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Abstract. It is known that if L is a Dedekind complete Riesz space and (Ω,Σ) is
a measurable space, then the partially ordered linear space of all L-valued, finitely
additive and order bounded vector measures m on Σ is also a Dedekind complete
Riesz space (for the natural operations). In particular, the modulus |m|o of m exists
in this space of measures and |m|o is given by a well known formula. Some 20 years
ago L. Drewnowski and W. Wnuk asked the question (for L not Dedekind complete)
if there is an m for which |m|o exists but, |m|o is not given by the usual formula?
We show that such a measure m does indeed exist.

Mathematics Subject Classification (2020): Primary: 46A40, 46G10; Secondary: 06F20.

Key words: Vector measure, finitely additive, order bounded, modulus.

1. Introduction. Let L be an Archimedean (real) Riesz space and (Ω,Σ) be
a measurable space, that is, Σ is a σ-algebra of subsets of some non-empty set Ω.
The partially ordered vector space of all L-valued, finitely additive, order bounded
vector measures on Σ is denoted by Mob (Σ, L); see Section 2. Whenever it exists
in Mob (Σ, L), denote by |m|o = m ∨ (−m) the modulus (also called the absolute
value) of m ∈Mob (Σ, L). If, in addition, the formula

|m|o (A) = sup
π∈Π(A)

∑
B∈π
|m (B)| , A ∈ Σ, (1)

is valid, meaning that for each A ∈ Σ the supremum in the right-side of (1) exists
in L and equals |m|o (A), then m is said to have a proper modulus. Here, for each
A ∈ Σ, the family of all finite partitions of A in Σ is denoted by Π (A). Whenever
L is Dedekind complete, it is known that every element of Mob (Σ, L) has a proper
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modulus (cf. Section 2). If L is not Dedekind complete, then there may exist
vector measures in Mob (Σ, L) which have no modulus at all and others for which
the modulus does exist; see Section 2. Some 20 years ago L. Drewnowski and W.
Wnuk [3] asked the question of whether there exist vector measuresm ∈Mob (Σ, L)
which have a modulus |m|o inMob (Σ, L) but, the formula (1) fails to hold. The aim
of this note is to show that this can indeed happen; see Theorem 4.3. The m that
we exhibit is even countably additive and has finite variation. Some explanation
of how such an m could arise is relevant.

A regular linear operator T : L→M between Archimedean Riesz spaces L and
M may or may not have a modulus |T |, that is, |T | = T ∨ (−T ) exists for the
natural order in the space of all regular operators from L into M . Here, regular
means that the operator is the difference of two positive operators. An early and
fundamental result, due to L.V. Kantorovich [6] under the assumption that M is
Dedekind complete, states that any regular operator T : L → M has a modulus
and this modulus is given by the so called Riesz-Kantorovich formula

|T | (x) = sup {Ty : y ∈ L, |y| ≤ x} , x ∈ L+; (2)

here L+ = {x ∈ L : x ≥ 0} is the positive cone of L. Until recently, for every known
example of an operator T for which the modulus |T | exists, this modulus is given by
(2). But, is this always the case? This issue is elegantly settled by M. Elliott in [4],
where a regular operator T : L1 ([0, 1]) → E with E isometrically isomorphic to a
C (K)-space, is constructed for which |T | exists but, the Riesz-Kantorovich formula
fails to hold. The features of this Banach lattice and the operator T suggest that
the order bounded, E-valued vector measure m defined by A 7−→ T (χA), for each
Borel set A in [0, 1], is a good candidate to have the desired properties. It turns
out that this is indeed the case (see Section 4). In Section 5, using the theory of
integration with respect to a countably additive vector measure, we analyze further
the close connection between m and T . In particular, it is shown that the space
L1 (m) of all m-integrable functions coincides with L1 ([0, 1]) and consequently, T
has an integral representation with respect to m.

For the basic theory of Riesz spaces (i.e., vector lattices) we refer the reader to
any of the books [7], [12], [8] or [1].

2. Order bounded vector measures and their moduli. In this section
we discuss various properties of order bounded vector measures. Let L be an
Archimedean Riesz space and (Ω,Σ) be a measurable space. A set function m :
Σ→ L is called a finitely additive vector measure ifm (A1 ∪A2) = m (A1)+m (A2)
whenever A1, A2 ∈ Σ are disjoint. A set A ∈ Σ is said to be m-null if m (B) = 0
for every B ∈ Σ with B ⊆ A. Furthermore, m is called positive if m (A) ≥ 0 for
all A ∈ Σ. It should be observed that if m : Σ → L is a finitely additive, positive
vector measure and A,B ∈ Σ satisfy A ⊆ B, then m (A) ≤ m (B).

Definition 2.1. A finitely additive vector measure m : Σ → L is called order
bounded if its range

m (Σ) = {m (A) : A ∈ Σ}
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is an order bounded subset of L, that is, there exists u ∈ L+ such that |m (A)| ≤ u
for all A ∈ Σ.

The set of all L-valued, finitely additive, order bounded vector measures on
Σ will be denoted by Mob (Σ, L), which is a real vector space with respect to the
”natural operations”. Any positive vector measure belongs to Mob (Σ, L). The set
of all positive, L-valued measures is denoted by Mob (Σ, L)

+
, which is a proper

cone in Mob (Σ, L). The linear space Mob (Σ, L) is a partially ordered vector space
with respect to this cone (i.e., if m1,m2 ∈Mob (Σ, L), then m1 ≤ m2 if and only if
m1 (A) ≤ m2 (A) for all A ∈ Σ).

It is well known that Mob (Σ, L) is a Dedekind complete Riesz space whenever
the Riesz space L is Dedekind complete. In fact, the following theorem holds, which
may be deduced from its more abstract analogue [11], Theorem 2.1.3 (see also [5]).

Theorem 2.2. Let L be a Dedekind complete Riesz space and (Ω,Σ) be a mea-
surable space. With respect to the above partial ordering,Mob (Σ, L) is a Dedekind
complete Riesz space where, for any m1,m2 ∈Mob (Σ, L), the supremum m1 ∨m2

is given by

(m1 ∨m2) (A) = sup {m1 (B) +m2 (A�B) : B ∈ Σ, B ⊆ A} , A ∈ Σ. (3)

For any upwards directed, order bounded system 0 ≤ mα ↑α≤ m0 in Mob (Σ, L),
its supremum m ∈Mob (Σ, L) is given by the formula

m (A) = sup
α
mα (A) , A ∈ Σ. (4)

It follows, in particular, from the above theorem that for each m ∈ Mob (Σ, L)
the absolute value |m|o = m∨ (−m) of m exists, whenever L is Dedekind complete
(we denote the absolute value of m by |m|o, whereas we reserve the notation |m|
for the variation of m; see Section 5). The formulae in the next result also appear
in [2], [3] and [5]. For each A ∈ Σ, the collection of all finite partitions of A in Σ
is denoted by Π (A).

Corollary 2.3. Let L be a Dedekind complete Riesz space and (Ω,Σ) be a mea-
surable space.

(i) Let m ∈Mob (Σ, L). For each A ∈ Σ, we have that

|m|o (A) = sup {m (B)−m (A�B) : B ∈ Σ, B ⊆ A}
= sup {|m (B)−m (A�B)| : B ∈ Σ, B ⊆ A} . (5)

(ii) Let m ∈Mob (Σ, L). Then |m|o is also given by the formula

|m|o (A) = sup
π∈Π(A)

∑
B∈π

|m (B)| , A ∈ Σ. (6)

If the Riesz space L is not Dedekind complete and m ∈ Mob (Σ, L), then the
absolute value |m|o = m∨(−m) of m may or may not exist in the partially ordered
vector space Mob (Σ, L); see Example 2.7 (a) below. Note that if |m|o exists, then
|m (A)| ≤ |m|o (A) for each A ∈ Σ. The following notion appears in [2], p. 223.
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Definition 2.4. Let L be an Archimedean Riesz space and m ∈ Mob (Σ, L). We
say that the modulus |m|o exists properly if |m|o = m ∨ (−m) exists in Mob (Σ, L)
and if |m|o (A) is given by the formula (5) for each A ∈ Σ.

Of course, if L is Dedekind complete, then |m|o exists properly for every m ∈
Mob (Σ, L); cf. Corollary 2.3. However, there are several important cases in which
|m|o exists properly without the assumption that L is Dedekind complete; see
Example 2.7 (c), (d) below.

The following result (without proof) is stated on pp. 222–223 of [2] and on p.
363 of [3]. We include a proof for the sake of completeness.

Lemma 2.5. Let L be an Archimedean Riesz space and m ∈ Mob (Σ, L). The
following three statements are equivalent.

(i) The modulus |m|o exists properly in Mob (Σ, L).

(ii) For each A ∈ Σ, the supremum

sup {m (B)−m (A�B) : B ∈ Σ, B ⊆ A}

exists in L.

(iii) For each A ∈ Σ, the supremum

sup
{∑

B∈π
|m (B)| : π ∈ Π(A)

}
(7)

exists in L.

If any one of (i)-(iii) is satisfied, then |m|o (A) is also given by (7) for each A ∈ Σ.

Proof. The implication (i)⇒(ii) is evident from Definition 2.4.
(ii)⇒(i). Defining m0 : Σ→ L by

m0 (A) = sup {m (B)−m (A�B) : B ∈ Σ, B ⊆ A} , A ∈ Σ,

it is routine to verify that m0 is finitely additive and that m0 = |m|o.
(i)⇒(iii). Fix A ∈ Σ. If π ∈ Π(A), then∑

B∈π
|m (B)| ≤

∑
B∈π
|m|o (B) = |m|o (A) .

Hence, |m|o (A) is an upper bound of the set
{∑

B∈π |m (B)| : π ∈ Π(A)
}
.

Suppose now that u ∈ L+ satisfies
∑
B∈π |m (B)| ≤ u for all π ∈ Π(A). This

implies, in particular, that

|m (B)−m (A\B)| ≤ |m (B)|+ |m (A\B)| ≤ u

for all B ∈ Σ with B ⊆ A. It follows from (5) that |m|o (A) ≤ u. Consequently,
|m|o (A) is the supremum in L of the set{∑

B∈π
|m (B)| : π ∈ Π(A)

}
.
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(iii)⇒(i). Since the supremum in (7) exists for every A ∈ Σ, we can define
m1 : Σ→ L+ by setting

m1 (A) = sup
{∑

B∈π
|m (B)| : π ∈ Π(A)

}
, A ∈ Σ.

It is readily verified that m1 is finitely additive, i.e., m1 ∈ Mob (Σ, L)
+
. Since

|m (A)| ≤ m1 (A) for A ∈ Σ, it is clear that m1 is an upper bound of {m,−m} in
Mob (Σ, L).

Suppose that m2 ∈ Mob (Σ, L)
+

is also an upper bound of {m,−m}, i.e.,
|m (B)| ≤ m2 (B) for all B ∈ Σ. Given A ∈ Σ and π ∈ Π(A), it follows that∑

B∈π
|m (B)| ≤

∑
B∈π

m2 (B) = m2 (A) .

By the definition of m1 (A), this implies that m1 (A) ≤ m2 (A). Hence, m1 ≤ m2.
We conclude that m1 is the supremum of {m,−m}, that is, m1 = |m|o.

It remains to show that |m|o is also given by (5). Let A ∈ Σ be fixed. If B ∈ Σ
with B ⊆ A, then

m (B)−m (A\B) ≤ |m (B)|+ |m (A\B)| ≤ m1 (A) = |m|o (A) .

Therefore, |m|o (A) is an upper bound of the set

{m (B)−m (A\B) : B ∈ Σ, B ⊆ A} .

Suppose now that w ∈ L+ is any upper bound of this set and let π =
{B1, . . . , Bn} ∈ Π(A). Recall (cf. Proposition 1 in [2]) that∑n

j=1
|m (Bj)| = sup

{∑n

j=1
εjm (Bj) : εj ∈ {−1, 1} for 1 ≤ j ≤ n

}
.

Given any εj ∈ {−1, 1}, for 1 ≤ j ≤ n, define B+ =
∪
{Bj : εj = 1}. Then∑n

j=1
εjm (Bj) = m

(
B+
)
−m

(
A\B+

)
≤ w.

Consequently,
∑n
j=1 |m (Bj)| ≤ w. This shows that w is an upper bound of the set{∑

B∈π |m (B)| : π ∈ Π(A)
}
and so |m|o (A) = m1 (A) ≤ w. We can conclude that

(5) holds, that is, |m|o exists properly. This suffices for the proof of the lemma. 2

Corollary 2.6. Let L be an Archimedean Riesz space and m ∈Mob (Σ, L). The
modulus |m|o of m exists properly if and only if |m|o exists in Mob (Σ, L) and is
given by

|m|o (A) = sup
π∈Π(A)

∑
B∈π

|m (B)| , A ∈ Σ. (8)

Let E be a Banach lattice. A finitely additive vector measure m : Σ → E is
called countably additive if

m
(∪∞

n=1
An

)
=
∑∞

n=1
m (An) ,
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whenever (An)
∞
n=1 is a pairwise disjoint sequence in Σ, where the series∑∞

n=1m (An) is (unconditionally) convergent in E. If this is the case, then m
is simply called an E-valued vector measure. We denote by Mobc (Σ, E) the sub-
set of Mob (Σ, E) consisting of all the order bounded vector measures. It is readily
verified that Mobc (Σ, E) is a linear subspace of Mob (Σ, E). In general, even for
E a Dedekind complete Banach lattice, m ∈ Mobc (Σ, E) need not imply that
|m|o ∈Mobc (Σ, E); see Example 2.7 (b) below. In other words, if E is a Dedekind
complete Banach lattice and m : Σ→ E is an order bounded vector measure, then
its modulus |m|o exists as a finitely additive positive vector measure but, |m|o need
not be a vector measure.

Example 2.7. (a) Let Ω = [0, 1] and Σ = B ([0, 1]), the Borel σ-algebra of [0, 1].
Denote by c the Banach lattice of all convergent sequences (equipped with
the norm ∥·∥∞). Note that c is not Dedekind complete. There exists an
order bounded vector measure m : Σ → c for which |m|o does not exist in
Mob (Σ, c); see [10]. For related examples see also Examples 1.9, 2.4 and 7.1
in [3].

(b) There exist Dedekind complete Banach lattices E and order bounded vector
measures m : Σ → E for which the modulus |m|o is not countably additive.
See [5], Ch. III, Examples 4.5 and 5.14, for instance, [2], Example 3 and [3],
Example 7.10.

(c) Let E be any Banach lattice (not necessarily Dedekind complete) and
(Ω,Σ, µ) be a σ-finite measure space. Let f : Ω → E be a Bochner µ-
integrable function and define µf : Σ→ E by

µf (A) =

∫ (B)

A

f dµ, A ∈ Σ

(here
∫ (B)

denotes the Bochner integral). Then µf is an order bounded
vector measure. The modulus |µf |o of µf exists properly and is given by

|µf |o (A) =
∫ (B)

A
|f | dµ, for A ∈ Σ, where the Bochner µ-integrable function

|f | : Ω → E is defined by |f | (t) = |f (t)|, for t ∈ Ω. Note that |µf |o is
countably additive. For the details we refer to Theorem 1 of [2].

(d) Let (Ω,Σ, µ) be a σ-finite measure space, E be any Banach lattice and f :
Ω → E be a strongly µ-measurable, Pettis µ-integrable function. Define
µPf : Σ→ E by

µPf (A) =

∫ (P )

A

f dµ, A ∈ Σ

(where
∫ (P )

denotes the Pettis integral). Then µPf is a vector measure. In

general, µPf need not be order bounded. However, if the function |f | : Ω→ E

is also Pettis µ-integrable, then µPf is order bounded, its modulus
∣∣∣µPf ∣∣∣

o
exists

properly and is given by the formula
∣∣∣µPf ∣∣∣

o
(A) =

∫ (P )

A
|f | dµ, for A ∈ Σ. In
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particular,
∣∣∣µPf ∣∣∣

o
is countably additive. For the details we refer to Theorem

2 in [2].

(e) Let E be an AM -space, that is, E is a Banach lattice in which the norm
satisfies ∥u ∨ v∥E = max {∥u∥E , ∥v∥E} for all u, v ∈ E+. It is well known
(see e.g. Theorem 2.1.12 in [8]) that for any relatively compact subset D ⊆ E,
its supremum supD exists in E (and belongs to the norm closure of D). In
particular, every relatively compact subset of E is order bounded.

Let (Ω,Σ) be a measurable space and m : Σ→ E be a finitely additive vector
measure with relatively compact range m (Σ) = {m (A) : A ∈ Σ}. Then m is
order bounded and, for each A ∈ Σ, the set

{m (B)−m (A\B) : B ⊆ A, B ∈ Σ}

is also relatively compact. Consequently, for each A ∈ Σ, the supremum

sup {m (B)−m (A\B) : B ⊆ A, B ∈ Σ}

exists in E. Hence, by Lemma 2.5, the modulus |m|o exists properly. This
example is also exhibited in Example 1 (c) of [2].

3. Elliott’s construction. In this section we introduce some notation and
preliminaries that will be needed in the sequel and describe the Banach lattice
constructed by M. Elliott in [4]. For convenience of the reader, we follow the
notation used in [4]. For proofs of the stated facts we also refer to Section 3 in [4].

We write N0 = {0, 1, 2, . . .} = N ∪ {0}. Given a non-empty set A and n ∈ N0,
consider the set An of all n-tuples (τ0, . . . , τn−1) of elements from A, except for A0,
which is interpreted to be the singleton set A0 = {∅}. Let

Tn (A) = An, n ∈ N0,

and define
T (A) =

∪
n∈N

Tn (A) . (9)

For τ ∈ Tn (A), we call n the length of τ and write |τ | = n. Elements of Tn (A) for
n ≥ 1 can be thought of as sequences of length n (with elements from A), whereas
T0 (A) is the set consisting of the ”empty sequence”. Given τ = (τ0, . . . , τn−1) ∈
Tn (A) and σ = (σ0, . . . , σm−1) ∈ Tm (A) with n ≥ 1 and m ≥ 1, we define the
(n+m)-tuple τ ⊕ σ ∈ Tn+m (A) ⊆ T (A) via concatenation, that is,

τ ⊕ σ = (τ0, . . . , τn−1,σ0, . . . , σm−1) .

For the remaining cases we define ∅ ⊕ ∅ = ∅ and ∅ ⊕ τ = τ ⊕ ∅ = τ for τ ∈∪
n≥1 Tn (A).
The two sets A that we will be using are A = N0 = {0, 1, 2, . . .} and A = ”3” =

{0, 1, 2}.
For each n ∈ N0, let

φn : {0, 1, . . . , 3n − 1} → {0, 1, 2}n = Tn (3)
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be a bijection, where we interpret T0 (3) = {∅} with φ0 : {0} → {∅} uniquely
defined. Now define the map Φn : N0→{0, 1, 2}n ⊆ T (3) by setting

Φn (k) = φn (m) , (m ∈ {0, 1, . . . , 3n − 1} , m = k mod 3n) . (10)

It is important to note that the values of Φn (k) cycle, with period 3n, through the
elements of {0, 1, 2}n. The maps Φn will be used later.

Next, for A = N0, consider the Banach lattice ℓ∞ (T (N0)) consisting of all
bounded, R-valued functions defined on T (N0) (equipped with the sup-norm ∥·∥∞).
Since T (N0) is countable, the Banach lattice ℓ∞ (T (N0)) is isometrically isomorphic
to the Banach lattice ℓ∞ (N) (only a different labeling of the elements is involved).

It is readily verified that the set E, defined by

E =

{
x = (xτ )τ∈T(N0)

∈ ℓ∞ (T (N0)) : lim
k→∞

xτ⊕(k) = xτ ∀τ ∈ T (N0)

}
, (11)

is a norm closed Riesz subspace of ℓ∞ (T (N0)). Hence, E is itself a Banach lattice
with respect to ∥·∥∞. Evidently, E contains all the constant sequences.

Next we discuss an indexation for certain subintervals of [0, 1]. We begin with
I∅ = [0, 1] (∅ ∈ T0 (3)). Next, define I(0) = [0, 1/3], I(1) = (1/3, 2/3] and I(2) =
(2/3, 1] (this defines Iτ for τ ∈ T1 (3)). Then define the intervals I(0,0) = [0, 1/9],
I(0,1) = (1/9, 2/9], ...., I(2,2) = (8/9, 1] (this defines the sets Iτ for τ ∈ T2 (3)). We
continue in this way and define (via induction) the sets Iτ for all τ ∈ T (3). It is
clear that λ (Iτ ) = 3−|τ | for all τ ∈ T (3), where λ denotes Lebesgue measure on
[0, 1].

Observe, given m,n ∈ N0 with m < n and τ ∈ T (3) with |τ | = n, that there
exists a (unique) σ ∈ T (3) such that |σ| = m and Iτ ⊆ Iσ. Indeed, if τ is given
by τ = (τ0, · · · , τn−1), then σ is given by σ = (τ0, . . . , τm−1). It is also clear that
Iτ ∩ Iσ = ∅ for all σ satisfying |σ| = m and σ ̸= (τ0, . . . , τm−1).

For n ∈ N0, denote by En the algebra of subsets of [0, 1] generated by
{Iτ : τ ∈ T (3) , |τ | = n}. That is, En is the collection of all subsets of [0, 1] which
are finite unions of intervals Iτ with τ ∈ T (3), |τ | = n. Then the cardinality
|En| = 23

n

. Note that Em ⊆ En whenever m < n in N0. It should also be observed
that if m < n, F ∈ Em and G = Iτ for some τ ∈ T (3) with |τ | = n, then either
G ⊆ F or G ∩ F = ∅.

Next, define the collection {Fτ : τ ∈ T (N0)} of subsets of [0, 1] by induction on
the length of τ ∈ T (N0) as follows. For |τ | = 0 we set F∅ = ∅. Suppose now
that n ∈ N0 with n ≥ 1 and that Fτ has already been defined for all τ ∈ T (N0)
satisfying |τ | = n − 1. Given τ ∈ T (N0) with |τ | = n − 1 and k ∈ N0, define the
interval Gτ⊕(k) by setting

Gτ⊕(k) =

{
IΦn(k) if IΦn(k) ∩ Fτ = ∅
∅ if IΦn(k) ∩ Fτ ̸= ∅

(12)

(recall the definition of Φn (k) as given in (10)). Now define

Fτ⊕(k) = Fτ ∪Gτ⊕(k). (13)
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Since the function Φn has period 3n, it follows that the sequence
{
Fτ⊕(k)

}∞
k=0

also
has period 3n.

Some properties of the sets Fτ , for τ ∈ T (N0), are formulated in the following
result (for a proof, see Section 3 in [4]).

Lemma 3.1. (i) The set Fτ ∈ E|τ | for all τ ∈ T (N0).

(ii) Let τ ∈ T (N0) with |τ | = n − 1 (1 ≤ n ∈ N0) and k ∈ N0. Then, either
IΦn(k) ∩ Fτ = ∅ or IΦn(k) ⊆ Fτ . Consequently, Fτ⊕(k) = Fτ ∪ IΦn(k) holds
for all k ∈ N0.

(iii) For every τ ∈ T (N0) it is the case that

Fτ =
∪|τ |

i=1
IΦi (τi−1) . (14)

(iv) For every τ ∈ T (N0) we have that λ (Fτ ) ≤ 1/2.

(v) Given σ ∈ T (3) and τ ∈ T (N0) such that |σ| > |τ |, we have Iσ ⊆ Fτ⊕(k)

for infinitely many values of k ∈ N0.

Next we define a system {sτ : τ ∈ T (N0)} of functions in L∞ ([0, 1]), where [0, 1]
is equipped with Lebesgue measure λ defined on the Borel σ-algebra Σ in [0, 1].
The definition is by induction on the length |τ | of τ ∈ T (N0).

Denote by (rn)
∞
n=0 the sequence of Rademacher functions on [0, 1], that is,

rn (x) = sgn (sin (2nπx)), x ∈ [0, 1]. Observe that:

• |rn (x)| = 1 for all x ∈ [0, 1] and n ∈ N0;

• for each f ∈ L1 ([0, 1]) we have that
∫ 1

0
f (x) rn (x) dx→ 0 as n→∞.

Identifying L∞ ([0, 1]) with the dual space of L1 ([0, 1]), the latter property may
also be formulated as: rn → 0 weak∗ in L∞ ([0, 1]) as n → ∞. Note that also
rng →n 0 weak∗ for all g ∈ L∞ ([0, 1]).

For |τ | = 0, define sτ = 0. Suppose now that sτ ∈ L∞ ([0, 1]) has already been
defined for every τ ∈ T (N0) with |τ | = n−1 for some 1 ≤ n ∈ N0. For each k ∈ N0,
define the function sτ⊕(k) by setting

sτ⊕(k) = sτ + rkχGτ⊕(k)
, (15)

where the set Gτ⊕(k) is defined by (12). For the proof of the following result we
also refer to Section 3 in [4].

Lemma 3.2. (i) The modulus of sτ satisfies |sτ | = χFτ for all τ ∈ T (N0).

(ii) Let τ ∈ T (N0). Then sτ⊕(k) → sτ weak∗ in L∞ ([0, 1]) as k →∞.
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Remark 3.3. Some further remarks are of interest. Define a set O ⊆ T (N0) to
be open if for every τ ∈ O there exists K ∈ N0 such that τ ⊕ (k) ∈ O for all
k ≥ K. It is readily verified that these open sets constitute a topology in T (N0).
It is not difficult to show that the space Cb (T (N0)) consisting of all the bounded
R-valued continuous functions defined on T (N0) is precisely the space E. It can be
shown that T (N0) is completely regular and normal but, T (N0) is not metrizable.
Furthermore, T (N0) is not an F -space. We leave the details to the interested
reader.

4. A vector measure with non-proper modulus. Let the Banach lattice
E (see (11)) and the functions

{sτ : τ ∈ T (N0)} ⊆ L∞ ([0, 1])

(see (15)) be as specified in Section 3. Let Σ = B ([0, 1]) be the Borel σ-algebra of
[0, 1]. For A ∈ Σ define m (A) ∈ ℓ∞ (T (N0)) by

(m (A))τ =

∫
A

sτ dλ, τ ∈ T (N0) . (16)

Note, via Lemma 3.2 (i), that for each τ ∈ T (N0) we have

|(m (A))τ | ≤
∫
A

|sτ | dλ =

∫
A

χFτ dλ = λ (A ∩ Fτ ) ≤ λ (A) , A ∈ Σ.

This implies, in particular, that

∥m (A)∥∞ ≤ λ (A) , A ∈ Σ. (17)

Since sτ⊕(k) → sτ weak∗ as k → ∞, for each τ ∈ T (N0) (see Lemma 3.2 (ii)), it
follows that m (A) ∈ E for each A ∈ Σ. Hence, m : Σ → E is a finitely additive
vector measure. It follows from (17) that m is actually countably additive. Since
−χ[0,1] ≤ sτ ≤ χ[0,1] for τ ∈ T (N0), it is clear from (16) that

|m (A)| ≤ λ (A)χT(N0), A ∈ Σ. (18)

In particular, m is order bounded, that is, m ∈ Mob (Σ, E). Defining the positive,
countably additive vector measure m0 : Σ→ E by

m0 (A) = λ (A)χT(N0), A ∈ Σ, (19)

inequality (18) may also be written as −m0 ≤ m ≤ m0 in Mob (Σ, E). Hence, m0

is an upper bound for {m,−m}. In particular, m can be written as the difference
of two positive vector measures (indeed, m = m0 − (m0 −m)).

For each τ ∈ T (N0) define δτ ∈ E∗ by δτ (x) = ⟨x, δτ ⟩ = xτ , for x ∈ E. Note
that ∥δτ∥E∗ = 1. The scalar measure ⟨m, δτ ⟩ is given by

⟨m, δτ ⟩ (A) = ⟨m (A) , δτ ⟩ = (m (A))τ =

∫
A

sτ dλ, A ∈ Σ.
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Accordingly, its variation measure |⟨m, δτ ⟩| is given (see Lemma 3.2 (i)) by

|⟨m, δτ ⟩| (A) =
∫
A

|sτ | dλ =

∫
A

χFτ dλ = λ (A ∩ Fτ ) , A ∈ Σ. (20)

Lemma 4.1. The modulus |m|o of m exists in Mob (Σ, E) and is precisely m0.

Proof. It has already been observed that m0 is an upper bound for {m,−m} in
Mob (Σ, E). Suppose that m1 ∈Mob (Σ, E)

+
is any upper bound of {m,−m}, i.e.,

−m1 ≤ m ≤ m1, which is equivalent to saying that |m (A)| ≤ m1 (A), for A ∈ Σ.
We need to show that m0 ≤ m1, that is, λ (A) ≤ (m1 (A))τ for all A ∈ Σ and every
τ ∈ T (N0); see (19).

For this purpose, observe that the inequality |m (A)| ≤ m1 (A), for A ∈ Σ,
implies that

|⟨m, δτ ⟩ (A)| = |(m (A))τ | ≤ (m1 (A))τ , A ∈ Σ, τ ∈ T (N0) .

Since A 7−→ (m1 (A))τ , for A ∈ Σ, is a finitely additive, positive (scalar) measure
on Σ, for each τ ∈ T (N0), this yields (via (20)) that

λ (A ∩ Fτ ) = |⟨m, δτ ⟩| (A) ≤ (m1 (A))τ , A ∈ Σ. (21)

Let A ∈ Σ and τ ∈ T (N0) be fixed and set n = |τ |. Select any σ ∈ Tn+1 (3).
Since |σ| > |τ |, it follows from Lemma 3.1 (v) that Iσ ⊆ Fτ⊕(k) holds for infinitely
many values of k ∈ N0. Moreover, (20) and (21) imply, for infinitely many values
of k, that

(m1 (A ∩ Iσ))τ⊕(k) ≥
∣∣⟨m, δτ⊕(k)

⟩∣∣ (A ∩ Iσ)
= λ

(
A ∩ Iσ ∩ Fτ⊕(k)

)
= λ (A ∩ Iσ) .

Since m1 (A ∩ Iσ) ∈ E, it follows that

(m1 (A ∩ Iσ))τ = lim
k→∞

(m1 (A ∩ Iσ))τ⊕(k) ≥ λ (A ∩ Iσ) .

The sets {Iσ : σ ∈ Tn+1 (3)} form a partition of [0, 1] and so,

(m1 (A))τ =
∑

σ∈Tn+1(3)

(m1 (A ∩ Iσ))τ

≥
∑

σ∈Tn+1(3)

λ (A ∩ Iσ) = λ (A) .

Since A ∈ Σ and τ ∈ T (N0) are arbitrary, this suffices to complete the proof of the
lemma. 2

The following result is analogous to Proposition 3 in [4].
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Lemma 4.2. Let m be the vector measure given by (16). Its modulus |m|o in
Mob (Σ, E) is not given by the formula (8). Actually, for any partition π ∈ Π([0, 1]),
we have that ∑

B∈π
|m (B)| ≤ 1

2
χT(N0), (22)

whereas |m|o ([0, 1]) = χT(N0).

Proof. Let π ∈ Π([0, 1]) and B ∈ π. It follows from (20) that

|(m (B))τ | ≤ |⟨m, δτ ⟩| (B) = λ (B ∩ Fτ ) , τ ∈ T (N0) ,

and so, by Lemma 3.1 (iv), we have that∑
B∈π

|m (B)τ | ≤
∑
B∈π

λ (B ∩ Fτ ) = λ (Fτ ) ≤ 1/2.

This shows that (22) holds. On the other hand, by Lemma 4.1 we know that
|m|o = m0 and hence, from (19), it is clear that m0 ([0, 1]) = χT(N0). The proof is
thereby complete. 2

Let us summarize what has been established, namely, the main result of the
paper.

Theorem 4.3. The modulus of the order bounded vector measure m : Σ → E,
as defined in (16), exists in Mob (Σ, E) and is given by |m|o (A) = λ (A)χT(N0) for
each A ∈ Σ. In particular, |m|o is countably additive. However, |m|o is not given
by the formula (8), that is, the modulus of m exists but, it does not exist properly.

According to Theorem 2.2 (and Corollary 2.3), it follows from Theorem 4.3 that
the Banach lattice E is not Dedekind complete. However, E is order separable.
Indeed, the set T (N0) is countable and hence, every disjoint system in E is at most
countable. Consequently, E is not even Dedekind σ-complete (actually, E does not
have the σ-interpolation property; cf. Remark 3.3).

5. Relation between m and Elliott’s operator. As alluded to in the In-
troduction the vector measure m, as defined in Section 4, is generated by Elliott’s
operator T : L1 ([0, 1])→ E (in [4] T is denoted by R) via the formula

m (A) = T (χA) , A ∈ Σ = B ([0, 1]) . (23)

Here T is defined by

Tf =

(∫ 1

0

sτf dλ

)
τ∈T(N0)

, f ∈ L1 ([0, 1]) . (24)

According to (23) and (24) one would expect a close interaction between the prop-
erties of m and those of T . These connections are exposed in this final section.
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The space E given by (11) is an AM -space. Therefore, it follows from Example
2.7 (e) and Theorem 4.3 that the range m (Σ) of m is not relatively compact.
It should be noted that this implies, in particular, that the operator T is not a
Dunford-Pettis operator (as order intervals in L1 ([0, 1]) are weakly compact; see
Theorem 2.4.2 in [8]). Furthermore, T is not weakly compact, as L1 ([0, 1]) has the
Dunford-Pettis property (see Proposition 3.7.9 in [8], for example). It is evident
from the formula for |m|o (see Theorem 4.3) that m (Σ) is compact.

Sincem : Σ→ E is countably additive, there is available a well developed theory
of integration with respect to m; see Ch. 3 of [9], for example, and the references
therein. We summarize the relevant aspects from there which are needed here.

A Σ-measurable function f : [0, 1] → R is called scalarly m-integrable if∫
[0,1]
|f | d |⟨m,x∗⟩| < ∞ for all x∗ ∈ E∗. The space L1

w (m) of all such (equiv-

alence classes of) functions f is a Banach function space (with respect to any
control measure for m) when it is equipped with the norm

∥f∥L1
w(m) = sup

∥x∗∥E∗≤1

∫
[0,1]

|f | d |⟨m,x∗⟩| , f ∈ L1
w (m) ,

and it has the Fatou property. A function f ∈ L1
w (m) is said to be m-integrable if,

for every A ∈ Σ, there exists an element
∫
A
fdm ∈ E (necessarily unique) which

satisfies ⟨∫
A

fdm, x∗
⟩

=

∫
A

fd ⟨m,x∗⟩ , x∗ ∈ E∗.

The space L1 (m) of all m-integrable functions is a closed ideal in L1
w (m). Hence,

L1 (m) is also a Banach function space for the restriction of the norm ∥·∥L1
w(m) to

L1 (m), which is denoted by ∥·∥L1(m). The norm ∥·∥L1(m) is order continuous. The

integration operator Im : L1 (m)→ E is defined by

Imf =

∫
[0,1]

fdm, f ∈ L1 (m) .

It is a continuous linear map satisfying ∥Im∥ = 1.
Recall that the variation measure |m| : Σ→ [0,∞] of m is defined by

|m| (A) = sup
π∈Π(A)

∑
B∈π
∥m (B)∥E , A ∈ Σ.

It follows from (17) that |m| ≤ λ on Σ and so, in particular, |m| is finite. It is
routine to verify that |m| and m have the same null sets. Hence, |m| is a control
measure for m. The measure |m| can be precisely identified.

Lemma 5.1. The variation measure |m| is equal to Lebesgue measure λ.

Proof. As has already been observed, |m| ≤ λ on Σ. To prove the reverse
inequality we first establish that the inequalities

|m| (A) ≥ λ (A ∩ Fτ ) , τ ∈ T (N0) , (25)
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are valid for each A ∈ Σ. So, fix A ∈ Σ and τ ∈ T (N0). Define the Borel sets
A+
τ = {x ∈ A : sτ (x) ≥ 0} and A−

τ = {x ∈ A : sτ (x) < 0}, which form a partition
of A in Σ. Accordingly,

|m| (A) ≥
∥∥m (A+

τ

)∥∥
∞ +

∥∥m (A−
τ

)∥∥
∞ .

Since sτ = |sτ | on A+
τ and sτ = − |sτ | on A−

τ , it follows from (16) that

∥∥m (A+
τ

)∥∥
∞ ≥

∣∣∣∣∫
A+
τ

sτ dλ

∣∣∣∣ = ∫
A+
τ

|sτ | dλ

and that ∥∥m (A−
τ

)∥∥
∞ ≥

∣∣∣∣∫
A−
τ

sτ dλ

∣∣∣∣ = ∫
A−
τ

|sτ | dλ.

Combining the previous three inequalities, in combination with the fact that |sτ | =
χFτ (cf. Lemma 3.2 (i)), yields

|m| (A) ≥
∫
A+
τ

|sτ | dλ+

∫
A−
τ

|sτ | dλ = λ (A ∩ Fτ ) .

This completes the proof of (25).
Choose any σ ∈ T (3) with |σ| ≥ 1. Then Lemma 3.1 (v) ensures that there

exists τ ∈ T (N0) satisfying Iσ ⊆ Fτ . It follows from (25), applied to A = Iσ, that

|m| (Iσ) ≥ λ (Iσ ∩ Fτ ) = λ (Iσ) .

Since the reverse inequality has already been established, we can conclude that

|m| (Iσ) = λ (Iσ) , σ ∈ T (3) , |σ| ≥ 1. (26)

It follows from (26) that |m| and λ coincide on each algebra of sets En (cf. Section
3) for n ∈ N and hence, also on the algebra

∪∞
n=1 En. Since

∪∞
n=1 En generates

the σ-algebra Σ = B ([0, 1]) and both |m| and λ are finite measures, it follows that
|m| = λ on Σ. 2

The previous result implies that λ is a control measure for m and hence, both
L1 (m) and L1

w (m) are Banach function spaces over ([0, 1] ,Σ, λ). In the terminol-
ogy of p. 187 in [9], the operator T is λ-determined. The following result is a direct
consequence of Proposition 4.4 (iii) in [9].

Lemma 5.2. The space L1 ([0, 1]) ⊆ L1 (m) with a continuous inclusion and the
integration operator Im : L1 (m)→ E satisfies

Tf = Imf =

∫
[0,1]

fdm, f ∈ L1 ([0, 1]) .

Perhaps somewhat surprising is the following fact.
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Proposition 5.3. The following Banach function spaces satisfy

L1 (|m|) = L1 (m) = L1
w (m) = L1 ([0, 1]) (27)

with equivalent norms.

Proof. Lemmas 5.1 and 5.2 imply that

L1 (|m|) = L1 ([0, 1]) ⊆ L1 (m) ⊆ L1
w (m) .

Let f ∈ L1
w (m). Then f ∈ L1 (|⟨m, δτ ⟩|) for each τ ∈ T (N0) (where the

functionals δτ ∈ E∗ are defined in Section 4). Since |⟨m, δτ ⟩| (A) =
∫
A
χFτ dλ (see

(20)), this implies that ∫
[0,1]

|f |χFτ dλ <∞, τ ∈ T (N0) .

It was noted in the proof of Lemma 5.1 that for each σ ∈ T (3) with |σ| ≥ 1,
there exists τ ∈ T (N0) satisfying Iσ ⊆ Fτ . Consequently,

∫
Iσ
|f | dλ <∞ for every

σ ∈ T (3) with |σ| ≥ 1, which clearly implies that
∫ 1

0
|f | dλ < ∞. This establishes

that L1
w (m) ⊆ L1 ([0, 1]), which implies (27). Since all four spaces involved are

Banach function spaces, it follows that all norms are equivalent. 2

Lemmas 5.1 and 5.2 and Proposition 5.3 yield an integral representation of
T : L1 ([0, 1])→ E, namely

Tf =

∫
[0,1]

f dm, f ∈ L1 ([0, 1]) .

Remark 5.4. Of course, the norms in the spaces L1 (|m|) and L1 ([0, 1]) are actu-
ally equal. It is readily verified that |⟨m,x∗⟩| ≤ |m| for all x∗ ∈ E∗ with ∥x∗∥E∗ ≤ 1.
This implies that ∥f∥L1(m) ≤ ∥f∥L1(|m|) = ∥f∥1 for all f ∈ L1 (m) = L1 ([0, 1]). It

is not difficult to show that ∥f∥1 ≤ 3 ∥f∥L1(m), for f ∈ L1 ([0, 1]).

Remark 5.5. The vector measure m : Σ → E is countably additive, has finite
variation and satisfies m ≪ λ (cf. (17) or Lemma 5.1 and the discussion prior to
it). However, m cannot possess an E-valued Bochner density with respect to λ;
see Example 2.7 (c) and Theorem 4.3.
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