective to stabilise their experimental vehicle
at the found unstable sideslip equilibria. A consecutive analysis by Kritayakirana et al. (2012)
[17] focused on designing a control system that could perform minimum-time cornering (and
thus operate at the tire limits, see Figure 1-6). Hindiyeh et al. (2014) [30] continued with the
work performed in [20]. The study had the same objective to stabilise the vehicle at a desired
slip angle, but a secondary objective was added: to control the longitudinal velocity around a
desired value simultaneously. Goh et. al (2016) [31], essentially applied the same technique on
a different experimental setup, now including weight transfer on a two-track control model for
their control design to achieve very long sustained circular drifts. All of the above experimental
setups had the following in common: the tire-surface interaction dynamics were empirically
identified and incorporated in the models, and the control systems used measurements from
external sensors (differential GPS) to estimate the sideslip angle. Another research group that
experimentally evaluated drift controllers were from Tohoku University, Japan. Nakano et al.
(2014) [32] (2015) [33] developed a trajectory tracking drift control algorithm for a 1:10 scale
vehicle with independently driven wheels. A state-feedback approach similar to that of the
methods developed by Stanford was utilised to control the longitudinal velocity, sideslip angle,
and yaw angular rate of the vehicle. As with Stanford, the models used surface friction data
as well as external sensors, in this case a motion capture system (MCS) to estimate the vehicle
states. A research group at BMW approached drift control from an industry point of view.
Werling et al. (2015) [34] proposed a steering/throttle control strategy, which approximated
the travelling direction of a reference point on the vehicle by neglecting the comparably
small slip angles at the front wheels of the drifting vehicle. This simplified the input-output
dynamics and made the derived control strategy robust to changing surface conditions, tyre
parameters, and vehicle load. The main advantage of the proposed algorithm was that only
geometric vehicle parameters and measurements of the standard stock sensors were required,
which is suitable for a production setting. The presented literature is summarised in Table 1-1.
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Table 1-1: Contemporary Automated Drift Control Literature Survey Overview
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12 Introduction

1-4 Vehicle Dynamic State Estimation

1-4-1 Drift Control Literature Evaluation

The literature survey on drift control presented in Section 1-3 shall be evaluated to iden-
tify potential issues. The studies showed promising results, but a critical element seems to
be missing. The research lacks an emphasis on the state-estimation process and focusses
merely on the control design and its results. However, state estimation is essential for the
control designs to be meaningful and implementations to be possible, not something to be
overlooked. This section reviews the drift control literature regarding the utilised state esti-
mation methodologies.

The work by Velenis et al. was carried out in a simulation environment, so state estimation
did not apply there directly. The work from Stanford on the other hand, which could be
considered the largest contribution to automated drift control with the most promising results,
included approaches that relied heavily on differential GPS-based slip angle estimates and
fairly precise inverse models of the wheels. The experimental setups used a sensor fusion of a
differential global positioning system (DGPS) [35] and inertial navigation system (INS) [36],
which allowed for a down-sampled controller at 200 Hz. These methods were based on work
by Ryu et al. (2004) [37]. Also, tire properties were known for the systems and real-time
friction estimation was possible in this research, with previous work by Hsu et al. (2014)
[38] making this possible. Beal et al. 2011 [39], also at Stanford, performed prior work on
some of the used state estimation techniques as well. Important to note is that the vehicles
used in these studies were designed and built at Stanford and thus, all parameters for the
vehicles were known and evaluated again and again over the years. These kind of real-time
measurements and (party empirically-based) models are not available for production vehicles
on changing road conditions. The work by Nagano et al. was performed on a test surface
with known friction parameters, which is almost impossible from an implementation point of
view. Also, the motion capture system fulfilled the same function as the differential GPS did
in the experimental setups of the Stanford group.

The work by Werling et al. at the BMW lab showed results that could be useful from an
implementation point of view. There are some issues, however, that should be discussed
regarding the state estimation. The state estimation used the output of a single-track model
to estimate the sideslip assuming a zero sideslip angle at the front wheels. The tire model
for the single-track state space used estimates of the lateral tire force. Since the experiments
were performed on a wet surface, it can be questioned whether the simplified tire model and
assumptions would hold on a dry surface with higher or unpredictable friction (referring to
[26], where the authors showed the highly non-linear tire behaviour in drift states). Also, the
conducted drift experiment was of very short duration. This allowed for a state estimation
technique based on integrals of measured accelerations. These estimates would drift away
from the actual value if there was no way of validating the integral estimate over time. The
results in the paper seem to show that after 10 seconds, the sideslip angle still deviates from
the desired angle with about 10-15 deg. The authors also do not show their actual estimated
β in the results.

C.B. Kuyt Master of Science Thesis
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1-4-2 Established Methodologies

In control system design, it is essential to know the state of the system to apply appropriate
control inputs and to verify the resulting response. To obtain the states, vehicle control
systems rely on sensor measurements. Some states can be measured directly, others must
be estimated based on a model or pre-defined relationship between measurements and states
(indirect approach). Classical vehicle dynamic control design methods were usually based
around the single-track model which needed state estimates of only the longitudinal velocity
and the steering angle. Rotary encoders [40] were available sensors to measure the steering
angle position and the wheel velocity (of individual wheels, if needed). When the encoders
were appended with an inertial measurement unit (IMU) [41] to measure accelerations and
yaw velocity, the sideslip angle could be estimated using a static model or a simple linear
dynamic model in normal stable driving conditions where β ≤ 2 deg [42]. In extreme situations
however, the coupling of the vehicle sideslip angle to various measured quantities in production
vehicles is lost. Especially when the vehicle sideslip angle becomes large and sustained,
knowledge about it is essential for a proper description of vehicle behaviour. Recall the
definition of the sideslip angle:

β = tan−1
(
Vy
Vx

)
(1-7)

The longitudinal velocity Vx can be measured with the encoders at low longitudinal slip
values, however, as was described in Section 1-3-1, the longitudinal slip is very high at the
rear wheels during drifting. In addition the sideslip angle requires a measurement of the lateral
velocity Vy which can not be achieved with most vehicle stock sensors. The estimation of the
lateral velocity has been a widely investigated topic in literature, even outside of the scope of
drift control. Accurate online estimation of the lateral velocity enabled the improvement of
existing-, and the development of new automotive safety systems. The studies conducted on
sideslip estimation can be categorised depending on the utilised type of sensor measurements.
The distinctions are summarised in Figure 1-11.

On-Board External

Direct

IndirectResearch

Industry 
Standard

Stage of 
Development

Sensor 
Location

Quantity 
Measurement

Figure 1-11: Sideslip Estimation Methodology Categories
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The first distinction of studies is the development stage of the utilised technologies. The
studies (such as [43], [44], [45] and [46]) utilised sensors that are considered ‘stock’ sensors:
low-cost industry standard and present in all modern commercial vehicles. Examples of these
sensors are wheel angular velocity encoders [40], steering angle encoders, IMU’s [41] and
(low-cost) GPS receivers 1. Other studies (such as [47], [48], [49], and [50]) used advanced
additional sensors that are not present in normal commerical vehicles, and are merely used
in research. examples of these sensors are: optical sensors [51], tire force sensors [52] [53]
[54], high fidelity GPS receiver arrays [55] and DGPS setups [35]. The reason why these
sensors are not industry standard (yet) is not only because of the prohibitively expensive
costs for commercial use, but mainly because of the excessive complexity they introduce to
the vehicle design which is problematic for mass-production vehicles. Another distinction
between studies is the direct and indirect measurement of the sideslip angle. The former
being an expensive and advanced technique while the latter is a more feasible technique
for commercial implementation at the cost of less reliability. The final distinction is the
sensor location: on-board or external. The DGPS setups utilise devices external from the
vehicle, which requires an advanced smart infrastructure. This is definitely not available in
all situations. This is why it would be preferred to be able to precisely estimate the sideslip
exclusively with on-board sensors. Optical sensors are becoming more common in vehicle
engineering research for sideslip estimation with on-board sensors. They are used in the same
fashion as in computer mouses. By pointing down on the ground surface, they capture the
motion of features on the ground and by doing so deduce the vehicle motion. However, these
sensors cope with implementation complexities (they do not work on wet surfaces for example)
and have not penetrated the industry.

1-4-3 State Estimation in Intelligent Vehicles

Since automated drift control is applied in the context of intelligent vehicles, advanced on-
board sensors will be a given for the reasons described in Section 1-1-2. Intelligent vehicles
which are already on the market use cameras for advanced lane-keeping assistance (LKA) [56]
and adaptive cruise control (ACC) [57]. Autonomous vehicle prototypes are equipped with
extensive on-board sensor suites including radars, stereo vision, lasers and even combinations
such as light detection and ranging (LIDAR) systems [58]. These sensors are meant to detect
other road users and obstacles in sufficient detail to make tactical driving decisions in traffic
[59]. However, these sensors could also be used to support the state estimation process of the
vehicle stability control system. Especially the data coming from the cameras can be used
to detect features in the surroundings of the vehicle and thus extract motion information.
An interesting research topic would be to investigate whether a camera could be fused with
traditional sensors such as encoders and an IMU to estimate the vehicle states for the use in
automated drift control development. The very sensor that detects the obstacle to be avoided
could also be used to provide state estimates for the control system that avoids the obstacle.
This thesis will propose a state estimation technique that is a fusion between the old and the
new.

1GPS is becoming more common in production vehicles for navigation, not necessarily for control purposes

C.B. Kuyt Master of Science Thesis



1-5 Conclusion 15

1-5 Conclusion

1-5-1 Problem Formulation

To improve traffic- and vehicle safety and reduce related deaths, active safety systems have
been developed. The most recent development in this area is vehicle control automation.
One of the challenges is to maximise the operational regime of the control systems to be on
the edge or even outside of the stable envelope of the tires and vehicle to be able to avoid
accidents in extreme emergence situations. The analysis of drift motion in the past decade
led to a better understanding of both the dynamics as well as its potential practical use
in vehicle stability control design. Increasing the operational regime of automated vehicle
control systems, as well as understanding vehicle behaviour in regions outside of stability is
very useful. Section 1-3-3 discussed the current state-of-the-art in automated drift control,
Table 1-1 summarises the results of the different studies. The survey revealed a lack of
emphasis on implementation-feasible sideslip state estimation techniques in the most recent
literature. The sideslip angle is a very important state to describe vehicle behaviour at the
handling limits and real-time estimation of its state is necessary for automated drift control.
Section 1-4 presented research focussed on sideslip estimation. The current state of the art
research on automated drift control relies heavily on a direct measurement approach with very
costly setups including external sensors. The presented methods also employ semi-empirical
tire models which further complicates (maybe even prohibits) the potential implementation
in production vehicles. This is a problem that needs to be solved to lay the groundwork for
future implementation of drift control on production vehicles that do not have any external
sensors available.

Master of Science Thesis C.B. Kuyt
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1-5-2 Thesis Objectives

The previous sections motivated the intention to start researching the topic of vehicle sideslip
estimation with on-board sensors. This is considered to be a very relevant topic regarding
the current developments in the field of vehicle engineering. As the literature survey showed,
there seems to be a lack of attention given to the feasible implementation of sideslip estimation
in the context of automated vehicles. This thesis should provide a solution to this issue. As
was stated, it would be interesting to investigate the possibilities of fusing on-board stock
sensors (encoders and an inertial measurement unit) with a camera, given that a camera is a
standard sensor for an intelligent vehicle. This results in the following objectives:

• Develop a methodology to estimate the vehicle sideslip with encoders, an inertial mea-
surement unit and a camera.

• Write a computer vision algorithm that can extract motion data from the camera.

• Develop a sensor fusion algorithm that fuses the measurements of the three sensors to
estimate the sideslip.

• Design an experimental setup with a motion capture system that can externally validate
the estimation.

• Implement the algorithm on an experimental vehicle and conduct validation experi-
ments.

1-5-3 Project Outline

The Dipartimento di Elettronica, Informazione e Bioingegneria of the Politecnico di Milano
has provided a laboratory where the project to support this thesis has been carried out. The
previously mentioned objectives have been successfully completed during the project and this
thesis will provide the results as follows:

• In Chapter 2 the methodology is presented as well as the experimental testbed for
validation data gathering.

• The processing of the gathered data is explained in Chapter 3.

• The on-board computer vision algorithm is presented in Chapter 4.

• Chapter 5 discusses the sensor fusion design and its results.

This thesis concludes with recommendations for follow-up joint research projects between the
Delft University of Technology and the Politecnico di Milano.
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Chapter 2

Sideslip Estimation Methodology

2-1 Introduction

One of the objectives of this thesis, as it was explained in Section 1-5-3, was to estimate
the sideslip angle of a vehicle exclusively with on-board sensors, namely: rotary encoders, an
inertial measurement unit and a camera. This chapter presents the methodology to achieve
that objective. The estimation process is given in Figure 2-1 a). The on-board sensor suite is
laid out in Section 2-2 by explaining the basic working principles and relating the measured
quantities of the sensors to the CG-states. The state observer design is explained in Section 2-
3 by defining the process, inputs and outputs based on the available measurements. The
experimental setup is presented in Section 2-4, in which the state estimation technique has
been implemented and validated.

Vy
Vx
β V

X

Y

input process output

observer

sensors

b)

 ω z

a)

Figure 2-1: Sideslip Estimation Process (a) Shows a general schematic of how process states
that can not be directly measured can be estimated by measuring inputs and outputs with sensors
and a state observer. (b) Shows the process to be estimated: the CG-states of a drifting vehicle
on a global X − Y -plane.

Master of Science Thesis C.B. Kuyt



18 Sideslip Estimation Methodology

2-2 On-Board Sensor Suite

2-2-1 Rotary Encoders

a)

 

ωw

HE-sensor

axle
magnet

b) c)

Figure 2-2: Rotary Encoder Schematic. (a) Shows the placement of the encoders on the
front- and rear axles. (b) Shows a sideview and the directly measured quantity: the wheel angular
rate ωw. (c) Shows the front view of the encoder. The displayed disk is located on the centreline.

A rotary encoder (ENC) is an electro-mechanical device that converts the angular motion
of an axle to an analog code. The type that was used in this project is of the incremental,
or relative variety. The raw output of the ENC provides information about the motion of
the axle, which is further processed by software code into velocity data. The incremental
measurements come from a Hall-effect (HE)-sensor that is attached along the axle. A HE-
sensor is a transducer that varies its output voltage in response to a magnetic field. Four
magnets are equally distributed over a disk attached to the axle, as shown in Figure 2-2. The
rotation of the disk causes the magnets to pass by the HE-sensor four times per revolution.
The angular rate of the wheel ωw can be calculated by either taking the time dt between two
pulses, or by taking the average over multiple pulses for a less noisy (but more delayed) result.
With a known nominal wheel radius the velocity can be calculated. The front wheel velocity
is denoted as Vδ, since the wheels under the steering angle actually travel in the direction of
δ and this should be accounted for. The ENC measurement of the front axle velocity can
be written in terms of the CG states as (2-2), substituting (2-1). The rear wheel velocity Vr
should be equal to Vx in case of minimal slip, as the vehicle is assumed to be a rigid body. The
difference between the measured Vr and Vx can provide an estimate of the rear longitudinal
slip (see Section 1-2-1).

Vyf = Vy − lfωz (2-1)

Vδ =
√
Vx

2 + Vyf
2 cos

(
tan−1

(
Vyf
Vx

)
− δ

)
(2-2)
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2-2-2 Inertial Measurement Unit

a) b)

ax ay

az ω z

ω x

c)

ω y

Figure 2-3: Inertial Measurement Unit Schematic. (a) Shows the placement of the sensor
housing at the (approximate) CG of the vehicle. (b) Shows the linear accelerations measured by
the accelerometer triad, (c) shows the the angular velocity sensor triad outputs.

The inertial measurement unit (IMU) is an electronic device which collects angular velocity
and linear acceleration data. See Appendix A for technical specifications on the sensor that
was used in this project. The IMU housing contains two separate parts, see Figure 2-3. The
first part is an accelerometer triad. It generates three analog signals describing the acceler-
ations along each of its axes produced by, and acting on the vehicle. The most significant
of these sensed accelerations is caused by gravity. The second part is an angular velocity
sensor triad. It also outputs three analog signals. These signals describe the vehicle angular
velocity about each of the sensor axes. For this project the IMU was assumed to be located
at the vehicle centre of mass. In fact, since the implementation was on a small scale, the
actual difference between the CG- and IMU locations was small indeed. The accelerometer
triad, and angular rate sensors within the IMU were mounted in such a way that their sensor
coordinate axes were not perfectly aligned with those of the vehicle. This is due to the fact
that the two sensors in the IMU were mounted in two different orientations in the housing,
along with the fact that the axes of the IMU were not aligned with the vehicle axes. This was
easily be accounted for in the signal processing after acquisition. The work from Selmanaj et
al. (2016) [60] provided a useful example of a kinematic model that relates (ax, ay) to their
respective velocity derivatives (V̇x, V̇y) and the yaw angular rate (ωz), all of which could be
measured directly by the IMU.

{
ax (t) = V̇x (t)− ωzVy (t)
ay (t) = V̇y (t) + ωzVx (t) (2-3)
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20 Sideslip Estimation Methodology

2-2-3 Camera with Computer Vision

a) b) c)

xn

yn
qndxn
dyn

Figure 2-4: On-Board Camera Schematic. (a) Shows the placement of the camera on the
vehicle in a side view. (b) Shows an abstract representation of the image. The CVA detected a
feature in the previous image (yellow point location), and tracked it into the current image (green
point location). The algorithm projects the image point locations p in pixels to ground surface
locations q in meters. (c) Shows for a point qn a representation of the measured quantities.

The final sensor was a camera that was placed at the front of the vehicle, as shown in Figure 2-
4. The placement on the mounting structure was such that the lens pointed as much vertically
down as possible, to see only floor from above with the least perspective. The mount was
designed in such a way that it could also be used for other studies on the vehicle, such as
the design of an LKA system, which requires a view far ahead. In that case the camera can
be tilted upward. The on-board software made use of a custom designed computer vision
algorithm (CVA) to detect and track features in the images. Considering the scope of this
thesis, the tracking problem was simplified by placing red markers on the test surface in the
lab. This allowed for a less computationally heavy algorithm because less pixels (only the red
ones) needed to be searched for features to track. Several algorithms have been developed
that are able to detect and track features in complex images, such as [61], and applying these
algorithms to this project would be an interesting follow-up study. In this project however,
a simpler CVA was designed. The CVA as it was designed in this project measured for a
number of N points: the distance of the detected point n from the CG (xn, yn) [ m ] and
the displacement over time with respect to the previous frame (dxn/dt, dyn/dt) [ m s−1].
The CVA deduces the CG-states from these measurements. This process is called egomotion
estimation. The CVA measurements can be written in terms of the CG states by (2-4) and
(2-5). As can be seen in the equations, the ωz measurement from the IMU was needed as well
to operate properly. A detailed description of the design and the tuning of the parameters in
the algorithm is presented in Chapter 4.

Vxn = − (Vx + ynωz) (2-4)

Vyn = − (Vy − xnωz) (2-5)
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2-3 Dynamic State Observer

2-3-1 Process and Measurement Models

The on-board sensors presented in the previous section could not measure the CG-states
directly. This required the design of a dynamic state observer (Figure 2-1 (a)). Many ap-
proaches to observer design are based on a state-space process model [62]. The process model
describes the transformation of the CG-states (x) subjected to the input (u). This can be
represented as the linear stochastic difference equation:

xk = Axk−1 +Buk + wk−1 (2-6)

In addition, a measurement model describes the relationship between the CG-states and the
on-board sensor measurements (z). The model can be represented with the linear expression:

zk = Hxk + vk (2-7)

The terms wk and vk are stochastic variables representing the process- and measurement noise
respectively. They are assumed to have probability distributions described by the process
noise covariance Q and measurement noise covariance R.

2-3-2 Kalman Filter

The tool that was used in this project for the CG state estimation from the on-board sensor
measurements is the Kalman filter [63] [64], due to its simplicity and robust nature. The filter
estimates the CG states while obtaining feedback in the form of measurements. The filter
operates in two stages: a time update and a measurement update. The time update equations
are responsible for projecting the current state and error covariance estimates forward in time
to obtain the a priori estimates for the next time step (prediction):

x̂−
k = Ax̂k−1 +Buk (2-8)

P−
k = APk−1A

T +Q (2-9)

The measurement update equations incorporate a new measurement to improve the a poste-
riori estimate (correction):

Kk = P−
k H

T
(
HP−

k H
T +R

)−1
(2-10)

x̂k = x̂−
k +Kk

(
zk −Hx̂−

k

)
(2-11)

Pk = (I −KkH)P−
k (2-12)
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The in- and output measurements were supplied by the on-board sensor suite as described
in Section 2-2. The Kalman filter was used to combine or fuse the measurements from the
ENC, IMU and CVA. By weighing the different sensor measurements in the areas where they
each perform best (by changing the Q and R matrices), the filter provided more accurate
and stable estimates than a system based on any one sensor alone. The described process is
therefore referred to as sensor fusion, and its application was essential to reliably estimate
the vehicle sideslip angle.

2-3-3 Sensor Fusion Design Proposal

The Kalman filter as it is presented in Section 2-3-2 requires the definition of a process- and
measurement model. These models can take different forms and a decision needed to be made
which one would be worked out in this thesis. The state vector of the model were defined
by the longitudinal- and lateral velocity at the CG, which were to be estimated because they
can not be measured directly with the available sensors:

x =
(
Vx
Vy

)
(2-13)

These states can be predicted by means of accelerations that can be directly measured. There-
fore the input vector was defined by the linear accelerations at the CG, measured by the IMU:

u =
(
ax
ay

)
(2-14)

The process was defined by a state space model based on the kinematic description given in
(2-3):

[
V̇x
V̇y

]
=
[

0 ωz (t)
−ωz (t) 0

] [
Vx
Vy

]
+
[

1 0
0 1

] [
ax
ay

]
(2-15)

The ENC and CVA measurements were used to define the measurement model. The rear
ENC measurement was subject to significant longitudinal slip so it was not be used in the
measurement model. The CVA outputs for a number of N points the deduced longitudinal
(Vxn) and lateral velocity (Vyn) components at the CG (left measurement vector in (2-16)).
These measurements can also be combined by taking their median, resulting in VxN and VyN
(right measurement vector in (2-16)). Both approaches are discussed in Chapter 5.

z =

 Vδ
Vxn
Vyn

 , z =

 Vδ
VxN
VyN

 (2-16)
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2-4 Experimental Platform

2-4-1 Scaled Vehicle Architecture

For the sake of efficiency and simplicity, a 1 : 10 scaled vehicle model was developed that
is capable of drifting. The vehicle was a modified exemplar of the Berkeley Autonomous
Race Car (BARC), which is an autonomous vehicle development platform developed at the
University of California, Berkeley [65]. The main mechanical hardware components of the
vehicle include the chassis, suspension, motor, transmission system, and wheels. The chassis
is suspended on a double wishbone structure with coil springs on four wheels with rubber
tires. The front tires were standard while the rear tires were slick for better drifting. The
vehicle is rear-wheel driven by a brushless motor with an electronic speed control (ESC) that
sets the target rotation speed of the motor. The ESC also sends signals to the servo that
sets the steering angle of the front wheels. A lithium polymer battery supplies power to the
on-board electronic components. An aluminium frame was built on top of the chassis for the
purpose of holding electronic hardware.

The frame was equipped with the sensor suite described in Section 2-2. To establish a connec-
tion between the sensors, actuators and the on-board processor, an Arduino Nano was placed
on the frame together with an USB hub. All signals are sent to the central processing unit, an
ODROID XU4 which runs Lubuntu 14. The platform uses the robot operating system (ROS)
[66], an open-source library and set of tools for programming robots. The ROS infrastructure
is build on the concepts of nodes, topics and messages. A node is a program that processes
data. That data is then packaged into a message format and published onto a topic for
other nodes to subscribe to. The above hardware- and software architecture is summarised
in Figure 2-5. Technical specifications of the used hardware can be found in Appendix A.

softwarehardware

Lubuntu 14.04

Robot Operating 
System (ROS)

Arduino 

Python 

OpenCV 

IMU

camera

servo

ECU

encoders

USB hub ODROID

Figure 2-5: Vehicle Hard- and Software Architecture
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2-4-2 Vehicle Parameter Estimation

Some vehicle parameters needed to be estimated to observe the states properly. The mass
was weighed using a digital hanging scale with an accuracy of ± 0.1 kg. The total mass was
estimated to be 2 kg and when weighing the vehicle with the front and rear axle suspended
the mass distribution was estimated to be equal, which puts the CG in the middle of the
vehicle. The dimensions were estimated using a vernier calliper with an accuracy of ± 0.001
m, with the following results:

• wheelbase length: L = 0.260 m

• track width: T = 0.160 m

• nominal tire diameter: Rnom = 0.072 m

During the experiments, the steering angle δ needed to be measured for the state observation
as well. However, it could not be measured directly. What would be measured was the
control signal that was sent to the servo. The servo (controlled system) was modelled from
its pulse-width-modulation (pwm) input signal to the output δ. Only the steady state response
was modelled in this project for the sake of simplicity. During the experiments a constant
steering angle was applied, so transient effects during the experiment could be neglected.
From empirical measurements, the following linear function was acquired:

δ = 0.7267US − 61.5189 (2-17)

This is for the domain of δ = {−15, 15} deg, outside of this domain the angle is constant.

δ pwm( )Rnom
m
CG

l flr

L

T

Figure 2-6: Geometric Vehicle Properties
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2-4-3 Motion Capture System

A lab was available with a 2× 2 m low-friction surface that served as a test ground for drift
experiments. The surface consists of smooth ceramic tiles so a friction coefficient of well below
0.5 should be expected, considering the slick tires of the vehicle. A motion capture system
(MCS) was specifically designed for this thesis based on the computer vision software that
would also be used on the vehicle. The MCS consisted of a high quality camera attached to
the ceiling facing down on the test surface. The vehicle was equipped with green markers that
the computer vision software would detect and track throughout the experiment, while the
test surface contained red markers that the on-board camera oculd track for state estimation.
Red is easily distinguishable from green by the computer vision functions [67] so the tracking
of the vehicle by the MCS did not get disturbed by the red tracking markers for the on-board
camera.

a) b)

Figure 2-7: Motion Capture System. Subfigure (a) shows a schematic side-view of the setup:
the ceiling holds the MCS camera 3 m above the test surface. Subfigure (b) shows the top view
MCS camera image. The red markers were used to calibrate the homography. The green markers
on the vehicle were used to track its position and heading. The phone on the floor shows a
stopwatch which is also visible on the on-board camera image. This was used to align the MCS
with the on-board data.

2-5 Conclusion

This chapter presented a state estimation methodology for the sideslip of a vehicle that
exclusively utilises on-board sensors, namely: rotary encoders, an inertial measurement unit
and a camera. The on-board sensor suite was laid out in Section 2-2 by explaining the
basic working principles and relating the measured quantities of the sensors to the CG-states.
These quantities were used in a Kalman filter by defining the process, inputs and outputs.
The experimental setup was presented in Section 2-4 on which the state estimation technique
was implemented and validated. The next chapter provides the benchmark data to which the
methodology was validated.
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Chapter 3

Motion Capture System

3-1 Introduction

The design of the on-board computer vision and sensor fusion algorithms required tuning
of various parameters. A benchmark dataset was needed to tune the parameters (offline).
Additional data was needed to verify the performance of the algorithm after it was tuned.
Experiments were conducted using the experimental setup described in Section 2-4. The
external camera acquired images during the experiments that served as an input to the motion
capture system (MCS). This chapter explains how the raw data from the external camera
was processed by the MCS to produce meaningful results that served as the benchmark and
validation datasets. A more in-depth theoretical explanation of the working principle behind
the computer vision functions is given in Chapter 4. Multiple experiments (with step- and
ramp inputs at different time instances) were conducted, but a single experiment was selected
to serve as the benchmark. In the chosen experiment the vehicle received the step inputs
given in Figure 3-1, resulting in an unstable drift response. The processing of the external
camera data is described step by step in the following sections, referring to the benchmark
experiment as an example. The same steps apply to the processing of the datasets from the
validation experiments.

a)

t→

↑
TM

b)

t→

↑
δ

Figure 3-1: Drift Experiment: Drive Inputs. Subfigure (a) shows the motor torque step input
to 100%, (b) shows the steering step input to 15 deg. The wheels are turned completely before
the vehicle starts moving because the response of the motor is slower than the servo.
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3-2 External Camera Data

3-2-1 Marker Tracking

The vehicle was tagged with three green markers (very well distinguishable from the red ones
on the floor by computer vision functions [67]) to be tracked by the MCS. The reason to
track three markers, is because this provides information on not only the location of the CG,
but also the heading ψ of the vehicle with respect to the global coordinates X and Y . The
MCS detects the markers in the initial frame by applying a green colour range threshold and
detecting three corner points with a Shi-Tomasi edge detector. By specifying a minimum
distance between the markers, a medium minimal quality and a maximum of 3 points, it
was assured that the three markers were detected correctly. The computer vision function
parameters of the MCS are given in Table B-1. Once detected, the markers are numbered
clockwise as shown in Figure 3-2 (a). In the subsequent frames a Lukas-Kanade optical flow
tracker tracked the detected points. The resulting output was a vector containing for each
marker the image location p at every time sample throughout the experiment.

3-2-2 Position Data

q1 = X1,Y1( )

q2 = X2,Y2( )

q3 = X3,Y3( )

qCG = XCG ,YCG( )

v12

v13

vCGq1

q2

q3

a) b)

Figure 3-2: Tracking Markers Subfigure (a) shows the numbering of the markers to distinguish
them for the calculations in Subfigure (b), where the CG location is deduced.

The marker tracking stage outputs for each image frame the (u, v) image locations for q1, q2
and q3. A linear mapping was established between the external camera image coordinates p in
pixels and the globally defined coordinates q on the test surface to obtain the marker locations
in meters. Elementary linear algebra was applied to describe the geometric relationship
between the marker locations and the location and heading of the CG. Figure 3-2 (b) shows
how this relationship was derived. Vectors v12 and v13 define the positions of q2 and q3 relative
to q1 by (3-1) and (3-2) respectively. The vector between q1 and the CG location is derived
as (3-3). Finally, the CG location was found via (3-4).

v12 = (x2 − x1, y2 − y1) (3-1)

v13 = (x3 − x1, y3 − y1) (3-2)
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vCG = 1
2 (v12 + v13) (3-3)

qCG = q1 + qCG (3-4)

Since the vector vCG intrinsically inferred the heading of the vehicle x-axis (centreline), it
served to deduce the vehicle yaw with respect to the global X-axis. The cross- and dot
product with the unit vector of the global X-axis (vX) was calculated and substituted in an
arctangent, which provided the yaw (3-5).

ψ = tan−1
(
vCG × vX
vCG · vX

)
(3-5)

The above calculations were performed for each frame. After processing the images as de-
scribed in Section 3-2-1, the following data was available for each sample k (given in Figure 3-
3):

• timestamp at sample: t(k) [ ms ]

• X-location of the CG: XCG(k) [ m ]

• Y -location of the CG:: YCG(k) [ m ]

• heading relative to the X-axis (yaw): ψCG(k) [ rad ]
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Figure 3-3: Drift Experiment: Position Data. The left figure shows the X-Y -trajectory which
results from plotting XCG(k) against YCG(k) for each time sample k. The red squares are the
locations of the homography calibration markers. The experiment started at the bottom left,
and ended at the top middle. The steep change of the curve at the end is a good example of
how a drift can result in a much narrower cornering radius, confirming the theory described in
Section 1-2-3. The right figure shows the yaw (heading) ψCG(k). For visualisation purposes, the
domain of the yaw angle is defined as [0, 2π]. The vehicle came at an abrupt standstill at the
end, which the curve demonstrates with the steep change at 3.5 s. The plots show the raw data,
neither of the curves were smoothed.
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3-3 Signal Processing

3-3-1 Time Derivatives

From the signals XCG(k), YCG(k) and ψCG(k) combined with the information from t(k),
velocity- and accelerations were deduced by calculating the signal time-derivatives. A discrete-
time derivative of a signal s as given in (3-6), where k is the sample and Ts is the sampling
time, would not be the optimal solution to find the derivative because it amplifies noise in
the measurements. This is especially important because the accelerations that were to be
calculated required a second-order time derivate and also an inclusion of the yaw angular
velocity which is itself is a derivative as well. Calculating this with the discrete method
would result in propagating noise and may also amplify incorrect information in the signals.

V [k] = s [k]− s [k − 1]
Ts

(3-6)

Since post-processing was applied, a linear a-causal approach was used to find the derivatives
of the signals. By applying a differentiator with a low-pass filter, as given in (3-7), where s is
the Laplace operator and τ is the filter time constant, a result was obtained that contained
less noise and only emphasised the frequencies of interest present in the signals.

F (s) = s

(1 + τs)2 (3-7)

The value of τ was a tuned parameter that remained the same when filtering each signal. It
was found through trial- and error that τ = 0.04 s produced desirable results (Figure 3-4,
and Figure 3-5). The CVA data was captured at a sampling rate of 30 Hz. The filter has two
poles at 4 Hz, well under the Nyquist frequency of the signals of 1

2fs = 15 Hz, thus satisfying
the criterion. The filter was discretised using the Tustin method.
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Figure 3-4: Drift Experiment: Absolute X- and Y -Velocity Derivation. The global (X,Y )-
position of the CG is shown as the dotted lines. The blue lines are the discrete derivatives as
defined in (3-6), the solid black lines are the filtered derivatives (3-7).
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Figure 3-5: Drift Experiment: Derived CG-States. The yaw ψCG(k) of the vehicle is shown
as the dotted line in the left plot. The blue line is the discrete derivative as defined in (3-6),
the solid black line is the filtered derivative (3-7). The black line in the right plot shows the
longitudinal velocity derived from (3-8). The blue line shows the lateral velocity from (3-9).

It can be observed in the left plot of Figure 3-5 that the yaw signal becomes noisier at high
velocities compared to the position signals. The steep change at 3.5 s occurred because
the motor stopped driving the wheels and the longitudinal slip dropped significantly. This
increased the lateral friction resulting in a sudden drop in yaw angular velocity, confirming
the theory in Section 1-2. What can be seen in the right plot on the other hand, is that the
low friction at the rear wheels resulted in a positive lateral velocity at the beginning of the
experiment.

3-3-2 State Transformations

Figure 3-4 shows the absolute velocities of the CG on the globally defined coordinates. From
a vehicle dynamics point of view it was interesting to know the velocity components relative
to the vehicle x-y-coordinate system, as depicted in Figure 3-6 (a). By applying the state
transformations (3-8) and (3-9) the relative components of the CG velocity were obtained, of
which the result is shown in the right plot of Figure 3-5.

ψ
X

Y x

VX

VYy
VxVy

a)

 Vx

Vy

ω z

VδVr

lr l f

b) c)

 Vx k −1( )

Vy k −1( )

ω z

!Vy

!Vx
ax

ay

 

Figure 3-6: State Transformation Scheme. Subfigure (a) shows how the absolute velocities
in terms global coordinates are transformed to the relative velocities using the yaw. The obtained
relative velocities were used to obtain the axle velocities (b) and relative CG accelerations (c).
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Vx = VX cos (ψ) + VY sin (ψ) (3-8)

Vy = −VX sin (ψ) + VY cos (ψ) (3-9)

With Vx and Vy at the CG known, the velocities the the axles were deduced. These values
were interesting since they were needed to verify the measurements of the wheel encoders.
See Figure 3-6 (b). Naturally, the rear-axle velocity Vr is equal to Vx since a rigid body was
assumed. The front axle velocity (in the steering direction δ, since the wheel velocity was
measured) Vδ was obtained through (3-12), substituting (3-12) and (3-12). The results are
shown in Figure 3-7.

Vx,f = Vx (3-10)

Vy,f = Vy − lfωz (3-11)

Vδ =
√
Vx,f

2 + Vy,f
2 cos

(
tan−1

(
Vy,f
Vx,f

)
− δ

)
(3-12)
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Figure 3-7: Drift Experiment: Axle Velocities. The left plot shows the rear axle velocity Vr.
The right plot shows the front axle velocity in the steering direction Vδ from (3-12).

The final important states that were deduced from the obtained velocities are the linear
accelerations at the CG. These were interesting because they were needed to verify the IMU
measurements. The first step was to differentiate the CG velocities over time with the filter
from (3-7), yielding V̇ . The influence of ωz, which is a rotation of the relative coordinate
system to which the acceleration is measured, was taking into account as well:

ax = V̇x − ωzVy (3-13)

ay = V̇y + ωzVx (3-14)
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The results of (3-13) and (3-14) are shown in Figure 3-8. The sideslip angle was calculated as
well to serve as the benchmark for the output of the estimation process, By applying (3-15)
to the signals shown in the right plot of Figure 3-5, the result in Figure 3-9 was obtained.

β = tan−1
(
Vy
Vx

)
(3-15)
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Figure 3-8: Drift Experiment: Relative CG-Accelerations. The left plot shows the relative
longitudinal acceleration derived from (3-13). The right plot shows the relative lateral acceleration
derived from (3-14). The sudden stop of the motor that lead to a standstill can be clearly seen.
The accelerations did not go completely to zero due the fact that the external CVA was constantly
tracking the points and even the slightest (observed, not actual) difference in marker positions
would lead to a small value for the acceleration.
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Figure 3-9: Drift Experiment: Sideslip Angle. The curve followed from (3-15). The data was
very useful in the sense that both a positive and negative sideslip angle was obtained, as well as
a short sustain of a high amplitude at 3 s.
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3-4 Datasets

3-4-1 Benchmark

The most important state in this project was the sideslip angle, which needed to be estimated
with the on-board sensors. The drift dataset was chosen therefore to be the benchmark for the
sensor fusion design. From the drift dataset followed the curve in Figure 3-9. The data was
consistent with what could interpreted visually in the video from the external camera. The
angle was both negative and positive, which ensured no mistakes were made with signs. The
short sustain between 3 and 3.5 s was also a good test for the algorithm because here the IMU
accuracy would not be sufficient. Finally, the fact that the experiment ended at a standstill
was also a good way to verify if the algorithm could correct itself to come back to zero. In
the following chapters the accuracy of the on-board signals and estimates is established by
comparing them to the signals presented in this chapter. Referring to the signals from the
MCS as s, and the measured/estimated as ŝ the variance accounted for (VAF) in (3-18) was
established for each signal, where V (s) is the signal variance (3-17) and µ(s) is the signal
mean (3-16).

µ(s) = 1
N

K∑
k=1

sk (3-16)

V (s) = 1
K − 1

K∑
k=1
|sk − µ|2 (3-17)

V AF (ŝ) = V (s− ŝ)
V (s) (3-18)

3-4-2 Validation

It is not desirable to tune an algorithm on a single dataset because this could lead to over-
fitting and does not ensure robustness. To evaluate the algorithm performance, it was tested
against two other validation datasets which are extreme and opposite scenarios:

• pure longitudinal motion: Vx > 0, Vy ≈ 0 (Figure 3-10)

• pure lateral motion (manually induced) Vx ≈ 0, Vy > 0 (Figure 3-11)

In the first dataset the vehicle has a minimum sideslip (≈ 0 deg). This was achieved by
sending the motor a moderate constant input with zero steering angle. Maximum sideslip
was achieved in the second dataset by sending zero inputs, and manually moving the vehicle
sideways, resulting in maximum sideslip (≈ 90 deg).

C.B. Kuyt Master of Science Thesis



3-5 Conclusion 35

The acquisition and processing of the data from the experiments mentioned above was the
same as was described in Sections 3-2 and 3-3. The pure lateral experiment was carried out
manually, hence the chattery yaw angular rate (see Figure 3-11 (a)).
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Figure 3-10: Validation Dataset: Longitudinal Motion
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Figure 3-11: Validation Dataset: Lateral Motion

3-5 Conclusion

This chapter explained the data processing for the MCS, and how its output served as bench-
mark and validation datasets for the state estimation design process. The benchmark dataset
was an unstable drift resulting from the step inputs given in Figure 3-1. Each step of the
MCS data processing was described referring to the benchmark experiment as an example. In
Section 3-2 a method was presented to extract the location and heading of the vehicle through-
out the experiment. Section 3-3-1 explained how these signals were differentiated over time
using a differentiator with low-pass filter. Section 3-3-2 presented a technique by which the
obtained states werte transformed to the desired outputs that were needed for benchmarking
and validation. Finally, Section 3-4-1 discussed the outcome of the experiments.
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Chapter 4

Computer Vision Algorithm

4-1 Introduction

In Section 2-2-3 the function of the camera within the state estimation methodology has been
described. The camera served as one of the sensors to provide a measurement of the lateral-
and longitudinal velocity components of points on the surface in front of the vehicle, to deduce
the CG-states. Figure 4-1 shows how the camera was mounted on the vehicle. This chapter
presents the design of a computer vision algorithm (CVA) that can run on board the vehicle.
The CVA translates the camera images into CG-velocity measurements. The benchmark
dataset presented in Section 3-4-1 will be the reference for tuning the CVA parameters. The
CVA consists of the following stages:

1. image acquisition and correction

2. feature detection and tracking

3. projection and egomotion estimation

The above stages are described in Section 4-3. The acquisition of the camera calibration
parameters is explained in Section 4-2.

Figure 4-1: On-board camera placement. The white part is a 3D-printed mount to place the
camera high above the ground, facing downward. The material is stiff enough to prevent relative
motion of the camera thus ensuring a fixed geometry.
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4-2 On-Board Camera Calibration

a) b) c)

Image Aberration. The on-board camera used in this project suffers heavily from image 

aberration. Consider the homogeneous image grid in Subfigure (a). Subfigure (b) shows what 

barrel distortion does to the grid, (c) shows the effect of perspective. 

Figure 4-2: Image Aberration. The on-board camera used in this project suffered heavily from
image aberration. Consider the homogeneous image grid in Subfigure (a). Subfigure (b) shows
what barrel distortion does to the grid, (c) shows the effect of perspective.

4-2-1 Distortion

In a theoretical ideal optical system, all rays of light coming from a point in the observed plane
would converge to the same point in the image plane, forming a clear image. The influences
which cause different rays to converge to different points are called aberrations. Examples
of aberrations are field curvature, chromatic aberration and distortion. Barrel distortion, as
visualised in Figure 4-2 b), is an important aberration to account for with small and cheap
cameras like the one used on the vehicle in this project. Due to the distortion, straight lines
will appear curved. Its effect is increases further away from the image centre. The distortion
is constant and can be corrected for by (4-1). The variable r is given by (4-2), where (ud, vd)
are the distorted image points, (uu, vu) are the undistorted image points and (uc, vc) is the
image centre.

ucorr = ud
(
1 +K1r

2 +K2r
4 +K3r

6 + . . .
)

vcorr = vd
(
1 +K1r

2 +K2r
4 +K3r

6 + . . .
) (4-1)

r =
√

(uu − uc)2 + (vu − vc)2 (4-2)

To find the radial distortion coefficients (K1,K2 etc.), calibration experiments were conducted
where multiple images of chessboards were taken with the camera. The chessboard squares
have known dimensions which allowed the algorithm to find the mathematical relationship
between the image points and real-world points. The above technique is based on the work
by Zhang [68].
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q = x, y( )

plane (3D)

camera

image (2D)

p = u,v( )
z

Planar Projection. The camera observes a point in three-dimensional (3D) space on a flat 

surface with defined $(x,y)$ coordinates in [ m ], at a depth $z$ from the camera. However, the 

image it forms on the sensor is two-dimensional (2D) and the corresponding point has $(u,v)$ 

coordinates in [ px ].

Figure 4-3: Planar Projection. The camera observes a point q in three-dimensional (3D) space
on a flat surface (plane) with defined (x, y) coordinates in [ m ], at a depth z from the camera.
The image formed on the sensor is two-dimensional (2D) and the corresponding point p has (u, v)
coordinates in [ px ].

4-2-2 Homography

The points tracked by the algorithm are pixel locations in a digital image array, while the
desired outputs are to be in m s−1 on the actual observed plane. A translation from pixel
locations to the corresponding points on the observed plane was needed, which is referred
to as a planar homography, a projection from one plane to another [69]. This projection
simultaneously accounts for that fact that the on-board camera is also looking at the ground
surface under an angle and from a certain distance which leads to perspective in the image
[70], visualised in Figure 4-2 c). The homographic projection determines the relationship
between an image coordinate p = (u, v) in pixels [ px ] and its corresponding point on the
observed plane q = (x, y) in meters [ m ] (Figure 4-3). The following assumptions were made
regarding the projection:

• only the plane to be observed was visible in the image

• the plane was level at all of the observed points

• the camera had a constant position relative to the plane

Under the assumptions given above, it was deduced that the transformation between the
image and observed plane points is projective linear. Homographic transformation makes
use of homogeneous Cartesian coordinates. Every point q on the plane is observed by the
camera from a certain depth, z. However, the formed image is two-dimensional without depth.
To project the two-dimensional image points onto a three-dimensional plane relative to the
camera, the image coordinates were appended with a depth of 1, which is a relative parameter
and thus will not affect the value of the non-homogeneous coordinates, which yields:

p̃ =

 ũ
ṽ
1

 q̃ =

 x̃
ỹ
z̃

 (4-3)
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On-Board Homography Estimation. Subfigure (a) shows the calibration image. 

Additional red markers are placed near the camera, to increase the accuracy of the 

estimation in this critical area where more pixels are available per meter. Subfigure (b) 

shows how the coordinate system is defined, the origin is the location of the IMU.
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Figure 4-4: On-Board Homography Estimation. Subfigure (a) shows the calibration image.
Additional red markers were placed near the camera, to increase the accuracy of the estimation
in this critical area where more pixels were available per meter. Subfigure (b) shows how the
coordinate system was defined, the origin was assumed to be the location of the IMU.

The projection was achieved with the dot product of the homographic transformation matrix
H and the homogeneous image point p̃, obtaining the homogeneous point in the observed
plane q̃:

q̃ = Hp̃ (4-4)

The homogeneous point in three-dimensional space can be transformed to its corresponding
non-homogeneous planar two-dimensional coordinate through:

q =
(
x̃/z̃
ỹ/z̃

)
=
(
x
y

)
(4-5)

The homographic transformation matrix H in (4-4) was estimated in an experiment. The
camera was placed in the position in which it eventually would operate. A Cartesian coordi-
nate system was defined for the to be observed plane with the origin at the CG, the x- and
y-axis parallel to the vehicle axes (Figure 4-4 (b)). Markers were placed on the plane of which
the (x, y) coordinates were determined. Since the markers were visible in the calibration pic-
ture taken by the camera, the respective (u, v) pixel locations could be derived from it. The
experiment provided the following two arrays:

P =
[
u1 . . . uN
v1 . . . vN

]
Q =

[
x1 . . . xN
y1 . . . yN

]
(4-6)

The previously described methods were derived from the work from Corke (2011) [71], who
developed a machine vision toolbox for Matlab. A particular function within this toolbox was
used to find the homography matrix, using the arrays from (4-6) as inputs.
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4-3 Algorithm Stages
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RGB Image. A digital RGB image is a 3 channel array of u x v pixels, with the origin 

at the top left corner (a). Each color channel contains intensity value from 0 to 255 

(b) for each element in the image array (c). The resulting example image is shown in 

(d). 
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Figure 4-5: RGB-Colour Image. A digital RGB image is a 3 channel array of u x v pixels, with
the origin at the top left corner (a). Each colour channel contains intensity an intensity value
from 0 to 255 (b) for each element in the array (c). The resulting example image is shown in (d).

4-3-1 Image Processing

The raw images were acquired as digital RGB-colour images, see Figure 4-5. After acquisition,
the images were processed in 3 steps, as shown in Figure 4-6. In the first stage the distortion
was removed. A small part of the vehicle (the front bumper) was visible in the picture, while
in the back of the image the parts of the environment could be seen that were not part of the
ground surface. A region of interest (ROI) was defined so that these parts of the image were
omitted. Red pixels within the ROI were extracted in step 2. The 3 image channels of an
RGB image contain colour intensities for red, green and blue (RGB). A range of values for
each channel have been defined. The filter let through all values within the range, while all
values outside of the range were returned as zeros (resulting in black pixels). The final step
in the image processing stage was the conversion from RGB-colour to greyscale. This was
mainly for programming reasons, because the computer vision function that was used could
only process greyscale images. Incidental to this approach though, was that it is in general
more efficient to detect features in a greyscale image, since only a single channel needs to
be investigated (thus resulting in at least three times less effort compared to detection in
a RGB-colour image). The colour intensities in each channel were combined by taking the
average value of the three.

1 2 3

Figure 4-6: Image Processing Steps. Step 1: correcting for the distortion by using the
calibration parameters. Step 2: Applying red colour threshold. Step 3: Greyscale conversion.
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4-3-2 Optical Flow Estimation

The main goal of the algorithm was to extract motion data from the images. Motion of
pixels throughout video frames is referred to as optical flow. To estimate the optical flow,
features needed to be detected in an initial frame, and tracked into the next. These steps
were performed simultaneously, as shown in Figure 4-7.

frame 0 frame 1 frame i

detection tracking

detection tracking

detection

Figure 4-7: Detection-Tracking Cycle. The features that the camera tracks may disappear
from the image. Therefore, the detected points were tracked into the next frame, wherein a new
set of points was detected for tracking into the next frame and so on.

The detection was performed with the widely used Shi-Tomasi corner detection method [72].
The method was implemented as a cv function called: goodFeaturesToTrack from [73]. The
function finds the most prominent corners in the image or in the specified image region, see
Figure 4-8 for the definition of a ‘corner’. It then calculates the corner quality measure at every
source image pixel using either a specified minimum eigenvalue λ for each corner or a Harris
combined corner- and edge detector [74]. The corners not adhering to a specified minimum
were rejected. The remaining corners are sorted by the quality measure in descending order.
The function also rejects each corner for which there is a stronger corner at a distance less
than a predefined minimum distance.

Corner Definition. A corner in a greyscale image is defined as a pixel location where the 

gradient in both the $u$- and $v$-direction is large relative to the surrounding pixels. Consider 

the image array given in (a). Subfigure (b) shows the resulting pixel colours. The blue dot is 

what could be perceived as a `corner’. The yellow dot is what the algorithm defines as the 

corner location in pixels (in this case $(2,1)$). The red arrows identify in which direction the 

gradient is high, while the green arrows show the direction where the gradient is low.  
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190 0
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a) b)

Figure 4-8: Corner Definition. A corner in a greyscale image is defined as a pixel location where
the gradient in both the u- and v-direction is large relative to the surrounding pixels. Consider
the image array given in (a). Subfigure (b) shows the resulting pixel colours. The blue dot is
what could be perceived as a ‘corner’. The yellow dot is what the algorithm defines as the corner
location in pixels (in this case (2, 1)). The red arrows identify in which direction the gradient is
high, while the green arrows show the direction where the gradient is low.
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Once the features were detected in an initial frame, they were tracked along the next frames
until the detection was refreshed. The optical flow calculation presented in this section works
on several assumptions:

• The pixel intensities of an object did not change between consecutive frames.

• Neighbouring pixels had similar motion.

Consider a pixel I(u, v, t) in the initial frame. The pixel moved by distance (du, dv) into
the consecutive frame in dt time. Since the pixels were the same and their intensity did not
change, it can be stated that:

I (u, v, t) = I (u+ du, v + dv, t+ dt) (4-7)

The Taylor-series approximation of the right side of this expression with the removal of
common terms and divided by dt, yields the following equation:

∂I

∂u

∂u

∂t
+ ∂I

∂v

∂v

∂t
+ ∂I

∂t
= 0 (4-8)

The above equation is called the optical flow equation. The terms in (4-9) are the image
gradients. Similarly, the term in (4-10) is the gradient along time. The terms in (4-11) are
the unknowns.

Iu = ∂I

∂u
, Iv = ∂I

∂v
(4-9)

It = ∂I

∂t
(4-10)

∂u

∂t
,
∂v

∂t
(4-11)

An equation with two unknowns is difficult to solve. A method to solve this problem was
developed by Lucas and Kanade (1981) [75]. It was assumed that all the neighbouring pixels
will have similar motion. The Lucas-Kanade method takes a 3× 3 patch around each found
corner point n. The resulting 9 points are assumed to have the same motion, and thus
(fx, fy, ft) can be found for these 9 points. A solution is obtained with a least-squares fit,
given below:

[
du
dt
dv
dt

]
=
[ ∑

n Iun
2 ∑

n IunIvn∑
n IunIvn

∑
n Ivn

2

]−1 [
−
∑
n IunItn

−
∑
n IvnItn

]
(4-12)
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4-3-3 Egomotion Projection

The optical flow estimation process described in the previous subsection outputs point loca-
tions pn(u, v) in the current frame and their location in the previous frame. The locations
were projected to ground point locations qn(x, y) using the obtained homography matrix H
by (4-4). The displacement (dxn, dyn) and the elapsed time dt between the frames resulted
in planar velocity components for a total amount of N tracked points:

{
dxn
dt

,
dyn
dt

}
N

(4-13)

Using the current location qn(x, y) as well as the displacement (4-13) of each point, the
egomotion was calculated accordingly, as was described in 2-2-3:

Vxn = −
(
dxn
dt
− ωzyn

)
(4-14)

Vyn = −
(
dyn
dt

+ ωzxn

)
(4-15)

The above measurements were individual estimates of the CG-velocities and are referred to as
the ‘raw’ CVA measurements. They were processed in two different ways in the sensor fusion
algorithm. In the first approach they were processed individually. In the second approach
the measurements were ‘combined’ by taking the median over each time sample as follows:

VxN = {̃Vxn}N (4-16)

VyN = {̃Vyn}N (4-17)

The resulting signals were filtered with the same low-pass filter as the benchmark data (given
in (3-7), without the differentiator, where τ = 0.04 s):

F (s) = 1
(1 + τs)2 (4-18)
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4-4 Parameter Tuning

4-4-1 Default Parameters

The CVA contained various parameters that needed to be tuned. For each parameter a default
value was established before a sensitivity analysis was performed. The surface area in front of
the vehicle which was being observed with sufficient accuracy was roughly 1× 1 m. The area
within the image could only contain as much as 4 markers. Each marker had 4 corners, so in an
ideal case 16 points could be detected which was the default value for Np (maximum number
of points). The value of Dmin (minimum distance between the points) would be greater than
0 in an ideal case, to account for the distance between the corners of each marker. However,
the markers located further away were observed at a lower pixel density which meant that the
pixel distance between corners differed throughout the image which made this value difficult
to determine. Putting it at zero did not affect the detection of the best corners within the
available pixels, so this was chosen as the default value. Qmin (minimum quality of detected
points) should be close to zero for the default value because increasing it may result in the
loss of detected points. With increasing velocity, the quality of corners decreased. At high
velocities the image became vague, and this decreased the probability of a detection. A Qmin
larger than 0 as a default value did not make sense, because first the colour threshold needed
to be established before quality became an issue. With the default detection parameters
established, the sensitivity analysis as well as the tuning process of the colour threshold could
begin.
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Figure 4-9: Green Colour Threshold. This figure shows the variation of the green colour
threshold maximumGmax, and how it negatively affected the accuracy when it was not suppressed.
It shows an increase in noise (more extreme outliers) for a higher value of Gmax.
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4-4-2 Sensitivity Analysis

The colour of the markers is red. The red pixels needed to be extracted from the image so
the red channel was prioritised. Prioritising means restricting a minimum with no maximum
in this case. The other channels of green and blue were suppressed, meaning restricting a
maximum with no minimum. This put Rmax at 255, Gmin and Bmin at 0. Now the tuning of
Rmin, Gmax and Bmax remained. If a too strict threshold was applied, e.g. with Rmin at 255,
Gmax and Bmax at 0, the algorithm did not find any points because such bright red pixels
were not present in the image. So the optimum lies somewhere in between 255 and 0 for these
values. Green is the ‘inverse’ colour of red, so its maximum was restricted more than blue.
During the second part of the experiment, the camera looked in the direction of the windows
and the reflection of the beautiful blue Italian sky was seen on the floor which ‘interfered’
with the red marker colour (making them seem more blue). Therefore blue had a priority
over green. Also, the floor contained a lot of green which should be suppressed anyway, since
only the trackers should be extracted. The results of the variation of these parameters is
given on page 47. Additionally, Figure 4-9 shows why the green colour should be suppressed.
This figure also illustrates the raw data-points that resulted in the curves after averaging
and filtering. The following colour threshold parameters were selected from the analysis:
R ∈ {75, 255} , G ∈ {0, 75} , B ∈ {0, 175}. The detection parameters were varied to establish
the sensitivity of each. These were strongly related parameters because increasing the number
of available points only had an influence if more points of the same quality could be detected,
while the minimum distance again prohibited these points to be detected in the first place.
The results of the analysis are shown on page 48. The tracking parameters were evaluated for
accuracy but no difference was found by changing the parameters. The difference is expected
to be in computational load but this was difficult to establish, also because this algorithm
was not evaluated on the platform it would eventually operate on. This could be the aim of
future studies. The values were nonetheless chosen such that they were expected to result in
the least computational load.

4-5 Conclusion

This chapter described the design of a computer vision algorithm that used the on-board cam-
era to measure the longitudinal- and lateral velocity. The image was processed by correcting
for distortion and isolating the red coloured markers in an ROI. After applying a greyscale
conversion to the colour channels, the image was ready for the detection- and tracking stage.
Corners of the markers were detected in the greyscale image by a Shi-Tomasi detector. A
Lukas-Kanade optical flow function tracked the points through consecutive frames. Each
tracked point location was obtained in pixels, so a conversion to actual coordinates in meters
was needed for the final measurement output of the algorithm. This was achieved through
homographic projection. The benefit of this approach is that it simultaneously removed per-
spective from the image.
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Figure 4-10: Red Colour Threshold The tuned parameter is the red colour threshold minimum
Rmin. The optimum was found to lie between 75 and 125, depending on the other parameters.
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Figure 4-11: Green Colour Threshold The tuned parameter is the green colour threshold
maximum Gmax. The optimum was found to lie between 50 and 100, depending on the other
parameters.
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Figure 4-12: Blue Colour Threshold The tuned parameter is the blue colour threshold maximum
Bmax. The optimum was found to lie between 150 and 200, depending on the other parameters.
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Figure 4-13: Minimum Distance. The tuned parameter is the minimum distance between
points to be detected Dmin. The optimum was found to be around 10 px.
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Figure 4-14: Number of Points. The tuned parameter is the maximum number of points to
be detected Np. The optimum heavily depended on the choice of Qmin.
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Figure 4-15: Minimum Quality. The tuned parameter is the minimum quality of the points to
be detected Qmin. The optimum heavily depended on the choice of Np.
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Chapter 5

Sensor Fusion Algorithm

5-1 Introduction

This chapter presents two fusion approaches that provided an estimate of the sideslip angle
with the measurements of the ENC, IMU and CVA. In the first approach the CVA measure-
ments were processed individually, this will be referred to as the individual fusion approach.
In the second approach the median was taken over the CVA measurements which was then
put through a low-pass filter as described in Section 4-3-3. This will be referred to as the
combined fusion approach. Section 5-2 presents the raw signals of the different sensors, as
well as the processed signals with their respective accuracies compared to the MCS measure-
ments. To substantiate the necessity of applying sensor fusion in the first place, the results of
sideslip estimation with the kinematic model from (2-15) that used only the IMU measure-
ments (Figure 5-5), as well as a method that used only the output of the median filtered CVA
(Figure 5-4) are presented as a baseline. In Section 5-3 the sensor fusion algorithm design
is described more in detail for both fusion approaches, as well as the tuning of the various
parameters in the algorithm. In Section 5-4 the results of the tuning are presented and the
two approaches are compared. The best of the two approaches was selected and tested against
the validation datasets of which the results are presented in Section 5-4-2. The conclusions
drawn in this chapter are critically evaluated in Section 5-4-3.
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5-2 Signal Conditioning

5-2-1 Characteristics

The following measurements were available to estimate the sideslip angle (Figures 5-1, 5-2,
5-3 and 5-4 show the raw measurements of the drift experiment in grey.):

• ENC: Vr, Vδ (Figure 5-1)

• IMU: ax, ay, ωz (Figure 5-2 and Figure 5-3 )

• CVA: Vxn, Vyn (Figure 5-4)

The sensors on their own were not able to provide a reliable estimate of the sideslip angle for
the following reasons:

• The rear ENC measured under very high longitudinal slip conditions, so this measure-
ment was not useful for velocity calculation (though it provided an estimate of the
longitudinal slip, which could be useful for tire model based control). The front ENC
measured under better conditions but had a large delay and was especially inaccurate
at low velocities.

• The IMU provided an estimate that is an integral of its measurements based on the
kinematic model as was explained in Section 2-2-2. Figure 5-5 shows the result of the
sideslip estimation with this model for the drift experiment. As can be seen in the
figure, this method is subject to signal drift bias and initial conditions, thus not reliable
for estimation over longer time periods.

• The CVA could be very accurate but had extreme unpredictable outliers, even after
filtering. The camera that was used was cheap and had a low resolution. Increasing the
performance of the CVA was possible but it was expected to come at the cost of a very
high computational load. It was more efficient to fuse the measurements for reliability.
Figure 5-4 shows the result of the state estimation with only the CVA.

5-2-2 Processing

The IMU and ENC acquired their measurements at 50 Hz, the CVA at 30 Hz. The mea-
surements were simultaneously processed at each iteration of the algorithm (50 Hz). The
CVA measurement was held between acquisitions to produce an output at 50 Hz that was
synchronous with the ENC and IMU. All measurements were put through a low-pass filter
(LPF) given in (4-18) to prevent aliasing and to suppress high frequency noise. Only the in
the combined approach the CVA measurements were processed by the LPF, as was explained
in Section 4-3-3. An overview of this process is given in Figure 5-7. Figures 5-1, 5-2, 5-3 and
5-4 show the filtered measurements of the drift experiment in blue. The benchmark dataset
was considered to closely approximate reality. This meant that the accuracy of each individ-
ual on-board measurement could be established by comparing them against the respective
MCS measurement. The VAF of each filtered measurement was calculated with respect to
the MCS outputs and the values are provided in the corresponding legends of Figures 5-1,
5-2, 5-3 and 5-4.
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Figure 5-1: ENC: Axle Velocities. The rate of acquisition is 50 Hz, but the rate at which the
calculation provides a value depends on the velocity amplitude and can be lower. The block-shape
of the signals is also explained by the nature of the calculation (see Section 2-2-1 for more details).
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Figure 5-2: IMU: Linear Accelerations. The raw signals showed very noisy behaviour and even
after filtering, the acceleration measurement still oscillates. Although the VAF of the longitudinal
measurement is 0, it can still be observed that the signal somewhat follows the benchmark.
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Figure 5-3: IMU: Yaw Angular Rate. In the most extreme part of the drift the markers tracked
by the MCS were very vague in the picture which influenced the yaw rate measurement. The
error between 2.5 and 3.5 s was thought to be an error of the MCS, not the on-board sensor.
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Figure 5-4: CVA: CG-Velocities. The above plots show the measurements form the tuned
CVA. The grey dots are the individual measurements. The green line is the filtered median over
these points. The zero measurements are automatically discarded by the algorithm.
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Figure 5-5: IMU: Kinematic Model Result. The above plots show the output of the kinematic
model given in (5-1) and (5-2) for the inputs shown in Figure 5-2 and 5-3.
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Figure 5-6: Absolute Estimation Error for IMU and CVA. This figure shows the estimation
errors of the signals in Figures 5-4 and 5-5. The signal drift of the IMU with kinematic model
can clearly be seen towards the end, as well as the outliers in the CVA signal.
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5-3 Algorithm Design

5-3-1 Model Discretisation and Linearisation

The process model as it was defined in (2-15) contained the states that are the central reference
points to all other measured quantities. The model, that related the state-transition ẋ to the
state x and the input u, was defined in continuous time and was discretised at a sampling
time Ts, resulting in (5-1) and (5-2).

Φ (k) = eATs =
[

cos (ωz (k)Ts) sin (ωz (k)Ts)
− sin (ωz (k)Ts) cos (ωz (k)Ts)

]
(5-1)

Γ (k) =
∫ Ts

0
eAsdsB = 1

ωz (k)

[
sin (ωz (k)Ts) 1− cos (ωz (k)Ts)

cos (ωz (k)Ts)− 1 sin (ωz (k)Ts)

]
(5-2)

The measurement model related the state vector x to the output vector y. The model differed
for the two filter approaches that were developed. In the first approach each point velocity
Vxn and Vyn from the CVA was processed individually. This resulted in the process model
that can be written as a set of equations: (5-3) for the front axle velocity from the ENC, (5-4)
for the longitudinal point velocities and (5-5) for the lateral point velocities from the CVA
for each point n.

h1 (x̂, ωz, δ) =
√
x̂2

1 + (x̂2 − lfωz)2 cos
(

tan−1
((x̂2 − lfωz)

x̂1

)
− δ

)
(5-3)

h2n (x̂1, yn, ωz) = − (x̂1 − ynωz) (5-4)

h3n (x̂2, xn, ωz) = − (x̂2 + xnωz) (5-5)

The above equations were linearised to obtain the measurement model matrix H, which is
the Jacobian matrix of partial derivatives of h with respect to x̂:

H[i,j] =
∂h[i]
∂x[i]

(5-6)

The above resulted in:

∂h1
∂x̂1

=
x̂1 cos (δ)

√
x̂2

1+(x̂2−lfωz)2

x̂2
1√

x̂2
1 + (x̂2 − lfωz)2

∂h1
∂x̂2

=
x̂1 sin (δ)

√
x̂2

1+(lfωz−x̂2)2

x̂2
1√

x̂2
1 + (lfωz − x̂2)2

(5-7)

∂h2
∂x̂1n

= −1 ∂h2
∂x̂2n

= 0 ∂h3
∂x̂1n

= 0 ∂h3
∂x̂2n

= −1 (5-8)
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In some images the points tracked by the CVA disappeared or were discarded due to in-
sufficient quality, as was explained in Chapter 4. This caused the measurement vector z to
become shorter in length, which influenced the length of vectors y, z and matrices H, K and
R. However, due to the definition of the Kalman filter, this was not a problem. The following
definitions show that the arrays may vary in size:

• state-transition model: x ∈ R2,Φ ∈ R2×2, u ∈ R2,Γ ∈ R2×2

• estimation error covariance: P ∈ R2×2

• ENC and CVA measurements of N tracked points (multiple, varying): z ∈ R1+2N

• Non-linear prediction of ENC and CVA measurements (length varying): y ∈ R1+2N

• Linearised output (length varying): H ∈ R(1+2N)×2

• Kalman gain (length varying): K ∈ R2×(1+2N)

• Measurement noise covariance (length varying): R ∈ R(1+2N)×(1+2N)

• Process noise covariance: Q ∈ R2×2

In the second fusion approach the CVA measurements were processed as a single velocity
component at the CG for each axis VxN and VyN . The first two entries of H were given by
(5-7), while the 4 other entries were given by:

∂h2
∂x̂1n

= 1 ∂h2
∂x̂2n

= 0 ∂h3
∂x̂1n

= 0 ∂h3
∂x̂2n

= 1 (5-9)
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z
Vx ,VyP−

x̂−
K , x̂,P

Figure 5-7: Sensor Fusion Overview. The ENC and IMU provided measurements at 50 Hz
and were processed by the LPF from (4-18). The CVA needed the ωz value from the IMU for
the calculations in (4-14) and (4-15). In this diagram the combined approach is shown. In the
individual approach the average and LPF blocks in the CVA section did not exist. The hold block
synchronised the CVA to the 50 Hz of the IMU, ENC and Kalman filter. The prediction-correction
cycle produced the final outputs Vx and Vy.
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5-3-2 Sensitivity Analysis

Both algorithms as they were described in the previous subsection contained 5 tuning param-
eters. The first two given in (5-10) described the process noise covariance of each state, where
q1 represented the noise covariance on x1 (Vx) and q2 represented that of x2 (Vy).

Q =
[
q1 0
0 q2

]
(5-10)

The other three parameters given in (5-11) described the measurement noise covariance of
each measured quantity. Parameter r1 was the measurement noise of the ENC axle velocity
Vδ. In case of the individual CVA point measurements fusion algorithm, r2 and r3 are diagonal
N ×N matrices with equal values on each diagonal element for the noise covariances on Vxn
and Vyn respectively. In case of the single combined CVA measurement fusion algorithm, r2
and r3 were scalars describing the noise covariances on VxN and VyN respectively.

R =

 r1 0 0
0 r2 0
0 0 r3

 (5-11)

The influence of each of the parameters on the estimation accuracy was analysed. Figures
C-1, C-2, C-3, C-4, and C-5 in Appendix C-1-1 show the sensitivity analysis results for the
individual approach. Figures C-6, C-7, C-8, C-9, and C-10 in Appendix C-1-2 show the
sensitivity analysis results for the combined approach. From these analyses optimal values
were selected, presented in Tables 5-1 and 5-2.

Table 5-1: Individual Fusion Algorithm Parameters

Description Abbreviation Value
Process noise covariance on Vx q1 0.01
Process noise covariance on Vy q2 0.01

Measurement noise covariance on Vδ r1 0.05
Measurement noise covariance on Vxn r2 30
Measurement noise covariance on Vyn r3 5

Table 5-2: Combined Fusion Algorithm Parameters

Description Abbreviation Value
Process noise covariance on Vx q1 0.075
Process noise covariance on Vy q2 0.1

Measurement noise covariance on Vδ r1 0.075
Measurement noise covariance on VxN r2 2
Measurement noise covariance on VyN r3 2
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5-4 Results

5-4-1 Approach Comparison

The sensitivity analyses provided optimal values for both fusion approaches. The different
approaches were compared with each other. Figure 5-8 shows the accuracies of the different
approaches. The first approach was an established technique where the kinematic model
and IMU are used to estimate the sideslip. This resulted in an accuracy below 80% for both
velocity components and significant drift near the end of the experiment. The CVA developed
in Chapter 4 was more accurate, with a VAF of above 80% and no drift. But fusion was even
better, surpassing 90% accuracy. Of the two fusion approaches developed in this thesis, it
seemed that the combined fusion approach was the best option, with slightly better results.
What cannot be shown here is how the computational load differs between the approaches. It
was assumed that the combined approach would be computationally lighter. Also, the fusion
model was less complicated in case of the combined processing, as the explanations in the
previous sections substantiated.
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Figure 5-8: Sideslip Estimation Approach Comparison. The IMU signal is the output from
the kinematic model, which showed significant drift. The CVA showed noisier behaviour. Fusion
was the best solution, with the combined approach being superior.

5-4-2 Validation

It was concluded in the previous subsection that the combined fusion approach was superior
in the drift experiment. However, to minimise the risk of over-fitting the filter parameters,
the algorithm was tested on the validation datasets from Section 3-4-2. The algorithm was
not adjusted in any way for the tests. In the first experiment pure longitudinal motion was
induced, resulting in a zero sideslip angle. During the experiment the lateral motion was not
exactly zero however, which made establishing the accuracy of a zero sideslip angle difficult.
The left plot in Figure 5-9 therefore shows the estimation accuracy of the longitudinal motion,
since this accuracy could be easily established. In the pure lateral motion experiment it was
easier to establish the accuracy of the sideslip estimation, of which the results are shown
in the right plot of Figure 5-9. It was concluded that the developed algorithm was valid in
simulation and the aim of future work could be to validate it in an experiment by running
the code on-board.
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Figure 5-9: Combined Fusion Approach Validation. The left plot shows the estimation of the
longitudinal velocity for the experiment shown in Figure 3-10. The right plot shows the estimation
of the sideslip angle for the experiment shown in Figure 3-11

.

5-4-3 Critical Evaluation

In this section the conclusions drawn in this chapter are critically evaluated. The first obvious
point of critique is that the previously presented validation was the result of a simulation, not
an actual test on the experimental vehicle. The main concern with this is that the processing
unit on the vehicle might not be able to process the images fast enough to produce the results
without a significant delay. The potential consequences are unknown. Another point is that
the individual CVA measurements could have been processed in a separate Kalman filter prior
to fusion. This could potentially improve the individual fusion approach, which now suffers
heavily from its outliers. Another improvement that should have been investigated is tracking
of points through multiple frames instead of a single frame in the CVA algorithm. This could
significantly decrease the ‘chattery’ behaviour of the CVA point velocity estimation. A fusion
approach that was not evaluated in this chapter is the fusion between the ENC and the
IMU, without the CVA. This could potentially remove the drift from the IMU measurement,
eliminating the need for the complex CVA solution altogether. Finally, the ‘IMU only’ based
approach was not tuned, which could have potentially improved its result. On the other hand,
the signal drift would still make this approach undesirable, even with better tuning.

5-5 Conclusion

This chapter provided two fusion approaches to estimate the sideslip angle with the mea-
surements of the ENC, IMU and CVA. The raw signals of these sensors provided sideslip
estimates with accuracies of 70-80% (IMU) and 80-90% (CVA). Fusing the measurements im-
proved the estimates significantly to above 90%. Of the two approaches that were developed
in this thesis, the combined method proved to be superior to the individual method. The
combined method was tested against validation experiments and was proven to obtain the
same accuracy which minimises the probability of over-fitting the filter parameters.
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Chapter 6

Conclusion

6-1 Summary

Vehicle Active Safety: Autonomous Driving at the Handling Limits

Car manufacturers heavily invest in research and development in the area of vehicle safety.
A widely discussed innovation within vehicle safety engineering is autonomous driving. An
autonomous vehicle should be able to avoid obstacles in emergency scenarios. This requires
vehicle operation at the handling limits to maximise the performance and safety of the au-
tonomous vehicle. This is considered to be one of the big development challenges in the
coming years in the field of vehicle engineering.

Automated Drift Control Development: Feasible State Estimation

The limits of vehicle handling are reached when the tires lose grip and start slipping, known as
drift motion. Drift motion has been investigated in the past decade and analyses revealed that
equilibria exist in this motion state. Race driver behaviour has been studied which inspired
novel design approaches for automated drift controllers. The literature on this topic showed
that controlling drift motion for autonomous vehicles is possible, but feasible state estimation
methodologies have not yet been proposed or tested. Current control methodologies rely on
external sensors and very precise vehicle models using tire force calculations. This thesis had
the objective to develop and test a state estimation methodology that only relied on simple
on-board sensors and did not require a dynamic vehicle model to estimate the sideslip angle.
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Sideslip Estimation Methodology

Chapter 2 presented a state estimation methodology for the sideslip of a vehicle that exclu-
sively utilised on-board sensors, namely: rotary encoders, an inertial measurement unit and
a camera. The on-board sensor suite was laid. The basic working principles were explained
and the measured quantities of the sensors were related to the CG-states. A Kalman filter
was defined with a process model with inputs and outputs that related to the measured quan-
tities from the sensors. An experimental setup was presented on which the state estimation
technique was implemented and validated.

Motion Capture System

Chapter 3 explained the motion capture system that provided benchmark and validation
datasets for the state estimation design process. The benchmark dataset was an unstable
drift resembling the experiments carried out in drift control development. Each stage of the
MCS data processing was described referring to the benchmark experiment as an example.
A method was presented to extract the location and heading of the vehicle throughout the
experiment. These signals were differentiated over time using a differentiator with low-pass
filter. A technique was presented by which the obtained states were transformed to the desired
outputs that were needed as benchmark and validation.

Computer Vision Algorithm

Chapter 4 described the design of a computer vision algorithm that used the on-board camera
to measure the longitudinal- and lateral velocity. The image was processed by correcting
for distortion and isolating the red coloured markers in an ROI. After applying a greyscale
conversion to the colour channels, the image is ready for the detection- and tracking stage.
Corners of the markers are detected in the greyscale image by a Shi-Tomasi detector. A Lukas-
Kanade optical flow function tracks the points through consecutive frames. Each tracked point
location was obtained in pixels, so a conversion to actual coordinates in meters was needed
for the final measurement output of the algorithm. This was achieved through homographic
projection. The benefit of this approach was that it removes any perspective from the image
without requiring additional steps.

Sensor Fusion Algorithm

The raw signals of the sensors provided sideslip estimates with accuracies of 70-80% (IMU)
and 80-90% (CVA). However, the estimates based on the IMU were subject to drift while
the CVA showed significant outliers. To improve the estimates Chapter 5 provided two ap-
proaches to fused the measurements of the ENC, IMU and CVA. In the first approach the
CVA measurements were processed individually. In the second approach the median of the
CVA measurements was taken, which was then put through a low-pass filter. Fusing the mea-
surements improved the estimates significantly (above 90%). The combined method proved
to be superior to the individual method. The combined method was tested against validation
experiments and obtained the same accuracy (90-100%) which excluded the possibility of
over-fitting the filter parameters.
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6-2 Recommendations

Improved Hardware

The experimental platform that has been used in this project has been replicated and improved
by a group of B.Sc. students at the TU Delft [76]. This allows for more advanced projects
in the future that could use the state estimation methodology proposed in this thesis. The
recommendations presented next both apply to this vehicle and the vehicle that has been
developed in Milan.

On-Line Validation

The next step in the development of the methodology presented in this thesis would be to
validate the algorithm on-line. The script is already written in Python which allows it to run
on the Lubuntu platform. By validating the algorithm on-line the computational effort can
be determined which would be a basis for an optimisation in that area.

System Identification and Control Design

Once a lightweight, optimal state estimator is in place, control designs can be proposed in a
simulation environment that allow the vehicle to make autonomous drifts. This would require
modelling of the vehicle dynamics in more detail. The MCS can be used to identify the system
dynamics to support the control deign process, but the state estimator could serve this role
as well, as the accuracy is above 90%.

Marker-Less Computer Vision

The CVA algorithm could be improved as well, to be able to work without markers on the
ground. Or it could use markers that are common on the highway (white stripes). The basis of
the algorithm could be used for more purposes than drift control, such as lane-keeping. This
would simply be a matter of changing the colour thresholds and processing of the egomotion
calculation.

Collaboration between Delft and Milan

Finally, this project is one of hopefully many more collaborations between the TU Delft
and the Politecnico di Milano on autonomous vehicle control development. Now that both
universities have working test platforms using the same hard- and software it is easy to share
algorithms and data. The platform is also suitable for research at all levels (B.Sc, M.Sc,
Ph.D. and Postdoc). Studies could also be performed simultaneously on the platform, as
the vehicle frame has a modular structure. This allows the removal and placement of many
different sensors. An important notice to researchers in Delft: do not forget to adjust the
computer vision algorithm, the algorithm was tuned for Italian blue sky interference, which
is unfortunately not common in Delft.

Master of Science Thesis C.B. Kuyt



62 Conclusion

C.B. Kuyt Master of Science Thesis



Appendix A

Vehicle Hardware Specifications
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Figure A-1: Vehicle Hardware Overview. Part (1) is the chassis including the motor (2), ESC
(3) and servo (4). Part (5) is the Arduino. The red lines indicate analog interfaces. Parts (6)
indicate the encoders. Part (7) is the IMU, (8) is the camera. The blue lines indicate digital
interfaces. Part (9) is the Ordoid.
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Table A-1: Vehicle Component Specifications
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Computer Vision Function Parameters
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Table B-1: Computer Vision Algorithm Parameters for External Camera.
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Table B-2: Computer Vision Algorithm Parameters for On-Board Camera.
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Appendix C

Sensor Fusion Results

C-1 Sensitivity Analysis

C-1-1 Individual Processing
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Figure C-1: Process Noise Covariance on Vx
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Figure C-2: Process Noise Covariance on Vy
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0 0.5 1 1.5 2 2.5 3 3.5
-1

-0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5
-1

-0.5

0

0.5

1

Figure C-3: Measurement Noise Covariance on Vδ
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Figure C-4: Measurement Noise Covariance on Vxn
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Figure C-5: Measurement Noise Covariance on Vyn
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C-1-2 Combined Processing
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Figure C-6: Process Noise Covariance on Vx
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Figure C-7: Process Noise Covariance on Vy
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Figure C-8: Measurement Noise Covariance on Vδ
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Figure C-9: Measurement Noise Covariance on VxN
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Figure C-10: Measurement Noise Covariance on VyN

C-2 Additional Estimation Result: Rear Wheel Longitudinal Slip
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Figure C-11: Drift Experiment: Rear Wheel Longitudinal Slip: λ
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List of Acronyms

ABS anti-lock braking system

MCS motion capture system

DGPS differential global positioning system

INS inertial navigation system

IMU inertial measurement unit

LKA lane-keeping assistance

ACC adaptive cruise control

LIDAR light detection and ranging

ENC rotary encoder

HE Hall-effect

CVA computer vision algorithm

BARC Berkeley Autonomous Race Car

ESC electronic speed control

ROS robot operating system
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List of Symbols

α Tire sideslip angle
β Vehicle sideslip angle
δ Front wheel steering angle
λ Longitudinal tire slip
µ Friction coefficient
ωz Yaw angular rate
CG Centre of gravity
Fx Longitudinal tire force
Fy Lateral tire force
Fz Vertical load
lf Longitudinal distance between front axle and CG
lr Longitudinal distance between rear axle and CG
NS Neutral-steer
OS Over-steer
Rnom Nominal tire radius
US Under-steer
Vx Longitudinal velocity
Vy Lateral velocity
x Longitudinal vehicle axis
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