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Preface

The work presented in this thesis investigates the creation of virtual sound sources in a room
equipped with a limited number of loudspeakers. This limited number of loudspeakers is typical
for consumer loudspeaker systems. Ideally, these systems can provide a listening experience in
which localisation cues are completely present. However, in current systems, this is not the case.
The limited number of loudspeakers make it impractical to produce a physically accurate sound
field. A possible solution is to create a perceptually accurate sound field instead. In this work, a
step towards an algorithm which can do so is presented.

The developed algorithm requires knowledge of the listener placement, the room, and the
loudspeaker placement. Spatial weighting is used to construct a region in which the acoustic en-
ergy should be large and a region in which the acoustic energy should be limited. The loudspeaker
playback signals are obtained by maximising the energy ratio between these regions, while at the
same time ensuring that the perceptual difference between the received audio and reference audio
remains limited. The algorithm employs a convex optimisation problem to facilitate efficiently
solving for the playback signals. Concretely, six convex optimisation problems are proposed with
somewhat increasing complexity and different weighting matrices.

For each of the optimisation problems, the proposed algorithm is compared against a simple
amplitude panning algorithm and a nearest neighbour algorithm. It is found that none of the
considered algorithms is clearly preferred over the others in terms of the considered evaluation
metrics.

A major limitation of the presented work is that the evaluation metrics do not explicitly test
for localisation accuracy. In future work, this should be investigated by including subjective tests.

∼
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producing loudspeaker systems. I want to thank my colleagues at KIEN, Arash, Nick, Florent,
Echo and Filip and my supervisor Jorge for their support and the helpful discussions. In particu-
lar, I want to thank Richard Eveleens, with whom I had many discussions (not necessarily about
the thesis itself).
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List of notation and definitions

Some of the notation, symbols and definitions used in the thesis are given below.

Notation

R set of real numbers

C set of complex numbers

Z set of integers

t ∈ R time

n ∈ Z discrete-time

f ∈ R frequency

k ∈ Z discrete-frequency

ω = 2πf angular frequency

x(t) continuous-time signal

x(n) discrete-time signal

x̂(ω) continuous-frequency signal

x̂(k) discrete-frequency signal

F Fourier transform

F−1 inverse Fourier transform

||x||p p-norm

x∗ complex conjugate of x

x column-vector

X matrix

XT transpose of X

XH Hermitian transpose of X

IN the N ×N identity matrix

diag(x) matrix with x as diagonal

X Random variable

E(X) Expected value of X

δ delta function

x ∗ h convolution of x with h

sinc sinc function

supp(x) support of x

Symbols

xr = (xr, yr, zr) receiver coordinate

xi = (xi, yi, zi) coordinate of loudspeaker i

xh = (xh, yh, zh) expected location of center of listeners head

Ns number of physical loudspeakers

i ∈ {1, . . . , Ns} physical loudspeakers

i = 0 virtual loudspeaker

s(xi, t), i ̸= 0 playback signal of loudspeaker i

1



s(x0, t) acoustic reference signal

sr(xi, t) acoustic signal received at coordinate xr due to playing back s(xi, t)

sr(t) total received acoustic signal at coordinate xr

A the region in which the acoustic energy should be high

B the region in which the acoustic energy should be low

Definitions

The continuous-time Fourier transform of a signal x(t) is defined as [1]

x̂(ω) = (Fx) (ω) =
∫ ∞

−∞
x(t)e−jωtdt, (1)

with corresponding inverse Fourier transform [1]

x(t) =
(
F−1x̂

)
(t) =

1

2π

∫ ∞

−∞
x̂(ω)ejωtdω. (2)

The discrete Fourier transform for a signal x(n) with n ∈ {0, 1, . . . , N − 1} is defined as [1]

x̂(k) = (Fx) (k) =
N−1∑
n=0

x(n)e−2πjkn/N , k ∈ {0, . . . , N − 1}, (3)

with corresponding inverse discrete Fourier transform is defined as [1]

x(n) =
(
F−1x̂

)
(n) =

1

N

N−1∑
k=0

x̂(k)e2πjkn/N , n ∈ {0, . . . , N − 1}. (4)

The lp-norm of a discrete-time signal x(n) with n ∈ {0, 1, . . . , N − 1} is defined as [2]

||x||p =

(
N−1∑
n=0

|x(n)|p
)1/p

, p ≥ 1. (5)

Convolution between two continuous-time signals x(t) and h(t) defined as [1]

(h ∗ x)(t) =
∫ ∞

−∞
h(τ)x(t− τ)dτ. (6)

Correspondingly, discrete-time convolution of two signals x(n) and h(n) is defined as [1]

(h ∗ x)(n) =
∞∑

m=−∞
h(m)x(n−m). (7)

Convolution is commutative,
x ∗ h = h ∗ x, (8)

associative,
(x ∗ g) ∗ h = x ∗ (g ∗ h), (9)
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and distributive
x ∗ (h+ g) = x ∗ h+ x ∗ g. (10)

A continuous-time signal x(t) is said to be causal if

x(t) = 0 ∀ t ≤ 0, (11)

a similar definition holds for discrete-time signals.
The support of a discrete-time signal x(n) with n ∈ N (where N is an arbitrary set of integers)

is defined as
supp(x) = {n ∈ N|x(n) ̸= 0)}. (12)

The Dirac delta function (which is not a function but a distribution) is denoted by δ(x) and
has the following two properties [1, 3]

δ(x) = 0, t ̸= 0 (13)

and ∫ ∞

−∞
δ(x′)f(x′)dx′ = f(0). (14)

A different δ function is the Kronecker delta, which is also denoted by δ(x). It is defined as [4]

δ(m− n) =

{
0, if m ̸= n,
1, if m = n.

(15)

Since the notation of the Dirac delta function and Kronecker delta is ambiguous, it is mentioned
which one is used.

The sinc function is defined as

sinc(x) =

{
sin(x)

x , if x ̸= 0,
1, if x = 0.

(16)

The diagonal operator diag constructs an N × N diagonal matrix from an N × 1 vector
so that the vector is on the diagonal of the constructed matrix. That is, consider a vector

y =
[
y1 y2 · · · yN

]T
, where T denotes the transpose. We have

diag(y) =


y1 0 · · · 0

0 y2
. . .

...
...

. . .
. . . 0

0 · · · 0 yN

 . (17)

The Hermitian transpose of a matrix A is denoted AH and is obtained by transposing A and
taking the complex conjugate of each entry.

The matrix A is said to be Hermitian if

A = AH. (18)

A Hermitian matrix A ∈ CN×N is said to be positive-definite if [5]

xHAx > 0 ∀x ∈ CN , x ̸= 0, (19)

where 0 is the all zero vector of proper size. Similarly, the Hermitian matrix A is said to be
positive-semi-definite if [5]

xHAx ≥ 0 ∀x ∈ CN . (20)
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Consider a continuous random variable X with probability density function (pdf) pX . The
expected value is given by [6]

E(X) =

∫ ∞

−∞
xpX(x)dx. (21)

Similarly, the expected value of f(X) is given by [6]

E(f(X)) =

∫ ∞

−∞
f(x)pX(x)dx. (22)

Of particular interest is the scenario in which we have access to some frequency-domain vector
h(f). In this case, we can define the covariance matrix or power-spectral density matrix R, given
by

R = E(hhH). (23)

This matrix is obtained by computing the expected value of the individual matrix entries.

4



Chapter 1

Introduction

Methods of reproducing spatial audio (i.e. audio containing the proper spatial cues) have received
research interest for decades and have found their way to many households [7, 8]. Some well-
known examples are stereo and 5.1 surround sound. In stereo, two loudspeakers1 are employed,
while in a 5.1 system five loudspeakers and an optional low-frequency loudspeaker are used [9].
As a rule of thumb, one could say that a larger number of loudspeakers allows for a better spatial
reproduction. If this is taken to the limit, one arrives at a collection of techniques known as
Sound Field Synthesis (SFS). A specific example of an SFS method is wavefield synthesis (WFS).
WFS allows for reproducing a physically accurate sound field inside a domain of interest. A
disadvantage of WFS is the large amount of loudspeakers required. For example, to obtain an
accurate reproduction up to 20 kHz, a loudspeaker spacing of less then 1 cm is necessary [10]. This
large number of loudspeakers involved is typical for physically accurate reproduction methods and
makes them infeasible for consumers [10].

To still obtain an accurate spatial audio reproduction using systems which are viable for con-
sumers, one can aim for a perceptually accurate reproduction instead of a physically accurate
reproduction. This introduces some additional freedom, since any physically accurate reproduc-
tion must be perceptually accurate, but not necessarily the other way around. Here, “perceptually
accurate” relates to the mapping of the received sound to a sound scene. The sound reproduction
can thus be considered perceptually accurate if the mapping of sound to points in space is in
reasonable agreement to the mapping obtained from a physically correct reproduction.

Throughout this thesis, I consider audio systems which are viable for consumers. Concretely,
I consider systems with five full-range loudspeakers (i.e. the entire audible spectrum). Since this
is an insufficient number for creating a physically accurate reproduction, the aim is to deliver a
perceptually accurate reproduction instead. To achieve this, a heuristic approach is taken which
takes into account some properties of the human hearing system.

In the remainder of this chapter, I first discuss some current approaches to spatial audio
reproduction and their limitations. From this, the research questions follow. They are given in
Section 1.2. Then, in Section 1.3, I introduce the approach to spatial audio taken in this thesis.
After this, in Section 1.4, the methodology is given. Lastly, in Section 1.5, the thesis structure is
given.

1.1 Current approaches to spatial audio

In this section, some methods that can be used to reproduce spatial audio are mentioned. I
do not go into the details, but instead merely state their advantages and limitations. For more
information, the reader can refer to the cited sources.

1Strictly speaking, I should say channels instead of loudspeakers. One could connect multiple loudspeakers to
the same channel.
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1.1 Current approaches to spatial audio Chapter 1: Introduction

1.1.1 Stereophony

Perhaps the most well known approach to spatial audio is stereophony. Stereophony systems
make use of level differences and time-of-arrival differences (see Section 2.1.2) to create spatial
sound [10]. This is known as panning. Examples of stereophony systems are, among others,
stereo systems, 5.1 systems and 7.1 systems [8, 10]. All these systems require specific loudspeaker
locations, making them sensitive to misplacement.

The stereo and 5.1 layout are defined by the ITU-R BS.775 standard [9]. It is important to
note that this standard only specifies the placement of the loudspeakers. The panning algorithms
which determine the playback signals of the individual loudspeakers are not defined.

A disadvantage of stereophony systems is that they have a limited “sweet spot”. The sweet
spot is the region in space where the audio is perceived as intended. Additionally, it should be
noted that the 5.1 format is not designed specifically to provide good localisation cues [7], nor is
it designed to reconstruct the sound field. Still, stereophony systems have been very successful.
This can largely be attributed to properties of the human hearing system [10].

The 5.1 surround setup, depicted in Figure 1.1, is used as reference throughout this thesis.
Since the 5.1 system is only corresponds to a loudspeaker placement, a reference algorithm is
implemented. This algorithm is a simple amplitude panning algorithm proposed in [11].

Figure 1.1: The 5.1 surround sound speaker layout according to the ITU-R BS.775
recommendation [9]. The loudspeakers should be placed at approximately the indicated angles.
The system consist of three loudspeakers in front of the listener (Left L, right R and center C)
and two loudspeakers on the sides of the listener (left side LS and right side RS). Lastly, an
additional low-frequency effects loudspeakers may be added (this is the “.1” in the name 5.1).

The radius of the circle is not defined.

1.1.2 Crosstalk cancellation

An approach to spatial audio which may be considered as mimicking headphone signals using
loudspeakers is crosstalk cancellation. When performing crosstalk cancellation, one attempts to
set the desired signal at a number of points in space [12]. A typical example of these points are
the ears of the listener. This situation is depicted in Figure 1.2, where the aim is to cancel the
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1.1 Current approaches to spatial audio Chapter 1: Introduction

path from the right loudspeaker to the left ear and the other way around. This allows to set the
audio received by the left and right ear independently.

Figure 1.2: A typical example of the setup of the crosstalk cancellation problem. The aim is to
deliver the signal of the left loudspeaker only to the left ear, while at the same time delivering
the signal of the right loudspeaker only to the right ear. Thus, the dashed paths should be

cancelled.

Historically, crosstalk cancellation considered the stereo loudspeaker setup, given by the left
and right loudspeaker of Figure 1.1 [13, 14]. Limitations of this setup resulted in different ar-
rangements, such as placing the loudspeakers closer together [14]. Still, systems using only two
loudspeakers have a (very) small sweet spot, are sensitive to modelling errors (for example a
small loudspeaker displacement) and the signal needs to be boosted massively around frequencies
where the sound waves add destructively [12, 15, 16]. Solutions have been sought in regularisa-
tion [15, 16] and placing loudspeakers at discrete points in a semicircle around the listener [15].
More recently, line arrays [17–21] and listener-position adaptive crosstalk-cancellation [20, 22]
have been considered as well. Additionally, some hybrid methods have been investigated [20, 23].
However, all of the previously mentioned approaches still suffer from a limited sweet spot, require
a large number of loudspeakers or require a specific loudspeaker placement. Lastly, to incorporate
the spatial cues, the use of Head Related Transfer Functions (HRTFs) or something similar is
needed. HRTFs are listener dependent and described further in Section 2.1.2.

1.1.3 Wavefield synthesis

As stated before, wavefield synthesis (WFS) attemps to create a physically accurate soundfield.
WFS is based on an integral known as Rayleigh’s first integral equation [4] and the constructed
soundfield is accurate up to a certain frequency over a large area [10]. The number of channels
involved in WFS can easily surpass hundred, making it infeasible for consumer systems [4, 10].
However, it has been shown that even with loudspeaker spacing of 0.41 cm, decent localisation
results can be achieved [24]. Typically, WFS assumes anechoic rooms, though it is possible to
compensate for reflections [10].

1.1.4 Ambisonics

Just like WFS, ambisonics can be considered as a technique attempting to reconstruct a phys-
ically accurate soundfield. Ambisonics may be divided in three types, namely (1) first-order
ambisonics (FOA), (2) higher order ambisonics (HOA) and (3) near-field compensated higher-
order ambisonics (NFC-HOA) [4, 10, 25]. Here, the word “order” stems from the truncation of
some mathematical series, see [4, 10, 26].

FOA can be used well with with only four loudspeakers in the azimuthal plane [25]. However,
it suffers from a small sweet spot and limited directional resolution [7, 25]. HOA alleviates these
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1.2 Research questions Chapter 1: Introduction

problems. However, this is at the cost of an increasing number of loudspeakers [26]. Typically,
the amount of loudspeakers go beyond what I consider to be consumer viable.

In ambisonics, the radius of the sweet spot is a function of the wavelength and the number
of loudspeakers. Namely, the size of the sweet spot for a fixed frequency increases for a larger
number of loudspeakers. For a fixed number of loudspeakers, the size of the sweet spot decreases
as the frequency increases [10]. The main difference between HOA and NFC-HOA is that, in
HOA, the sources are assumed to be at infinite distance. Thus, they radiate plane-waves. On the
other hand, in NFC-HOA, the sources are assumed to be at finite distance. Accordingly, they are
treated as monopoles [4].

In [27], a localisation experiment using twelve loudspeakers is described. The experiment was
performed for first order ambisonics, third order ambisonics and fifth order ambisonics. It was
found that the localisation accuracy of subjects increases for higher orders. This is both the case
for listeners within and outside of the sweet spot. The localisation performance of listeners inside
the sweet spot was found to be better than that of listeners outside the sweet spot.

1.2 Research questions

From Section 1.1, it follows that SFS methods are infeasible for the intended users. Additionally,
surround sound systems and crosstalk cancellation systems are sensitive to small system devia-
tions, such as a listener outside the sweet spot and (somewhat) misplaced loudspeakers. Thus, I
use a different beamforming approach. Concretely, I propose an algorithm to minimise acoustic
energy inside part of a region close to the listener, while maximising the acoustic energy in the
remainder of the region. Additionally, it is investigated if the performance of the algorithm can
be increased by employing properties of the human hearing system. Thus, the research questions
are

Research Question 1 Can spatial weighting be used in combination with beamforming to syn-
thesise audio containing spatial cues?

Research Question 2 Can properties of the human hearing be used to improve the performance
of the algorithm?

Here, performance relates to (1) robustness against system deviations, (2) the inclusion of spatial
cues and (3) the quality of the obtained audio.

Additionally, I will limit the research by making the following assumptions

Assumption 1 The number of loudspeakers which is used is low. In this thesis, I use five
loudspeakers.

Assumption 2 The used loudspeakers are isotropic and full-range. That is, they radiate equal
power in all directions and cover the entire audible spectrum (20 Hz to 20 kHz).

Assumption 3 Only a single isotropic virtual source needs to be placed. This virtual source
needs to be placed inside the room.

Assumption 4 The location of the listener is known up to a certain accuracy. The listener is
not moving.

Assumption 5 The virtual source, listener and loudspeakers are placed at the same height in an
empty room with a fully absorbing floor and ceiling (e.g., no sound is reflected from the floor and
ceiling).
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1.3 Outline of idea Chapter 1: Introduction

The reason for the above assumptions is to reduce (computational) complexity and to keep the
research focused. Some of these assumptions are relaxed when investigating the performance of
the algorithm. Similarly, some of the assumptions will only be considered when necessary. Lastly,
it should be noted that more assumptions are made throughout the text. The above assumptions
are, however, considered to be most relevant for constraining the problem.

As particular usecase, I consider a 5.0 setup (i.e. a 5.1 setup but without the low-frequency
effects channel) which synthesises a virtual source on the circle intersecting the individual loud-
speakers.

1.3 Outline of idea

As stated before, the approach to spatial audio taken throughout this thesis is that of spatial
rejection. Concretely, it is attempted to maximise the acoustic energy inside the region from
which the audio should be perceived, while minimising the acoustic energy in the region from
which the audio should not be perceived. This should happen under the constraint that the
received audio resembles the reference audio sufficiently well. The corresponding problem setup
is illustrated in Figure 1.3. In the figure, the audio should be perceived as if coming from the
gray loudspeaker.

Figure 1.3: An example for the two regions, the virtual source (the loudspeaker drawn in gray)
and the physical loudspeakers. The acoustic energy in region A should be maximised, while the
acoustic energy in region B should be minimised. Given appropriate distance cues, this should

make the user perceive the audio as if coming from the virtual loudspeaker.

The reason for using regions instead of, say, points is that (1) regions allow for taking inaccu-
racies into account, for example loudspeaker displacement, (2) by superposition of sound waves,
it is reasonable to assume that the received audio, and thus the estimated location, is given by
a weighted sum of the audio at all points on some surface surrounding the listener, and (3) it
arguably removes the need of HRTFs (HRTFs are discussed in Section 2.1.2).

To make the idea given above a bit more formal, let us consider the main structure of the
algorithm. The algorithm operates on short-time segments. Considering segment number l. The
reference audio, (i.e. the audio from the virtual source) is assumed known and given by sl(x0).
Here, x0 equals the location of the virtual source. Similarly, the physical loudspeakers are located

9
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at xi, with i ∈ {1, . . . , Ns} and Ns the number of loudspeakers. Their playback signals are given
by sl(xi).

Let us now consider two functions d1 and d2. Here, d1 gives the energy in region B compared
to that in region A, and d2 quantifies the perceptual difference between two sounds. Thus, we
can write the optimisation problem as

min d1(sl(x1), . . . , sl(xNs
))

subject to d2

(
Ns∑
i=1

sl(xi), sl(x0)

)
≤ dmax,

(1.1)

where dmax quantifies the maximum allowable deviation from the reference audio.
It should be noted that the functions above are mostly illustrative and as such are not be

explicitly considered in the chapters.

1.4 Methodology

The results described in this thesis were obtained using MATLAB R2022b on default settings.
Room Impulse Responses (RIRs) were generated using the RIR generator of Habets [28] (the
version of Januari 31, 2022). For solving convex optimisation problems, CVX (Version 2.2, Build
1148) was used [29] with MOSEK (version 9.1.9) as solver. Other then this, the settings were
kept default.

1.5 Thesis structure

The thesis is divided in two main parts. Firstly, a literature review presenting background theory
and secondly the proposed algorithm.

The background theory is given in Chapter 2. Firstly, in Section 2.1, the human auditory
system is reviewed briefly. Then, in Section 2.2, a model for the received sound signal inside a
room is discussed. After this, in Section 2.3, three objective perceptual models which predict if
a tone is audible are given. Lastly, in Section 2.4, a method to perform filtering of long signals is
discussed. It should be noted that none of the theory presented in Chapter 2 is my own work.

The proposed algorithm is based on the findings in the literature review and discussed in
chapters 3 and 4. In Chapter 3, the regions A and B are defined using spatial weighting functions.
In combination with the model of the received sound signal, this allows to compute Power Spectral
Density (PSD) matrices. These matrices can then be used to minimise the energy ratio in region
B compared to that in region A. Then, in Chapter 4, the complete algorithm to synthesise sound
including spatial cues is presented.

The results of the algorithm are discussed in Chapter 5. The conclusions are given in Chapter
6 and a discussion and some recommendations for future work are presented in Chapter 7.

Lastly, I want to highlight that, in Appendix J, a draft of the to-be-submitted paper “Stochas-
tic Model of the Room Impulse Response in Small Rooms” is given.

In Figure 1.4, the structure of the thesis is depicted graphically. The background theory is
depicted in green and the contribution of the thesis is depicted in orange. The draft of the paper
is given in purple. Note that most appendices and some sections are not shown in the figure.
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Figure 1.4: The main structure of the thesis. The green coloured sections and chapters are
literature reviews. The orange sections are the main contributions of this thesis. The draft of
the to-be submitted paper is shown in purple. Note that not all appendices and sections are

shown.
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Chapter 2

Background

In this chapter, some background theory is discussed. This chapter serves as a tool to understand
the various components of the proposed algorithm. None of the theory discussed in this chapter
is my own work.

Firstly, in Section 2.1, some basics of the physiology of the ear are introduced and localisation
and masking are briefly explained. Then, in Section 2.2, the Green’s function solutions to the
wave- and Helmholtz equation are presented. These functions allow for calculating the received
sound signal when transmitting a sound in the free field. They can also be used in a simple
model to qualitatively calculate the room impulse response (RIR). After this, in Section 2.3,
some objective masking models are discussed. These models aim to predict the outcome of
subjective masking experiments. Lastly, in Section 2.4, a method to perform filtering in short
segments is discussed. This is required, since the RIRs are too long to be used directly in real-time
applications.

2.1 The auditory system

In this chapter, the human auditory system is discussed briefly. Since this chapter serves as a
tool to understand the various aspects of the perceptual measure discussed in Section 2.3, it is
definitely not all-encompassing. For more information, the reader can, among others, refer to
[30, 31]. A very loose schematic of the ear depicting only the structures which are discussed in
this chapter is given in Figure 2.1. For a more complete depiction, the reader can refer to [30].

Figure 2.1: A loose schematic view of the human ear depicting only the structures discussed
below.
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2.1 The auditory system Chapter 2: Background

2.1.1 Physiology of the auditory system

When a sound signal is transmitted, it eventually arrives at the listener, it is first modified by
the listeners head, torso, and pinna. The latter is the visible part of the ear. For low frequencies,
up to about 1500 Hz, the audio is mostly modified due to the listeners head and torso. For
high frequencies, the modification can mainly be attributed to the pinna [30, 31]. The exact
modification depends on the angle of incidence and is described by the so-called head related
transfer function (HRTF). This transfer function is further described in Section 2.1.2.

After passing the pinna, the modified sound traverses the auditory canal. The properties of
the auditory canal result in a high sensitivity for frequencies around 4 kHz. This high sensitivity
can also be seen in the threshold in quiet described in Section 2.1.3 [31].

As the sound traverses further through the ear, it eventually arrives at the cochlea. While the
cochlea is shaped like the shell of a snail, this is not believed to have any function apart from saving
space [30]. Along the length of the cochlea lies the basilar membrane. The basilar membrane
is about 32 mm long and its mechanical properties vary along the length of the membrane [30].
The basilar membrane is set into motion by incoming sounds, where the pattern of the motion
depends on the spectrum of the incoming sound. For sinusoids, the peak of the envelope moves
along the membrane for decreasing frequency. Thus the cochlea is often considered to perform
a frequency-analysis. It should be noted that the magnitude of the envelope is nonlinear with
respect to the magnitude of the input signal. Namely, a wide range of input values is mapped to
a smaller range of output values, this is termed “compressive nonlinearity” [30].

The motion of the basilar membrane is translated to electrical signals through the organ of
Corti, lying on top of the basilar membrane [31]. Among others, the organ of Corti contains
the inner hair cells and the outer hair cells. The inner hair cells are mainly responsible for the
translation of the acoustic signal to electrical signal (hereafter referred to as haircell transduction),
while the outer hair cells partake in some feedback process modifying the mechanical properties of
the cochlea [31, 32]. Among others, the compressive nonlinearity is associated with this feedback
process [33].

The electrical signals are transmitted towards the central nervous system through neurons
within the auditory nerve. Different neurons are sensitive to different stimuli types (think of, for
example, a low-frequency or a high-frequency stimuli). The information is conveyed through a
nerve by means of electrical pulses. The firing rate (amount of pulses per unit of time) inside a
neuron depends on the level of the input signal. Typically, a neuron starts firing once a certain
threshold is reached. After this, the firing rate increases for an increasing stimuli level. This
keeps going until the neuron is saturated and cannot fire any faster [30].

For low-frequency sinusoidal input signals, the pulses are synchronised to the input signal: the
time between each spike approximately equals some integer multiple of the period of the waveform
[30]. This is termed phase locking and is, among others, believed to play a role in localisation
and pitch perception [30]. Phase-locking does not only happen to sinusoidal input signals, but
also to the envelope of more complex input signals [34]. To the best of my knowledge, it it is not
exactly known how the envelope extraction works, though it is believed that distortions due to
nonlinearities play an important role [35].

2.1.2 Localisation

In this section, localisation is discussed briefly. Localisation refers to our ability to localise the
origin of a sound. This is typically done by comparing the sound received by the left and right
ear, though monaural cues also play a role. In the following, I will first consider the ears as two
omnidirectional microphones. This gives rise to the Interaural Time Difference (ITD) and the
Interaural Level Difference (ILD). Then, the head and body are introduced, giving rise to the
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Head Related Impulse Response (HRIR). Lastly, I briefly consider distance estimation and the
precedence effect.

2.1.2.1 Time- and level-difference

Let us consider the free-field scenario depicted in Figure 2.2. Since the distances dL and dR (to
the left ear (L) and right ear (R), respectively) are different, the signal received by each ear has
a different delay and attenuation.

Figure 2.2: A schematic overview of interaural time- and level-differences. The ears (which for
now are considered to be omnidirectional microphones) are depicted by ×, while the

(omnidirectional) loudspeaker is depicted by •.

The delay τ and attenuation α depend on the travel distance d. By comparing these values,
an estimate of the angle of incidence can be made. The calculation of τ and α is discussed in
Section 2.2. The time-difference between the ears is termed the Interaural Time Difference (ITD),
while the level-difference is termed the Interaural level Difference (ILD) [30]. For sources which
are far away, the level difference introduced in the free-field (so without a listener) is very small.

The presence of a listener influences the ITD and ILD. To explain this, I consider sources
which are in the far field. These sources can be approximated as a plane wave. The ITD and
ILD are best explained by considering the situation for low frequency signals and high frequency
signals separately. These situations are respectively illustrated in Figure 2.3a and Figure 2.3b.
For low frequencies, the wavelength is a lot larger then the size of the head (which has a radius

(a) Low frequency (b) High frequency

Figure 2.3: A schematic view of how the ITD and ILD are influenced by the presence of a head.
For low frequencies, the sound wave diffracts around the head, resulting in an ITD. For high

frequencies, the head “shadows” the ear, resulting in an ILD.
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of about 9 cm), resulting in the wave diffracting around the head [30]. Due to this diffraction
and the fact that the source is in the far field, the ILD is negligible, and the ITD is the dominant
spatial cue. For high frequencies, on the other hand, the ITD is not as useful becuase multiple
frequencies might result in the same ITD. The ILD is, however, useful. The reason for this is
that the head obstructs the sound signal, thereby resulting in an ILD. This is called shadowing.

While ITDs are not useful for localising high frequency sinusoidal sources, they can provide
localisation cues for more complex high frequency signals. This can be done by comparing the
time differences across multiple frequencies. For example, suppose that we have a single signal
composed of three different frequencies. Each frequency gives rise to a set of possible time
differences. By comparing the possible time differences arising from each of these frequencies, an
ITD might be found [30]. The auditory system is also able to estimate ITDs from the envelope
of complex signals [36, 37].

Let us briefly consider the free-field situation again. The ITD and ILD do not give a unique
estimate of the angle of incidence. Consider, for example, the situation depicted in Figure 2.4.
Here, both loudspeaker 0 and loudspeaker 1 result in the same time- and level-differences. In a
three-dimensional situation, the positions which give rise to the same ILDs and ITDs trace out a
cone. This cone is referred to as the “cone of confusion” [30].

Figure 2.4: A schematic overview of interaural time- and level-differences. The ears (which for
now are considered to be omnidirectional microphones) are depicted by ×, while the

(omnidirectional) loudspeakers are depicted by •. In this example, the distances dL,0 = dL,1 and
dR,0 = dR,1, thereby resulting in ambiguity.

The ambiguity in angle of incidence can be resolved through head movements [30]. However,
even without head movements, humans are very good at estimating the angle of incidence. This
can be attributed to us having a torso, head, and ears. Together, they act as antennas with an
angle, and, to a lesser extent, distance dependent transfer function [30]. This angle dependent
transfer function is given by the HRIR. The HRIR is sometimes considered in the frequency
domain, where it is termed the Head Related Transfer Function (HRTF).

2.1.2.2 Head related transfer function

For each angle of incidence with which a sound wave arrives at the listener (for example an
azimuth θ and an elevation ϕ), there is a unique pair of HRTFs; one for the left ear, and one for
the right ear. The HRTF is considered to be distance independent for sources which are further
than about 1 m from the head [38–40].

Each pair of HRTFs contains spectral patterns by which the incoming sound is modified,
thereby introducing ITDs and ILDs. For frequencies above 6 kHz, this modification can mainly
be attributed to the pinna. For lower frequencies, the head and the torso also play a role [30].

Mapping an HRTF to the angle of incidence can be thought of as a simple look-up table
[38]. However, the HRTF is not straightforwardly extracted from the received sound signal. The
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reason for this is that any source-signal has a spectral pattern by itself. This spectral pattern is
then modified by both the HRTF and the environment. As might thus be expected, it has been
shown that the localisation works best if we are familiar with the to-be-localised sound and the
current environment [30]. However, since the spectral dips and peaks of HRTFs are sharper than
typical sound spectra and since the received signal can be compared across the ears, localisation
still works to some extent even without prior knowledge [30].

It should be noted that the HRTF is person-dependent. Experiments have shown that subjects
are able to estimate the azimuth, and in particular whether the source is on the left or on the
right, when using someone else their HRTF. This does not hold for perception of elevation, where
large errors occur [38, 41].

In any practical application, the individuality of the HRTF poses a large challenge. While one
would ideally measure each listener, this is impractical due to the time-consuming measurement
process [42]. Thus, other methods have been developed. For example, one could try to estimate
the shape of the users pinna and find the closest fit in an HRTF database [38]. Attempts have
also been made to synthesise HRTFs via machine learning [43], or to generate them from pictures
of the users ears [44]. Some examples of HRTF databases are [45–48].

2.1.2.3 Distance perception

While the ITD, ILD and HRTFs provide means to estimate the distance of near-field sources,
they do not provide reliable cues to estimate the distance of far-field sources. In this section,
a number of cues to obtain distance-estimates for far-field sources are given. Before doing so,
it should be noted that distance estimation is inaccurate compared to estimates of the angle of
incidence. The quality of the estimate also depends on the type of signal [30, 41].

Firstly, if sounds are familiar, the hearing system is able to estimate the distance by comparing
the sound level to the reference sound level [30, 41]. Similarly, for moving sources, a cue is provided
by the changes in sound level [30]. For sound sources which are sufficiently far away from the
listener, the low frequency content is attenuated less with respect to the high frequency content,
thereby also providing a distance cue [30]. When listening in rooms, the distance between the
listener and source influences the ratio between the direct sound and reflected sound. This ratio
is frequency dependent and can be used to estimate the distance [30].

2.1.2.4 The precedence effect

As is discussed in the previous section, reflections provide a cue to estimate the distance of a
sound source. However, one might also expect that they influence the estimated angle. To see
this, consider the example of Figure 2.5. For the example depicted in the figure, one might expect

Figure 2.5: A simple example of an environment where the listener not only receives the direct
path signal, but also receives some reflections of the same signal.
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that three sources are localised. The actual source, and the “virtual” sources localised on the
edge of the walls. In practice, however, it is likely that the listener only localises a single source,
which is the actual source. This can be attributed to the precedence effect (also known as the
Haas effect or the law of the first wavefront) [49].

How the presence of reflections exactly influence the localisation depends on the nature of the
reflection. For a reflection which arrives in close succession to the direct path signal (less then
1 ms), the location is some average of the reflection and the direct path signal [30]. A set of
reflections is perceived as a single sound event when they arrive within T ms of the direct path.
Here, T depends on the type of signal and can be up to 40 ms [30, 49]. It should be noted that
this does not imply that the reflections are masked. The precedence effect merely states that the
localisation happens based on the first arriving signal mostly [30]. Interestingly, the precedence
effect still holds even if the reflection is stronger then the direct path [30, 49]. This breaks down
when the reflection becomes a lot stronger (10 to 15 dB) [30]. Lastly, if a sufficiently strong
reflection comes in after about 250 ms or more, it is perceived as an echo [49].

In all the previous discussions, the role of the sight on localisation was ignored. It should,
however, be noted that sight largely influences localisation. This is known as the ventriloquism
effect [49]. Since I am not able to control the visual content throughout this thesis, I do not take
it into consideration.

2.1.3 Audibility of sounds

For a sound to be audible, it needs to be sufficiently loud. The term sufficiently loud is quite
vague and depends on the listener, the type of sound, the duration for which the sound is present,
and on other sounds which are present. In this section, I will first consider the case where no
other sounds are present. For a more comprehensive review on audibility of sounds, the reader
can refer to [50].

2.1.3.1 Theshold in quiet

When a disturbance is inaudible in the absence of any other sounds, it is below the threshold
in quiet (also known as threshold of hearing). In edge-cases, the disturbance may be inaudible
at first but becomes audible after it has been playing for a sufficiently long time. The ears are
believed to “integrate” the energy of the disturbance, which results in the disturbance becoming
audible after a while. This effect is termed temporal integration and it is effective for up to about
300 ms of signal duration [30, 51].

A typical threshold in quiet for a sinusoidal test signal in steady state and listeners with
normal hearing is given in Figure 2.6 [31, 52]. Note that the magnitude is given in dB SPL
(Sound Pressure Level). This is an often used measure and will be discussed in a bit. Any
sinusoidal disturbance which lies below the threshold in quiet can be considered as inaudible,
though it should be noted that the exact threshold in quiet varies from individual to individual.

The value dB SPL relates the sound pressure p (in pascal) to a reference sound pressure p0,
also in pascal. This is done according to

LSPL = 20 log10

(
p

p0

)
[dB SPL], (2.1)

where the value p0 = 20 µPa [53].

2.1.3.2 Masking

When two sounds are presented, it sometimes happens that one of the sounds is made inaudible
by the presence of the other one. This phenomenon is called masking, and the audible sound
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Figure 2.6: The threshold in quiet for listeners with normal hearing. Sinusoidal tones below this
curve can be considered inaudible, while those above can be considered audible.

is referred to as the “masker”. I will refer to the masked sound as the “disturbance”. This is
slightly misleading, as it does not have to be an actual disturbance. Three types of masking can be
considered: backward masking, forward masking and simultaneous masking. In the former two,
the masker respectively precedes and succeeds the disturbance, while in simultaneous masking,
the masker is on during the whole period that the disturbance is also on [30].

The amount of backwards masking depends on how practised the subjects are and only lasts a
few milliseconds [30]. For forward masking, on the other hand, the effect can last up to 100 to 200
ms after the masker was present. The amount of masking is stronger the closer the disturbance is
placed in time to the masker [30, 31]. The effect of masking is stronger for a louder masker and/or
a longer duration masker [30]. When the disturbance is on for a longer duration, it becomes easier
to detect.

For both simultaneous and forward masking, the disturbance is most easily masked if the
frequency components of the masker and the disturbance are close to each other. Thus, it is
believed that masking at least partially relates to the frequency-analysis being performed on the
basilar membrane, which is considered to act as a filterbank consisting of (infinitely many) filters
tuned to different frequencies. These filters are referred to as the “auditory filters” [30]. The
shape of these filters is signal-dependent and not necessarily symmetric on a linear frequency
scale [30, 54, 55].

An example of a masking curve is given in Figure 2.7. Here, the masking curve is generated for
a 50 dB SPL masker at 1 kHz. Note that the masking curve largely coincides with the threshold
in quiet, except for frequencies close to the masking curve. The curve is generated using the
Par-measure (see Section 2.3.2 or [51])

Another aspect closely related to masking is the just-noticeable level difference (JNDL). It is
the amplitude change which listeners can (on average) notice. For example, for a 1 kHz tone at
70 dB SPL, the JNDL is about 0.5 to 1 dB SPL [51]. One can also consider JND’s for different
types of difference, such as frequency differences.

Finally, I want to explicitly state two aspects which implicitly follow from the above text but
are worth to be repeated. Namely, in practice, the signal processing inside the cochlea is nonlinear
[56]. Consequently, experimental results for a certain type of signal cannot straightforwardly be
extrapolated to other types of signals. Also, models which agree with a wide range of experimental
data need to be nonlinear. For a comparison of some cochlear models, the interested reader can
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Figure 2.7: An example of a masking curve. The masking curve is given for a 50 dB SPL
sinusoidal masker at 1 kHz, and is plotted against the threshold in quiet and the masker. The

figure is generated using the Par-measure, see [51] or Section 2.3.2.

refer to [56]. Another note is that the performance of the auditory system varies from listener to
listener. Experiments typically mention the “type” of listeners used.

In the upcoming section, a simple model for the received sound signal is discussed. After this,
in Section 2.3, the discussion on masking is continued by considering three masking models which
aim to predict the outcome of subjective experiments.

2.2 Received sound and the room impulse response

In this section, a model for the received sound signal and the room impulse response (RIR) are
discussed briefly. I limit the discussion to two scenarios, namely the free-field and empty shoebox
rooms. The latter can be efficiently modelled using the image-source method. For convenience,
I consider a continuous-time domain representation throughout the whole section.

2.2.1 Received sound in the free-field

Let us consider a receiver at position xr ∈ R3 and transmitters at positions xi ∈ R3, with
i ∈ {1, . . . , Ns} and Ns the number of transmitters. The channel from transmitter xi to receiver
xr is denoted by h(xi,xr, t). A simple example of this situation in which three loudspeakers are
used is depicted in Figure 2.8.

To obtain h(xi,xr, t), one needs to consider how sound travels through a homogeneous
medium. For sound levels up to 160 dB SPL (which is above the threshold of pain for hu-
man hearing), this is described by the scalar wave equation [4]. The scalar wave equation is
discussed in some more detail in Appendix A.

In the free-field with isotropic receivers and transmitters, the channels equal the Green’s
function solution ĝ(xi,xr, ω) to the Helmholtz equation. This equation is the frequency domain
equivalent of the wave-equation, described in Appendix A. The Green’s function is expressed as
[4, 57, 58]

ĝ(xi,xr, ω) =
exp
{
− jω

c ||xi − xr||2
}

4π||xi − xr||2
, (2.2)
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Figure 2.8: An example situation where the sound produced by three loudspeakers (depicted as
•) in the free field is recorded using an isotropic (depicted as ×). The channel from source i to

receiver r is denoted as h(xi,xr, t).

or, in the time domain [57, 59]

g(xi,xr, t) =
1

4π||xi − xr||2
δ

(
t− ||xi − xr||2

c

)
. (2.3)

Here, c is the speed of sound and δ the Dirac delta function. At room temperature with air as
medium, c ≈ 343 m/s [4].

Using (2.3) and by the notion that the free-field transfer function equals the Green’s function,
we may write the received sound sr(t) as

sr(t) =

Ns∑
i=1

(h(xi,xr) ∗ s(xi)) (t) =

Ns∑
i=1

(g(xi,xr) ∗ s(xi))(t). (2.4)

This equation can be extended to allow for directive transmitters and/or receivers. This is
explained further in Appendix B.

2.2.2 The room impulse response

In the previous section, the received signal when the transmitter and the receiver are placed in the
free-field was discussed. In this scenario, the channels h(xi,xr, t) are given by the Green’s function
solution to the scalar wave-equation. In this section, the discussion is extended to incorporate a
room. As was done in the previous section, I discuss an isotropic receiver and transmitter. Then,
a simple model to estimate RIRs is discussed briefly. This model is straightforwardly extended to
incorporate the directivity of the transmitter and receiver. This extension is not discussed here.
Instead, the interested reader can refer to [60].

When a transmitter is placed in some environment, the transmitted sound waves will ulti-
mately hit an object. At the boundary of the object, the wave will be partially reflected, partially
absorbed (turned into heat or transmitted at the other side of the object), and partially scattered
[61]. If one assumes a wall to be uniform and of infinite extent, a part of the incoming wave will be
reflected, thereby only undergoing a phase change and an amplitude change. This change can be
characterised by the reflection factor R of the wall. Parameter R is a complex valued scalar which
depends on the angle of incidence and on the frequency of the incoming wave [61]. The portion
of the incident wave which is reflected has the same outgoing angle as the incident angle of the
incident wave, but is flipped along the normal to the wall. This is known as specular reflection
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Figure 2.9: A simple example of the direct path and first order reflections in a rectangular
room. The sound waves are assumed to behave like rays. The receiver is depicted with a ×, and

the transmitter by a •.

[61, 62]. A simple example of a room and the corresponding reflections is given in Figure 2.9.
Here, the direct path and the first order reflections are depicted.

Multiple methods to simulate RIRs exist. These methods vary in how accurate they are and
in their computational complexity. Obtaining accurate results over the whole frequency range of
interest is typically computationally expensive [62, 63]. A simple approach which gives a qual-
itative description of the RIR can be obtained through “geometrical acoustics”. In geometrical
acoustics, the wavelengths are assumed to go to zero. Thus, the sound waves are replaced by
sound rays. For empty rooms, the result obtained through geometrical acoustics is valid for
wavelengths which are far smaller then the dimensions of the room [61].

A specific model using geometrical acoustics is the mirror image-source method for box-shaped
rooms, introduced in [59] and explained in more detail in Appendix C. It was extended to allow
for arbitrary polyhedra shaped rooms in [64]. In the mirror image-source method, the source and
receiver are assumed to be isotropic and the reflections are considered to be the direct path of
a new sound source. These new sound sources are called the image-sources. Since the image-
sources are not actual sources, they must transmit the same audio signal as the original source.
The image-source method allows to write the channel h as a sum of properly weighted Green’s
functions. This is briefly explained below.

Recall that the transmitter location is denoted by xi and suppose that we consider Ni image-
sources corresponding to this transmitter. The locations of the image-sources locations are given
by xi,ξ, with ξ ∈ {1, . . . , Ni}. For convenience, ξ = 0 is used to include the transmitter, so
xi = xi,0. Thus, ξ ∈ {0, 1, . . . , Ni}. Since the path from the image-source through the receiver
goes through a number of walls, each image-source has a reflection coefficient associated with it.
However, as stated before, the reflection factor R associated with each of the walls is complex
and depends on the angle of incidence and frequency. The method proposed in [59] ignores
this dependence and instead associates a real valued reflection coefficient β with each of the
walls. Thus, each mirror-image ξ of transmitter i is attenuated by some factor βi,ξ. Under this
assumption, the channel h is obtained by summing the contribution of each image-source using
the proper weight. This gives

h(xi,xr, t) =

Ni∑
ξ=0

βi,ξ
δ
(
t− ||xi,ξ−xr||2

c

)
4π||xi,ξ − xr||2

. (2.5)

This equation approximates the exact solution to the wave-equation for box-shaped rooms well
for sufficiently high frequencies [61]. The image-source method is described in more detail in
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Appendix C. Here, also methods to calculate Ni, xi,ξ and βi,ξ are given, Alternatively, the reader
can refer to [28, 59]. Lastly, it should be noted that the length of the RIR in typical living
rooms is about 300 ms [61]. This length is known as the T60 time and is discussed further in the
appendix.

2.3 Review of three auditory masking measures

In this section, three auditory masking models are briefly discussed. These models can be used
to take into account the masking of sounds in the proposed algorithm. I name each of the models
after their first author. Concretely, I discuss the Dau-model [65–68], the Par-measure [51] and the
Taal-measure [69]. The Dau-model is used to predict masking experiments with high accuracy,
but lacks mathematical tractability. The remaining two are computationally inexpensive, so that
they can be used in algorithms where computation times should be low. All of these models
are used to predict the outcome of subjective masking experiments. The Dau-model has been
modified to allow for intelligibility prediction of speech [70].

The Taal-measure and Par-measure are only discussed briefly here. For a more detailed
discussion, the reader can refer to the corresponding papers ([69] and [51]) or to Appendix D.

2.3.1 The Dau-model

The Dau-model was originally proposed in [65, 66] and a year later extended in [67, 68]. It can
accurately predict masking in a variety of conditions [71, 72].

The Dau-model consists of a preprocessing stage, modelling parts of the human ear, and a
decision device, estimating whether or not the inputs of the model are perceptually different. The
inputs of the model are (1) the masker and (2) the masker plus distortion. For both of these
inputs, an “internal” representation is obtained by passing it through the preprocessing stage.
In this stage, the input signals are first passed through a gammatone filterbank, modelling the
basilar membrane. It should be noted that this is a linear filterbank. Then, half-wave rectification
followed by lowpass filtering is performed. This simulates the envelope extraction of the human
hearing system. The outputs of the envelope extraction stage are subsequently passed through
an “adaptation” stage. In the adaptation stage, five feedback loops are employed to model the
adaptive properties of the auditory system. The feedback loops allow for correctly predicting
forward masking. The output of the adaptation stage is passed through another set of lowpass
filters modelling temporal integration. Lastly, the internal representation is obtained by adding
internal noise with fixed variance [67]. To decide whether or not the disturbance is masked,
the internal representation of the masker and the internal representation of the masker plus
disturbance is compared through a process which resembles matched filtering [65].

The Dau-model has inspired a number of other models. One of these is the CASP (computa-
tional auditory signal-processing and perception) model from [71]. Its structure and functionality
is very similar to the Dau-model. However, the CASP-model incorporates an outer-and middle-
ear transferfunction and the linear gammatone filterbank was replaced by the “dual-resonance
nonlinear” (DRNL) filterbank fitted on human data (see [73, 74]). This model is, among others,
able to simulate the compressive nonlinearity [71]. The CASP model has been modified to simu-
late some types of hearing impairment and to predict intelligibility of speech in respectively [75]
and [76]. For a thorough and recent comparison of the Dau-model with other auditory models,
the reader can refer to [77].
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2.3.2 The Par-measure

In contrast to the Dau-model, the Par-measure is a simple model and is suitable for online
optimisation. The Par-measure was developed for sinusoidal coding of audio, and thus aims to
predict the masking curve for sinusoidal distortions [51]. It has, however, also been successfully
applied in sound zones [78] and loudness increase [79]. Since the Par-measure is able to predict
the masking curve, it is also able to predict if a listener can notice the difference between two
signals x and y = x + ϵ. The former can be considered as the reference signal or masker, while
ϵ is the disturbance. The input signals are properly windowed short-time segments (about 20-40
ms) [51, 69].

The Par-measure converts the input signals x and ϵ to an “internal representation” I by
passing them through a simple auditory model. The structure of this model is depicted in Figure
2.10.

Figure 2.10: A schematic overview of the structure of the auditory model used in the
Par-measure. From left to right, it consists of an outer and middle ear filter, a gammatone

filterbank, and addition of internal noise. Figure based on [51].

The auditory model consist of an outer- and middle-ear filter hom (modelled as the inverse
of the threshold in quiet) and a gammatone filterbank consisting of Ng gammatone filters hi
modelling cochlear signal processing. At the output of the filters, a constant c1 is added which
models internal noise.

The power of the Par-measure lies in the fact that it can be expressed as a weighted l2-norm,
where the weighting g can be calculated independent of ϵ, Namely, it may be expressed as [51]

DPar(x, ϵ) = ||ĝϵ̂||22. (2.6)

Here, the weighting ĝ is the inverse of the masking curve and given by [69]

ĝ2 = c2

Ng∑
i=1

ĥ2omĥ
2
i

1
Nw

||x̂ĥomĥi||22 +Nwc1
. (2.7)

In the equation, c1 and c2 are calibration constants. They are discussed further in Appendix D.4.
Since (2.6) is convex in ϵ and for fixed x, it is straightforward to incorporate the Par-measure

into an optimisation problem where x is available and ϵ should be found. It should be noted
that the Par-measure operates entirely on the frequency domain representation of the signals; the
temporal structures are not taken into account.

2.3.3 The Taal-measure

The Taal-measure can be considered as an extended version of the Par-measure or as a simplified
version of the Dau-model. Similarly to the Par-measure, it takes two properly windowed short-
time segments x and y = x+ ϵ. The signals x and y are converted to an internal representation
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by passing them through an auditory model [69]. The structure of the auditory model is depicted
in Figure 2.11. The main difference with the Par-measure is that the Taal-measure takes into
account temporal information through the envelope follower and that it models the compressive
nonlinearity through the logarithm.

Figure 2.11: A schematic overview of the structure of the auditory model used in the
Taal-measure. From left to right, it consists of the outer and middle ear filter, a gammatone

filterbank, an envelope follower, addition of internal noise and finally a logarithm to model the
compressive nonlinearity. Figure based on [69].

As shown in [69] and discussed in Appendix D.2, the Taal-measure can be simplified such
that it is suitable for online optimisation. Similarly to the Par-measure, this simplification allows
for computing a number of weighting curves gi, i ∈ {1, 2, . . . , Ng} independently of ϵ. The Taal-
measure can then be written as [69]

DTaal(x, ϵ) =

Ng∑
i=1

||giϵi||22. (2.8)

Here, ϵi is the internal representation Iϵ,i of the simplified measure instead of the complete
measure. This is made more specific in Appendix D. The weighting curves gi are given by [69]

g2i =

(
c2

|xi|2 ⊛ hs + c1

)
⊛ hs. (2.9)

In the equation, ⊛ denotes circular convolution, hs is a low-pass filter and xi is the internal
representation Ix,i of the simplified Taal-measure.

Note that (2.8) closely resembles (2.6). In fact, it can be shown that the simplified Taal-
measure reduces to the Par-measure when the envelope follower is “removed” [69]. This is done
in Appendix D.3.

2.3.4 Comparison of Taal, Par and Dau

Taal et al. [69] compared the performance of the three measures in three different cases. Namely,
(1) evaluating the measure (i.e., is ϵ masked given some masker x), (2) evaluating the measure
for fixed x and (3) evaluating the masking curve [69]. Each case is considered for a number of
different frame lengths.

It was found that, for short frames, the Par-measure is about three times faster then the
simplified Taal-measure. As the framelength increases, the disparity becomes larger, and the
Par-measure becomes about 15 times faster than the simplified Taal-measure. The Dau-model
is about 10 to 100 times slower than the Taal-measure [69]. In these experiments, the masking
curve was not taken into account for the Dau-model, as for this no analytic expression exists and
numerically evaluating it would take very long.
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From the above, it is clear that in any application where calculations need to be done in real-
time, the Par-measure and the Taal-measure are preferred over the Dau-model. The difference
between the Par-measure and the Taal-measure is less pronounced, but in terms of computational
complexity the Par-model is preferred. A disadvantage of the Par-measure is that it is sensitive
to pre-echoes. Pre-echoes are auditory artefacts which occur when the disturbance is turned on
before the masker, but where the algorithm predicts that the disturbance is masked [69]. The
algorithm proposed later in this thesis uses the Par-measure.

As stated before, the Taal-measure and Par-measure are discussed in more detail in Appendix
D. The Taal-measure is still discussed as it is more instructive than the Par-measure and since it
can be shown to reduce to the Par-measure under a simplification.

2.4 Block-based filtering

In this section, a method to perform convolution of long signals and filters by splitting the
convolution in smaller segments is discussed briefly. In many real-time applications, performing
the convolution in smaller steps is desirable as one cannot wait till the full input signal is available
or the delay introduced by the filter is too large. An additional motivation for using short-time
segments is that the Par-measure operates on segments of about 20 to 40 ms. It follows that
the RIR, which reflects the T60 time, can easily be multiple segments long. A more complete
discussion of block-based filtering is found in Appendix G or in [80].

Throughout this chapter, I consider the convolution between a signal x of infinite length and
a causal filter h of length M . This convolution is given by

(x ∗ h)(n) =
∞∑

m=−∞
x(m)h(n−m). (2.10)

If one wants to evaluate this equation for all n, it is required to have complete knowledge on the
signals x and h. In many real-time applications, one only knows x(n) up to some n = n′. In this
case, segmenting x into short-time segments allows for computing (x∗h)(n) up to n = n′−M+1.
This procedure is described in Section 2.4.1 and given in more detail in Appendix G.1.

An additional challenge occurs for filters h which are so long that the delay introduced by
the filtering operation might be too large for any real-time application. In these situations, one
might not only wish to segment x, but also h. This is the topic of Section 2.4.2 and is described
in more detail in Appendix G.2. Lastly, in Appendix G.3, a frequency-domain version of the
derived equation is given. This facilitates an efficient implementation.

Throughout this chapter, the short-time segment length of the input signal is denoted by L1

and the filter length is denoted by M , such that supp(h) ⊆ {0, 1, . . . ,M − 1}. The short-time
segment length of the filter is denoted by L2.

2.4.1 Short-time filtering of the input signal

Short-time filtering can be incorporated by means of windowing. Suppose that we have access to
some window w1 of length L1 for which (2.11) holds,

∞∑
l=−∞

w1(n− lR1) = 1 ∀n. (2.11)

Here 0 ≤ R1 ≤ L1 is referred to as the hop-rate [80]. Throughout this thesis, the window is
considered to have support

supp(w1) = {0, . . . , L1 − 1}. (2.12)
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The window w1 allows to divide x into blocks of length L1. Namely, by (2.11), we may write

x(n) = x(n)

∞∑
l=−∞

w1(n− lR1) =

∞∑
l=−∞

w1(n− lR1)x(n) =

∞∑
l=−∞

x̃l(n), (2.13)

with
x̃l(n) = w1(n− lR1)x(n). (2.14)

For notational convenience, the origin of the windowed signal can be shifted to n = 0. This yields

xl(n) = x̃l(n+ lR1) = w1(n)x(n+ lR1). (2.15)

Substituting (2.13) in (2.10) and simplifying yields

(x ∗ h)(n) =
∞∑

l=−∞

L1−1∑
m=0

xl(m)h(n−m− lR1). (2.16)

The steps used in the simplification are given by (G.7).
Suppose that all blocks with l ≤ l′ are available. In this case, the convolution can already be

calculated partially, and can be updated as new segments l > l′ come in. However, in situations
where the filter is long, the delay might still be too large. If this is the case, one can choose to
segment the filter as well.

2.4.2 Segmenting the filter

In this section, the result of the previous section is extended by also segmenting the filter. I
consider filter segments of length L2. Furthermore, I assume M/L2 to be a positive integer. In
case this is not true, one can simply pad h with zeros until it is true. Note that this also assumes
M ≥ L2.

Similarly to Section 2.4.1, let us have access to a window w2 for which

ιb∑
ι=ιa

w2(n− ιR2) = 1 ∀n ∈ supp(h) (2.17)

holds. In this thesis, the window is considered to have support

supp(w2) = {0, . . . , L2 − 1}. (2.18)

The values ιa and ιb are window dependent. We can write

h(n) =

ιb∑
ι=ιa

w2(n− ιR2)h(n) =

ιb∑
ι=ιa

h̃ι(n), (2.19)

with
h̃ι(n) = w2(n− ιR2)h(n). (2.20)

For ease of implementation, the support of h̃ι is shifted to start at n = 0. To do so, define

hι(n) = h̃ι(n+ ιR2), (2.21)

Substituting (2.19) in (2.16) and simplifying yields

(x ∗ h)(n) =
∞∑

l=−∞

ι2∑
ι=ι1

L1−1∑
m=0

xl(m)hι(n−m− lR1 − ιR2). (2.22)
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The steps used in the simplification are given by (G.15).
In case of a rectangular window w2 = rectL2 (see (G.11)), (2.22) reduces to

(x ∗ h)(n) =
∞∑

l=−∞

M/L2−1∑
ι=0

L1−1∑
m=0

xl(m)hι(n−m− lR1 − ιR2). (2.23)

So, for each pair (ι, l), a single convolution is performed. The results of the individual convo-
lutions are added up, resulting in the total output signal.

In Chapter 4, two windows are used. Namely the rectangular window and the Hanning
window. They are shown in Figure 2.12 and their properties are given in Appendix G.1.1.
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(a) Rectangular window
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(b) Hanning window

Figure 2.12: An example of the rectangular window and the Hanning window. Both windows
are depicted for a length L = 40 samples.
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Chapter 3

Proposed Algorithm part 1:
Power Spectral Density Matrices

In this chapter, the first part of the proposed algorithm is discussed. Namely, the transfer
functions to the regions A and B and the corresponding power spectral density matrices. Spatial
weighting is used to give some regions in space more importance then others. This allows to
“trace” out the regions A and B. Using the spatial weighting functions, the power spectral
density matrices are obtained. These matrices are used in Chapter 4 to minimise the energy in
region B with respect to the energy in region A.

In the following, I start from the simple model for the received signal as was described in
Section 2.2. By subsequently incorporating the spatial weighting, the model is modified to give
the acoustic signal in a region instead of at a point. This allows to construct the PSD matrices.
It should be noted that I do most of the derivations for R3. However, once the spatial weighting
functions are chosen, I drop the z-coordinate. This is done to facilitate numerical analysis.

3.1 The spatially weighted playback signals

Using (2.4) and (2.5), the acoustic signal at a point xr using isotropic loudspeakers can be written
as

sr(t) =

Ns∑
i=1

(h(xi,xr) ∗ s(xi)) (t), (3.1)

in which h is the acoustic channel from the source to the receiver. Taking the Fourier transform
of (3.1) yields

ŝr(ω) =

Ns∑
i=1

ĥ(xi,xr, ω)ŝ(xi, ω), (3.2)

which describes the received signal in the frequency domain. To obtain the signal in a region
V ⊆ R3 instead of a point xr, one can integrate (3.2) over the full region. Additionally, spa-
tial weighting over the integration domain can be included by multiplication with some spatial
weighting function pV . Doing so gives

ŝV(ω) =
∫∫∫
V⊆R3

Ns∑
i=1

ĥ(xi,xr, ω)ŝ(xi, ω)pV(xr)dxr. (3.3)

Since ŝ is independent of xr and by linearity of integration and summation, we may write

ŝV(ω) =
Ns∑
i=1

ŝ(xi, ω)

∫∫∫
V⊆R3

ĥ(xi,xr, ω)pV(xr)dxr, (3.4)
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where it is assumed that the integral converges.
Eq. (3.4) shows that the spatially weighted transfer function is independent of the playback

signals. This allows to define the spatially weighted transfer function from i to V as

v̂V(xi, ω) =

∫∫∫
V⊆R3

ĥ(xi,xr, ω)pV(xr)dxr. (3.5)

Now assume that pV is a probability density function (PDF) with support V. In this case, v̂V
can be interpreted as the expected value of the probabilistic transfer function V̂V . This transfer
function is obtained by transforming the random vector Xr using the deterministic transfer
function ĥ. Here, the random vector Xr has PDF pV . Applying this interpretation to (3.5) gives

V̂V(xi, ω) = ĥ(xi,Xr, ω), (3.6a)

v̂V(xi, ω) = E
[
V̂V(xi, ω)

]
= E

[
ĥ(xi,Xr, ω)

]
. (3.6b)

In practice, ĥ is estimated through the image-source method. This introduces an error which
can be incorporated as a noise term. Adding this noise term to (3.6a) gives

V̂V(xi, ω) = ĥ(xi,Xr, ω) +N(xi, ω). (3.7)

Let us now briefly reconsider the probabilistic received signal ŜV(ω). This signal is obtained
by summing the individual probabilistic signals ŜV(xi, ω). Since the playback signals remain
deterministic, the received signal is given by

ŜV(ω) =
Ng∑
i=1

(
ĥ(xi,Xr, ω) + N̂(xi, ω)

)
ŝ(xi, ω). (3.8)

Eq. (3.8) can be rewritten in a vector representation as

ŜV(ω) = ŝT(ω)
(
N̂(ω) + ĥ(Xr, ω)

)
, (3.9)

where
ŝ(ω) =

[
ŝ(x1, ω), . . . , ŝ(xNs , ω)

]T
, (3.10a)

ĥ(Xr, ω) =
[
ĥ (x1,Xr, ω) , . . . , ĥ (xNs

,Xr, ω)
]T
, (3.10b)

N̂(ω) =
[
N̂ (x1, ω) , . . . , N̂ (xNs

, ω)
]T
. (3.10c)

3.2 Estimation of the Power Spectral Densities

To maximise the ratio of the energy in region A compared to that in region B, it is useful to have
access to the power spectral density (PSD) matrices. These matrices are found by computing

E
[
ŜV(ω)Ŝ∗

V(ω)
]
. Doing so gives

E
[
ŜV(ω)Ŝ

∗
V(ω)

]
= ŝT(ω)E

[(
N̂(ω) + ĥ(Xr, ω)

)(
N̂(ω) + ĥ(Xr, ω)

)H]
ŝ∗(ω), (3.11)

where it was used that ŝ is deterministic.
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While it should be verified in future work, I assume N̂(ω) and ĥ(Xr, ω) to be uncorrelated.
This yields

E
[
ŜV(ω)Ŝ

∗
V(ω)

]
= ŝT(ω)

(
E
[
N̂(ω)N̂H(ω)

]
+ E

[
ĥ(Xr, ω)ĥ

H(Xr, ω)
])

ŝ∗(ω). (3.12)

The PSD matrices can now be defined as

Rn(ω) = E
[
N̂(ω)N̂H(ω)

]
∈ CNs×Ns , (3.13a)

RV(ω) = E
[
ĥ(Xr, ω)ĥ

H(Xr, ω)
]
∈ CNs×Ns . (3.13b)

First consider the matrix RV . Let the ith element of the jth column be denoted as {RV}ij .
Here, the index j should not be confused with the complex value j. This element is given by

{RV}ij = E
[
ĥ (xi,Xr, ω) ĥ

∗ (xj ,Xr, ω)
]

=

∫∫∫
V⊆R3

ĥ(xi,xr, ω)ĥ
∗(xj ,xr, ω)pV(xr)dxr.

(3.14)

In sections 3.3 and 3.4, we return to solving this equation. Before doing so, let us consider Rn(ω).
The matrix Rn(ω) can be decomposed into two independent terms. Here, the first term

models numerical inaccuracies and the second term models the late reverberation of the room
impulse response1. Denoting the reverberation term by Riso and the numerical inaccuracy term
by Rnum gives

Rn(ω) = Riso(ω) +Rnum(ω). (3.15)

It is assumed that the numerical inaccuracies are uncorrelated from loudspeaker to loud-
speaker. Thus, Rnum is a diagonal matrix. While it should be verified in future work, it is
reasonable to assume that the standard deviation of the numerical inaccuracies is about equal for
each of the loudspeakers. Hence,

Rnum(ω) = σ2
num(ω)INs

, (3.16)

with σ2
num(ω) a to-be determined parameter and INs the Ns ×Ns identity matrix.

The reverberation term can be modelled by considering reflections coming from all possible
directions. These reflections can be treated as plane-waves. The corresponding PSD matrix is
known and given by [81]

{Riso}ij (ω) = σ2
iso(ω)sinc

(ω
c
||xi − xj ||2

)
, (3.17)

where σ2
iso(ω) is the PSD of the reverberation and needs to be estimated.

Applying the previously found results to the regions A and B gives PSDs E
[
ŜA(ω)Ŝ∗

A(ω)
]

and E
[
ŜB(ω)Ŝ∗

B(ω)
]
. They are given by

E
[
ŜA(ω)Ŝ

∗
A(ω)

]
= ŝT (RA(ω) +Riso(ω) +Rnum(ω)) ŝ

∗, (3.18a)

1It should be noted that the latter term could also be included by considering a sufficient number of image-
sources. However, for reasons concerning the implementation, it is chosen to consider the closest few image-sources
only.
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E
[
ŜB(ω)Ŝ

∗
B(ω)

]
= ŝT (RB(ω) +Riso(ω) +Rnum(ω)) ŝ

∗. (3.18b)

Here, RV with V ∈ {A,B}, is calculated using (3.14), Riso is calculated using (3.17) and Rnum

is calculated using (3.16). To do so, it is required to know or estimate the functions ĥ, pV , σiso(ω)
and σnum(ω). The former two are the topic of Section 3.3, while the latter two are considered in
Section 3.4.

3.3 The PSD matrices RA and RB

In this section, the transfer function ĥ(xi,xr, ω) and spatial weighting functions pA and pB are
given. The transfer functions are rewritten in a form which allows for choosing the spatial
weighting functions.

Note that, to facilitate numerically solving integral (3.14), the problem is simplified to a
two-dimensional instead of a three-dimensional scenario.

3.3.1 The room transfer function

Recall, from Section 2.2, that the image-source method gives the RIR as

h(xi,xr, t) =

Ni∑
ξ=0

βi,ξ
δ
(
t− ||xi,ξ−xr||2

c

)
4π||xi,ξ − xr||2

. (3.19)

Here, Ni is the number of image sources considered for loudspeaker i, βi,ξ is the reflection coeffi-
cient corresponding to image-source ξ, and xi,ξ is the location of the ξth image-source. It should
be noted that these parameters are independent of xr. The corresponding frequency domain
transfer function is

ĥ(xi,xr, ω) =

Ni∑
ξ=0

βi,ξ
exp
{
− jω

c ||xi,ξ − xr||2
}

4π||xi,ξ − xr||2
. (3.20)

When choosing the spatial weighting functions, it is convenient to have a coordinate system
centered around the expected location of the head xh. Thus, define x = xr −xh. Substituting in
(3.20) and flipping the signs in the l2-norm yields

ĥ(xi,x+ xh, ω) =

Ni∑
ξ=0

βi,ξ
exp
{
− jω

c ||x+ xh − xi,ξ||2
}

4π||x+ xh − xi,ξ||2
. (3.21)

Eq. (3.21) can now be transformed to a coordinate system which is suitable for choosing
the spatial weighting functions. As mentioned in Assumption 5 of Chapter 1, I consider the
loudspeakers and listener to be placed at the same height z = zh and I assume the floor and
ceiling to be fully absorbing. This allows for treating the problem as two-dimensional relative
to the plane z = zh. The reason for doing this is that the integrals will ultimately be solved
numerically. Thus, from here, I consider x = (x, y), which is transformed to a polar coordinate
system shortly. In Appendix H, the same derivations are given for the three-dimensional problem
using a spherical and a cylindrical coordinate system.

Expanding the l2-norm of (3.21) yields

ĥ(xi,x+ xh, ω) =

Ni∑
ξ=0

βi,ξ
e−

jω
c

√
(x+xh−xi,ξ)2+(y+yh−yi,ξ)2

4π
√
(x+ xh − xi,ξ)2 + (y + yh − yi,ξ)2

(3.22)
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Now consider the transformation to polar coordinates x = r cos(θ) and y = r sin(θ), with
θ ∈ [0, 2π) and r ∈ [0,∞). Transforming (3.22) yields

ĥ(xi, r, θ, ω) =

Ni∑
ξ=0

βi,ξ
e−

jω
c

√
(r cos(θ)+xh−xi,ξ)2+(r sin(θ)+yh−yi,ξ)2

4π
√
(r cos(θ) + xh − xi,ξ)2 + (r sin(θ) + yh − yi,ξ)2

. (3.23)

3.3.2 The spatial weighting functions for regions A and B
In this section, the spatial weighting functions pA and pB are chosen. These functions should be
chosen such that the weighting is high inside the corresponding region, while being low outside.
Ideally, the regions can be considered as a slice of a donut centered at x = (0, 0). The “thickest”
(in terms of weighting) part of the donut should coincide with the circumference of the head and
the donut should be large enough to allow for some listener displacement.

To facilitate choosing the weighting functions separately for r and θ, the distributions are
chosen as pV(x+ xh) = pV,1(r)pV,2(θ). Thus, the support of pV,1(r) should be a subset of [0,∞)
and the support of pV,2(θ) should be a subset of [0, 2π). Next to this, for pV,1(r), it is handy
if pV,1(0) = 0 to avoid a hard edge. Lastly, for both distributions, it is convenient to be able
to set the mean and to be able to control how heavy the tails of the distribution are. The last
property allows for incorporating a certain amount of uncertainty in, for example, head location
and loudspeaker location.

While it is likely that multiple distributions are valid, the following two distributions are
chosen:

• In the r-coordinate, a normal distribution is used. The mean µr is set to be just outside
the head. The standard deviation σr is used to control the width of the region. Note
that we ideally require pV,1(0) = 0, which does not hold for the normal distribution. By
ensuring that σr is sufficiently small compared to µr, we can adhere to the requirement for
all practical purpose.

• In the θ-coordinate, the Von Mises distribution is used. The Von Mises distribution some-
what resembles a normal distribution, but is periodic and has a support of length 2π. The
mean is set through µθ and the width of the region is set though κθ.

The distributions are described in more detail below.

3.3.2.1 Spatial weighting of the radius: the normal distribution

The normal distribution is parameterised by the mean µr and the standard deviation σr. Since
r ∈ [0,∞), µr must be larger then zero. The distribution is given by [6]

pN (r;µr, σr) =
1√
2πσ2

r

exp

{
− (r − µr)

2

2σ2
r

}
, σr, µr > 0. (3.24)

The “;” in pN (r;µr, σr) indicates that the distribution is parameterised by µr and σr.
An important note here is that ideally we require a distribution which is zero for r ≤ 0 and

smoothly increases from zero for r > 0. This is necessary in order to avoid hard edges. Strictly
speaking, this can not be achieved using the normal distribution. However, we can get sufficiently
close. This is done by considering that the weighting is used to weigh a RIR. Thus, in analogy
with the T60 time, I consider the region where the value has dropped by 60 dB as irrelevant.
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Concretely, if at r = 0 the value p(r;µr, σr) has dropped at least 60 dB below its maximum
value, I consider the normal distribution to be usable. We may write

−60 = 20 log10

(
e
− (r−µr)2

2σ2
r

)
= 20 log10(e) ln

(
e
− (r−µr)2

2σ2
r

)
= −10 log10(e)

σ2
r

(r − µr)
2 ⇒

(3.25a)

r = ±
√

6σ2
r

log10(e)
+ µr ≈ ±3.7σr + µr. (3.25b)

So, if µr ≥ 3.7σr, the normal distribution may be used in r while adhering to the soft boundaries
requirement.

It is chosen to set pA,1(r) = pB,1(r) = pN (r;µr, σr).

3.3.2.2 Spatial weighting of the azimuth: the Von Mises distribution

For the angle θ, the Von Mises distribution is used. This distribution has support of length 2π.
The concentration around the mean µθ can be set through the parameter κθ. The Von Mises
distribution pM(θ;µθ, κθ) is given by [82]

pM(θ;µθ, κθ) =
exp(κθ cos(θ − µθ))

2πI0(κθ)
, (3.26)

where the semicolon indicates “parameterised by” and I0 is the modified Bessel function of the
first kind with order zero.

It is chosen to set pA,2(θ) = pM(θ;µA, κA) and pB,2(θ) = pM(θ;µB, κB). The point of
maximum weight of each of the regions is set opposite by choosing µB = µA + π. Combining the
probability density functions for the radius and azimuth gives

pA(r, θ) =
1

I0(κA)
√
8π3σ2

r

exp

{
− (r − µr)

2

2σ2
r

+ κA cos(θ − µA)

}
, (3.27a)

pB(r, θ) =
1

I0(κB)
√
8π3σ2

r

exp

{
− (r − µr)

2

2σ2
r

+ κB cos(θ − µB)

}
. (3.27b)

Substituting (3.27) and (3.23) in (3.14) and transforming the integration measure dxdy →
rdrdθ gives

{RV}ij(ω) =
∞∫
0

2π∫
0

ĥ(xi, r, θ, ω)ĥ
∗(xj , r, θ, ω)pV(r, θ)rdrdθ, V ∈ {A,B}. (3.28)

In the implementation, this equation is solved numerically.
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3.4 Implementation considerations

In this section, some considerations concerning the implementation are given.
First consider h. As we will see in the next section, the length of the segmentation window

is L (in samples) and all signals are zero padded to a length 2L. Thus, all image-sources xi,ξ

which arrive within L/fs samples are considered in the calculation of h. Here, fs is the sample
frequency. For a window length of about 20 ms, this translates to image-sources up to about 6.8
m away from the center of the head.

As stated earlier, RV , as given by (3.28), is calculated numerically. This is done by sampling ω
for a discrete number of frequencies and subsequently solving (3.28) using the MATLAB function
integral2. The frequency bins are given by

ω =
κfs
2L

, κ ∈ {−L,−L+ 1, . . . , L− 1} , (3.29)

and the integration limits of r are set to max{µr−4σr, 0} to µr+4σr. This results in the following
integral being estimated

{RV}ij(ω) ≈
µr+4σr∫

max{µr−4σr,0}

2π∫
0

ĥ(xi, r, θ, ω)ĥ
∗(xj , r, θ, ω)pV(r, θ)rdrdθ, V ∈ {A,B}. (3.30)

One note here is that RV should be positive-semidefinite by construction. However, during the
computation, small errors might occur which make the (almost) zero-valued eigenvalues slightly
negative. This is fixed by including the term Rnum(ω). This term is considered to be independent
of ω so that

Rnum(ω) = σ2
numINs , ∀ω. (3.31)

The value of σ2
num is empirically determined. In practice, it was found that σ2

num = 10−12 works
sufficiently well.

The value of σ2
iso(ω) can be determined through synthesising a number of rooms using the

RIR generator of [28] and subsequently determining the PSD. In practical scenarios, it needs
to be estimated. An overview of methods to do so is given by [83]. Due to time-constraints, I
consider this as future work and use σ2

iso(ω) = 0 for all ω. This is believed not to be problematic,
since the precedence effect states that the estimation of angle of incidence is mainly based on the
direct path. However, this needs to be verified in future work.

In the next chapter, I use RA and RB to denote the total PSD matrices. Additionally, I
consider only positive frequency bins k. These are obtained from κ according to

k =

{
κ, for κ ≥ 0
κ+ 2L, otherwise.

(3.32)

Thus, the PSD matrices are

RA(k) = RA

(
κfs
2L

)
+Rnum

(
κfs
2L

)
+Riso

(
κfs
2L

)
, (3.33a)

RB(k) = RB

(
κfs
2L

)
+Rnum

(
κfs
2L

)
+Riso

(
κfs
2L

)
. (3.33b)

Lastly, note that integral (3.30) is oscillatory for sufficiently large ω. This poses problems
for “typical” numerical solvers. While not implemented, in Appendix I a method is outlined
which is suitable for oscillatory integrals of certain types. This method is likely to improve the
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computation times for large ω. It should, however, not be used for small ω. Alternatively, it is
desirable to avoid the computation of integrals. This computation can be avoided by considering
a sufficiently accurate probabilistic model of the RIR. A first step towards this probabilistic model
is taken and described in Appendix J.
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Chapter 4

Proposed Algorithm part 2:
Proposed Algorithm

In this chapter, the spatial sound algorithm based on a perceptual measure is discussed. In the
algorithm, I assume the listener and RIR to be stationary, so the listener is not moving and the
room is not varying. Thus, the PSD matrices RA and RB as described in Chapter 3 can be
precomputed. It should be noted that the extension to slowly time-varying conditions can be
incorporated relatively straightforwardly through the block-based filtering process described in
Section 2.4.

Before discussing the details of the algorithm, let me repeat some notation and give the outline
of the algorithm. We have Ns physical loudspeakers i ∈ {1, . . . , Ns} and one virtual loudspeaker
i = 0. Their playback signals are denoted by s(xi, n). The corresponding audio received in region
V ∈ {A,B} due to loudspeaker i is denoted by sV(xi, n). The PSD matrices are given by Rnum,
Riso and RV . I also consider the RIR from xi to xa, where xa is the point of maximum weight
in region A. These RIRs are denoted as a(xi, n) and have a length M > L. Here, L is the length
of the segmentation window.

The algorithm consists of a small number of steps. These are outlined below and visualised in
Figure 4.1. The steps are described in more detail in the following sections. Firstly, assume that

Figure 4.1: A simple outline of the algorithm. The signals which are obtained in each step are
also indicated.

we are calculating the playback signals for segment l = l′. In this scenario, we already have access
to all the playback signals with l < l′. The first step is now to compute the reference playback
signal sl′(x0, n) and the masker (s(x0) ∗ a(x0,xa))l(n). The masking curve ĝl′ can be calculated
from the masker using the Par-measure. By plugging the masking curve and the reference signal in
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the optimisation problem, the playback signals of loudspeakers i = 1, 2, . . . , Ns can be determined.
When doing so, one should take care that, due to the long RIRs, the contribution of the playback
signals with l < l′ should also be taken into account.

Firstly, in Section 4.1, the computation of the reference signal, the masking signal and the
masking curve is discussed. Then, in Section 4.2, six optimisation problems are presented. These
optimisation problems vary slightly in complexity and form and can be solved to obtain the
playback signals.

4.1 Computation of the reference signal and masking curve

In this section, the computation of the reference signal and the masking curve is discussed briefly.
The reference signal should be interpreted as the desired audio in region A. Since the reference
playback signal s(x0, n) is assumed to be known, the full-length reference signal in region A is
straightforwardly obtained as

sa(x0, n) = (s(x0) ∗ a(x0))(n). (4.1)

4.1.1 The masking curve

Under the assumption that the actual (physical) signal will closely match the reference signal,
one may compute the masking curve based on windowed segments of the reference signal. Recall,
from Section 2.3.2, that the Par-measure operates on short-time segments. Let us use a segment
of even length L, obtained through a window with repetition rate R1 = L/2. Using (2.15), the
windowed segment is given by

sa,l(x0, n) = w1(n)sa(x0, n+ lR1). (4.2)

In order to obtain the masking curve using the Par-measure, the frequency domain represen-
tation is required. To avoid aliasing, the 2L-point DFT of (4.2) is taken. Plugging (4.2) into the
definition of the Discrete Fourier transform (see (3)) yields,

ŝa,l(x0, k) =
1√
2L

2L−1∑
n=0

sa,l(x0, n)e
−πjkn/L, k ∈ {0, . . . , 2L− 1}. (4.3)

The division by
√
2L is done for power conservation. This could, alternatively, also be included

in the calibration constants.
Using (2.7) and (4.3), the masking curve for the lth segment, ĝl, is obtained. It is given by

ĝl =

√√√√c2

Ng∑
i=1

ĥ2omĥ
2
i

1
2L ||ŝa,l(x0)ĥomĥi||22 + 2Lc1

, (4.4)

where all frequency-domain signals are of length 2L.

4.1.2 The short-time reference signal

Although the full-length reference signal is obtained straightforwardly from (4.1), the short-
length reference signal takes some more thought. Namely, I am attempting to obtain the short-
time segments of the playback signals. These playback signals will still be filtered by the room.
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However, convolution is not linear for a pointwise multiplication with a (nonconstant) window
w(n). That is ∑

m

w(n−m)x(n−m)h(m) ̸= w(n)
∑
m

x(n−m)h(m). (4.5)

Hence, we are not allowed to use sA,l(x0, n) as a reference signal. If we would do so anyway, the
windowing applied on the target signal, and thus that applied on the obtained playback signals,
is not tractable anymore. Instead, we should take a segment sl(x0, n). This segment is given by

sl(x0, n) = w1(n)s(x0, n+ lR1). (4.6)

The window w1 should satisfy the constant overlap-add condition or, alternatively, a second
window can be used at the synthesising stage (where the segments are combined again). Let the
synthesis window be denoted by w̄1(n). This window is valid if the total window w1(n)w̄1(n)
satisfies the constant overlap-add condition. Among others, a possible choice is to use w1 a
Hanning window and w̄1 a rectangular window. Alternatively, it can be chosen to use a square
root Hanning window for both the analysis and synthesis stage. The square root Hanning window
is obtained by taking the elementwise square root of (G.12). Doing so gives

sqrthannL(n) = rectL(n)

√(
1

2
+

1

2
cos

(
2π

L

(
n− L

2

)))
. (4.7)

The playback signals are synthesised from the individual playback segments according to

s(xi, n) =

∞∑
l=−∞

w̄1(n)sl(xi, n− lR1). (4.8)

4.1.3 Segmentation of the Room Impulse Response

Now let us consider the RIRs briefly. Let them be windowed using a rectangular window w2 =
rectL (see (G.11)) of length L and repetition rate R2 = L. The filter segments are given by

aι(xi, n) = w2(n)a(xi, n+ ιR2), (4.9)

with ι ∈ {0, 1, . . . ,M/L − 1}. Recall that M is the length of the filter, possibly including zero
padding to ensure M/L integer.

The filters introduce two problems. First of all, due to their large length, we can not optimise
for all blocks simultaneously. Thus, it is chosen to optimise only for ι = 0 and consider the
contribution of the other blocks as an error to be corrected, or to simply ignore this contribution.

If it is chosen to correct for the error, an additional problem is introduced. Namely, if we
would simply calculate the error and window it so that it has valid support, the advantage of the
windowing would be lost. Additionally, as is explained in Section 4.1.2, the window would not
translate properly to a window on the input signals. Instead, a solution is to consider only the
error term

ϵl(xi, n) =

M/L−1∑
ι=1

(s(l−2ι)(xi) ∗ hι(xi))(n). (4.10)

When l is odd, this error term takes only the contribution of all odd segments with l′ ≤ l into
account. If l is even, only the contributions of the even segments are taken into account. This
ensures that the window remains correctly placed and that no additional windowing is needed to
ensure the error signal to have the proper support. This is explained further in Appendix K.
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4.2 Computation of the playback signals

In this section, the computation of the playback signals is described. The playback signals are
computed by solving an optimisation problem consisting of a cost function and a set of constraints.
Concretely, I propose six different but highly related optimisation problems. In the following, I
first give a general form. Then, each of the optimisation problems is described briefly. Before
doing so, let me define a few vectors and matrices.

4.2.1 Notation used in the optimisation problem

In this section, some notation used in the optimisation problems is defined. For each signal,
both the discrete-time and discrete-frequency domain vector are given. Additionally, Fourier
transform matrices are provided which allow to convert from discrete-time domain representation
to discrete-frequency domain representation. Note that each frequency domain signal is assumed
to be obtained from a discrete-time domain signal zero-padded to 2L samples.

Firstly, let sl(n) ∈ RNs denote per-sample signal vector

sl(n) =
[
sl(x1, n), . . . , sl(xNs

, n)
]T
, n ∈ {0, . . . , L− 1}, (4.11)

with discrete-frequency domain equivalent ŝl(k) ∈ CNs .

ŝl(k) =
[
ŝl(x1, k), . . . , ŝl(xNs

, k)
]T
, k ∈ {0, . . . , 2L− 1}. (4.12)

Define the signal vector sl(xi) ∈ RL

sl(xi) =
[
sl(xi, 0), . . . , sl(xi, L− 1)

]T
, (4.13)

with discrete-frequency domain equivalent ŝl(xi) ∈ C2L

ŝl(xi) =
[
ŝl(xi, 0), . . . , ŝl(xi, 2L− 1)

]T
. (4.14)

Define the filter vector a0(xi) ∈ RL

a0(xi) =
[
a0(xi, 0), . . . , a0(xi, L− 1)

]T
, (4.15)

with discrete-frequency domain equivalent â0(xi) ∈ C2L

â0(xi) =
[
â0(xi, 0), . . . , â0(xi, 2L− 1)

]T
, (4.16)

it is handy to have this vector in matrix form. This matrix is given by

Â0(xi) = diag (â0(xi)) ∈ C2L×2L. (4.17)

Define the error vector ϵl(xi) ∈ RL

ϵl(xi) =
[
ϵl(xi, 0), . . . , ϵl(xi, L− 1)

]T
, (4.18)

with discrete-frequency domain equivalent ê0(xi) ∈ C2L

ϵ̂l(xi) =
[
ϵ̂l(xi, 0), . . . , ϵ̂l(xi, 2L− 1)

]T
. (4.19)

Using (4.4), the masking matrix Gl ∈ R2L×2L is defined as

Gl = diag
([
ĝl(0), . . . , ĝl(2L− 1)

])
. (4.20)
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The vectors (4.13), (4.15) and (4.18) are related to their frequency-domain equivalent through
the zero padded Fourier transform. The zero padding is included through a zero-padding matrix
Z ∈ R2L×L, which can be expressed as an L × L identity matrix IL and an all-zero matrix
0 ∈ RL×L. That is,

Z =

[
IL
0

]
. (4.21)

The Fourier transform is obtained through the 2L×2L DFT matrix W. Define w = exp{−jπ/L}.
The DFT matrix is then given by [84]

W =


1 1 1 · · · 1
1 w w2 · · · w2L−1

1 w2 w4 · · · w2(2L−1)

...
...

...
. . .

...
1 w2L−1 w2(2L−1) · · · w(2L−1)(2L−1)

 ∈ C2L×2L. (4.22)

The zero-padded DFT matrix can be calculated in advance and is given by

WZ = WZ ∈ C2L×L. (4.23)

So that, for example,
ϵ̂l(xi) = WZϵl(xi). (4.24)

Obtaining vector (4.12) is somewhat more involved. Let WZ,k be kth row of matrix WZ .
This allows to write

ŝl(k) =


WZ,k 0L · · · 0L

0L WZ,k
. . .

...
...

. . .
. . . 0L

0L · · · 0L WZ,k



sl(x1)
sl(x2)

...
sl(xNs)

 . (4.25)

Here, 0L is the 1× L all zero vector.
The components of (4.25) vectors are used repeatedly. Hence, define

sl =


sl(x1)
sl(x2)

...
sl(xNs

)

 ∈ RLNs×1, (4.26)

and

Kk =


WZ,k 0L · · · 0L

0L WZ,k
. . .

...
...

. . .
. . . 0L

0L · · · 0L WZ,k

 ∈ CNs×LNs . (4.27)

Now that all the vector- and matrix-definitions are in place, let us return to the general form
of the optimisation problem.
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4.2.2 General form optimisation problem

Recall that the aim is to minimise the power in region B while maximising that in A. At the same
time, it should be ensured that the audio in region A resembles the reference audio sufficiently
well. This is done using the Par-measure as described in Section D.3. Using (3.18), the solution
can be summarised by the following optimisation problem

min
sl(xi), i∈{1,...,Ns}

∑
k

w(k)
ŝTl (k)RB(k)ŝ

∗
l (k)

ŝTl (k)RA(k)ŝ∗l (k)

subject to

∣∣∣∣∣
∣∣∣∣∣ Gl√

2L

(
Ns∑
i=1

(A0(xi)ŝl(xi) + ϵ̂l(xi))−A0(x0)ŝl(x0)− ϵ̂l(x0)

)∣∣∣∣∣
∣∣∣∣∣
2

2

≤ dmax,

sl =


sl(x1)
sl(x2)

...
sl(xNs

)

 ,
ŝl(k) = Kksl, ∀ k,
ŝl(xi) = WZsl(xi), i ∈ {1, . . . , Ns},
sl(xi) ∈ RL×1, i ∈ {1, . . . , Ns}.

(4.28)
Here, w(k) is added as an optional term to introduce frequency dependent weighting and the
division by

√
2L is for power conservation through the DFT.

Eq. (4.28) is non-convex due too the quadratic division in the cost function. In each of the
six proposed optimisation problems, I modify the cost function to be a sum of quadratics (or
related) so that convexity is guaranteed.

Each even-numbered optimisation problem is equal to the preceding odd-numbered optimisa-
tion problem, except for a perceptual weighting term in the cost-function. Optimisation problems
1 and 2 are relatively simple and only consider the diagonal of the PSD matrices. Additionally,
only the early reflections of the reference signal are considered. Optimisation problems 3 and 4
also only consider the early reflections, but take the non-diagonal terms of the PSD matrices into
account as well. Lastly, optimisation problems 5 and 6 are equal to 3 and 4, but take the later
reflections into account as well.

4.2.3 Optimisation problem 1

The first optimisation problem is very basic and considers the power delivered by the loudspeakers
independently. To achieve this, all non-diagonal terms of the PSD matrices are set to zero.
Additionally, the error terms are ignored and the weighting term w(k) is equal for all k.

Recall that the PSD matrices are positive-definite1. Thus, the diagonal is real and positive.
This allows to define the matrix

R̂(xi) = diag
([

{RB}ii(0)
{RA}ii(0)

, . . . , {RB}ii(2L−1)
{RA}ii(2L−1)

])
. (4.29)

1Note that positive-definiteness is not a property of PSD matrices. However, positive-semi-definiteness is. Due
to the numerical-inaccuracy term Rnum, the PSD matrices can be considered positive-definite.
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The optimisation problem becomes

min
sl(xi), i∈{1,...,Ns}

Ns∑
i=1

ŝTl (xi)R(xi)ŝ
∗
l (xi)

subject to

∣∣∣∣∣
∣∣∣∣∣ Gl√

2L

(
Ns∑
i=1

A0(xi)ŝl(xi)−A0(x0)ŝl(x0)

)∣∣∣∣∣
∣∣∣∣∣
2

2

≤ dmax,

ŝl(xi) = WZsl(xi), i ∈ {1, . . . , Ns},
sl(xi) ∈ RL×1, i ∈ {1, . . . , Ns}.

(4.30)

While not particularly relevant in this specific case, the quadratic form in the cost function has
some numerical issues. Namely, due to finite accuracy, the cost value can get small but nonzero
complex values. Next to this, in scenarios where the eigenvalues would ideally be slightly positive
(or zero), numerical inaccuracies might cause them to become slightly negative. In this case, the
PSD matrices are not positive-(semi)definite anymore and the problem becomes non-convex [85].
This can be resolved by rewriting the cost function as a sum of norms. Define the square root
of a diagonal matrix as the square root of its individual elements. A related but non-equivalent
optimisation problem can be written as

min
sl

Ns∑
i=1

∣∣∣∣∣∣R 1
2 (xi)ŝ

∗
l (xi)

∣∣∣∣∣∣
2

subject to

∣∣∣∣∣
∣∣∣∣∣ Gl√

2L

(
Ns∑
i=1

A0(xi)ŝl(xi)−A0(x0)ŝl(x0)

)∣∣∣∣∣
∣∣∣∣∣
2

2

≤ dmax,

ŝl(xi) = WZsl(xi), i ∈ {1, . . . , Ns},
sl(xi) ∈ RL×1, i ∈ {1, . . . , Ns}.

(4.31)

The reason for using the norm instead of the square norm in the cost function is that it was
found to give better results. I am not entirely sure why that is the case. A possibility is that the
errors get distributed more evenly, thus giving a better result. Using the norm also “decouples”
the loudspeaker in some sense. Namely, when using the squared norm, the error would have been
equal to the sum of all bins and their respective weighting squared. However, using the norm, the
error is the sum of the within-loudspeaker errors instead. Eq. (4.31) is the equation considered
to define optimisation problem 1.

4.2.4 Optimisation problem 2

Optimisation problem 2 is equal to optimisation problem 1, but with the addition of a weighting
term. Note that the weighting term gives a way to control the relative importance of the errors.
A logical choice is to simply use the inverse of the masking curve. Namely, this curve gives (1)
additional weighting according to the frequencies present in the playback signal, (2) gives more
importance to those frequencies which can be considered perceptually important from a masking
perspective and (3) it is already available. Other viable options are likely to exist as well. For
example, investigating the use of localisation based weightings is likely worth it. Here, I will limit
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myself to the masking curve. Thus, optimisation problem 2 is given by

min
sl(xi), i∈{1,...,Ns}

Ns∑
i=1

∣∣∣∣∣∣GlR
1
2 (xi)ŝ

∗
l (xi)

∣∣∣∣∣∣
2

subject to

∣∣∣∣∣
∣∣∣∣∣ Gl√

2L

(
Ns∑
i=1

A0(xi)ŝl(xi)−A0(x0)ŝl(x0)

)∣∣∣∣∣
∣∣∣∣∣
2

2

≤ dmax,

ŝl(xi) = WZsl(xi), i ∈ {1, . . . , Ns},
sl(xi) ∈ RL×1, i ∈ {1, . . . , Ns}.

(4.32)

4.2.5 Optimisation problem 3

In optimisation problem 3, I again consider a constant weighting term w. optimisation problem 3
is thus similar to optimisation problem 1. However, the full PSD matrices are taken into account.
To do this, a relaxation of the template optimisation problem (4.28) is required. Let there exist
a reference solution to ŝl(k). Say, ς̂l(k). This reference could, for example, be obtained through
running one of the previous optimisation problems. A convex relaxation of the quadratic over
quadratic term is then

ŝTl (k)RB(k)ŝ
∗
l (k) +

(
ŝTl (k)− ς̂Tl (k)

)
RA(k) (ŝ

∗
l (k)− ς̂∗l (k)) . (4.33)

Minimising this function should be interpreted as calculating the power in region B, while pun-
ishing a large “mistake” in A.

As is done in optimisation problem 1 and 2, I will not use this function directly. Instead,
I simply consider the norm of the “square root”. This “square root” is obtained through the
Cholesky decomposition. The Cholesky decomposition allows to decompose a Hermitian positive-
definite matrix A as [5]

A = QHQ. (4.34)

The PSD matrices are Hermitian positive-definite, and thus this decomposition exists. Let the
matrix corresponding to RA(k) as QA(k). Similarly, the matrix corresponding to RB(k) is
denoted QB(k). Optimisation problem 3 is then given by

min
sl(xi), i∈{1,...,Ns}

2L−1∑
k=0

||QB(k)ŝ
∗
l (k)||2 + ||QA(k) (ŝ

∗
l (k)− ς̂∗l (k))||2

subject to

∣∣∣∣∣
∣∣∣∣∣ Gl√

2L

(
Ns∑
i=1

A0(xi)ŝl(xi)−A0(x0)ŝl(x0)

)∣∣∣∣∣
∣∣∣∣∣
2

2

≤ dmax,

sl =


sl(x1)
sl(x2)

...
sl(xNs

)

 ,
ŝl(k) = Kksl, ∀ k,
ŝl(xi) = WZsl(xi), i ∈ {1, . . . , Ns},
sl(xi) ∈ RL×1, i ∈ {1, . . . , Ns}.

(4.35)
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4.2.6 Optimisation problem 4

Optimisation problem 4 is equal to optimisation problem 3, but includes the inverse masking
curve as additional weighting term. Thus, it is given by

min
sl(xi), i∈{1,...,Ns}

2L−1∑
k=0

||ĝl(k)QB(k)ŝ
∗
l (k)||2 + ||ĝl(k)QA(k) (ŝ

∗
l (k)− ς̂∗l (k))||2

subject to

∣∣∣∣∣
∣∣∣∣∣ Gl√

2L

(
Ns∑
i=1

A0(xi)ŝl(xi)−A0(x0)ŝl(x0)

)∣∣∣∣∣
∣∣∣∣∣
2

2

≤ dmax,

sl =


sl(x1)
sl(x2)

...
sl(xNs

)

 ,
ŝl(k) = Kksl, ∀ k,
ŝl(xi) = WZsl(xi), i ∈ {1, . . . , Ns},
sl(xi) ∈ RL×1, i ∈ {1, . . . , Ns}.

(4.36)

4.2.7 Optimisation problem 5

Optimisation problem 5 is a straightforward extension of problem 3. However, while earlier the
filtering of the reference signal by blocks with ι > 0 was ignored, it is included in this algorithm.
The additional filtering of the playback signals is left ignored, since it is included through the
term Riso. The optimisation problem is given by

min
sl(xi), i∈{1,...,Ns}

2L−1∑
k=0

||QB(k)ŝ
∗
l (k)||2 + ||QA(k) (ŝ

∗
l (k)− ς̂∗l (k))||2

subject to

∣∣∣∣∣
∣∣∣∣∣ Gl√

2L

(
Ns∑
i=1

A0(xi)ŝl(xi)−A0(x0)ŝl(x0)− ϵ̂l(x0)

)∣∣∣∣∣
∣∣∣∣∣
2

2

≤ dmax,

sl =


sl(x1)
sl(x2)

...
sl(xNs

)

 ,
ŝl(k) = Kksl, ∀ k,
ŝl(xi) = WZsl(xi), i ∈ {1, . . . , Ns},
sl(xi) ∈ RL×1, i ∈ {1, . . . , Ns}.

(4.37)
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4.2.8 Optimisation problem 6

As probably expected by now, optimisation problem 6 is a straightforward extension of problem
5 and is obtained by including the inverse masking term. Thus, it is given by

min
sl(xi), i∈{1,...,Ns}

2L−1∑
k=0

||ĝl(k)QB(k)ŝ
∗
l (k)||2 + ||ĝl(k)QA(k) (ŝ

∗
l (k)− ς̂∗l (k))||2

subject to

∣∣∣∣∣
∣∣∣∣∣ Gl√

2L

(
Ns∑
i=1

A0(xi)ŝl(xi)−A0(x0)ŝl(x0)− ϵ̂l(x0)

)∣∣∣∣∣
∣∣∣∣∣
2

2

≤ dmax,

sl =


sl(x1)
sl(x2)

...
sl(xNs

)

 ,
ŝl(k) = Kksl, ∀ k,
ŝl(xi) = WZsl(xi), i ∈ {1, . . . , Ns},
sl(xi) ∈ RL×1, i ∈ {1, . . . , Ns}.

(4.38)

The six optimisation problems allow to define six algorithms for obtaining the playback signals.
The results are presented in the next chapter, where each of the algorithms is referred to as
“algorithm” and the number of the used optimisation problem. For example, the algorithm where
the playback signals are determined using optimisation problem 3 is referred to as “algorithm 3”.
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Chapter 5

Results

In this chapter, the results are presented. Firstly, in Section 5.1, the simulation and evaluation
methodology is discussed. Then, in Section 5.2 the results are given for a number of different
scenarios.

5.1 Evaluation and simulation methodology

The performance of the proposed algorithms is evaluated by means of simulation.
In line with Assumption 5, the considered room has dimensions Lx × Ly × Lz = 6 × 5.4 × 3

m3, reflection coefficients β = {−0.3, 0.4, −0.4, 0.3, 0, 0} and the height of the listener and
loudspeakers is set to 1.5 m. The length of the simulated RIR is set to 200 ms. Since the
floor and ceiling are non-reflective, this is sufficiently long to incorporate the full T60 time for
the considered room. The virtual source is placed at x0 = (0.821, 1.82, 1.50) and the listener at
xh = (2.70, 2.50, 1.50) m. The physical loudspeakers are placed at x1 ≈ (4.70, 2.50, 1.50) m, x2 ≈
(4.43, 3.50, 1.50) m, x3 ≈ (4.43, 1.50, 1.50) m, x4 ≈ (2.02, 4.38, 1.50) m and x5 = (2.02, 0.62, 1.50)
m. These loudspeakers are respectively the Center (C), Left (L), Right (R), Left Side (LS) and
Right Side (RS) loudspeakers of the 5.0 system. Note that these loudspeakers are placed on a
circle in the xy-plane with a radius of 2 m and centred at xh. The size of the room and the
positions of the loudspeakers and receiver are given in Figure 5.1.

Figure 5.1: The consider problem setup. The receiver (listener), the sources (loudspeakers), the
virtual source and some example head orientations are depicted. The physical loudspeakers are

indicated as left (L), center (C), right (R), left side (LS) and right side (RS).

For the windowing, square root Hanning windows of 20 ms are used with 50% overlap at
both the analysis and synthesis side. The RIR is segmented using a rectangular window of 20 ms
length and 0% overlap.
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In the calculation of the PSD matrices RA and RB, image-sources with time-of-arrival up
to 20 ms are considered. The spatial weighting function in r is parameterised with µr = 0.11
m and σr = 0.03/6 m. Note that this particular choice of µr gives a point of maximum weight
which lies just outside the head (a typical head has a radius of about 9 cm) [30]. The von Mises
distributions are parameterised with κA = 15π/2, κB = 5π/4, µA ≈ 3.49 and µB ≈ 3.49 + π. The
resulting total distributions (centred around zero) are depicted in Figure 5.2. Note that the values
were normalised to a maximum of one. In Appendix L, the individual distributions are plotted
without normalisation. Here, also the image-sources considered in the calculation of RA and RB
are given.

(a) pA(x+ xh), normalised. (b) pB(x+ xh), normalised.

Figure 5.2: The normalised spatial weighting functions. In (a), pA is depicted. In (b), pB is
depicted. Note that the distributions are centred x = (x, y) = (0, 0). Thus, in the normal

coordinate system, the spatial weighting functions are centred around the listener.

The RIRs are simulated using a modified version of Habets RIR generator [28]. This version
returns a list of reflections, their angle of incidence with respect to the listener, and their time of
arrival. This allows to incorporate HRIRs in the room impulse responses. The used HRIRs are
those measured by Braren and Fels on the KEMAR head and torso, see [45]. The KEMAR head
is a “typical” head and the measurements have a 1 degree resolution [45]. For implementation
convenience, nearest neighbour interpolation is used to obtain interpolated HRIRs. This allows
to construct the audio signals at the left and right ear, respectively denoted as sL and sR.

The audio segments used in the evaluation are MATLABs default signal gong, sampled at
8192 Hz and a female-voiced speech segment from the TIMIT database downsampled to 8192 Hz
[86]. This downsampling is required, since otherwise the computation times become too long1.

In all optimisation problems, the maximum allowable distortion dmax = 25. The speed of
sound is set to c = 342 m/s.

Lastly, the result of algorithm 1 is used as initial guess for algorithms 3 and 5. Similarly, the
result of algorithm 2 is used as initial guess for algorithms 4 and 6.

5.1.1 Evaluation measures

To quantify the performance of the algorithms, a number of different metrics are considered.
Firstly, I consider the difference in received energy between the left and the right ear, measured as
the 2-norm. If the algorithm works properly, it is expected that the ear closest to the loudspeaker
receives the most energy. A second measure is the time-argument for which the cross-correlation
between the signals received at the entrance of the ear canals attains its maximum value. The

1It was attempted to perform algorithm 4 on a speech segment sampled at 16 kHz. However, each frame took
about two minutes. For algorithm 1 and 2, the time-per-frame was about 8 seconds.
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reason that the ITD and ILD of the received signals is not computed directly is because their
computation is relatively complex and listener- and frequency-dependent [87, 88]. Additionally,
the ITD and ILD can be traded to some extent, so specifically comparing them to some reference
value does not give a complete picture [89].

Speech quality is quantified using Perceptual Evaluation Speech Quality (PESQ), defined by
ITU-T recommendation P.862 [90], and speech intelligibility is quantified using Speech Intelli-
gibility in Bits (SIIB) [91]. Both PESQ and SIIB take two input signals, namely the degraded
audio signal and a reference audio signal. SIIB returns an output with unit bits/s. This estimate
is based on the information shared between the degraded and the reference signal [91]. The used
implementation is publicly available, see [92]. PESQ returns a value between -0.5 and 4.5, where
higher is better [90]. For PESQ, the freely available Python package [93] is used in wideband
mode. To do so, the computed playback signals are upsampled to 16 kHz. For both PESQ and
SIIB, the reference signal is the signal received at xh when playing back from the ideal source
location. The degraded signal is the signal obtained at xh computed using one of the algorithms.

Recall that sR is the audio at the right ear and sL is the audio at the left ear. The cross-
correlation is obtained as

r(n) = sL(n) ∗ sR(−n). (5.1)

To obtain the time-difference of arrival, I consider the argument n where this is maximum.
However, I only consider arguments within -1 ms and 1 ms, since this is the perceptually relevant
range including some margin [94]. I.e.

nmax = argmax
n

r(n), for −10−3 ≤ n

fs
≤ 10−3, (5.2)

or, in seconds,

tmax =
nmax

fs
. (5.3)

The difference in energy between the left and the right ear is considered using normalised
two-norms. Let sh be the audio received at the center of the head. The normalised energy E at
the ears is given by

EL =
||sL||2
||sh||2

, ER =
||sR||2
||sh||2

. (5.4)

The performance of the algorithm is compared against three simple reference algorithms. The
first algorithm is the ideal solution and is obtained by playing back the reference signal from a
loudspeaker located at the location of the virtual source. The second reference algorithm only uses
the loudspeaker which is nearest to the virtual source. The third algorithm is a simple amplitude
panning algorithm proposed in [11]. This algorithm constrains the placement of loudspeakers to
a circle of constant radius around the listener. The reference algorithms are respectively referred
to as “Ideal”, “NN” (nearest neighbour) and as “Sadek2004”.

5.2 Results

In this section, the results are presented. Firstly, in Section 5.2.1, I consider the listener placed
exactly at xh. These results are considered for listeners oriented at angles in {0°, 1°, . . . , 359°}.
Then, in Section 5.2.2, the listener is slightly misplaced from the expected value. These results
are obtained for listeners oriented at angles 0◦, 55◦ and 330◦. Note that these are the same
orientations as those shown in Figure 5.1. All results are presented for both the gong signal and
the female-voiced speech signal.
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5.2.1 Results for exact listener placement

In this section, the results are given for the scenario in which the listener is exactly placed at xh.
Firstly, let us consider the time tmax at which the cross-correlation attains its maximum value.

For the female-voiced speech signal, tmax is given in Figure 5.3. Since the results for the gong
signal are similar, they are left out of the main text and given in Appendix L.
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Figure 5.3: The argument tmax (in ms) for which the cross-correlation between the audio
received at the left and at the right ear attains its maximum value. The considered signal is the

female-voiced speech signal. The staircase shape is due to the limited sample rate.

As can be seen, all algorithms except Sadek2004 have a clear shape with peak values of about
+0.7 ms and -0.7 ms. This is the maximum attainable ITD and relates to the size of the head [30].
It is expected that Sadek2004 does not show the peaks as clearly as the other algorithms, since
it only uses amplitude panning. The tmax curve of Algorithm 1 up to and including Algorithm
6 coincide with that of the NN algorithm. Thus, it seems that the proposed algorithms favour
the nearest neighbour. This can be verified by considering what fraction of the total transmitted
energy each of the loudspeakers transmits. For the female-voiced speech signal, this is depicted
in Table 5.1. For the gong, it is depicted in Table 5.2.

Table 5.1: The fraction of the energy transmitted by each loudspeaker with respect to the total
transmitted energy. The signal considered is female-voiced speech. Note that each row sums to
one up to round-off errors. Algorithm is abbreviated as Alg. Sadek2004 is abbreviated as Sad.

C L R LS RS
Alg. 1 0.049 0.025 0.267 0.191 0.468
Alg. 2 0.004 0.008 0.189 0.230 0.570
Alg. 3 0.182 0.108 0.218 0.161 0.331
Alg. 4 0.151 0.098 0.185 0.179 0.388
Alg. 5 0.182 0.111 0.213 0.162 0.332
Alg. 6 0.157 0.102 0.178 0.177 0.389
NN 0.000 0.000 0.000 0.000 1.000
Sad. 0.013 0.003 0.078 0.343 0.563
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Table 5.2: The fraction of the energy transmitted by each loudspeaker with respect to the total
transmitted energy. The signal considered is gong.Note that each row sums to one up to
round-off errors. Algorithm is abbreviated as Alg. Sadek2004 is abbreviated as Sad.

C L R LS RS
Alg. 1 0.011 0.011 0.068 0.214 0.697
Alg. 2 0.001 0.000 0.030 0.203 0.766
Alg. 3 0.162 0.097 0.138 0.162 0.442
Alg. 4 0.139 0.098 0.130 0.162 0.471
Alg. 5 0.165 0.098 0.140 0.160 0.437
Alg. 6 0.144 0.098 0.132 0.161 0.464
NN 0.000 0.000 0.000 0.000 1.000
Sad. 0.013 0.003 0.078 0.343 0.563

As expected, the loudspeaker closest to the virtual source transmits most of the energy. For
the algorithms in which the full correlation matrices are taken into account, this difference is less
pronounced.

Now let us consider the results for the energy difference EL −ER. The results of the female-
voiced speech signal are given in Figure 5.4. The individual energies EL and ER are given in
Appendix L. Since the results for the gong signal are comparable, they are given in Appendix L
as well.
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Figure 5.4: The difference in energy received at the left and right ear EL − ER. The considered
signal is the female-voiced speech signal.

As is the case for the cross-correlation, the curves have the expected shape. The energy at
the left ear w.r.t that at the right ear increases as the left ear moves towards the virtual source
and vice versa. However, as also is the case for the cross-correlation, the curves tend to be shifted
towards the nearest-neighbour.

The results of Scenario 1 are summarised in Table 5.3. Here, the left side of the table gives the
results for the female-voiced speech signal and the right side gives the results for the gong signal.
For both signals, the mean error with respect to the ideal result is given and the corresponding
standard deviation is indicated. The error is calculated by considering the difference of the
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result of the algorithm with the ideal signal. The mean error µt and the corresponding standard
deviation σt are given for tmax. The mean error µE and the corresponding standard deviation
σE are given for EL−ER. These errors are calculated over the angles. For the speech signal, the
PESQ and SIIB values are given as well.

Table 5.3: The results of Scenario 1. The mean error of with respect to the ideal result for all of
the algorithms. The value µt and σt indicate the mean and standard deviation for tmax. The
value µE and σE indicate the mean and standard deviation for EL − ER. The left side of the
table gives the results for the female-voiced speech signal. The right side gives the results for
the gong. For the speech signal, the PESQ and SIIB value is also given. The mean error and
the standard deviation are calculated over the angles {0°, 1°, . . . , 359°}. The SIIB of the ideal

speech signal w.r.t. itself is 1335.8 b/s (bits/second). Algorithm is abbreviated as Alg.
Sadek2004 is abbreviated as Sad.

Speech Gong
µt ± σt (us) µE ± σE PESQ SIIB (b/s) µt ± σt (us) µE ± σE

Alg. 1 +19.0± 432.1 −0.0211± 0.6195 1.547 496.6 +3.4± 411.3 −0.0102± 0.5929
Alg. 2 −4.1± 407.8 −0.0176± 0.5323 3.773 758.8 −0.7± 407.6 −0.0048± 0.6339
Alg. 3 −3.1± 397.9 −0.0094± 0.5104 1.417 453.2 +5.8± 397.0 −0.0002± 0.5163
Alg. 4 −3.1± 401.5 −0.0132± 0.5633 3.316 686.7 −0.7± 398.2 −0.0026± 0.5639
Alg. 5 −2.7± 398.3 −0.0113± 0.5108 1.411 454.3 +5.1± 397.0 −0.0007± 0.5163
Alg. 6 −3.4± 404.3 −0.0129± 0.5601 3.255 681.1 −0.7± 397.4 −0.0035± 0.5581
NN −3.1± 399.3 −0.0031± 0.7621 4.222 780.0 +1.4± 413.8 −0.0041± 0.7233
Sad. −24.4± 378.8 −0.0186± 0.2941 4.302 818.3 +40.4± 391.1 −0.0061± 0.3464

From the table, it is found that all algorithms except Sadek2004 and Algorithm 1 have a
comparable error in tmax. Sadek2004 has a larger mean error but a comparable standard deviation
and Algorithm 1 has a larger mean error and standard deviation in the speech signal only. This is
likely due to the outliers as observed in Figure 5.3. For EL−ER, all algorithms except Sadek2004
have a similar mean error. However, the standard deviation of Sadek2004 is smaller then that of
the others. For PESQ and SIIB, the newly proposed algorithms perform less then the reference
algorithms. Algorithms 1, 3 and 5 perform less then Algorithms 2, 4 and 6. This can be attributed
to the even-numbered algorithms taking into account the masking curve in the cost function.
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5.2.2 Results for varying listener placement

All the previous results were obtained for an ideal room and for the listener in the ideal location.
Let us now consider what happens when small deviations are introduced in the placement of the
listener. The results are obtained by sampling 100 locations Xh = xh + X and Yh = yh + Y .
Here, X and Y are independent normal distributed random variables with mean 0 and a standard
deviation of 5 cm. The z coordinate is kept unchanged. In tables 5.4, 5.6 and 5.5, the results are
respectively given for a head orientations of 0◦, 55◦ and 330◦. Note that these are the orientations
shown in Figure 5.1. It should also be noted that, for each of the orientations and for both the
speech and the gong signal, the same set of head locations was used.

Table 5.4: The results for a head orientation of 0◦ and a standard deviation in listener location
of 5 cm. The results are calculated over 100 runs. The mean error of with respect to the ideal
result is indicated for all of the algorithms. The value µt and σt indicate the mean and standard

deviation for tmax. The value µE and σE indicate the mean and standard deviation for
EL − ER. The left side of the table gives the results for the female-voiced speech signal. The

right side gives the results for the gong. The mean error and the standard deviation are
calculated over the different listener location samples. Algorithm is abbreviated as Alg.

Sadek2004 is abbreviated as Sad.

Speech Gong
µt ± σt (us) µE ± σE µt ± σt (us) µE ± σE

Alg. 1 +441.9± 84.6 −0.277± 0.099 +487.1± 53.5 −0.380± 0.117
Alg. 2 +454.1± 71.7 −0.222± 0.112 +504.2± 59.2 −0.520± 0.160
Alg. 3 +213.6± 456.5 +0.042± 0.206 +479.7± 189.5 −0.142± 0.143
Alg. 4 +487.1± 122.1 +0.058± 0.254 +424.8± 302.3 −0.254± 0.208
Alg. 5 +146.5± 487.4 +0.046± 0.211 +472.4± 196.8 −0.140± 0.144
Alg. 6 +491.9± 128.0 +0.051± 0.255 +415.0± 306.5 −0.239± 0.206
NN +444.3± 58.9 −0.632± 0.040 +474.9± 42.1 −0.679± 0.057
Sad. −216.1± 387.9 +0.028± 0.215 −146.5± 354.3 −0.085± 0.212

As can be seen in Table 5.4, for a head orientation of zero degrees, the mean error µt is
typically somewhere around 400 to 500 us. This is to be expected, since this resembles the
error which is present in the ideal case, see Figure 5.2. Interestingly, for the speech signal, the
mean error µt is lower for algorithm 3, algorithm 5 and Sadek2004. However, they have a larger
standard deviation σt, indicating that they are less robust to listener displacement. This larger
standard deviation is also observed in the results with gong. Algorithm 1, algorithm 2 and NN
show the smallest values of σt. This is to be expected, since, for these algorithms, the majority
of the energy is transmitted by the nearest-neighbouring loudspeaker (see tables 5.1 and 5.2).

For the mean error in energy difference µE , the NN algorithm has the largest (absolute) mean
error, followed by algorithm 1 and algorithm 2. Similarly, NN has the smallest standard deviation,
followed by algorithm 1 and 2. Sadek2004 has the smallest (absolute) mean error µE for both
the gong and the speech signal. Comparing Sadek2004 with algorithm 3 up to and including
algorithm 6, it is found that, for the speech signal, the error µE of algorithms 3, 4, 5, and 6 is
about twice as large. Additionally, the standard deviation is comparable. For the gong, the mean
error is two to three times as large, while the standard deviation of algorithm 4 and algorithm 6
is comparable. For algorithms 3 and 5, the standard deviation is smaller.

Let us now consider the results for a head orientation of 55◦, shown in Table 5.5. The
performance for the gong signal is similar for all algorithms except Sadek2004. Sadek2004 has
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Table 5.5: The results for an head orientation of 55◦ and a standard deviation in listener
location of 5 cm. The results are calculated over 100 runs. The mean error of with respect to

the ideal result is indicated for all of the algorithms. The value µt and σt indicate the mean and
standard deviation for tmax. The value µE and σE indicate the mean and standard deviation for
EL − ER. The left side of the table gives the results for the female-voiced speech signal. The

right side gives the results for the gong. The mean error and the standard deviation are
calculated over the different runs. Algorithm is abbreviated as Alg. Sadek2004 is abbreviated as

Sad.

Speech Gong
µt ± σt (us) µE ± σE µt ± σt (us) µE ± σE

Alg. 1 +438.2± 60.3 −1.019± 0.090 +416.3± 60.3 −1.016± 0.153
Alg. 2 +433.3± 111.6 −1.026± 0.095 +416.3± 60.3 −1.137± 0.148
Alg. 3 +430.9± 242.6 −1.040± 0.162 +410.2± 66.1 −1.097± 0.183
Alg. 4 +437.0± 214.0 −1.149± 0.275 +416.3± 63.0 −1.187± 0.192
Alg. 5 +443.1± 236.4 −1.048± 0.162 +410.2± 66.2 −1.103± 0.182
Alg. 6 +433.3± 177.3 −1.145± 0.273 +417.5± 63.0 −1.183± 0.189
NN +438.2± 60.3 −1.204± 0.057 +416.3± 60.3 −1.227± 0.086
Sad. +151.4± 343.1 −0.811± 0.463 +242.9± 324.8 −0.902± 0.272

a smaller mean error µt but a larger standard deviation σt, indicating that it is less robust
with respect to listener displacement. Furthermore, still for the gong signal, Sadek2004 has the
smallest mean error µE , but the largest standard deviation. The mean error µE and the standard
deviation σE is similar for all other algorithms.

For the speech signal, the same story holds. However, there is an exception. Namely, the stan-
dard deviations of NN, algorithm 1 and algorithm 2 are lower than that of the other algorithms,
while the mean error is comparable.

Let us now consider the results for a head orientation of 330◦, shown in Table 5.6. Here, the
NN algorithm performs very well in µE and σE , for both the speech and gong signal. This is
likely because the nearest neighbouring loudspeaker (RS) is placed at an angle of 250◦, the virtual
source at an angle of 200◦ and the right ear at an angle of 240◦. Thus, the ear receiving most
energy is placed with only 30◦ difference between the nearest neighbour and the virtual source,
making the received signals similar.

Lastly, the average run-time per frame of the algorithm is given in Table 5.7. Note that
Sadek2004 and NN do not operate on a frame-by-frame basis. Thus, they are left out. However,
it should be noted that these algorithms could be run in real-time due to their simplicity. It
should be noted that these times are merely to give an indication. Namely, at times, the laptop
was in use while calculating the runtimes, and the runtimes are only calculated over a single
run. All experiments are performed on a laptop with 24 GB of RAM and an Intel i5-8250U CPU
clocked at 1.60 GHz. As can be seen, algorithm 1 and algorithm 2 are significantly faster than
algorithms 3 to 6. Additionally, it seems that the odd-numbered algorithms take slightly longer
then the even-numbered algorithms, though this is not observed in algorithm 6 for the speech
signal.
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Table 5.6: The results for an head orientation of 330◦ and a standard deviation in listener
location of 5 cm. The results are calculated over 100 runs. The mean error of with respect to

the ideal result is indicated for all of the algorithms. The value µt and σt indicate the mean and
standard deviation for tmax. The value µE and σE indicate the mean and standard deviation for
EL − ER. The left side of the table gives the results for the female-voiced speech signal. The

right side gives the results for the gong. The mean error and the standard deviation are
calculated over the different runs. Algorithm is abbreviated as Alg. Sadek2004 is abbreviated as

Sad.

Speech Gong
µt ± σt (us) µE ± σE µt ± σt (us) µE ± σE

Alg. 1 +242.9± 12.2 +0.235± 0.125 +334.5± 53.8 +0.182± 0.127
Alg. 2 +241.7± 17.2 +0.259± 0.123 +295.4± 79.8 +0.158± 0.187
Alg. 3 +90.3± 362.5 +0.501± 0.200 +296.6± 78.0 +0.432± 0.173
Alg. 4 +216.1± 54.5 +0.526± 0.213 +279.5± 78.2 +0.409± 0.259
Alg. 5 +79.3± 377.9 +0.506± 0.201 +296.6± 78.0 +0.443± 0.173
Alg. 6 +223.4± 52.2 +0.515± 0.208 +278.3± 77.7 +0.427± 0.255
NN +244.1± 0.00 −0.068± 0.019 +334.5± 56.5 +0.071± 0.049
Sad. −212.4± 410.8 +0.445± 0.198 +3.7± 393.5 +0.543± 0.264

Table 5.7: The average per-frame runtime in seconds of the six proposed algorithms. Recall
that each frame has a length of 20 ms. The gong signal and the speech signal respectively have

512 and 396 frames.

Alg. 1 Alg. 2 Alg. 3 Alg. 4 Alg. 5 Alg. 6
Speech 2.09 1.83 18.35 17.30 18.11 18.75
Gong 2.05 1.83 18.42 17.35 17.84 17.38
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Chapter 6

Conclusion

In this thesis, an algorithm to reproduce or synthesise audio including spatial cues in empty
rooms using a limited number of loudspeakers was presented. The algorithm assumes knowledge
of the listener location, knowledge of the room and knowledge of the loudspeaker locations. By
computing the power spectral density matrices in two regions A and B partially surrounding
the listener, the energy in region B can be minimised with respect to the energy in region A.
In order to control how perceptually similar the received signal and the target signal are, an
auditory masking measure was incorporated. Additionally, this masking measure was also used
to introduce frequency-dependent weighting into the energy-ratio minimisation. The performance
of the algorithms was compared against two reference algorithms. Namely, the nearest-neighbour
algorithm and a simple amplitude panning algorithm proposed in [11]. The results do not indicate
a clear preference for one of the algorithms in terms of the considered evaluation metrics.

The results, presented in Chapter 5, allow to partially answer the research questions. First,
recall Research Question 1,

Research Question 1 Can spatial weighting be used in combination with beamforming to syn-
thesise audio containing spatial cues?

While the results do not explicitly test for the spatial cues, they indicate that Research Question
1 can be answered by a partial yes. Namely, the difference in energy received at each of the ears
indicates an ILD cue and the time for which the cross-correlation is largest indicates an ITD
difference. For the considered situation, however, the quality of the results is dependent on the
orientation of the head and the results resemble the results obtained from a nearest neighbour
algorithm. Further research, including subjective tests, is required to give a definite answer to
this research question.

Now recall Research Question 2,

Research Question 2 Can properties of the human hearing be used to improve the performance
of the algorithm?

The results for Perceptual Evaluation Speech Quality (PESQ) and Speech Intelligibility in Bits
(SIIB) indicate that this research question can be answered positively. Namely, when including
the inverse masking curve as a weighting term, the SIIB and PESQ improve significantly, while
the other metrics remain similar.
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Chapter 7

Discussion and Future Work

In this chapter, the limitations of the presented work and some possibilities of future work are
given.

Firstly, due to time-constraints, the results were only investigated for a perfectly known room
and fixed loudspeaker locations. The robustness of the algorithm should be investigated for
deviations from the ideal room and deviations from the expected loudspeaker locations. A related
topic of future work is the choice of spatial weighting functions and corresponding parameters.
Namely, it is of interest to see how different choices affect the accuracy and/or robustness of the
algorithm. A specific example which is of interest is how the azimuthal “width” of the regions
influences the performance. For example, the performance might differ if region A is chosen
smaller so that it does not have significant weight on the direct path from a physical loudspeaker
to a listener. Additionally, a larger width in r might improve the robustness to system deviations.
Furthermore, it is interesting to research how reducing or increasing the number of loudspeakers
could improve the performance and how the algorithm performs in real-life scenarios.

A second limitation of the described work is that the assumptions which were used to limit
the study are not representative for real world scenarios. Namely, (1) the floor and ceiling were
assumed to be fully absorbing, (2) the virtual source, loudspeakers and listener were assumed to
be at the same height and (3) the loudspeakers were assumed isotropic. In practical scenarios,
these assumptions are invalid. Thus, it should be investigated how a deviation from these as-
sumptions influence the performance of the algorithm. In particular, spatial weighting functions
for the z-coordinate (or possibly ϕ-coordinate) should be chosen and it should be investigated
how the reflections on the floor and ceiling influence the algorithms performance. Additionally,
loudspeaker directivity should be incorporated. Assuming that the directivity pattern is available,
this can straightforwardly be done through the use of frequency dependent reflection coefficients
βi,ξ(ω) (see (3.19)).

Thirdly, improvements might be made in the computation of the power spectral density ma-
trices. Namely, the parameters σ2

iso and σ2
num of the power spectral density matrices were set to

zero and to 10−12, respectively. These values can likely be improved. For the former, possible
approaches to do so in real-life scenarios are given in [83]. Furthermore, due to the oscillatory
nature of the integral solved in the calculation of RA and RB, the computation becomes time-
expensive for high ω. A possible solution which allows for solving oscillatory integrals is given by
[95]. This approach is worked-out for a three-dimensional integral in Appendix I. Alternatively,
it is worth investigating if the integrals can (partially) be solved analytically or if integration can
be avoided entirely. The latter may be done by employing a stochastic characterisation of the
RIR. A step towards this stochastic characterisation of the room impulse response in small rooms
is taken and given in Appendix J.

A fourth, and perhaps the most important, limitation is that the current approach to char-
acterising the performance of the algorithms is very crude. The only way to obtain an entirely
proper characterisation of the results would be through performing subjective tests. Due to time-
constraints, it was chosen to focus on the development of the algorithm instead. However, it is
important to perform subjective tests in possible future work. These subjective tests should also
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indicate if the use of the Par-measure was a proper choice or if the possible pre-echoes are an
annoying artefact.

Furthermore, currently only a single virtual source is synthesised. While it seems straightfor-
ward that this can be extended to multiple sources, it should be investigated if this is true.

Next, currently only the performance for sound segments sampled at 8192 Hz is investigated.
The performance of the algorithms should also be investigated for higher sample-rates as used in,
for example, music.

Another recommendation is to investigate possible approaches to speed up the computation
times corresponding to the optimisation problem. A possible option is to optimise per (weighted)
set of frequency bins instead of per frequency bin. Ideally, this should be done in a way which
makes sense perceptually. A different method o speed-up the computation times and which can
be done relatively straightforwardly is to explicitly write the problem as a second-order conical
program. This has some advantages associated with it, see [85]. Lastly, the complexity could
be reduced if a method is found to avoid the conversion from discrete-time domain to discrete-
frequency domain in the optimisation problems.

Additionally, currently the algorithm does not directly relate to the spatial cues. Instead,
the spatial cues are assumed to happen implicitly through the beamformer. A major topic of
future research is to develop a cost-function which directly relates to the spatial cues and can be
optimised for. To the best of my knowledge, this does not yet exist.
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Appendix A

The Wave Equation

The three-dimensional wave equation considers the deviation p(x, t) (with x = (x, y, z)) of some
pressure around its equilibrium value. For a source-less domain of interest, this pressure can be
described by the homogeneous scalar wave equation,

∇2p− 1

c2
∂2p

∂t2
= 0, (A.1)

with ∇2 the Laplacian operator, given by

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (A.2)

From a physical perspective, this equation is valid for a constant valued c and inside a ho-
mogeneous, lossless and linear domain [4, 58]. It has been shown that these conditions are met
sufficiently well for sound levels below the threshold of pain for humans [4]. In the case that
sources are placed inside the domain of interest, the right hand side of (A.1) will take on a
non-zero and, generally, time-dependent value describing the source [58].

Now, supposing that it exists, consider the temporal frequency domain representation p̂(x, ω) =
F(p(x))(ω). Using (2), the inverse Fourier transform is

p(x, t) =
1

2π

∫ ∞

−∞
p̂(x, ω)ejωtdω. (A.3)

By noting that the wave-equation is a linear partial differential equation and by substituting
(A.3) into (A.1) we obtain

∇2 1

2π

∫ ∞

−∞
p̂(x, ω)ejωtdω − 1

c2
∂2

∂t2
1

2π

∫ ∞

−∞
p̂(x, ω)ejωtdω = 0. (A.4)

Simplifying yields

1

2π

∫ ∞

−∞
∇2p̂(x, ω)ejωtdω +

ω2

c2
1

2π

∫ ∞

−∞
p̂(x, ω)ejωtdω = 0. (A.5)

The above equation can be rewritten as the inverse temporal Fourier transform of the homo-
geneous Helmholtz equation. Namely,

1

2π

∫ ∞

−∞

(
∇2p̂(x, ω) +

ω2

c2
p̂(x, ω)

)
ejωtdω = 0. (A.6)

So, the homogeneous Helmholtz equation is given by

∇2p̂(x, ω) +
ω2

c2
p̂(x, ω) = 0. (A.7)
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Alternatively, one can also take the Fourier transform of the wave equation directly. The value
ω/c is known as the wavenumber and typically denoted by k [58]. Thus, the “typical” form of the
homogeneous Helmholtz equation is

∇2p̂(x, ω) + k2p̂(x, ω) = 0. (A.8)

By adding a source term s(x, t) to (A.1) one obtains the inhomogeneous wave-equation,

∇2p− 1

c2
∂2p

∂t2
= −s(x, t). (A.9)

Assuming that s(x, t) has a Fourier transform ŝ(x, ω), one can obtain the inhomogeneous Helmholtz
equation using similar steps as before [96]. This gives

∇2p̂(x, ω) + k2p̂(x, ω) = −ŝ(x, ω). (A.10)

When s is available, one can solve the above equation for p. However, it is inefficient to do so for
each new s. A more efficient approach exists and follows from the notion that (A.10) is linear.
The idea behind this approach is outlined below.

A.1 The Green’s function

Consider a linear differential operator L. This operator acts on a function Ψ, defining a differential
equation

LΨ(x, t) = f(x, t). (A.11)

For example, in the wave equation, L = −∇2 + 1
c2

∂2

∂t2 , Ψ(x, ω) = p(x, t) and f(x, ω) = s(x, t).
The idea behind the use of Green’s functions is now that, if one can solve

LG(x,x′, t) = δ(x− x′)δ(t− t′), (A.12)

a solution Ψ(x, t) to (A.11) is straightforwardly obtained through the convolution [97, 98]

Ψ(x, t) =

∫
x′

∫
t′
G(x,x′, t)f(x′, t′)dx′dt′. (A.13)

The delta functions in the above are Dirac delta functions.

A.2 The Green’s function solution to the wave-equation

Let ĝ(x,x′, ω) be the Green’s function solution to the Helmholtz equation. By considering the
temporal Fourier transform, it is required to find a solution which satisfies

∇2ĝ(x,x′, ω) + k2ĝ(x,x′, ω) = −δ(x− x′). (A.14)

Note that the δ(t) transforms to 1. By requiring causality and by requiring that ĝ(x,x′, ω) → 0
as ||x− x′||2 → ∞, it can be shown that [98]

ĝ(x,x′, ω) =
e−jk||x−x′||2

4π||x− x′||2
. (A.15)

For a complete description, the reader can, among others, refer to [98]. Note that [98] uses
a different definition of the Fourier transform and thus arrives at a slightly different Green’s
function.
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Appendix B

Directive Transmitter and
Receiver

In this appendix, the equation for the received signal in the free field as described in Section 2.2
is extended to incorporate a directive transmitter and a directive receiver.

First, recall (2.4), which states that the received sound sr(t) for isotropic transmitters i and
an isotropic receiver in the free-field is given by

sr(t) =

Ns∑
i=1

(h(xi,xr) ∗ s(xi) (t) =

Ns∑
i=1

(g(xi,xr) ∗ s(xi))(t). (B.1)

Here, Ns is the number of loudspeakers and g is the greens function solution to the scalar wave-
equation, given by

g(xi,xr, t) =
1

4π||xi − xr||2
δ

(
t− ||xi − xr||2

c

)
. (B.2)

B.1 Directive transmitter

Now suppose that the receiver is isotropic, but the transmitter is directive. Let the directivity
impulse response be described by hdir(θ

′
i, ϕ

′
i, t)

1, where the angles θ′i and ϕ′i are relative to the
transmitter. The coordinate system is illustrated in Figure B.1.

(a) Azimuth θ′ (b) Elevation ϕ′

Figure B.1: A schematic view of the coordinate system used for the transmitter directivity. The
azimuth θ′ ∈ [0, 2π) and elevation ϕ′ ∈ [−π

2 ,
π
2 ] are calculated relative to the transmitter

orientation.

1Note that each transmitter is assumed to have the same directivity pattern.
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We may associate a pair (θ′i, ϕ
′
i) to each transmitter i. Adding the directivity to (2.4) yields

sr(t) =

Ns∑
i=1

(hdir(θ
′
i, ϕ

′
i) ∗ g(xi,xr) ∗ si) (t). (B.3)

B.2 Directive transmitter and receiver

Let us now consider a listener as a receiver. The center of the listeners head is located at xr

and the directivity of the listener is expressed using the HRIRs hH,L(θ
′′, ϕ′′, t) and hH,R(θ

′′, ϕ′′, t)
(where L corresponds to the left ear, and R to the right ear). Note that the HRIRs are considered
to be independent of distance. The angles θ′′ and ϕ′′ are defined relative to the listener. The
corresponding coordinate system is illustrated in Figure B.2.

(a) Azimuth θ′′ (b) Elevation ϕ′′

Figure B.2: A schematic view of the coordinate system used for the receiver (or listener)
directivity. The azimuth θ′′ ∈ [0, 2π) and elevation ϕ′′ ∈ [−π

2 ,
π
2 ] are calculated relative to the

reciever orientation.

Incorporating the human receiver and the directive transmitter into the example of Figure 2.8
results in Figure B.3.

The received signal now differs between the left and right ear. For the left ear, it is calculated
as

sL(t) =

Ns∑
i=1

(hdir(θ
′
i, ϕ

′
i) ∗ g(xi,xr) ∗ hH,L(θ

′′
i , ϕ

′′
i ) ∗ si) (t), (B.4)

a similar expression holds for the right ear.
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Figure B.3: An example situation where the sound produced by three loudspeakers centred at
coordinate xi in the free field is received by a human. The channel from source i to receiver r is

denoted as hr(xi, t) and the center of the head is denoted as xr. Each transmitter has an
azimuth and elevation (θ′, ϕ′) associated with it and each receiver has an azimuth and elevation

(θ′′, ϕ′′) associated with it.
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Appendix C

The image-source method

In this appendix, the details of the image-source method are discussed in some more detail.
The image-source methods was proposed [59] and briefly mentioned in Section 2.2.2. The image-
source method allows to estimate the acoustic channel h in box shaped rooms as a sum of weighted
Green’s functions.

Recall that the image-source method is a form of geometrical acoustics. Thus, the sound-waves
are assumed to behave as rays. Due to the specular reflection, the locations of the image-sources
are found by mirroring the physical source along the wall [61]. This is illustrated in Figure C.1.
Note that this mirroring can be repeated indefinitely. Thus, there are infinitely many image-

Figure C.1: A simple example of the direct path and first order reflections in a rectangular
room. The sound waves are assumed to behave like rays. The receiver is depicted with a ×, and

the transmitter by a •. The image-sources are depicted by a •.

sources. In practice, only a finite number is considered [62].
For rigid (fully reflective with R = 1) walls, the solution found using the mirror image-source

method is exact and the channel h(xi,xr, t) equals [59]

h(xi,xr, t) =

Ni∑
ξ=0

δ
(
t− ||xi,ξ−xr||2

c

)
4π||xi,ξ − xr||2

, (C.1)

here, xi,ξ is the location of image-source ξ corresponding to loudspeaker i and Ni is the number
of image sources associated with loudspeaker i.
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As explained in Section 2.2.2, the case for non-rigid walls is more involved. Namely, in this
scenario, R is typically frequency-dependent, complex valued and dependent on the angle of
incidence. The image-source method ignores this dependence and instead associates a real valued
reflection coefficient β with each of the walls. Thus, each mirror-image ξ of transmitter i is
attenuated by some factor βi,ξ. Under this assumption, the channel h is obtained by summing
the contribution of each image-source using the proper weight. This gives

h(xi,xr, t) =

Ni∑
ξ=0

βi,ξ
δ
(
t− ||xi,ξ−xr||2

c

)
4π||xi,ξ − xr||2

, (C.2)

reprinted from (2.5). The reflection coefficient corresponding to image-source ξ of loudspeaker i is
given by βi,ξ. This equation approximates the exact solution to the wave-equation for box-shaped
rooms well for sufficiently high frequencies [61].

Interchanging the Greens function in (2.4) for the room impulse h(xi,xr, t) allows to estimate
the received signal according to

sr(t) =

Ns∑
i=1

(h(xi,xr) ∗ s(xi)) (t). (C.3)

The mirror image-source model can be extended to include the directivity of the receiver
(listener) and transmitter. When doing so, the change in transmitter orientation due to the
mirroring procedure should be kept in mind. In line with Assumption 2, I consider this to be
beyond the scope of the thesis. However, it can be implemented through, for example, the use of
quaternions. This is explained in [60].

A question which remains is how Ni, xi,ξ and βi,ξ are determined. This is answered below.

C.1 The image-sources

A simple approach to calculating the image-source locations is presented in [28, 59]. Consider a
box-shaped room whose origin lies at (x, y, z) = (0, 0, 0). The room has a length Lx, a width Ly

and a height Lz. This room is illustrated in Figure C.2.

Figure C.2: The coordinate system of the consider rooms. The origin of the room is at
(x, y, z) = (0, 0, 0). The length, width, and height of the room are respectively given by Lx, Ly

and Lz.
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The walls of the room have reflection coefficients βx1
, βx2

, βy1
, βy2

, βz1 and βz2 . Here, βx1

corresponds to the wall which at x = 0, while βx2 corresponds to the wall at x = Lx. Similarly
for the other walls.

The coordinates of the image-sources are found by first constructing the seven image-sources
by mirroring along the walls which directly connect to the origin. This yields a total of eight
(image)-sources, which can be copied along all spatial dimension. This is described by [28]

xi,ξ =

(1− 2q)xi
(1− 2j)yi
(1− 2k)zi

+

2mxLx

2myLy

2mzLz

 , q, j, k ∈ {0, 1}, mx,my,mz ∈ Z. (C.4)

The values ξ are obtained by assigning each ξ a unique set {q, j, k,mx,my,mz} . The value ξ = 0
is reserved for the transmitter, so ξ = 0 correspond to {q, j, k,mx,my,mz} = {0, 0, 0, 0, 0, 0}.

The reflection coefficient βi,ξ corresponding to the image-source at xi,ξ is given by [28]

βi,ξ = β|mx−q|
x1

β|mx|
x2

β|my−j|
y1

β|my|
y2

β|mz−k|
z1 β|mz|

z2 . (C.5)

In any practical implementation, the values mx, my and mz will be limited between a finite
minimum and maximum value. This value is typically determined through the T60-time. The
T60 time is the time it takes for the room impulse response to decay by 60 dB. For living rooms,
the T60-time equals about 300 ms [61]. The number of (image)-sources Ni corresponding to
loudspeaker i is consequently also determined through the T60 time. Namely, one can include all
images which correspond to a traveltime less then the T60-time and discard the rest. Concretely,
keep all sources xi,ξ for which

||xi,ξ − xr||2
c

≤ T60 (C.6)

holds, and discard the others.
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Appendix D

Details of the Taal- and
Par-measure

In this appendix, the details of the Taal- and Par-measure are discussed further. These measures
are introduced in Section 2.3, where it was found that they are are preferred over the Dau-model
due to their computational tractability.

Of these two models, the Taal-measure has better correlation with psychoacoustic listening
tests. It is, however, more computationally expensive. While I ultimately chose to use the
Par model, I first consider the Taal-measure in detail. This is more instructive, since the Taal-
measures employs a more sophisticated auditory model. Furthermore, the Par-measure can be
considered as a special case of the Taal-measure [69]. It should be noted that, in the proposed
algorithm, the Par-measure is used.

D.1 Structure of the Taal-measure

The Taal-measure takes as input two finite length discrete-time signals x and y having equal
length, say Nw. Of these signals, x is considered the original audio signal, while y = x + ϵ is
the degraded audio signal. To obtain the distance measure, both x and y are passed through an
auditory model, this results in so-called internal representations Ix and Iy. By comparing the
internal representations, a perceptual distance is obtained. The structure of the auditory model
used in the Taal-measure is illustrated in Fig. D.1 (reprinted from Section 2.3.3).

Figure D.1: A schematic overview of the structure of the auditory model used in the
Taal-measure. From left to right, it consists of the outer- and middle-ear filter, a gammatone
filterbank, an envelope follower, addition of internal noise and finally a logarithm to model the

compressive nonlinearity. Figure based on [69].

The measure is applied on short time-frames, so in practice x and y are properly windowed
short-time frames of some full length signal [69]. Since the measure is applied on a frame-by-
frame basis, I will not introduce notation for the frame index. The signals x and y are indexed
by n ∈ {0, . . . , Nw − 1}.
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As can be seen in Fig. D.1, the auditory model employs a few stages. The first stage is
referred to as the outer-and middle-ear filter hom, and is modelled by taking the inverse of the
threshold in quiet.

After this, the basilar membrane is modelled by means of a gammatone filterbank. This is a
linear parallel filterbank comprising Ng filters, referred to as hi with i ∈ {1, . . . , Ng}. The output
of filter i is referred to as xi, yi, or ϵi, depending on the signal under consideration. For example,
xi = x ∗ hom ∗ hi.

The outputs of the gammatone filterbank are passed through an envelope follower used to
model the haircell transduction. The envelope follower is implemented by taking a pointwise
square, for example |xi(n)|2, followed by a low pass filter hs. A constant c1, modelling internal
noise, is added to the output signal. Lastly, the logarithm is taken to model the compressive
nonlinearity. Thus, the internal representation Ix,i can be expressed using (D.1),

Ix,i(n) = log
((
|xi|2 ∗ hs

)
(n) + c1

)
, (D.1)

and similarly for Iy,i. Note that both the logarithm and the square are taken pointwise (sample-
by-sample). Taal et al. do not mention this explicitly, but other papers of the same author (see
[99, 100]) suggest so.

Now that within-channel internal representations Ix,i and Iy,i are available, it is required to
define a within-channel detectability di(x, y). In order to arrive at a mathematically tractable
measure,[69] proposed to use the l1 norm. This yields

di(x, y) = ||Iy,i − Ix,i||1. (D.2)

The total detectability d(x, y) is now obtained by simply summing the within-channel de-
tectabilities. After some simplification, this yields,

d(x, y) = c2

Ng∑
i=1

∣∣∣∣∣∣∣∣log( |yi|2 ∗ hs + c1
|xi|2 ∗ hs + c1

)∣∣∣∣∣∣∣∣
1

, (D.3)

where the constant c2 is added to set the model-sensitivity. Furthermore, the division, squaring
and logarithm are done pointwise.

While (D.3) is provides a closed form expression for the detectability, it is not yet suitable
for online optimisation. Taal et al. showed that, under some assumptions, the model can be
simplified further.

D.2 Simplification of the Taal-measure

The first assumption that allows for simplifying the Taal-measure is that x and ϵ are uncorrelated1.
Combining this assumption with the notion that the lowpass filter performs some kind of averaging
yields the following approximation

|yi|2 ∗ hs ≈
(
|xi|2 + |ϵi|2

)
∗ hs. (D.4)

Substituting (D.4) in (D.3) results in

d(x, y) ≈ c2

Ng∑
i=1

∣∣∣∣∣∣∣∣log(1 + |ϵi|2 ∗ hs
|xi|2 ∗ hs + c1

)∣∣∣∣∣∣∣∣
1

. (D.5)

1Note that, in my application, this is not necessarily true. Nevertheless, this is believed not to be a large
problem since I do not mind if the difference is detectable. Instead, I mostly use it as a means to limit the
difference in a way relating to perception.
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As the introduced error ϵ is typically small, the logarithm can be approximated using the first
term of the Maclaurin series: log(1 + z) ≈ z. This yields the simplified measure DTaal(x, ϵ), given
by

d(x, y) ≈ DTaal(x, ϵ) = c2

Ng∑
i=1

∣∣∣∣∣∣∣∣ |ϵ ∗ hom ∗ hi|2 ∗ hs
|x ∗ hom ∗ hi|2 ∗ hs + c1

∣∣∣∣∣∣∣∣
1

, (D.6)

where xi and ϵi were expanded.

To efficiently implement (D.6), the filters are considered in the frequency domain [69]. The

frequency-domain filters are chosen to be completely real and symmetric, so ĥ(f) = ĥ(−f). As
a result, the convolution operators in (D.6) become circular convolutions, this yields (D.7). To
ensure equality between (D.6) and (D.7), zero padding is required.

DTaal(x, ϵ) = c2

Ng∑
i=1

∣∣∣∣∣∣∣∣ |ϵ⊛ hom ⊛ hi|2 ⊛ hs
|x⊛ hom ⊛ hi|2 ⊛ hs + c1

∣∣∣∣∣∣∣∣
1

(D.7)

It can be shown that (D.7) can be efficiently calculated by first computing the term g2i [69],

g2i =

(
c2

|xi|2 ⊛ hs + c1

)
⊛ hs, (D.8)

which then allows evaluating the distance measure using [69]

DTaal(x, ϵ) =

Ng∑
i=1

Nw−1∑
n=0

|ϵi(n)gi(n)|2 =

Ng∑
i=1

||giϵi||22. (D.9)

It should be noted that gi follows from (D.8) and the fact that gi ≥ 0. Furthermore, as
previously, the division and squaring in (D.8) happens on a sample-by-sample basis.

In the next section, the equivalence between the Taal-measure and the Par-measure is briefly
discussed. Here, also an approach to set the constants c1 and c2 is given for the Par-measure.

D.3 Equivalence between the Taal-measure and Par-measure

Interestingly, the Taal-measure can be shown to reduce to the Par-measure. The Par-measure is
given by (D.10) [69], although appearing in a slightly different form in the original paper by Par
et al. [51].

DPar(x, ϵ) = Nwc2

Ng∑
i=1

1
Nw

||ϵi||22
1

Nw
||xi||22 + c1

(D.10)

The Taal-measure becomes equivalent to the Par-measure when the cut off frequency of the
low pass filter hs is set to zero [69]. In that case ĥs(0) = 1, and all other values are zero (to verify
this, refer to (E.7)). This yields

(|ϵi|2 ⊛ hs)(n) =
1

Nw

Nw−1∑
k=0

̂|ϵi(k)|2ĥs(k)e2πjkn/Nw

=
1

Nw

̂|ϵi(0)|2ĥs(0)

=
1

Nw
||ϵi||22,

(D.11)
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where equivalence between circular convolution in discrete-time domain and multiplication in
discrete-frequency domain was used [69]. The last line follows from the definition of the discrete
Fourier transform. Note that the result of (D.11) is independent of n and that a similar result
holds for xi. Using this and substituting the result of (D.11) in (D.7) yields the Par-measure
(D.10) [69]. Here, it is used that the l1 norm turns into a multiplication by Nw due to the inde-
pendence of n.

To allow for an efficient implementation and for easily setting the calibration constants, it is
convenient to expand (D.10) into a frequency domain representation. Using Plancherels formula,
this yields [101]

DPar(x, ϵ) = Nwc2

Ng∑
i=1

1
N2

w
||ϵ̂ĥomĥi||22

1
N2

w
||x̂ĥomĥi||22 + c1

= c2

Ng∑
i=1

||ϵ̂ĥomĥi||22
1

Nw
||x̂ĥomĥi||22 +Nwc1

.

(D.12)

Since the filters were defined as purely real, the Par-measure can also be written as

DPar(x, ϵ) =

Nw−1∑
k=0

|ĝ(k) ˆϵ(k)|2 = ||ĝϵ̂||22, (D.13)

with

ĝ2 = c2

Ng∑
i=1

ĥ2omĥ
2
i

1
Nw

||x̂ĥomĥi||22 +Nwc1
. (D.14)

Note that the constants are larger than zero, thus we can simply take the square root to obtain
ĝ.

On a sidenote, recall that ĥom is chosen equal to the inverse of the threshold in quiet. When
no masker is present, ĝ2 reduces to

ĝ2 =
c2

Nwc1
ĥ2om

Ng∑
i=1

ĥ2i . (D.15)

As can be seen from this equation, ĝ2 reduces to some scaled version of the inverse of the threshold

in quiet if
∑Ng

i=1 ĥ
2
i is constant for all frequencies. This is approximately the case for gammatone

filters [51]. In fact, even for nonzero x̂, it can be shown that ĝ2 traces the masking curve for
sinusoidal distortions [51].

D.4 Implementation and the calibration constants c1 and
c2

As mentioned before, the filters are implemented in the frequency domain. To facilitate ease of
implementation, a single sided spectrum is considered. Expressions for ĥom, ĥs and ĥi are given
in Appendix E.

The constants c1 and c2 are set such that (1) the threshold in quiet at f1 = 1000 Hz and (2)
the 1 dB JND for a 70 dB SPL sinusoid at a frequency of f2 = 1000 Hz are correctly predicted.
Furthermore, the value of the distortion measure should be D = 1 when the distortion is just not
detectable [51, 69].
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For requirement (1), the masker is set to x̂1 = 0 and the disturbance is set to equal the
threshold in quiet at a frequency f1. Recalling that the outer- and middle-ear filter was taken
equal to the inverse of the threshold in quiet gives

ϵ̂1(f) =
(
ĥom(f)

)−1

δ(f − f1), (D.16)

where δ is the Kronecker delta function.
Using (D.12) and setting Dpar(x1, ϵ1) = 1 yields

1 = c2

Ng∑
i=1

|ĥi(f1)|2
Nwc1

⇔ c1 =
c2
Nw

Ng∑
i=1

|ĥi(f1)|2. (D.17)

To incorporate requirement (2), the 70 dB SPL sinusoidal masker can be modelled as x̂2(f) =
A70δ(f − f2), with δ the Kronecker delta function and A70 the amplitude corresponding to 70
dB SPL. To get a signal y2 = x2 + ϵ2 with an amplitude of at most 71 dB SPL, so that the
distortion is just noticeable, the distortion needs to be at least 18 dB SPL below the masker.
Thus, ϵ̂2(f) = A52δ(f − f2). Note that this assumes that the masker is added in-phase.

To facilitate finding c2, a function f(c2) can be defined. This is done by substituting the
calibration signals and (D.17) in (D.12). We obtain

f(c2) = c2

Ng∑
i=1

|A52ĥom(f2)ĥi(f2)|2
1

Nw
|A70ĥom(f2)ĥi(f2)|2 + c2

∑Ng

j=1 |ĥj(f1)|2
− 1, (D.18)

where the -1 originates from Dpar(x2, ϵ2) = 1. A value c2 = c⋆2 > 0 should now be found such
that f(c⋆2) = 0.

In the following, it is shown when c⋆2 exists. Firstly, by taking the derivative of f(c2) with
respect to c2, one can show that f(c2) is monotonically increasing for c2 > 0 [102]. Furthermore,
the following two limits hold

lim
c2→0

f(c2) = −1 (D.19a)

lim
c2→∞

f(c2) = |A52ĥom(f2)|2
∑Ng

i=1 |ĥi(f2)|2∑Ng

j=1 |ĥj(f1)|2
− 1. (D.19b)

Recall that f1 = f2 = 1000 Hz. Hence, (D.19b) can be approximated by

lim
c2→∞

f(c2) = |A52ĥom(f2)|2 − 1. (D.20)

Note that, even if f1 ̸= f2, the gammatone filters approximately sum to a constant value for all
f [51]. As such, the simplified limit will still hold approximately.

Since f(c2) is monotonically increasing for c2 > 0 and since f(0) < 0, an optimal solution c⋆2
exists if the limit of (D.19b) is larger then zero. This is the case for f1 = f2 = 1000 Hz, since

ĥom(1000) > 1/A52.
To solve (D.18), it is first needed to find numerical values for the amplitudes A52 and A70. A

challenge here is to convert the digital audio representation into a sound pressure level (which is
a physical quantity). Once these constants are determined, a solution for c2 can be determined
using numerical methods such as the bisection method [102, 103]. Lastly, c1 is straightforwardly
calculated using (D.17). Converting a digital representation to a sound pressure level is discussed
in Appendix F.
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Appendix E

Filters of the Par- and
Taal-measure

In this chapter, some details of the implementation of the Taal-measure and (by extension) Par-
measure which were left out of Appendix D are discussed. I start by discussing the frequency
domain filters ĥom, ĥs and ĥi. Of these, hi and hom are used in the Par-measure as well. Then,
in Section F, the Sound Pressure Level (SPL) is discussed.

E.1 The filters used in the Taal-measure

In this section, the implementation of the frequency domain filters ĥom, ĥs and ĥi is discussed.
Before doing so, note that, since a single-sided spectrum is considered, only the positive half of
the spectrum is taken into account.

Let us consider input signals x and ϵ of length Nw, where Nw is even. The filters are indexed
by k ∈ {0, 1, . . . , Nw

2 }. The frequency f corresponding to k equals kfs/Nw, with fs the sampling
frequency.

E.1.1 Outer- and middle-ear filter

The first filter in the auditory model is termed the outer- and middle-ear filter. In practice, it is
taken to equal the inverse of the threshold in quiet [51]. The threshold in quiet can be estimated
as [52]

Tq(f) = 3.64

(
f

1000

)−0.8

− 6.5 exp

{
−0.6

(
f

1000
− 3.3

)2
}

+ 10−3

(
f

1000

)4

, (E.1)

where the frequency unit equals Hz, and the unit of Tq is dB SPL. Removing the transform to

dB SPL results in the expression for ĥom [51],

ĥom(f) =

(
α

p0

)−1

10−Tq(f)/20. (E.2)

The term α
p0

originates from the dB SPL mapping and is explained in Appendix F.

E.1.2 Gammatone filter

The Taal-measure employs Ng = 64 gammatone filters. A good approximation to the magnitude
spectrum of a gammatone filter centered at frequency fc (in Hz) is given by [51],

ĥg(f) =

(
1 +

(
f − fc

κERB(fc)

)2
)−η/2

(E.3)
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In the equation, κ is a normalising constant, η is the order of the filter and ERB(fc)
1. is the

equivalent rectangular bandwidth of the gammatone filter centered at fc (see (E.5)). Typically,
the filter order is assumed to be η = 4 [51]. The corresponding normalising constant is given by

κ =
2η−1(η − 1)!

π(2η − 3)!!
(E.4)

with ! the factorial and !! the double factorial. The double factorial n!! equals 2 ·4 · . . . ·n for even
positive numbers n, and 1 · 3 · 5 · . . . · n for odd positive numbers n. Lastly, the value ERB(fc)
can be approximated using [104]

ERB(fc) = 24.7

(
4.37fc
1000

+ 1

)
. (E.5)

Par et al. and Taal et al. chose the Ng center frequencies such that they linearly divide the
ERB-rate scale on the interval [E(0), E(fs/2)] in Ng steps. Here, fs is the sampling frequency.
The ERB-rate scale is approximated as [104]

E(fc) = 21.4 log10

(
4.37fc
1000

+ 1

)
. (E.6)

E.1.3 The lowpass filter

A simple first order lowpass filter with a cutoff frequency fτ = 1000 Hz is used. The filter ĥs is
obtained as [69]

ĥs(f) =
1 + α√

1 + α2 + 2α cos(2πf/fs)
, (E.7)

where α equals

α = − exp

{
−2πfτ

fs

}
. (E.8)

1The Equivalent Rectangular Bandwidth (ERB) of some reference filter is the bandwidth of a rectangular filter
which has the same maximum magnitude as the reference filter and transmits the same power when white noise
is given as input [30]. Even though they are not rectangular, auditory filters are often characterised using their
ERB.
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Appendix F

The Sound Pressure Level

The Sound Pressure Level (SPL) gives the intensity of an acoustic stimuli with respect to a
reference value. It is given by

LSPL = 20 log10

(
p

p0

)
[dB SPL], (F.1)

with p the absolute sound pressure in Pascals and p0 a reference value equal to 20 µPa [53]. As
an example, normal speech is about 60 to 70 dB SPL [30, 49].

To determine LSPL, one needs to have access to the sound pressure p. In my application, this
value is not straightforwardly known since only a digital representation x is available. However,
throughout this thesis, I assume the sound pressure level to be a linear function of the input
signal. Thus, we can write (F.1) as

LSPL = 20 log10

(
α|x|
p0

)
= 20 log10(|x|) + 20 log10

(
α

p0

)
[dB SPL] (F.2)

where α depends on environmental factors such as the loudspeaker, cables, amplifier, and room.
To find α, prior information on the sound level needs to be available (or a conservative estimate

needs to be made). To be specific, let us have access to a value |x| = xref for which the received
sound pressure level is xdB, ref (in dB SPL). Substituting this into (F.2) yields

20 log10

(
α

p0

)
= xdB,ref − 20 log10 (xref) , (F.3)

which can straightforwardly be solved for α (or α
p0
).

As an example, consider a normalised digital representation, so max(|x|) = 1. Suppose that
this corresponds to 70 dB SPL. Solving (F.3) results in α = 0.0632, or, equivalently, α/p0 ≈ 3162.
Once α is available, it is straightforward to find the amplitude corresponding to a different sound
pressure level and vice versa using

LSPL = 20 log10(|x|) + 20 log10

(
α

p0

)
⇔ |x| =

(
α

p0

)−1

10
LSPL

20 (F.4)

For this example, the value A70 = 1 and A52 ≈ 0.1259. The value ATq(fm) is slightly more
involved. For fm = 1000 Hz, Tq(fm) ≈ 3.37 dB SPL. Thus, ATq(fm) ≈ 0.466× 10−3.

Even though I assume α to be constant. It should be noted that this is a false assumption in
any practical scenario. This can easily be seen by noting that a loudspeaker will already introduce
a frequency dependency. Similarly, α might very well dependent on the amplitude of x due to
amplifier nonlinearities.
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Appendix G

Details Block-based filtering

In this appendix, the method to perform convolution of long signals and filters by splitting the
convolution in smaller segments as introduced in Section 2.4 is discussed in more detail.

Recall that I consider the convolution between a signal x of infinite length and a causal filter
h of length M . This convolution is given by

(x ∗ h)(n) =
∞∑

m=−∞
x(m)h(n−m). (G.1)

In order to perform this convolution while ensuring that delays remain acceptable, one can
choose to segment only the input signal or to segment both the input signal and the filter. The
former is described in Section G.1 and the latter is described in Section G.2. Note that the
discussions repeat some equations of Sections 2.4.1 and 2.4.2, respectively.

G.1 Short-time filtering of the input signal

Recall (2.11) and (2.12), which stated that we have access to some window w1 and repetition rate
R1 for which

∞∑
l=−∞

w1(n− lR1) = 1 ∀n, (G.2)

supp(w1) = {0, . . . , L1 − 1}, (G.3)

holds. This allows to write (reprint from (2.13))

x(n) = x(n)
∞∑

l=−∞
w1(n− lR1) =

∞∑
l=−∞

w1(n− lR1)x(n) =
∞∑

l=−∞
x̃l(n), (G.4)

with
x̃l(n) = w1(n− lR1)x(n), (G.5a)

supp(x̃l) ⊆ {lR1, . . . , L1 − 1 + lR1}. (G.5b)

or, shifting the origin to n = 0,

xl(n) = x̃l(n+ lR1) = w1(n)x(n+ lR1), (G.6a)

supp(xl) ⊆ {0, . . . , L1 − 1}. (G.6b)
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In Section 2.4, (2.16) was presented without proof. Working out the simplification yields

(x ∗ h)(n) =
∞∑

l=−∞

∞∑
m=−∞

w1(m− lR1)x(m)h(n−m)

=

∞∑
l=−∞

∞∑
m=−∞

x̃l(m)h(n−m)

=

∞∑
l=−∞

∞∑
m=−∞

xl(m)h(n−m− lR1)

=

∞∑
l=−∞

L1−1∑
m=0

xl(m)h(n−m− lR1).

(G.7)

Where the second to third line follows from the substitution m → m + lR1, and the third to
fourth line from the support of xl(m) (see (G.6b)).

Due to the finite support of the window, at any time n = n′ there exists some l = l′ for which
we have full knowledge of all the blocks with l ≤ l′. Hence, we may decompose the convolution
of (G.7) into a “known” part and an “unknown” part. This yields

(x ∗ h)(n) =
l′∑

l=−∞

L1−1∑
m=0

xl(m)h(n−m− lR1) +

∞∑
l=l′+1

L1−1∑
m=0

xl(m)h(n−m− lR1). (G.8)

It follows that, in real-time applications, one can simply compute the left double sum. Each time
a new block comes in, the output can be updated to incorporate the new block.

The approach outlined above is only valid if the right hand double sum does not influence the
output up to n = n′ − ϵ, where ϵ is a finite non-negative delay. It can be shown that this is true
by considering the support of the output signal, this is done below.

Let us consider the filtering of a single block. Define yl(n) as

yl(n) =

L1−1∑
m=0

xl(m)h(n−m− lR1). (G.9)

It can be shown that yl has support

supp(yl) ⊆ {lR1, . . . , lR1 + L1 +M − 2}. (G.10)

It follows that the left double sum of (G.8) has support {−∞, . . . , l′R1 +L1 +M − 2}, while
the right double sum has a support {(l′ + 1)R1, . . . , ∞}. These supports partially overlap when
L1 +M − 2 ≥ R1. As L1 ≥ R1, this will be the case in any practical scenario. However, since
the overlap is limited, the solution to (G.8) can be calculated up to a time instant n = n′ − ϵ for
any n′ and finite ϵ. The actual value of ϵ depends on the lengths L1, M and on n′ itself.

In some scenarios, the filter lengthM might be too large to produce usable results in real-time
applications. In those cases, one can choose to segment the filter as well. This is a straightforward
extension of this section and is discussed in Section G.2. Before doing so, let us briefly consider
two windows.

G.1.1 The rectangular window and the Hanning window

A possible choice for the window w1 is the rectangular window rectL(n) with |supp{rectL1}| = L1,

rectL1(n) =

{
1, 0 ≤ n < L1

0, otherwise.
(G.11)
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G.2 Segmenting the filter Chapter G: Details Block-based filtering

The rectangular window is an example where the supports of the windows do not overlap, e.g.
R1 = L1. However, in some cases, one might prefer to use overlapping filters. This is typically
the case when nonlinear or time-varying processing is performed [80]. A possible choice is the
Hanning window with R1 = L1/2 for even length L1. The Hanning window of length L1 is
described by [80]

hannL1(n) = rectL1(n)

(
1

2
+

1

2
cos

(
2π

L1

(
n− L1

2

)))
, (G.12)

where the shift in the argument of the cosine shifts the peak of the window from 0 to L1/2.
Note that, strictly speaking, the Hanning window has support a support {1, . . . , L1−1). Thus,

if w1 is chosen to be the Hanning window, the equality sign of (G.3) changes into a subset sign.
This does not influence the validity of the results.

The rectangular window and Hanning window are shown in Figure G.1.
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Figure G.1: Example of the rectangular window and the Hanning window. Both are depicted
for L = 20 and the corresponding repetition rates. The sum of the windows is indicated by the

black line. Note that the windows sum to one over the range with overlap.

G.2 Segmenting the filter

Recall, from Section 2.4.2, that the filter can be segmented as well. This is done using a window
w2 with length L2 and repetition rate R2. It is furthermore assumed that M/L2 is integer. The
window is given by (repeated from (2.17) and (2.18))

ιb∑
ι=ιa

w2(n− ιR2) = 1∀n ∈ supp(h), (G.13a)

supp(w2) = {0, . . . , L2 − 1}, (G.13b)

for some ιa and ιb. So that

h(n) =

ιb∑
ι=ιa

w2(n− ιR2)h(n) =

ιb∑
ι=ιa

h̃ι(n). (G.14)

Here, h̃ι is defined analogously to x̃ι (see (G.5) or (2.20)). Similarly, we may define hι analogously
to xl (see (G.6) or (2.21)).
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In Section 2.4, (2.22) was given without proof. Working out the simplification yields

(x ∗ h)(n) =
∞∑

l=−∞

L1−1∑
m=0

xl(m)h(n−m− lR1)

=

∞∑
l=−∞

L1−1∑
m=0

xl(m)

ιb∑
ι=ιa

h̃ι(n−m− lR1)

=

∞∑
l=−∞

ιb∑
ι=ιa

L1−1∑
m=0

xl(m)hι(n−m− lR1 − ιR2),

(G.15)

where the last line follows from the definition of hι, see (2.21).

G.3 Frequency Domain

To facilitate an efficient implementation, the convolutions are performed in the frequency domain.
This is discussed below. I consider a rectangular window w2, so that ιa = 0 and ιb = M/L2 − 1.

Consider a single block (l, ι). Define

y(l,ι)(n) =

L1−1∑
m=0

xl(m)hι(n−m− lR1 − ιR2), (G.16)

so that
supp(y(l,ι)) ⊆ {lR1 + ιR2, . . . , lR1 + ιR2 + L1 + L2 − 2}. (G.17)

It will be convenient to define a shift operator shiftL, which shifts some signal x(n) by L
samples, so

(shiftL{x})(n) = x(n+ L). (G.18)

Using the shift operator, we may write (G.16) as

y(l,ι)(n) = (xl ∗ shift−lR1−ιR2
{hι})(n). (G.19)

Or, equivalently
y(l,ι)(n) = (shift−lR1−ιR2{xl ∗ hι})(n), (G.20)

with
supp(xl ∗ hι) ⊆ {0, . . . , L1 + L2 − 2}. (G.21)

Transforming the convolution of (G.20) to a frequency domain equivalent yields

y(l,ι)(n) = (shift−lR1−ιR2
{F−1 [(Fxl)(Fhι)]})(n). (G.22)

Combining (G.15), (G.16) and (G.22) gives

(x ∗ h)(n) =
∞∑

l=−∞

M/L2−1∑
ι=0

y(l,ι)(n)

=

∞∑
l=−∞

M/L2−1∑
ι=0

L1−1∑
m=0

xl(m)hι(n−m− lR1 − ιR2)

=

∞∑
l=−∞

M/L2−1∑
ι=0

(shift−lR1−ιR2
{F−1 [(Fxl)(Fhι)]})(n),

(G.23)
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which provides a method to efficiently implement both block-based filtering and input signal
segmentation.

Note that, in an implementation, the infinite length discrete signals xl and hι will be repre-
sented by finite length vectors xl ∈ RL1 and hι ∈ RL2 (or similar). However, frequency domain
multiplication corresponds to circular convolution. Thus, to ensure that the circular convolution
is equivalent to a “normal” convolution, one needs to zeropad the vectors xl and hι to a length
L3 ≥ L1 + L2 − 1. In practice, L3 is chosen as an integer power of two [80].
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Appendix H

Three-dimensional approach

In this appendix, the equation for the room transfer function in Cartesian coordinates is rewritten
to a cylindrical coordinate system and spherical coordinate system. This is done in Section H.1
and H.2 respectively. The considered equation is (reprinted from (3.21))

ℏ̂(xi,x+ xh, ω) =

Ni∑
ξ=0

βi,ξ
exp
{
− jω

c ||x+ xh − xi,ξ||2
}

4π||x+ xh − xi,ξ||2
. (H.1)

Note that this is simply a sum of weighted Greens functions (see (2.2))

ℏ̂(xi,x+ xh, ω) =

Ni∑
ξ=0

βi,ξ ĝ(xi,ξ,x+ xh, ω), (H.2)

with

ĝ(xi,ξ,x+ xh, ω) =
exp
{
− jω

c ||x+ xh − xi,ξ||2
}

4π||x+ xh − xi,ξ||2
. (H.3)

For notational convenience, I only consider the inner term ĝ(xi,ξ,x + xh, ω). Lastly, the
coordinate transform of the spatial weighting p(x + xh) is assumed to equal p4(r)p5(θ)p6(z) in
cylindrical coordinates and p7(r)p8(θ)p9(ϕ) in spherical coordinates. Likely, p4(r) and p7(r) can
be set to equal p1(r), while p5(θ) and p8(θ) can be set equal to p2(θ) as given in Section 3.3.

H.1 Cylindrical coordinates

The Greens function given by (H.3) can be changed to a cylindrical coordinate system. This
facilitates an easy approach to choosing the spatial weighting functions.

Using (H.3) and expanding the l2-norm yields

ĝ(xi,ξ,x+ xh, ω) =
e−

jω
c

√
(x+xh−xi,ξ)2+(y+yh−yi,ξ)2+(z+zh−zi,ξ)2

4π
√
(x+ xh − xi,ξ)2 + (y + yh − yi,ξ)2 + (z + zh − zi,ξ)2

(H.4)

Now consider the transformation to cylindrical coordinates x = r cos(θ) and y = r sin(θ), with
θ ∈ [0, 2π) and r ∈ [0,∞). Transforming (H.4) yields

ĝ(xi,ξ, r, θ, z, ω) =
e−

jω
c

√
(r cos(θ)+xh−xi,ξ)2+(r sin(θ)+yh−yi,ξ)2+(z+zh−zi,ξ)2

4π
√
(r cos(θ) + zh − xi,ξ)2 + (r sin(θ) + yh − yi,ξ)2 + (z + zh − zi,ξ)2

(H.5)

Note that, when integration is required, the integration measure becomes dxdydz → rdrdθdz
[105].

Note that, the coordinate system was shifted such that the expected location of the head
xh corresponds to x = (0, 0, 0). It follows that the value (r, z) = (0, 0) also corresponds to the
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H.2 Spherical coordinates Chapter H: Three-dimensional approach

expected location of the head. This should be kept in mind when choosing the spatial weighting
functions. Furthermore, note that the sine and cosine are periodic with 2π. Hence, if the spatial
weighting function p5(θ) is chosen to be periodic with period 2π, we are free to integrate θ over
[C, 2π + C) for any C ∈ R.

H.2 Spherical coordinates

Consider the transformation to spherical coordinates x = ρ cos(θ) sin(ϕ), y = ρ sin(θ) sin(ϕ) and
z = ρ cos(ϕ), with ρ ∈ [0,∞), θ ∈ [0, 2π) and ϕ ∈ [0, π/2] [105]. Substituting in (H.4) gives

ĝ(xi,ξ, r, θ, ϕ, ω) =
e−

jω
c

√
α

4π
√
α
, (H.6)

with

α = (ρ cos(θ) sin(ϕ) + xh − xi,ξ)
2 + (ρ sin(θ) sin(ϕ) + yh − yi,ξ)

2 + (ρ cos(ϕ) + zh − zi,ξ)
2 (H.7)

Note that the coordinate system was shifted such that the expected location of the head xh

corresponds to x = (0, 0, 0). It follows that the value r = 0 also corresponds to the expected
location of the head. This should be kept in mind when choosing the spatial weighting functions.
Lastly, when integrating, the integration measure becomes dxdydz → ρ2 sin(ϕ)drdθdϕ.

When calculating the covariance matrices RV , it is required to solve integrals containing
products of Greens functions. I.e., integrals of the form

I =

∫∫∫
ĝ(xi,ξ, ρ, θ, ϕ, ω)ĝ

∗(xj,ξ, ρ, θ, ϕ, ω)p(ρ, θ, ϕ)ρ
2 sinϕdρdθdϕ, (H.8)

or similar. Because of the complex exponent, these integrals are oscillatory for large ω. For “nor-
mal” numerical solvers, this oscillatory behaviour is challenging. In Appendix I, an alternative
numerical approach is outlined which can be used to solve the integrals. This method is, however,
not implemented.
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Appendix I

L-eRPIM

In this chapter, we aim to develop a numerical scheme for solving integrals of the form (H.8).
I first give a brief explanation of the origin and idea behind the used numerical method below.
Then, in Section I.1, the equations needed to solve a three-dimensional integral are derived.

The numerical integration scheme is based on the theory presented in [95] and referred to as
L-eRPIM (Levin - Enriched Point Interpolation Method). It might not come as a surprise that
this approach is (partially) based on Levins collocation method [106]. This method approximates
integrals of the form

I =

b∫
a

f(x)ejωg(x)dx, (I.1)

with real-valued g, both f and g slowly varying, and | d
dxg(x)| ≫ (b − a)−1. The function

f(x) exp{jωg(x)} is referred to as the integrand. Levins method start by noting that, if f(x)
is of the form

f(x) = jg′(x)p(x) + p′(x), (I.2)

the integral equals

I =

∫ b

a

(jg′(x)p(x) + p′(x))ejg(x)dx =

∫ b

a

d

dx
p(x)ejg(x)dx = p(b)ejg(b) − p(a)ejg(a). (I.3)

The trick is now to find a suitable function p(x). It is important to note that p(x) generally is
as oscillatory as the integrand [106]. However, Levin showed that for f and g′ slowly oscillatory,
there exists a particular solution to the differential equation which is slowly oscillatory. For a
short and intuitive overview of what is meant with oscillatory, the reader can refer to [107]. It
should be stated that, for small ω, other numerical schemes might be more suitable.

I.1 Derivation for three-dimensional integral

Since the theory behind the approach is quite involved, I will not go into the details. However,
the approach presented in [95] is only fully explained for a two dimensional integral. Since, in our
application, the integral is three-dimensional, the corresponding equations need to be derived.
This is mostly bookkeeping and not relevant from a theoretical perspective.

We start by defining the three dimensional integral and the corresponding bounds. The
integral which needs to be solved is

I =

b∫
a

e∫
d

t∫
s

f(x, y, z)ejωg(x,y,z)dzdydx (I.4)
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Analogous to Eq. (I.3), we need to find the function p(x, y, z) such that

∂3

∂x∂y∂z
[p(x, y, z)ejωg(x,y,z)] = f(x, y, z)ejωg(x,y,z) (I.5)

Substituting this in Eq. (I.4) yields

I =

b∫
a

e∫
d

t∫
s

∂3

∂x∂y∂z
[p(x, y, z)ejωg(x,y,z)]dzdydx

=

b∫
a

e∫
d

∂2

∂x∂y

(
p(x, y, t)ejωg(x,y,t) − p(x, y, s)ejωg(x,y,s)

)
dydx

=

b∫
a

∂

∂x

(
p(x, e, t)ejωg(x,e,t) − p(x, e, s)ejωg(x,e,s)

)
dx

+

b∫
a

∂

∂x

(
−p(x, d, t)ejωg(x,d,t) + p(x, d, s)ejωg(x,d,s)

)
dx

=p(b, e, t)ejωg(b,e,t) − p(b, e, s)ejωg(b,e,s) − p(b, d, t)ejωg(b,d,t) + p(b, d, s)ejωg(x,d,s)

− p(a, e, t)ejωg(a,e,t) + p(a, e, s)ejωg(a,e,s) + p(a, d, t)ejωg(a,d,t) − p(a, d, s)ejωg(a,d,s)

(I.6)

Hence, if we can find a suitable function p(x, y, z), it is straightforward to evaluate integral
(I.4) by means of Eq. (I.6). Finding this function is the topic of the following section.

I.1.1 Finding a suitable function

Working out the left side of Eq. (I.5) and denoting the derivative with respect to some variable
by a subscript yields

∂3

∂x∂y∂z
(pejωg) =

∂2

∂x∂y
(pze

jωg + jωpgze
jωg)

=
∂

∂x
[(pyz + jωpzgy + jωpygz + jωpgyz − ω2pgzgy)e

jωg]

=(pxyz + jωpyzgx + jωpxzgy + jωpzgxy − ω2pzgxgy + jωpxygz

+ jωpygxz − ω2pygxgz + jωpxgyz + jωpgxyz − ω2pgxgyz − ω2pxgzgy

− ω2pgygxz − ω2pgzgxy − jω3pgzgygx)e
jωg

=[pxyz + jω(pgxyz + pxgyz + pygxz + pzgxy + pxygz + pxzgy + pyzgx)

− ω2(pgxgyz + pgygxz + pgzgxy + pxgygz + pygxgz + pzgxgy)

− jω3pgxgygz]e
jωg.

(I.7)

Comparing Eq. (I.5) and Eq. (I.7) shows that

f = pxyz + jω(pgxyz + pxgyz + pygxz + pzgxy + pxygz + pxzgy + pyzgx)

− ω2(pgxgyz + pgygxz + pgzgxy + pxgygz + pygxgz + pzgxgy)

− jω3pgxgygz.

(I.8)
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We now have all the necessary background needed to start searching for a function p(x, y, z). In
line with the method proposed in [95], we choose p(x, y, z) as the sum of a number of weighted basis
functions. The weightings are found by fitting Eq. (I.8) for a number of different coordinates,
referred to as nodes. As such, we do not obtain an exact solution p(x, y, z), but an estimate
p̂(x, y, z). This estimate can be written as

p̂(x, y, z) =

N∑
i=1

aiRi(x, y, z) +

m∑
η=1

bηPη(x, y, z) +

l∑
ξ=1

cξTξ(x, y, z), (I.9)

where ai, bη and cξ are the weights, Ri(x, y, z) is a so-called Radial Basis Function (RBF), Pη

a monomial basis function and Tξ a trigonometric basis function. Lastly, N is the number of
nodes which are fitted, m is the number of monomial basis functions which are used, and l is the
number of trigonometric basis functions which are used.

There exist a number of different RBFs. Among others, common choices are the Multi
Quadrics (MQ) function and the Gaussian function [108]. The MQ function equals

Ri(x, y, z) =
√
(x− xi)2 + (y − yi)2 + (z − zi)2 + c2, (I.10)

where (x, y, z) is the point of evaluation, (xi, yi, zi) is the point around which the MQ RBF is
centered, and c is the shape parameter. The shape parameter influences the performance and is
typically determined by experimentation.

The monomial basis functions Pη are used to be able to fit a polynomial of certain degree.
For a 1-dimensional case, the basis equals {x0, x1, x2, . . .}. For the 3-dimensional case, a basis is

{1, x, y, z, x2, y2, z2, xy, xz, yz, . . .}, (I.11)

in principle, this can be extended indefinitely. The function Pη corresponds to the ηth function
in the basis.

Similarly, a trigonometric basis is given by

{1, cos(x), sin(y), sin(z), cos(2x), sin(2y), sin(2z), cos(x) sin(y), cos(x) sin(z), sin(z) sin(y), . . .},
(I.12)

in principle, this can be extended indefinitely. The function Tξ corresponds to the ξth function
in the basis.

I.1.2 Constructing the weights

We need to find the weights ai, bη and cξ. This is done by substituting p̂(x, y, z) in Eq. (I.8).
By subsequently choosing N reference nodes inside the integration domain, a matrix equation
is constructed which can be solved for the weights. This does, however, result in a system with
N +m+ l variables and N equations. We will add the additional m+ l equations later.
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Substituting Eq. (I.9) into Eq. (I.8) and making use of linearity yields

f̂ =

N∑
i=1

ai∂xyzRi +

m∑
η=1

bη∂xyzPη +

l∑
ξ=1

cξ∂xyzTξ

+ jω

gxyz
 N∑

i=1

aiRi +

m∑
η=1

bηPη +

l∑
ξ=1

cξTξ


+ jω

gyz
 N∑

i=1

ai∂xRi +

m∑
η=1

bη∂xPη +

l∑
ξ=1

cξ∂xTξ


+ jω

gxz
 N∑

i=1

ai∂yRi +

m∑
η=1

bη∂yPη +

l∑
ξ=1

cξ∂yTξ


+ jω

gxy
 N∑

i=1

ai∂zRi +

m∑
η=1

bη∂zPη +

l∑
ξ=1

cξ∂zTξ


+ jω

gz
 N∑

i=1

ai∂xyRi +

m∑
η=1

bη∂xyPη +

l∑
ξ=1

cξ∂xyTξ


+ jω

gy
 N∑

i=1

ai∂xzRi +

m∑
η=1

bη∂xzPη +

l∑
ξ=1

cξ∂xzTξ


+ jω

gx
 N∑

i=1

ai∂yzRi +

m∑
η=1

bη∂yzPη +

l∑
ξ=1

cξ∂yzTξ


− ω2

gxgyz
 N∑

i=1

aiRi +

m∑
η=1

bηPη +

l∑
ξ=1

cξTξ


− ω2

gygxz
 N∑

i=1

aiRi +

m∑
η=1

bηPη +

l∑
ξ=1

cξTξ


− ω2

gzgxy
 N∑

i=1

aiRi +

m∑
η=1

bηPη +

l∑
ξ=1

cξTξ


− ω2

gygz
 N∑

i=1

ai∂xRi +

m∑
η=1

bη∂xPη +

l∑
ξ=1

cξ∂xTξ


− ω2

gxgz
 N∑

i=1

ai∂yRi +

m∑
η=1

bη∂yPη +

l∑
ξ=1

cξ∂yTξ


− ω2

gxgy
 N∑

i=1

ai∂zRi +

m∑
η=1

bη∂zPη +

l∑
ξ=1

cξ∂zTξ


− jω3

gxgygz
 N∑

i=1

aiRi +

m∑
η=1

bηPη +

l∑
ξ=1

cξTξ

 ,

(I.13)
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where ∂x denotes the partial derivative with respect to x, similarly for the other cases.
The next step is to rewrite Eq. (I.13) such that it is ordered per type of basis function. This

yields

f̂ =

N∑
i=1

ai (∂xyzRi + jω (gxyzRi + gyz∂xRi + gxz∂yRi + gxy∂zRi + gz∂xyRi + gy∂xzRi + gx∂yzRi))

+

N∑
i=1

ai
(
−ω2 (gxgyzRi + gygxzRi + gzgxyRi + gygz∂xRi + gxgz∂yRi + gxgy∂zRi)− jω3gxgygzRi

)
+

m∑
η=1

bη (∂xyzPη + jω (gxyzPη + gyz∂xPη + gxz∂yPη + gxy∂zPη + gz∂xyPη + gy∂xzPη + gx∂yzPη))

+

m∑
η=1

bη
(
−ω2 (gxgyzPη + gygxzPη + gzgxyPη + gygz∂xPη + gxgz∂yPη + gxgy∂zPη)− jω3gxgygzPη

)
+

l∑
ξ=1

cξ (∂xyzTξ + jω (gxyzTξ + gyz∂xTξ + gxz∂yTξ + gxy∂zTξ + gz∂xyTξ + gy∂xzTξ + gx∂yzTξ))

+

l∑
ξ=1

cξ
(
−ω2 (gxgyzTξ + gygxzTξ + gzgxyTξ + gygz∂xTξ + gxgz∂yTξ + gxgy∂zTξ)− jω3gxgygzTξ

)
(I.14)

We now define the functions γ(x, y, z), κ(x, y, z) and ψ(x, y, z) such that

f̂ =

N∑
i=1

aiγi +

m∑
η=1

bηκη +

l∑
ξ=1

cξψξ. (I.15)

By comparing Eq. (I.14) and Eq. (I.15), we find

γi =jω (gxyzRi + gyz∂xRi + gxz∂yRi + gxy∂zRi + gz∂xyRi + gy∂xzRi + gx∂yzRi)

− ω2 (gxgyzRi + gygxzRi + gzgxyRi + gygz∂xRi + gxgz∂yRi + gxgy∂zRi)

+ ∂xyzRi − jω3gxgygzRi

(I.16a)

κη =jω (gxyzPη + gyz∂xPη + gxz∂yPη + gxy∂zPη + gz∂xyPη + gy∂xzPη + gx∂yzPη)

− ω2 (gxgyzPη + gygxzPη + gzgxyPη + gygz∂xPη + gxgz∂yPη + gxgy∂zPη)

+ ∂xyzPη − jω3gxgygzPη

(I.16b)

ψξ =jω (gxyzTξ + gyz∂xTξ + gxz∂yTξ + gxy∂zTξ + gz∂xyTξ + gy∂xzTξ + gx∂yzTξ)

− ω2 (gxgyzTξ + gygxzTξ + gzgxyTξ + gygz∂xTξ + gxgz∂yTξ + gxgy∂zTξ)

+ ∂xyzTξ − jω3gxgygzTξ

(I.16c)

The previous set of equations allows for constructing the matrix equation which is used to
obtain the weights. As stated before, we start by choosing a set of N reference nodes to which
Eq. (I.8) is fitted. These coordinates are denoted as x1 = (x1, y1, z1), . . . ,xN = (xN , yN , zN ).
Furthermore, define the matrices Γ ∈ CN×N , K ∈ CN×m and Ψ ∈ CN×l. The elements Γki, Kkη

and Ψkξ denote γi(xk), κη(xk) and ψξ(xk) respectively (for k ∈ {1, 2, . . . , N}).
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I.2 Discussion Chapter I: L-eRPIM

By enforcing f̂(xk) = f(xk) for k ∈ {1, . . . , N} and by making use of Eq. (I.15) we can write


f(x1)

...
f(xN)

0(m+l)×1)

 =

 Γ K Ψ
KT 0m×m 0m×l

ΨT 0l×m 0l×l





a1
...
aN
b1
...
bm
c1
...
cl


, (I.17)

where 0a×b is the a×b all-zero matrix of indicated size. The additional zeros are added to enforce
a unique solution.

Eq. (I.17) can be solved for the weights, though it can be ill-conditioned. In that case, a
regularised solution should be taken [95].

I.2 Discussion

I want to finalise this discussion by mentioning two papers which might provide more accurate
an/or efficient means to solve the integrals, though it should be noted that they do not solve the
exact same integral. One of these papers, namely [109], explicitly considers solving the azimuthal
Fourier component by evaluating the Fourier integral over the Greens functions in cylindrical
coordinates and can be considered state-of-the-art [110]. The second paper, [110], considers an
adaptive Levin method. It is shown that the accuracy of the obtained results is comparable to
those of [109], albeit taking more time [110]. The larger flexibility of the second paper might,
however, make this a more promising candidate for the considered use-case.
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Appendix J

Stochastic Model of the Room
Impulse Response in Small Rooms

On the following few pages, a draft of the paper “Stochastic model of the room impulse response
in small rooms” is given. Such a model could, among others, be useful to avoid computing the
RIR through the image-source method and to avoid computing the PSD matrices RA and RB
through the procedure described in Chapter 3.
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Stochastic model of the room impulse response in
small rooms

Dimme de Groot, Richard Eveleens, Arash Noroozi, and Jorge Martinez

Abstract—The room and its contents have a great impact on the
behaviour of the sound field in a room. The reverberation time in
a small and densely furnitured room can be roughly 200 ms, while
the reverberation time in concert halls can be multiple seconds.
Modelling the sound behaviour of a room is generally done
using the Room Impulse Response (RIR). The RIR has many
appliances in the field of audio processing. Think of, for example,
concert hall design, commercial entertainment and localization.
The estimation and modelling of the RIR is generally performed
in a deterministic manner with techniques ranging from the
idealistic image source method to highly complex room models.
In this paper, a zeroth order stochastic characterisation of the
RIR is proposed for rooms that can be considered average living
rooms. By means of randomly generated rooms, a large set of
simulations is performed. From this, time dependent distributions
are derived. Additionally, it is shown that the directivity and
transfer function of a loudspeaker has a great impact on the
RIR and can thus not be ignored when modeling the RIR in a
practical scenario.

Index Terms—Room Impulse Response (RIR), Speaker direc-
tivity, Probability Density Function (PDF)

I. INTRODUCTION

THE behaviour of a sound field in a room greatly depends
on the shape and contents of the room. One way to char-

acterize this influence of the room is the acoustic channel from
a source to a receiver inside a room. This response is known
as the Room Impulse Response (RIR), and it is of interest in
many algorithms [1], [2], [3]. Examples include spatial sound
[4], [5], [6], acoustic echo cancellation [3], [7], [8], [9], blind
source separation [3], [9], speech dereverberation [3], [10],
[11], [12] and beamforming [13].

Modelling the RIR has proven to be a computationally
expensive task. Approaches include numerically solving the
wave- or Helmholtz-equation with proper boundary conditions
[14], [15] and geometrical acoustics [1], [16]. The former
provides accurate RIRs, but is computationally too expensive
to be used in real-time algorithms [2], [16]. Geometrical
acoustic based approaches can be used in some real-time
algorithms, but lack accuracy most pronounced in the low-
frequency range [2], [16]. Additionally, properly modelling a
(furnitured) room is difficult. Namely, the behaviour of each
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reflections depends on the type of material, angle of incidence,
and signal frequency [1]. On top of these problems, additional
challenges are introduced by the loudspeaker and receiver
directivity pattern that need to be taken into account [17],
[18].

Due to the above mentioned challenges, algorithms may
profit from a stochastic characterisation of the RIR. The RIR
can be decomposed in three parts, the direct path, the early
reflections and the (late) reverberation [1], [2]. The stochastic
characterisation of the reverberation is well known and may be
modelled using plane-waves which arrive from all directions
[13], [19]. The resulting distribution can be approximated
using a Gaussian or logistic probability density function (pdf)
[20]. Literature on the stochastic characterisation of the early
reflections is limited.

In this paper, we aim to stochastically characterise the
impulse response for an isotropic receiver located in a small
room. The stochastic characterisation is limited to a zeroth
order Markov process. The RIRs are simulated using the
mirror-image source method [21], [22] and a number of
different sources of variation are considered.

In the following, we first describe the simulation setup in
Section II. This gives rise to three different scenarios with
increasing source of variation. The results of these simulations
are presented in Section III-A and further analysed in Section
III-B. We finalize with the conclusion in Section IV.

II. SIMULATION SETUP

The simulation setup described in the following is designed
to limit any biases in the obtained data. This is done by
identifying parameters of interest and randomising these over
some range of interest. We consider box-shaped rooms with
length Lx, width Ly and height Lz . The room has origin
(0, 0, 0) and its corners are given by non-negative coordinates.
The six walls have reflection coefficients specified by βi ∈ R,
i ∈ {1, . . . , 6}. For each of the three simulations described
below, an isotropic receiver located at (xl, yl, zl) = (2, 1, 1)
m is considered.

A. Simulation 1

In the first simulation, only the reflection coefficients
are randomised. The room dimensions are (Lx, Ly, Lz) =
(5, 5, 2.5) (m) and the loudspeakerhas a fixed coordinates
which is specified by a spherical coordinate system centered
around xl. Using the coordinate convention of [23], the
loudspeaker location is given by (θ, ϕ, r) = (0◦, 60◦, 1 m).
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In Cartesian coordinates, this corresponds to (x, y, z) ≈
(2.87, 1.00, 1.50) m.

Three reflection coefficients are drawn independently from
a uniform distribution U(·) according to

βc ∼ U [0.5, 0.7],

βw1 , βw2 ∼ U [0.05, 0.5].
(1)

The remaining three reflection coefficients are obtained by
changing the sign of the three drawn reflection coefficients.
The reflection coefficients are subsequently assigned randomly
to the walls while ensuring that the ceiling has either βc or
−βc.

B. Simulation 2

Simulation 2 adds a few randomizing factors to Simulation
1 by additionally varying the loudspeaker location, the size
of the room and the origin of the room. Namely, a random
loudspeaker coordinate is drawn adhering to

θ ∈ [0, 2) (°),
ϕ ∈ [60, 65) (°),
r ∈ [1, 1.4) (m).

(2)

The coordinate is drawn so that the distribution is uniform over
the corresponding volume in a Cartesian coordinate system.
The size of the region is based on findings in psychoacoustic
literature. Namely, Humans have approximately 2° accuracy
in localising azimuthal direction and 5° accuracy in localising
elevation. The accuracy in distance r depends on the scenario
and prior knowledge. It should be noted that the exact locali-
sation accuracy varies and depends on, among others, the type
of signal [24], [25].

The room-dimensions are varied as well and drawn accord-
ing to

Lx ∼ U [5.0, 7.0] (m),

Ly ∼ U [5.0, 7.0] (m),

Lz ∼ U [2.5, 3.0] (m).

(3)

To randomize the room placement, the origin of the room is
shifted from (0, 0, 0) to (x0, y0, 0). The value (x0, y0) is drawn
from

(x0, y0) ∼ (U [−Lx + 5, 0], U [−Ly + 5, 0]) (m). (4)

The origin in the z-direction is not varied since the receiver
is assumed to remain at equal height.

C. Simulation 3

Simulation 3 is equal to Simulation 2, but with the addition
of a directive loudspeaker. The normal (point of maximum
gain) of the loudspeaker is set such that it points towards the
receiver location. Note that this implies that it varies per per
drawn loudspeaker location. The loudspeaker considered in
our simulation is the KEF LS50. The directivity patterns are
obtained through the implementation provided by [26], where
a spherical harmonics representation is fitted on sparse mea-
surement data provided by [27] to form a complete directivity
pattern.
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Fig. 1. The energy curve e on which the range of the histograms is based.
An example RIR is added for reference

D. Implementation Details

The simulations were performed on MATLAB R2021b with
default settings. For each of the simulations, a total of 60000
runs are considered. Since the simulations were collected
over multiple runs, the random number generator was set to
“shuffle”. The RIRs were simulated through a modified version
of [22]. The modified code returns individual reflections and
the incidence and outgoing angles which are combined to form
a RIR. No high pass filter is applied. As further explained in
[22], the sampling occurs through a Hanning-windowed ideal
low-pass filter with a length of 8 ms and a cutoff-frequency
fs/2 with fs = 16 kHz the sampling frequency. The speed
of sound was set to c = 342 m/s. The loudspeaker directivity
patterns is based on linear interpolation with 5° resolution was
created based on the directivity pattern. Downsampling was
done using the resample function. The length of the considered
impulse responses is 170 ms, which captures the majority of
the possible rooms their reverberation time. The calculated
RIR is normalized by shifting and scaling the response such
that the reflection corresponding to the direct-path starts at the
same time-sample and has its magnitude multiplied by 4πrl,s,
with rl,s the distance between the loudspeaker and receiver.

For each simulation and speaker-receiver pair, each time-
sample n of the computed RIRs corresponds to one histogram.
The histogram limits are given by a time-sample dependent
range which is derived based on the RIR energy curves e
presented in [28]. The resulting curve is shown in Fig. 1. The
centers of the 301 histogram bins are linearly spaced between
[−e(n), e(n)], so that bin 151 serves as the zero amplitude
bin.

III. SIMULATION RESULTS

The results of the three simulations are shown in Fig. 2 and
Fig. 3. In both figures, each column is a different simulation.

In Fig. 2 the simulation results are presented by time-
dependent histograms, where the x-axis denotes time and the
y-axis denotes bin number. Note that, for each time-sample,
the amplitude corresponding to a given histogram bin may
vary. This happens in accordance with Fig. 1.
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Fig. 2. The histograms resulting from the simulation. The colorbar shows a logarithmically scaled normalized occurrence of a certain histogram bin. Note
that the y-axis represents the histogram bin number, this bin number should be translated to a time dependent amplitude by means of the energy curve found
in Fig. 1. This is done for a some selected time samples in Fig. 3.
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Fig. 3. The amplitude - normalized occurrence plots of a few time samples from Fig. 2 (indicated by the red-dotted line). The amplitude distribution of each
time sample of the RIR for each simulation is estimated using these amplitude occurrences. Note that, per column, the amplitude axis remains equal. This is
not true for the normalised occurrence, which differs per figure.

In Fig. 3 we zoom in on a few selected histograms (de-
noted by the red dotted lines in Fig. 2). In here, the x-axis
corresponds to the amplitude of the RIR and the y-axis to the
normalised number of occurrence.

A. Interpreting simulation results

As is expected, the results of Simulation 1 show clear peaks.
The reason for this is that the only source of variation are
the reflection coefficients. Thus, the time-of-arrival of each
reflections remains equal, but the intensity differs. This is
illustrated well by first figure in the second row of Fig. 3.
Here, an early reflection is the sole reflection arriving at the
receiver. Hence, it is not possible for the amplitude to be zero.
The two step shape of this plot also shows the two reflection
coefficients sizes, where a lower coefficient (βω) occurs more
often than a higher coefficient (βc), and that their signs flip.
During the late reverberation, t = 0.07 s and t = 0.12 s, the
distribution becomes more random as is predicted in (bron).
(TOO: Ik zie dit niet echt tbh D̃imme.)

Both the histogram and the highlighted distributions of
Simulation 2 show an increase in randomness. Apart from
the direct path, the histograms show that mast samples fall
into center bin. This is especially visible when comparing the
results for t = 0.02 s, where the clear pattern that is observed
in Simulation 1 is not visible anymore. This can be attributed

to the time-of-arrival of the reflection becoming room depen-
dent, thereby “smearing” the energy over multiple subsequent
histograms. It is hypothesised that the histograms obtained
from Simulation 2 serve as the fundamental distributions for
the RIR of rooms fitting the room type considered.

Simulation 3 serves as a small but interesting sidestep to
Simulation 2. In Simulation 3, the directivity and the directive
transfer functions from a loudspeaker, the KEF LS50, are
added to the equation. The histogram in Fig. 2 of Simulation
3 shows the great impact of the characteristics of a speaker on
the RIR. Although concise conclusions can not be drawn on
the exact influence of speakers on the RIR, it is clear that the
speakers directivity and transfer function can not be ignored
when modelling the RIR in a practical scenario.

B. Estimating RIR distributions

The time dependent histograms, as depicted in Fig. 3, can
be used to derive Probability Density Functions (PDFs) for
each time sample. The PDFs are be derived for the data from
Simulation 2. Three possible distributions are selected to be fit
on the data: the Laplace distribution, the normal distribution
and the logistic distribution. The three distributions are fitted
on the histograms and the best fitting distribution is selected
by comparing the L2-norms of the difference between PDF
and the data. Doing this for all the obtained data shows that
the direct path response (response up until t ≈ 0.01 s) is best
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Fig. 5. A zoomed in example of a generated RIR with the proposed stochastic
model and a single deterministic RIR from the same region. The major
difference between the proposed solution and the deterministic model is that
the deterministic model results in a few distinct peaks in the response while the
proposed stochastic model has a more smoothed out response which should
represent the generalized RIR for different but similar speaker-receiver pairs.

described by a normal distribution and the remainder is best
described by a Laplace distribution.

An example of the mean and standard deviation of a
speaker-receiver pair is given in Fig. 4. The figure shows that,
apart from the direct path, the mean of the distributions is
(approximately) zero. This is expected and validates that the
definition of the reflection coefficients results in a zero mean
RIR on average. The standard deviation shows a pattern in the
early reflections (response up until t ≈ 0.025 s) after which a
logarithmic decay is observed.

An example of RIR generated based on the proposed model
is shown in Fig. 5. The figure shows that the major difference
between the proposed model and the deterministic model
is that the deterministic response consists of a few distinct
peaks while the proposed model shows a more smoothed
out response. The behaviour of the standard deviation before
t ≈ 0.025 s as presented in Fig. 4 can be found in Fig. 5.

IV. CONCLUSION

In this paper, a stochastic Room Impulse Response (RIR) is
introduced that is applicable for any furnitured and decorated
room that can be characterised as standard shoebox living
room. Classic approaches to derive a RIR are based on
deterministic simulations or models that require precise prior
knowledge on the room properties. In practical room scenarios,
this prior knowledge is generally not available and expensive
to obtain. A more general and widely applicable model of
the RIR is desirable in this case. Deriving the stochastic RIR
is performed by simulating a large amount of deterministic
RIR’s and fitting a probability density function on the set
of simulated RIR’s. The simulated RIR’s show a direct path
response best described by a normal distribution and the
response caused by the reflections are best described by a
Laplace distribution. Additionaly, it is shown that the influence
of the directivity and response of the speaker on the RIR can
not be ignored due to its significant impact.
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Appendix K

Including the Tail of the Room
Impulse Response

This appendix described a possible solution to the problem mentioned in Section 4.1.3. This
problem was that, due to the large number of filter segments ι, it is infeasible to optimise over all
filter blocks simultaneously. Instead, it was chosen to optimise only for ι = 0. The contribution
of the remaining blocks is then treated as an error to be corrected, or they are simply ignored.
In this appendix, a possible approach to correct for them is discussed. Thus, we aim to find an
expression for the to-be corrected errors ϵl(xi), i ∈ {0, . . . , Ns}.

Consider the situation in which we want to find the playback signals corresponding to segment
l = l′. Recall, from sections 2.4.1 and G.3, that the convolution between the signal s(xi) and the
filter h(xi) can be written as

(s(xi) ∗ h(xi))(n) =

l′∑
l=−∞

M/L−1∑
ι=0

(shift−lR1−ιR2{sl(xi) ∗ hι(xi)})(n) + ϵl>l′(xi)(n), (K.1)

where ϵl>l′ is an error term depending only on the RIR and the “future” signal segments l > l′.
It should be noted that this equation assumes segmentation windows adhering to the constant

overlap-add condition. In particular, in this appendix, I consider segmenting the signal with a
Hanning window w1 of even length L and repetition rate R1 = L/2. The filter is segmented using
a rectangular window w2 of length L and repetition rate R2 = L.

Since the playback segments are only calculated with respect to the tail of the previous
playback segments and the filter block ι = 0, we may define a signal ȳ consisting of only those
terms. This gives

ȳl′(xi, n) =

l′−1∑
l=−∞

M/L−1∑
ι=0

(shift−lR1−ιR2
{sl(xi) ∗ hι(xi)})(n) + (shift−l′R1

{sl′(xi) ∗ h0(xi)})(n),

(K.2)
Now notice that, in accordance with the problem statement, we can only influence the time-
samples for which the rightmost term is nonzero. Concretely, these samples are given by

supp(shift−l′R1{sl′(xi) ∗ h0(xi)}) ⊆ {l′R1, . . . , l
′R1 + 2L− 2}. (K.3)

In order to include only these samples in the current optimisation step, one could chose to
window ȳl′ using some window of proper length and repetition rate. However, this implies a
window on the output of the convolution which, as we have seen in (4.5), does not translate well
to a window on the reference signal. Instead, an easier approach can be found by considering that
the length of the windows w1 and w2 are equal and that the repetition rates are R1 and R2 = 2R1.
This allows to only consider the contribution of half of the previous reference playbacks segments
per optimisation step. Namely, if l′ is even, all even valued segments with l ≤ l′ are considered,
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and similarly for odd l′. The reason why this works is probably best illustrated by an example,
this is done below.

Consider a length L = 10, such that R1 = 5 and R2 = 10. Furthermore, let M = 30, such
that M/L = 3. Lastly, consider to be at a segment l = 8. Using (K.1), the support of playback
segment l filtered using filterblock ι is given by

supp(shift−lR1−ιR2{sl(xi) ∗ hι(xi)}) ⊆ {lR1 + ιR2, . . . , lR1 + ιR2 + 2L− 2}. (K.4)

For the example, the right hand side evaluates to

{lR1 + ιR2, . . . , lR1 + ιR2 + 2L− 2} = {5l + 10ι, . . . , 5l + 10ι+ 18}. (K.5)

Evaluating (K.5) for some values of l and ι yields Table K.1.

Table K.1: The result of evaluating (K.5) for l ∈ {1, 2, 3, 4, 5, 6, 7, 8} and ι ∈ {0, 1, 2}. The bold
font indicates an example of pairs (l, ι) where the support is the same.

l, ι 0 1 2
1 {5, ..., 23} {15, ..., 33} {25, ..., 43}
2 {10, ..., 28} {20, ..., 38} {30, ..., 48}
3 {15, ..., 33} {25, ..., 43} {35, ..., 53}
4 {20, ..., 38} {30, ..., 48} {40, ...,58}
5 {25, ..., 43} {35, ..., 53} {45, ..., 63}
6 {30, ..., 48} {40, ...,58} {50, ..., 68}
7 {35, ..., 53} {45, ..., 63} {55, ..., 73}
8 {40, ...,58} {50, ..., 68} {60, ..., 78}

As can be seen in the table, the support of the pair (l, ι) = (8, 0) is equal to that of (6, 1) and
that of (4, 2). More generally, the support of the pair (l, ι) = (l′, 0) equals that of (l′ − 2, 1), that
of (l′ − 4, 2) etc. up to and including

(
l′ − 2M

L + 2, ML − 1
)
.

This pattern allows to construct a properly windowed target signal ỹl′(xi, n). It is given by

ỹl′(xi, n) =

M/L−1∑
ι=0

(shift−(l′−2ι)R1−ιR2
{s(l′−2ι)(xi) ∗ hι(xi)})(n). (K.6)

Recall that the windows were chosen such that R1 = L1/2, R2 = L and R2 = 2R1. Thus, as
would be expected from Table K.1,

−(l′ − 2ι)R1 − ιR2 = −(l′ − 2ι)R1 − 2ιR1 = −l′R1. (K.7)

It follows that (K.6) reduces to

ỹl′(xi, n) =

M/L−1∑
ι=0

(shift−l′R1
{s(l′−2ι)(xi) ∗ hι(xi)})(n). (K.8)

In a few paragraphs, it will be convenient to have access to a version of this signal with support
{0, . . . , 2L− 2}. This is version is straightforwardly obtained by defining

yl′(xi, n) = ỹl′(xi, n+ l′R1) =

M/L−1∑
ι=0

(s(l′−2ι)(xi) ∗ hι(xi))(n). (K.9)
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Lastly, note that the approach to computing the target signal outlined above is only valid if

∞∑
l=−∞

ȳl(xi, n) = (s(xi) ∗ h(xi))(n). (K.10)

To prove this, one should consider summing (K.6) over all l′ and see if it can be rewritten to
equal (K.1). Doing so results in

∞∑
l′=−∞

M/L−1∑
ι=0

(shift−(l′−2ι)R1−ιR2
{s(l′−2ι)(xi) ∗ hι(xi)})(n) =

M/L−1∑
ι=0

∞∑
l′=−∞

(shift−(l′−2ι)R1−ιR2
{s(l′−2ι)(xi) ∗ hι(xi)})(n) =

M/L−1∑
ι=0

∞∑
l=−∞

(shift−lR1−ιR2
{sl(xi) ∗ hι(xi)})(n) =

∞∑
l=−∞

M/L−1∑
ι=0

(shift−lR1−ιR2
{sl(xi) ∗ hι(xi)})(n) = (s(xi) ∗ h(xi))(n).

(K.11)

Where the substitution l = l′ − 2ι was used. Thus, indeed, one can use yl′(xi, n) as the target
signal for segment l′.

The signal yl′(xi, n) can be split in the error term ϵl′(xi)(n) and the reference signal. Doing
so gives

yl′(xi, n) = (sl′(xi) ∗ h0(xi))(n) +

M/L−1∑
ι=1

(s(l′−2ι)(xi) ∗ hι(xi))(n)

= (sl′(xi) ∗ h0(xi))(n) + ϵl′(xi, n).

(K.12)

so that

ϵl′(xi, n) =

M/L−1∑
ι=1

(s(l′−2ι)(xi) ∗ hι(xi))(n). (K.13)
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Appendix L

Additional figures concerning the
results

In this appendix, some additional figures concerning the results are given.
The weighting functions in r and θ are given in Figure L.1. The image sources considered in

the calculation of RA and RB are shown in Figure L.2.

0 0.05 0.1 0.15

radius [m]

10

20

30

40

50

60

70

w
e
ig

h
t

(a) p(r)

1 2 3 4 5 6

angle [rad]

0.5

1

1.5
w

e
ig

h
t

A

B

(b) p(θ)

Figure L.1: The spatial weighting functions used in r (normal distribution) and θ (von Mises
distribution). The mean µr = 0.11 and the standard deviation, σr = 0.03/6. In regions A and B,

the Von Mises distribution are respectively parameterised by (µA, κA) ≈ (3.49, 15π/2) and
(µB, κB) ≈ (3.49 + π, 5π/4).
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Figure L.2: The image sources considered in the calculation of RA and RB. The physical room
is highlighted.
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L.1 Additional results speech signal

The normalised energy received at the left ear and at the right ear are given in Figure L.3 and
Figure L.4, respectively.

0 100 200 300

Angle [degree]

0

0.5

1

1.5

2

2.5

E
L

Algorithm1

Algorithm2

Algorithm3

Algorithm4

Algorithm5

Algorithm6

NN

Sadek2004

Ideal

Figure L.3: The energy EL received at the left ear. The considered signal is the female-voiced
speech signal.
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Figure L.4: The energy ER received at the right ear. The considered signal is the female-voiced
speech signal.
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L.2 Additional results gong signal

For the gong signal, the argument at which the cross-correlation attains its maximum value
(within -1 to 1 ms) is given in Figure L.5. The difference in received energy at the left and right
ear is given in Figure L.6.
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Figure L.5: The argument tmax (in ms) for which the cross-correlation between the audio
received at the left and at the right ear attains its maximum value. The considered signal is the

gong signal. The staircase shape is due to the limited sample rate.
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Figure L.6: The difference in energy received at the left and right ear EL − ER. The considered
signal is the gong signal.

The normalised energy received at the left ear and at the right ear are given in Figure L.7
and Figure L.8, respectively.
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Figure L.7: The energy EL received at the left ear. The considered signal is the gong signal.
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Figure L.8: The energy ER received at the right ear. The considered signal is the gong signal.
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