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To investigate the influence of the orifice geometry on near-field coherent structures in a
jet, Fourier proper orthogonal decomposition (Fourier-POD) is applied. Velocity and vor-
ticity snapshots obtained from tomographic particle image velocimetry at the downstream
distance of two equivalent orifice diameters are analyzed. Jets issuing from a circular orifice
and from a fractal orifice are examined, where the fractal geometry is obtained from a
repeating fractal pattern applied to a base square shape. While in the round jet energy is
mostly contained at wave number m = 0, associated to the characteristic Kelvin-Helmholtz
vortex rings, in the fractal jet modal structures at the fundamental azimuthal wave number
m = 4 capture the largest amount of energy. In addition, energy is scattered across a wider
range of wave numbers than in the round jet. The radial Fourier-POD profiles, however,
are nearly insensitive to the orifice geometry, and collapse to a universal distribution when
scaled with a characteristic radial length. A similar collapse was recently observed in POD
analysis of turbulent structures in pipe flow. However, unlike in pipe flow, the azimuthal-to-
radial aspect ratio of the Fourier-POD structures is not constant and varies greatly with the
wave number. The second part of the paper focuses on the relationship between streamwise
vorticity and streamwise velocity, to characterize the role of the orifice geometry on the
lift-up mechanism recently found to be active in turbulent jets [P. Nogueira, A. Cavalieri, P.
Jordan, and V. Jaunet, Large-scale streaky structures in turbulent jets, J. Fluid Mech. 873,
211 (2019)]. The averaging of the streamwise vorticity conditioned on intense positive
fluctuations of streamwise velocity reveals a pair of vorticity structures of opposite sign
flanking the conditioning point, inducing a radial flow towards the jet periphery. This pair
of structures is observed in both jets, even if the azimuthal extent of this pattern is 30%
larger in the jet issuing from the circular orifice. The coupling between streamwise vorticity
and velocity motions is also examined using Fourier-POD. The analysis reveals that in the
jet with a circular orifice lower wave-number modes, corresponding to structures at larger
scales, capture a larger fraction of the vorticity-velocity coupling. This evidences that the
orifice geometry directly influences the interaction between velocity and vorticity.
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I. INTRODUCTION

Coherent structures can be defined as organized fluid elements that capture the overall flow
dynamics and are responsible for the transfer of mass, momentum, and energy [1]. The energetic
coherent structures in the near field of a jet directly affect the production of acoustic noise, the
entrainment of quiescent fluid, and the laminar-turbulent transition. For the implications that these
aspects have on a range of engineering problems, coherent structures in the near field of jets have
been the subject of several investigations over the last decades.

In their pioneering work, Glauser and George [2] applied proper orthogonal decomposition
(POD) [3] to the jet mixing layer at three nozzle diameters downstream of the jet exit. They showed
that the first POD mode contains 40% of the total turbulent kinetic energy, with an additional 40%
from a combination of the next two modes. Later, Citriniti and George [4] expanded from these
observations by applying POD to the instantaneous fields of streamwise velocities obtained from
an array of 138 hot-wire anemometer probes, at the same downstream location. They observed
the existence of azimuthally coherent “volcano-like” bursting events, which were short lived even if
containing most of the energy, separated by a “braid” region of streamwise counter-rotating vortices.
This scenario is consistent with the flow visualizations of Liepmann and Gharib [5] (see Figs. 7–11
of their work).

The experimental study of Jung et al. [6] examined the effects of both downstream position
and Reynolds number on the energetic coherent structures of a jet. The total energy content of
the modes at azimuthal wave number m = 0 decreases with the distance from the nozzle, while
the energy distribution for the first POD mode does not depend on the Reynolds number. The
“volcano-like” eruptions are dominant from x/D = 2 to 4, but beyond four diameters they die off.
Gamard et al. [7] showed that in the far-field region of the jet the streamwise velocity fluctuations
stabilize asymptotically to the azimuthal wave number m = 2. Later, Iqbal and Thomas [8] studied
the near-field coherent structures of a jet using the three velocity components from hot-wire signals.
From the projection of the first POD mode onto the two-component instantaneous realizations,
the local dynamic behavior of the coherent structures was determined, revealing a helical vortical
structure in the range between four and six diameters. In the studies examined thus far, the jets under
analysis can be assumed incompressible. Experimental works with laser Doppler anemometry and
particle image velocimetry (PIV) showed that compressibility effects do not modify the near-field
large-scale coherent structures [9,10]. More recently, the existence of elongated streaky structures
was found using a combination of spectral POD, resolvent analysis, and transient growth analysis
(Nogueira et al. [11]). These streaks are analogous to those observed by Hellström et al. [12] in
turbulent pipe flows and by Hutchins and Marusic [13] in a boundary layer. Nogueira et al. [11] also
found that these streaks are characterized by a ratio between the streamwise and azimuthal length
scales remaining constant as the azimuthal wave number is varied.

Although the coherent structures and their energy content are relatively well-known aspects for a
jet with a circular nozzle, different nozzle geometries have scarcely been investigated, and mainly in
relation to mixing and entrainment. Chrighton [14] was among the first to examine how the nozzle
geometry affects the instabilities in the near field of a jet, using linear stability analysis. Later, Ho
and Gutmark [15] conducted experiments on a jet from an elliptic nozzle at a low aspect ratio. The
mass entrainment rate was observed to increase as compared with a round jet, while the mean flow
properties in the near field, such as spread and momentum thickness, were found to be different
in the planes of the major and minor axis. Later, Husain and Hussain [16] examined an elliptic
jet, both numerically and experimentally. The formation of azimuthally fixed streamwise vortices
was observed, which enhance entrainment and mixing when compared with the round jet. The use of
tabs in the jet nozzle as a passive means of flow control received also large attention, both in relation
to mixing [17] and entrainment [18]. Tabs lead to an increase of the mixing over a wide range of
scales, and to a general enhancement of the entrainment rate. Gutmark and Grinstein [19] provide
a detailed survey on how deviations from circularity affect the near-field coherent structures, which
then result in a change of the mean flow properties.
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One of the first attempts aimed at deriving a low-dimensional representation of a jet from a
noncircular nozzle is the work by Moreno et al. [20], who applied POD to planar velocity fields of
a supersonic rectangular jet, from PIV measurements. Most of the fluctuation energy is contained
within the first two modes. Low-order modeling confidently predicted the global flow characteris-
tics, although the effects of the rectangular nozzle were not discussed in relation with the circular
nozzle. To identify the individual contributions of the different vortical structures to entrainment,
El Hassan and Meslem [21] performed a POD analysis of jets from a circular orifice and from a
daisy-shaped orifice, and El Hassan et al. [22] investigated the near field of a cross-shaped orifice
jet using a similar approach. These investigations were conducted with time-resolved stereoscopic
PIV and evidenced that the Kelvin-Helmholtz dynamics play a central role in the entrainment of the
circular jet. The braid region produces the largest level of entrainment, while the front part of the
Kelvin-Helmholtz ring tends to expand the flow and dramatically reduce the entrainment, even in
presence of strong streamwise vortex pairs generated by the lobes of the daisy-shaped orifice.

Lobed nozzles were found to increase turbulent mixing over a wide range of length scales
[23–25]. The involvement of multiple scales in the mixing process is a consequence of the break-
down of the large-scale streamwise vortices into smaller but not weaker vortices. The enhancement
of mixing produced by the lobes is particularly strong in the first diameter, while it becomes almost
negligible after the first two diameters. Mao et al. [26,27] studied experimentally the effects of the
lobe geometry on the strength of the streamwise vortices in relation to mixing. Lobes having parallel
side walls, i.e., rectangular lobes, were found to generate stronger streamwise vortices and hence
better mixing performance than triangular and scalloped geometries.

In the studies discussed up until here, nozzle geometries different from circular were meant to
enhance mixing or entrainment. However, the reduction of the aeroacoustic emissions represented
the main motivation for a number of works on jets with noncircular orifices. Among these, the
experimental work of Tam and Zaman [28] examined the far-field noise from elliptic, rectangular,
lobed, and tabbed jets. While the noise radiated from elliptic and rectangular jets is the same as that
from the circular jet, a significant suppression of the large-scale noise is obtained from the lobed
jet. Tabs also impact on the noise field primarily by shifting the spectral peak to a higher frequency.
With the aim of investigating the screeching in a rectangular jet, Alkislar et al. [29] performed
stereoscopic PIV. Coherent vortical structures at increasing strength in the shear layer are associated
with screeches of progressively stronger intensity. Later, stereoscopic PIV and microphones were
used to investigate the aeroacoustics effects of chevron and microjets [30]. The low-frequency
noise is attenuated using both the flow control techniques, while the high-frequency noise tends
to increase. The attenuation mechanism of both chevron and microjets was associated with the
formation of streamwise vortices disrupting the generation of azimuthally coherent large-scale
structures.

The time evolution of the near-field structures in a jet both from a circular nozzle and from a
chevron nozzle has been studied using time-resolved tomographic PIV (Violato and Scarano [31]).
In that work, the intense vortical structures were identified with criteria based on the analysis of the
velocity gradient tensor. From Powell’s acoustic analogy, the pairing of the vortex rings represents
the main source of noise in the circular jet. On the other hand, vortex rings are nearly absent in
the chevron jet, while counter-rotating streamwise vortices develop from the chevron notches. The
decay of these streamwise vortices leading to the formation of C-shaped structures is regarded as
the main mechanism for noise production in the chevron jet. The same dataset was also used to
examine with POD the spatial organization of the structures at the jet core breakdown [32].

Recently, Sinha et al. [33] applied linear stability theory to derive the instability modes and their
downstream evolution both in circular and in chevron jets. The serrated nozzle reduces the growth
rates of the most unstable eigenmodes of the jet, although their phase speeds are approximately
similar. Coherent structures in the near field of a circular jet were investigated by Lesshafft et al.
[34], who applied spectral POD on velocity fields from time-resolved stereoscopic PIV [35]. In
the range of Strouhal number around 0.4, the leading modes of spectral POD obtained from
experimental data and from resolvent-based modeling show a very good agreement. Rigas et al.
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[36] compared the spectral POD modes from a chevron jet and from a circular jet, both obtained
from large-eddy simulations. The analysis identified structures that take the form of elongated
streamwise streaks, analogous to those observed by Nogueira et al. [11]. These streaks have been
associated with the nonmodal lift-up mechanism in wall-bounded flows. In the circular jet, the
energetic streaks appear at the azimuthal wave number m = 1, while in the chevron jet the streaks
form in consequence of the nozzle geometry, and they inherit the periodicity of the nozzle geometry
itself. The relative importance of the lift-up, the Kelvin-Helmholtz, and the Orr mechanisms was
recently investigated by Pickering et al. [37] from large-eddy simulations of a round jet. The work
points at the lift-up mechanism as an important linear amplifier of disturbances in turbulent jets,
thus confirming and expanding the findings by Nogueira et al. [11]. In jets at Mach numbers 0.4,
0.9, and 1.5, the lift-up mechanism was found to be responsible for the generation of the streamwise
streaks at low frequency and nonzero azimuthal wave numbers.

From the analysis of the past literature, it emerges that the noncircular orifice geometries that
were examined were all characterized by only one spatial length scale. It is however not completely
understood how an orifice geometry constructed using multiple length scales affects the near-field
coherent structures in a jet. Furthermore, in the majority of these investigations the focus was on
mixing and on entrainment. To the authors’ best knowledge, an analysis of the lift-up mechanism
in jets issuing from a noncircular orifice has never been performed. The main contribution of this
paper is that we examine and compare near-field coherent structures in jets with two different orifice
geometries, i.e., a round orifice and a fractal orifice, using Fourier proper orthogonal decomposition
(Fourier-POD) as the primary tool for investigation. Although a fractal orifice may not appear to be
of direct interest to industry, this geometry embedding a wide range of length scales can be used to
efficiently assess the sensitivity of the near-field coherent structures to the flow initial conditions.
The velocity fields under analysis are obtained from planar and tomographic PIV at high spatial
resolution used in previous works [38,39]. Measurements at two equivalent nozzle diameters from
the exit are considered. In the first part of the paper, we quantify the role of the orifice geometry on
the energy distribution across the hierarchy of modal structures from the three velocity components.
The properties of self-similarity of these modal structures are examined for the two orifice jets, both
along the radial and the azimuthal directions. Analogies and dissimilarities between POD modes
observed in these jets and those recently found in pipe flows are discussed. In the second part of the
paper, the structures of streamwise vorticity leading to the near-field velocity streaks (Nogueira et al.
[11]) are investigated. The focus is on the effects of the orifice geometry on the spatial characteristics
of these vorticity structures and on the lift-up mechanism of streaks formation.

II. EXPERIMENTAL DATASETS

The jet flow was generated by an open jet facility at Imperial College London, described
elsewhere [38,39] (see Fig. 2 of Ref. [38] for details on the nozzle geometry). In order to prevent
biasing the particle images with unseeded, quiescent air being entrained into the jet, a seeded, mild
coflow of air was applied. The exit flow was found to have a sharp “top-hat” mean velocity profile
and a turbulence intensity <1%. A round orifice and a fractal orifice were used as illustrated in
Fig. 1, where the fractal geometry is obtained from a repeating fractal pattern applied to a base
square shape and has a fractal dimension of 1.5 and 3 iterations. This pattern substantially increases
both the wetted perimeter and the number of corners. A similar geometry has been previously
adopted for the perimeter of axisymmetric wake-generating plates where a breakup of the coherence
and a reduction of the shedding energy were observed by Nedić et al. [40]. The two orifices have
the same open area of D2

e , where De = 15.78 mm is the equivalent diameter as defined in Breda and
Buxton [41]. The two jets have the same exit velocity Uj = 9.93 m s−1, meaning that the Reynolds
number ReDe = UjDe/ν is the same and is equal to 104.

A Cartesian coordinate system is introduced, centered on the geometric center of the orifices,
with the z axis oriented along the streamwise flow direction and where the x and y axes are aligned
with the diagonals of the fundamental square pattern for the fractal orifice geometry, as illustrated in
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FIG. 1. The orifice geometries considered in this paper: (a) circular and (b) fractal. The red circle in panel
(b) traces the outline of the circular orifice in panel (a).

Fig. 1(b). In polar coordinates, radial and azimuthal directions are indicated by r and θ , respectively,
with the latter originating on the x axis. Velocity fluctuations along the three Cartesian directions
are denoted as ux, uy, and uz, while time averaged quantities are denoted by an overbar. In polar
coordinates, radial and azimuthal velocity fluctuations are denoted as ur and uθ , respectively.

Three datasets from PIV are analyzed in this paper: (i) a dataset from planar PIV at higher
resolution (HPIV), (ii) a dataset from planar PIV at lower resolution but at larger field of view
(LPIV), and (iii) a dataset from tomographic PIV (TPIV). To obtain the HPIV dataset, a final
interrogation area of 12 × 12 pixels with a 50% overlap was used in the processing. This led to
a vector spacing of 0.013De, with a spatial resolution of less than 3.7η, where η is the Kolmogorov
length scale. The LPIV dataset enabled the study of the flow in the range between zero and 23De,
as shown in Fig. 2.5 of Breda [42]. The fields of view were 9De × 6.7De. An initial interrogation
area of 64 × 64 pixels was used to process the images hierarchically, with a final window size of
16 × 16 pixels. A 50% overlap between adjacent interrogation areas was used leading to a final
vector spacing of 0.03De. Additional details on the two datasets of planar PIV can be found in
Breda and Buxton [38] and in Breda [42]. The three-dimensional velocity fields under analysis
were obtained with TPIV at two orifice diameters downstream of the orifice. The interrogation
volume was of 48 × 48 × 48 voxels, with a 75% window overlapping. The spatial resolution in the
worst case was of 11η. The processing of the PIV images from the three datasets was done with the
software DaVis by LaVision. Additional information on the TPIV measurements can be found in
Breda and Buxton [39], in Sec. 2.3.

III. MEAN FLOW PROPERTIES

In this section, mean flow properties of the two jets are illustrated and discussed. The spreading
rate of the two jets is first examined. From Fig. 2(a), the two jets exhibit analogous spreading rates.
Specifically, the spreading rate is around dr1/2/dz = 0.09, where r1/2 is the jet half width. This result
is similar to previous measurements on a jet issuing from a circular nozzle (see Panchapakesan and
Lumley [43] and Hussein et al. [44]). However, Fig. 2(a) shows that the fractal jet exhibits a larger
half width than the round jet.

In Fig. 2(b), the streamwise velocity decay is shown, where UCL is the jet centerline velocity
and z∗ is the jet virtual origin [45]. Beyond a distance from the orifice of ten equivalent diameters,
the streamwise velocity decay becomes approximately constant. The value of the velocity-decay
constant is not the same in the two jets, which is an important difference in the mean flow properties.
Specifically, a larger decay is observed in the fractal jet. This is a direct consequence of the shorter
potential core of the round jet when compared to the fractal jet, as shown by Breda and Buxton [38].
Additional evidence that the potential core of the round jet is shorter than that of the fractal jet comes
from examining the streamwise turbulence intensity uzrms/Uj at the centerline, shown in Fig. 2(c).
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FIG. 2. Mean flow properties for both the round jet (red circles) and the fractal jet (cyan crosses):
(a) spreading rate, (b) streamwise velocity decay, and (c) turbulence intensity.

In fact, the turbulence intensity in the centerline of the round jet presents a peak at z/De ≈ 6 before
starting to decay, whereas for the fractal jet velocity fluctuations saturate at a greater distance from
the orifice, at around z/De ≈ 9.

Radial profiles of the streamwise velocity of the round jet (continuous red line) and of the fractal
jet (dashed cyan line) are presented in Fig. 3(a), at the same four different downstream locations
from the orifice, i.e., at z/De = 1, 2, 3, and 4. Over this range, the velocity profiles undergo a

FIG. 3. In the first column, (a) mean streamwise velocity profiles at four different streamwise distances
from the orifice, for the fractal (red continuous line) and round (cyan dashed line) orifices, and (b), (c) profiles of
the streamwise and transversal rms velocity, respectively, for the two orifices at the same streamwise locations.
In the second column, planar turbulent kinetic energy k

∗ ≡ (u2
z + u2

x )/2 normalized by the local streamwise
velocity, for (d) the round jet and (e) the fractal jet.
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transition from a top-hat shape to nearly Gaussian, and exhibit a radial spread. It can also be
observed that at z/De = 1 and 2 both velocity profiles present a mild overshoot, as they reach values
of uz(x, 0, ·)/Uj > 1. This can be explained as a vena contracta effect in proximity of the orifices.
At z/De = 4, the centerline velocity of the fractal jet is larger than that of the round jet, suggesting
that the jet spreads radially more pronouncedly in the round jet, despite the strong mixing action
induced by the irregular orifice geometry. This observation is consistent with Breda and Buxton
[38].

The radial profiles of the streamwise velocity fluctuation rms are given in Fig. 3(b), at the
four different downstream locations from the orifice. In general, more intense fluctuations in the
near-field region are observed in the round jet. At z/De = 1, the profiles exhibit two local maxima
in proximity of the shear layer and a local minimum at the centerline. At growing downstream
locations, the local maxima tend to become weaker, whereas the local minimum strengthens. The
increase of the turbulence levels at the centerline is associated with the thickening of the shear
layer at increasing downstream locations. Figure 3(c) shows profiles of the rms transversal velocity,
i.e., of the rms of the velocity component along the x axis (see Fig. 1). These profiles evidence a
much stronger discrepancy between the round jet and the fractal jet than the streamwise velocity
rms profiles observed in Fig. 3(b). In fact, the transversal velocity fluctuations in the fractal jet
are significantly less intense, especially at z/De = 1. Such an attenuation is consistent with the
delay of the streamwise velocity decay found in the fractal jet, and with a potential core extending
over a longer streamwise distance. It is anticipated here, and fully detailed in the Fourier-POD
analysis of the velocity fluctuations at z/De = 2 reported in Sec. V, that this reduction is associated
to the suppression of the strong Kelvin-Helmholtz instabilities featuring in the near field of the
round jet, which strongly couple the streamwise and transversal velocity components. The planar
turbulent kinetic energy in the near field of the fractal and round jets is reported in Figs. 3(d)
and 3(e), respectively. These maps confirm that the potential core of the fractal jet presents a
longer downstream development. This finding is consistent with the downstream development of
the centerline turbulence intensity in Fig. 2(c), and with the estimates of the number of eddies
overturned in time for a given downstream distance estimated in Breda and Buxton [38] (their
Fig. 7).

From the discussion of the results presented up to this point, the fractal orifice leads to the
following modifications of the near-field jet structure when compared to the circular orifice: (1) an
increase of the streamwise extent of the potential core, (2) a reduction of the decay rate of
the streamwise velocity, and (3) a strong attenuation of the transversal velocity rms and a mild
attenuation of the streamwise velocity rms. These experimental findings are consistent with recent
results from linear stability analysis presented in Lyu and Dowling [46] and in Lajús Jr et al. [47] on
jets issuing from noncircular (lobed) nozzles. These two studies concluded that the temporal growth
of near-field instabilities decreases for increasing number of lobes. Additionally, Lyu and Dowling
[46] observed that also a larger penetration ratio of the lobes of the jet nozzle produces a decrease
in the temporal growth rate.

We now focus on the TPIV dataset and present maps of the normalized mean streamwise
velocity ūz(x, y, z0) at a downstream distance from the orifice of z0/De = 2. These are shown in
Figs. 4(a) and 4(d) for the round and fractal orifices, respectively. The fractal geometry produces
a significant spatial modulation of the mean velocity distribution in the near field, breaking the
azimuthal symmetry of the vortex sheet that is otherwise observed for the round jet. This effect

is even more evident when looking at the norm of the mean planar vorticity ω̄⊥ =
√

ω̄2
r + ω̄2

θ , in
Figs. 4(b) and 4(e), with ω̄r and ω̄θ , the mean radial and azimuthal vorticity components. The
location of the maximum of the planar vorticity along the radial direction, Fig. 4(c), reveals that
important differences exist between the two orifices. Although in the round jet the mean planar
vorticity is maximum in the proximity of the orifice lip line, at a nearly constant radial position, in
the fractal jet the radial location of the planar vorticity peak varies with the azimuth. In particular, the
radial location varies between r/De = 0.4 and 0.6. Associated to the corrugation of the mean vortex
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FIG. 4. (a, d) Maps of the mean streamwise velocity for (a) the round jet and (d) the fractal jet; (b, e) maps
of the mean planar vorticity for (b) the round jet and (e) the fractal jet; (c) radial location of the maximum of
ω̄⊥ as a function of the azimuth θ for both jets; and (f) mean velocity components ūx and ūy on the xy plane
and map of the mean streamwise vorticity ω̄z for the fractal jet.

sheet, a modulation of the mean streamwise vorticity ω̄z is also observed, as shown in Fig. 4(f), in
the form of pairs of adjacent positive-negative patches, elongated along the radial direction. Each
of these pairs is associated with a distinct lobed structure from the map of the mean streamwise
velocity shown in Fig. 4(d), resulting from secondary flows in the plane of the figure. In total, eight
pairs of positive-negative patches are formed, four of which are characterized by a stronger intensity
(see Breda and Buxton [41] for a deeper discussion). It is remarkable that the mean streamwise
vorticity within these patches is as large as one third of the mean planar vorticity in Fig. 4(e).
In wall-bounded turbulent flows, spanwise inhomogeneities of surface attributes were found to
produce streamwise-elongated vorticity structures (see Pujals et al. [48], Kevin et al. [49], and
Vanderwel et al. [50] among others), resulting from the anisotropy of turbulent stresses [51,52]. In
laminar flows, streamwise-elongated vortices were found to delay transition to turbulence [53,54] in
boundary layers and to reduce growth rates of Kelvin-Helmholtz-type instabilities in free shear flows
(see Lajús Jr et al. [55], Boujo et al. [56], and Marant and Cossu [57] among others). In the present
case, the near-field flow in the fractal jet is highly turbulent and strongly influenced by the irregular
geometry of the nozzle. However, as it will be extensively quantified in the next sections using a
proper orthogonal decomposition, a significant reduction of the strength of azimuthally coherent
velocity fluctuations in the fractal jet is observed [41], which is akin to mechanisms observed in
laminar flows.

The strong shear between the jet flow and the quiescent ambient fluid is responsible for an intense
production of turbulent kinetic energy. To examine how the orifice geometry affects the spatial
distribution of the different terms constituting the turbulent kinetic energy, we show in Fig. 5 maps
of the rms value of the (a, d) streamwise, (b, e) radial, and (c, f) azimuthal velocity components,
respectively, for the (top row) round jet and for the (bottom row) fractal jet. Among the three
components, the streamwise velocity is dominant. For this component, the rms value is significantly
lower in the fractal jet, consistent with our observations from the planar PIV datasets presented in
Fig. 3(b). As mentioned above, it is argued that this effect can be attributed to the strong deviation
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FIG. 5. Maps of the root mean square (rms) of the (a, d) streamwise, (b, e) radial, and (c, f) azimuthal
velocity components for (a–c) the round jet (top row) and (d–f) the fractal jet (bottom row).

from the azimuthal symmetry of the fractal orifice, which reduces the growth of Kelvin-Helmholtz
instabilities and the near-field jet development. A lower intensity of Kelvin-Helmholtz-induced
fluctuations also explains the significantly lower levels of radial velocity rms in the fractal jet, since
azimuthally coherent vortex rings also induce strong radial motions [5]. This can be observed in
Figs. 5(b) and 5(e). We note that, although not shown here, the correlation coefficient between the
radial and streamwise components in the region of intense shear is comparable in the two jets. The
coefficient, approximately 0.6, is positive, since a positive (outward) radial motion induces a positive
streamwise fluctuation by exploiting the high mean velocity gradients in the near field. On the other
hand, the rms of the azimuthal velocity appears to be milder than that of the other two components,
and of comparable strength in both jets, as shown in Figs. 5(c) and 5(f).

IV. PROPER ORTHOGONAL DECOMPOSITION: METHOD OF ANALYSIS

We use proper orthogonal decomposition to identify near-field coherent structures in an objective
manner and elucidate the role of the orifice geometry on the structure of turbulence. We follow the
standard approach for problems defined in cylindrical coordinates [12,58], and consider velocity
fluctuation vector fields u(r, θ, z, t ) with radial, azimuthal, and streamwise velocity components
restricted to a radial-azimuthal plane located at z0/D = 2. For completeness, we provide in what
follows a brief description of the methodology, restricted to the scalar implementation where the
analysis is performed on each velocity component independently [10].

A classical variational technique [3] can be used to derive a complete, orthonormal set of modal
structures {φi

j (r, θ )}∞i=1, ordered by the modal kinetic energies {λi
j}∞i=1, from the solution of the

integral eigenvalue problem

∫ 2π

0

∫ ∞

0
Rj (r, r′, θ, θ ′)φi

j (r
′, θ ′)r′dr′dθ ′ = λi

jφ
i
j (r, θ ), (1)
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where Rj (r, r′, θ, θ ′) is the two-point correlation tensor defined by

Rj (r, r′, θ, θ ′) = E [u j (r, θ, t )u j (r
′, θ ′, t )], (2)

where E [·] is the expectation operator, and j identifies the radial (r), azimuthal (θ ), or streamwise
(z) velocity component. For space-only POD, as in the present case, the expectation operator is the
arithmetic average over the available velocity snapshots.

For the round jet, the equations of motions and boundary conditions are equivariant under the
continuous group of rotations Rβ : u(r, θ ) �→ u(r, θ + β ). Turbulence statistics are then homoge-
neous along the azimuthal coordinate θ and the two-point correlation tensor R only depends on the
azimuthal separation, i.e., Rj (r, r′, θ, θ ′) = Rj (r, r′, θ − θ ′). It is well known that, in this particular
case, the POD modes have the azimuthal structure of Fourier modes. This property can be exploited
to first Fourier transform the velocity fluctuation snapshots along the azimuthal direction and then
apply the POD to the complex-valued transformed fields by solving the eigenvalue problem∫ ∞

0
Rj (r, r′, m)φi

j (r
′, m)r′dr′ = λi

j (m)φi
j (r, m), (3)

for a set of azimuthal wave numbers m, where Rj (r, r′, m) = E [uj (r, m, t )u†
j (r, m, t )], with (†)

denoting complex conjugation. To lift the asymmetry of the kernel in the integral equation (3)
introduced by the term r′ arising from the energy-based inner product of velocity fields defined
over a cylindrical coordinate system, we follow the established approach used in other works on
round jets or pipe flow [8,12]. In what follows, we refer to this approach as Fourier-POD analysis.
In practice, we proceeded by (1) interpolating the PIV velocity fluctuation fields onto a polar grid
originating at the jet center (identified from the mean field), (2) Fourier transforming the data
along the streamwise direction, (3) constructing the two-point correlation tensor Rj (r, r′, m), and
(4) solving the discrete equivalent of the eigenvalue problem of Eq. (3).

For the jet issuing from the fractal orifice, the equations and boundary conditions are equivariant
under a cyclic group of order 4 generated by the symmetry T = Rπ/2, rotating velocity fields around
the z axis by π/2. The important consequence is that velocity statistics are still periodic, but are not
homogeneous in the azimuthal direction. The two-point correlation tensor (2) does not depend only
on the azimuthal separation θ − θ ′ and the POD modes do not necessarily have a simple harmonic
azimuthal structure. Hence, while the Fourier-POD analysis is optimal for the velocity dataset of
the round jet, it inevitably becomes suboptimal for the fractal orifice dataset. However, using the
same analysis for the two geometries has the advantage of enabling a direct comparison of (a)
the azimuthal wave-number distribution of the kinetic energy and (b) the radial profiles of the
modal structures. To quantify the degree of suboptimality of the Fourier-POD approach for the
jet issuing from the fractal orifice, we also compute and present optimal structures for the fractal
orifice geometry by applying the snapshot POD approach [59] to a larger dataset constructed by
applying the rotations T , T 2, and T 3 on each fluctuation velocity field, thus increasing the number
of snapshots used in the analysis by a factor of 4.

V. PROPER ORTHOGONAL DECOMPOSITION OF THE THREE VELOCITY COMPONENTS

From the analysis of the maps of mean velocity and vorticity examined in previous sections,
it was argued that the fractal orifice breaks the azimuthal coherence of the vortex rings that can
typically be found in jets issuing from a circular orifice. Therefore, the instantaneous velocity
fields of the fractal jet are expected to be populated by structures that are much smaller in size
compared with those in the round jet. This should be more evident in regions characterized by
intense shear, therefore in proximity to the lip line. In Fig. 6, instantaneous snapshots of the
streamwise velocity fluctuations are presented, for the (a–c) round jet and for the (d–f) fractal jet, to
illustrate this behavior. Velocity vectors in the x-y plane are also shown to illustrate the nature of the
cross-plane flow. Footprints of the vortex rings associated with the Kelvin-Helmholtz instabilities
passing through the observation plane can be observed in the three snapshots obtained from the
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FIG. 6. Snapshots of the instantaneous vector fields containing the velocity components ux and uy on the
x-y plane and maps of the streamwise velocity fluctuations at z0/De = 2, for the (a–c) round jet and (d–f) fractal
jet. Note that the velocity vector fields of the velocity components ux and uy overlap to the color maps of u′

z,
and they share the same Cartesian axes.

round jet. The streamwise velocity fluctuations are organized in large coherent structures developing
along the azimuthal direction, and preferentially located in the proximity of the lip line. Structures
of smaller size and presenting a more random orientation, on the other hand, can be observed in
the instantaneous snapshots from the fractal jet. Therefore, the fractal orifice appears to break the
large-scale, azimuthally coherent structures, and redistributes the resulting energy among structures
at smaller length scales. It can also be observed that the cross-plane velocity components are weaker
in the fractal jet, consistent with the lower values of the rms of the radial velocity component
in Fig. 4(e). Later in this paper, we will often be referring to Fig. 6 to show how the analytical
results that will be presented are supported by the qualitative observations from these instantaneous
snapshots.

A. Analysis of the POD energy distribution

To quantify how the turbulent kinetic energy at z0/De = 2 is distributed across coherent struc-
tures at different wave numbers, the Fourier-POD analysis described in Sec. IV is performed. A
scalar implementation of this technique (see Tinney et al. [10]) is performed separately on each
of the three velocity components. The relative fraction of turbulent kinetic energy captured by the
first three POD modes for the first 11 azimuthal wave numbers m in each direction is presented in
Fig. 7 by vertical bars. The first, second, and third rows of the figure correspond to the streamwise,
radial, and azimuthal velocity components, respectively, while the left and right columns show
the results of the analysis for the round jet and for the fractal jet, respectively. The dashed cyan
lines represent the cumulative energy distribution of the first POD modes as a function of the
wave number m, whereas the continuous cyan lines represent the cumulative energy distribution
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FIG. 7. Relative energy distribution of the first three POD modes i ∈ [1, 3] at the first 11 azimuthal modes,
m ∈ [0, 10], (a, b, c) for the round jet (left column) and (d, e, f) for the fractal jet (right column), at the
downstream location of z0. The POD analysis is made for the (a, b) streamwise (first row), (c, d) radial
(second row), and (e, f) azimuthal (third row) components of the three-dimensional velocity vector field. The
cumulative energy contents of the first and first five POD modes are represented by a cyan dashed line and a
cyan continuous line, respectively. For the fractal orifice, the cumulative energy of the first 5(m + 1) snapshot
POD modes is reported as a thicker red line, to quantify suboptimality of the Fourier-POD analysis.

for the first five POD modes. Note that quantities in this figure are relative with respect to the
overall energy across the three components. When examining Figs. 7(a) and 7(d), the cumulative
energy contained in the first five POD modes and in the first 11 azimuthal wave numbers of the
streamwise velocity component is similar in the two orifices, i.e., it is equal to approximately 60%.
However, there are significant differences in the distribution of turbulent kinetic energy among the
wave numbers. In the round jet, streamwise velocity fluctuations in the near field are dominated
by the development of the Kelvin-Helmholtz instability in the axisymmetric vortex sheet, leading
to the roll-up of azimuthally coherent vortical rings in the transition region [60]. This is observed in
our results. The energy for the streamwise component is mostly concentrated at the wave number
m = 0, consistent with the results of Jung et al. [6] (see their Fig. 7). A rapid and monotonic decrease
appears, though, for increasing m, which is slightly different from Jung et al. [6], where the energy
distribution of the first POD mode shows a local maximum at m = 6. This subtle difference between
our analysis and the study by Jung et al. [6] could be attributed to the lower Reynolds number of the
present jet. The increase of the relative dominance of the first POD mode at the fundamental wave
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FIG. 8. Relative energy contribution from the (a) streamwise, (b) radial, and (c) azimuthal velocity com-
ponents to the energy contained within each of the first 30 wave numbers. Red circles represent the round jet
and cyan crosses represent the fractal jet.

number for decreasing Reynolds numbers observed in Fig. 8 of Jung et al. [6] is consistent with this
explanation. Another explanation for this difference is that the jet investigated by Jung et al. [6] is a
nozzle jet while the jet examined here is an orifice jet. Therefore, the subtle decrease in the relative
dominance of modes at m = 0 could be a consequence of the vena contracta effect associated with
the orifice nozzle. In their experiments, Iqbal and Thomas [8] found that at x/D = 3 the dominant
wave-number mode is m = 1. Iqbal and Thomas [8] attributed the observed difference between their
results and the results from Jung et al. [6] to the different initial conditions of the jet flows.

The analysis of the jet issuing from the fractal orifice, Fig. 7(d), reveals that the largest amount
of streamwise fluctuation energy is contained at the fundamental wave number m = 4. This is
consistent with the fundamental geometric square pattern of the orifice, but is unrelated to the mean
field of Fig. 4, since the Fourier-POD analysis is performed on the zero-mean velocity fluctuation
fields. The dominance of the wave-number mode associated with the orifice base pattern is expected
also for different orifice geometries, however less so when increasing the side number of the base
pattern. Furthermore, in the fractal jet, the energy of the streamwise fluctuations is more scattered
among the different azimuthal modes in the range 0 � m � 6. As evident from the instantaneous
snapshots in Fig. 6, the physical mechanism at play is that the fractal geometry promotes the
breakup of the near-field azimuthal coherence observed in the round jet. Hence, energy is injected
at the fundamental wave number m = 4 and is scattered across the wave-number spectrum by the
convective nonlinearity of the equations of motions.

Analogous to the Fourier-POD analysis of the streamwise component, the analysis of the radial
component reveals important differences between the round jet and the fractal jet, as can be
appreciated from Figs. 7(b) and 7(e). When looking at the cumulative energy distribution, it can be
observed that the energy captured by the first five POD modes and by the first 11 azimuthal modes
is larger in the round jet. Also, the cumulative energy from the first POD mode of each of the first
11 azimuthal wave numbers (cyan dashed line) is almost double in the round jet than in the fractal
jet. If we focus on the first POD mode of the round jet, we can observe that the zeroth and the first
azimuthal wave numbers, together, capture over 9% of the total energy. The observed dominance
of the zeroth azimuthal wave number in the round jet is indicative of a low-dimensional behavior
of the radial component, which can be also appreciated in the instantaneous snapshots of Fig. 6.
Overall, the energy distribution among the modes obtained from the radial velocity component is
consistent with previous experimental investigations with hot-wire anemometry from the literature
[6,8,10]. In the fractal jet, however, the first POD mode accounts for a much smaller percentage of
the total energy, independent of the wave number considered. The marginal importance of the radial
POD modes in the fractal jet is a consequence of the reduced growth rate of the Kelvin-Helmholtz
instabilities. As discussed in the recent stability analyses by Lyu and Dowling [46] and Lajús Jr
et al. [47], the stronger is the deviation from the axisymmetry of the jet orifice, the lower is the
growth rate of the near-field instabilities. For this reason, at the downstream position of z0/De = 2,
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the energy of the radial velocity fluctuations is much larger in the round jet than in the fractal jet, as
the rms in Figs. 5(b) and 5(e) also shows.

The Fourier-POD analysis of the azimuthal component is presented in the third row of Fig. 7.
Here, the energy distribution appears almost insensitive to the orifice geometry. The wave number
m = 1 is dominant in both jets, with a monotonic decrease of the energy content of the modes for
progressively higher wave numbers. An analogous trend was found in previous Fourier-POD anal-
yses of the azimuthal component from the literature [6,8,10]. The overall cumulative contribution
of the first five POD modes and of the first 11 wave numbers is only of approximately 15% of the
total energy. Therefore, among the three velocity components, the azimuthal component captures
the lowest proportion of the turbulent kinetic energy.

The energy distribution presented in Fig. 7 is obtained by applying a Fourier decomposition in
the azimuthal direction followed by a POD analysis. This procedure has the advantage of enabling
a straightforward comparison between the two jets, although it is suboptimal for the fractal nozzle
geometry, as explained in Sec. IV. Alternatively, the optimal modes could be obtained by a snapshot
POD analysis. It is thus of interest to quantify possible changes in the cumulative energy distribution
when this is computed from the modes obtained with the optimal snapshot POD analysis. The
cumulative energy distribution of the first 10(m + 1) modes obtained from the optimal snapshot
POD analysis of the fractal orifice dataset is shown by the continuous red line in Figs. 7(d)–7(f).
The Fourier-POD analysis, which is suboptimal, leads to a cumulative distribution that only mildly
underestimates the distribution obtained from the optimal snapshot POD analysis, supporting the
relevance of the discussion on the Fourier-POD analysis.

A more detailed quantification of the relative energy contributions of the POD modes of the
different velocity components as a function of the azimuthal wave number is presented in Fig. 8.
The three panels show the ratios

β(·)(m) =
∑

i λ
i
(·)(m)∑

i

[
λi

z(m) + λi
r (m) + λi

θ (m)
] , (4)

for the streamwise, radial, and azimuthal components. As expected, and consistently with the results
from Fig. 7, the largest energy contribution to the total turbulent kinetic energy is obtained from
the Fourier-POD modes of the streamwise velocity component. In Fig. 8(a), the modes from the
streamwise velocity component are responsible for approximately 70% of the energy contained in
the wave number m = 0, both in the round jet and in the fractal jet. However, this result should
not be misinterpreted. The contribution of the wave number m = 0 to the total turbulent kinetic
energy is more than double in the round jet than it is in the fractal jet. This can be observed
when comparing the cyan continuous lines in Figs. 7(a) and 7(b). From Fig. 8(b), as the wave
number increases, the energy from the streamwise velocity component becomes gradually less
important, whereas the radial component captures increasingly more energy. The most significant
difference between the round jet and the fractal jet can be observed when assessing the proportion
of energy taken by the radial and azimuthal components at low wave numbers. In the round jet, the
radial component captures around 30% of the energy contained at wave number m = 0, while the
azimuthal component accounts for less than 5% only. In the round jet, the proportion of energy from
the azimuthal component is the lowest independent of the wave number. In the fractal jet, the same
behavior holds, with the only exceptions of m = 1, 2, 3.

B. Analysis of the spatial structure of POD modes

The modes φi
z(r, θ ) of the first 18 modes obtained from the snapshot POD of the streamwise

component for the fractal orifice dataset are shown first in Fig. 9. The structure of the two most
energetic modes resembles the structure of the modes with m = 4 obtained from the Fourier-POD
analysis. This observation is consistent with Fig. 7(b), where the modes at m = 4 capture the
largest amount of energy. The spectral content of the subsequent modes approximately follows the
distribution reported in Fig. 7(b). Thus, wave numbers m = 2, 3, and 5 all feature prominently in
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FIG. 9. Streamwise component of the first 18 snapshot POD modes in the jet with fractal orifice, on an
arbitrary color scale.

the first 12 modes. However, unlike the Fourier-POD analysis, the snapshot POD does not separate
structures with different wave numbers if these have similar energy and most of the POD modes of
Fig. 9 have complex spectral characteristics.

To compare objectively the modal structures resulting from the two geometries, we examine the
radial profiles of the first, second, and third Fourier-POD modes for azimuthal wave numbers m =
0, 1, 2, 5, 10, from the scalar analysis of the streamwise, radial, and azimuthal velocity components
for the two jets. The profiles are normalized such that maxr φi

(·)(r, m) = 1, and are presented in
Fig. 10. In general, the ith POD mode has i extrema. For wave number m = 0, the radial profiles of
the first three POD modes tend to have a stronger support at low radial locations, approaching the
centerline. This feature becomes stronger for increasing POD mode indices, and it is more prominent
in the circular orifice than in the fractal orifice, as at z0/De = 2 the round jet presents a much larger
energy content in proximity to the centerline (see Fig. 5). The profiles of the first POD modes are
similar to the profiles of the modes obtained with spectral POD, resolvent analysis, and transient
growth analysis by Nogueira et al. [11], reflecting the low-dimensional nature of the near-field jet
dynamics.

The peaks of the radial profiles for the first, second, and third POD modes tend to move outwards
for growing azimuthal wave numbers. However, this occurs more mildly for the fractal geometry,
where the modal structures are more compactly localized around r/De = 0.5. To quantify this
behavior, we denote by Rp

(·) the location of the first peak of φi
(·)(r, m) from r = 0. This quantity

is shown in Fig. 11 for the first POD mode as a function of the azimuthal wave number m, for
the three velocity components and for the two orifice geometries. The peak location of the radial
profiles exhibits analogous trends when computed from the three different velocity components. The
first POD mode is radially localized around Rp

(·)/De ≈ 0.5, for the most energetic azimuthal wave
numbers, increasing to Rp

(·)/De ≈ 0.65 for high wave numbers. The influence of the orifice geometry
is mainly confined to the lowest wave numbers, where the radial position of the peaks tends to be
closer to the centerline. Circular and fractal orifices, however, present an analogous behavior at
m > 2. This is not surprising, since the mean turbulent kinetic energy profiles in Figs. 3(b) and 3(c)
have comparable peak locations. An analogous radial displacement of the peak location was also
observed in the Fourier-POD analysis of pipe flow reported by Hellström et al. [12] [their Fig. 2(a)].
As discussed by Nogueira et al. [11], an important difference between jet and pipe flow, however, is
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FIG. 10. Radial profiles of the first three POD modes of the streamwise (first row), radial (second row),
and azimuthal (third row) velocity components for azimuthal wave numbers m = 0, 1, 2, 5, 10, for the round
jet (left columns) and for the fractal jet (right column). The gray vertical lines indicate the radial location
r/De = 0.5.

that in pipe flow the radial expansion of the POD modes is limited by the wall, whereas in a jet the
POD modes are not radially constrained and can expand beyond r/De = 0.5.

To further characterize the size of the POD structures, we introduce the radial half size of the POD
modes defined as Lr

(·) = (Rp
(·) − R5

(·) )/De, with R5
(·) being the radial location where φi

(·)(R
5
(·), m) =

0.05φi
(·)(R

p
(·), m). This parameter is more appropriate for an unbounded shear flow, as opposed to the

parameter introduced by Hellström et al. [12] for pipe flow, where the radial length scale is defined

FIG. 11. Normalized radial peak location of the radial profiles for the first POD mode of the (a) streamwise,
Rp

z /De, (b) radial, Rp
r /De, and (c) azimuthal, Rp

θ /De, velocity components as a function of the azimuthal wave
number m, for the round (red circles) and fractal (cyan crosses) orifices. The gray horizontal lines indicate the
radial location r/De = 0.5, i.e., the radial location of the edge of the round orifice.
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FIG. 12. Radial profiles of the streamwise (first row), radial (second row), and azimuthal (third row)
velocity components of the first, i = 1, second, i = 2, and third, i = 3, POD modes for the azimuthal wave
numbers m ∈ [2, 40], for the round jet (red continuous line) and for the fractal jet (cyan dashed line).

as the distance from the wall to the peak location. Modal structures identified by Fourier-POD
analysis in pipe flow have been observed to collapse in the radial direction to a universal distribution
when appropriately scaled with the radial length scale [12]. The same behavior is observed in the
present case. The collapse of the Fourier-POD profiles is shown in Fig. 12, for the first, second,
and third POD modes for wave numbers m ∈ [2, 40]. Profiles obtained from the POD analysis of
the streamwise, radial, and azimuthal velocity components are shown, for the round and fractal
orifices. One salient observation is that for all azimuthal wave numbers, the radial profiles collapse
to a distribution that is surprisingly robust to the orifice geometry. It is argued that this is due to the
similarity of the mean velocity profiles in Fig. 3(a), since similar shear profiles produce fluctuations
with similar spatial structure.

Another salient observation is that the profiles closely resemble those found in turbulent pipe
flow by Hellström et al. [12]. Recently, analogies between the coherent structures in the near field
of a jet and in wall-bounded flows have been found by Nogueira et al. [11] and by Samie et al.
[61]. In particular, following the self-similarity of POD structures reported by Hellström et al. [12],
Nogueira et al. [11] observed self-similarity in spectral POD modes in the streamwise direction,
where an azimuthal length scale is utilized to scale the streamwise development of the structures.
To examine the self-similarity of the first POD modes (i = 1) in the present case, we introduce here
the azimuthal length scale Lθ

(·) = 2πRp
(·)/(mDe). The radial length scale of the POD structures as

a function of the azimuthal length scale is presented in Fig. 13, for the (a) streamwise, (b) radial,
and (c) azimuthal velocity components, for the first 40 azimuthal wave numbers m ∈ [1, 40]. A first
remark on Fig. 13 is that the POD structures associated to the first few most energetic azimuthal
wave numbers of the fractal jet are more spatially compact, as the radial length scale Lr

(·) can be up
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FIG. 13. Radial length scale of first Fourier-POD modes as a function of their azimuthal length scale for the
(a) streamwise, (b) radial, and (c) azimuthal velocity components. Data points for wave numbers m ∈ [1, 40]
are shown, moving from right to left for growing wave numbers, as shown by the arrows. The straight lines are
used to estimate the aspect ratio of the eddies.

to ≈25% smaller than in the canonical round orifice. The largest, more energetic structures have a
radial support of about 0.4D–0.5D, in agreement with the profile of mean turbulent kinetic energy
of Figs. 5(c) and 5(f). On the other hand, the radial support of the high-wave-number POD modes,
m � 8, does not seem to be heavily influenced by the orifice geometry, and it decays slowly for
higher wave numbers. These results suggest that the fractal orifice does not significantly affect the
properties of the small scales, but it rather acts towards breaking the large-scale structures that would
naturally appear in the round jet. In the figures, the straight lines identify structures with a constant
aspect ratio Lr

(·)/Lθ
(·). As can be observed, a single aspect ratio describing the eddies over the whole

dynamic range of scales cannot be clearly defined, for any of the velocity components. This result
makes the near-field jet different from pipe flow, where, according to Hellström et al. [12], eddies
are characterized by a constant aspect ratio of 0.2 across the wave-number spectrum. This result is
consistent with the spatial structure shown in the velocity snapshots in Fig. 6, where eddies with
small azimuthal length scale are not necessarily associated with smaller radial length scale. From
a physical point of view, we argue that this behavior arises from the absence of the wall-blocking
effect present in pipe flow, which limits outward motions in the radial direction.

VI. PROPER ORTHOGONAL DECOMPOSITION OF THE STREAMWISE VORTICITY
AND VELOCITY

In the previous sections, Fourier-POD modes were identified for each velocity component
separately, using a scalar POD implementation. However, this approach does not capture possible
correlations and couplings between the velocity components. Regarding this aspect, Nogueira et al.
[11] showed that energetic streamwise velocity streaks in the high-shear region of the jet flow are
strongly coupled to streamwise-elongated vortical structures by the lift-up mechanism [62] as in
wall-bounded shear flows [63,64], inducing strong radial motions. In this section, we examine
the relationship between the streamwise velocity fluctuations and the structure of the streamwise
vorticity field involved in the lift-up mechanism, to assess the effects of the orifice geometry.

We first show conditional averages of the streamwise vorticity and streamwise velocity fields.
With the idea of characterizing intense streamwise velocity fluctuation events, the condition for
the average is for the value of the streamwise velocity fluctuation to be larger than a threshold
value based on the rms of the streamwise velocity, uzrms , at the reference point x/De = 0.5, y/De =
0.0, z/De = 2.0. This conditioning based on a threshold value can be expressed by the following
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FIG. 14. (a, b) Color maps of the normalized conditional average of the streamwise vorticity fluctuations,
and labeled contours of the conditionally averaged streamwise velocity, for both (a) the round jet and (b) the
fractal jet (see text for details on the conditioning procedure); (c, d) radial profiles at constant r/De = 0.5 as
a function of the azimuthal angle θ of (c) the streamwise vorticity and (d) the streamwise velocity, from the
conditional averages presented in the maps in (a, b). The gray lines in panels (a) and (b) trace the nominal lip
line location.

equation:

u′
z > cuzrms , (5)

where c is a positive constant. The threshold value of the constant c in Eq. (5) is chosen based
on a sensitivity analysis, in which four different values of this constant were adopted, i.e., c =
0.25, 0.5, 0.75, 1.0. A similar condition can also be stated for negative fluctuations, but the probabil-
ity distributions of the velocity fluctuations are not significantly skewed and lead to similar results.
Although not presented here, the results of this analysis evidence that the obtained conditional aver-
ages are only moderately sensitive to the constant c, and that, as expected, larger values of c lead to
more intense events, with a smaller number of samples contributing to the averages. It was therefore
chosen to set c = 0.5 in Eq. (5), which represents a compromise between identifying intense events
and retaining a sufficiently large statistical sample. In any case, the physics of the interactions remain
unchanged for different constants c. A further improvement of the statistical significance is obtained
by repeating the averaging for 100 reference points distributed on the circumference at r/De = 0.5,
rotating the results back to x/De = 0.5, y/De = 0.0 and averaging along the azimuth. Conditional
averages are denoted by angle brackets. Maps obtained from the described averaging procedure are
presented in Figs. 14(a) and 14(b) for the round and fractal jet, respectively. The color map shows
the conditionally averaged vorticity field while the labeled contours show the conditionally averaged
streamwise velocity field. These variables are normalized by the maps of the rms of the respective
quantities. The gray circle traces the nominal orifice lip line location. The averaging procedure
unveils a pair of vorticity structures of opposite sign, flanking the point where the condition is
defined, i.e., in the proximity to the lip line. Therefore, positive streamwise velocity fluctuations
are associated with positive fluctuations of the radial velocity component, i.e., a flow towards the
jet periphery, that produces the mushroomlike structures observed in Fig. 9(a) of Liepmann and
Gharib [5]. Similarly, although not presented here, negative fluctuations of the streamwise velocity
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are associated to a pair of high vorticity regions with opposite sign, with negative fluctuations of the
radial velocity, i.e., a flow towards the jet centerline. The described coupling between the sign of the
streamwise velocity fluctuations at the lip line and the sign of the radial velocity fluctuations can also
be observed from the instantaneous snapshots reported in Fig. 6, in particular from the snapshot in
Fig. 6(c). Qualitatively similar results are obtained when the radial position of the point of condition
is varied within the region of intense shear. The averaging captures a significant fraction, about
20%, of the streamwise vorticity rms. Physically, high-speed fluid elements in the jet core are
pushed outwards by radial motions produced by the streamwise vorticity features in regions of lower
mean velocity, generating positive velocity fluctuations and vice versa. The observed structure of
the conditionally averaged streamwise velocity and vorticity fields supports the idea that a lift-up
mechanism is active in turbulent jets [11]. In this scenario, the patches of coherent streamwise
velocity derived from the conditional average can be regarded as the footprints of the streaks
identified by Nogueira et al. [11] passing through the observation plane. If we compare the structures
of streamwise vorticity obtained from the two orifice geometries, we can see that the vorticity
structures from the round jet tend to have a larger extent in the azimuthal direction. This is more
evident when examining Fig. 14(c), which shows radial profiles from the conditionally averaged
streamwise vorticity at constant r/De = 0.5, as a function of the azimuthal angle θ . It can be seen
that the average vorticity structure within the fractal jet spans the range −3π/16 < θ < 3π/16,
while the structure within the round jet spans the range −π/4 < θ < π/4. Figure 14(d) shows the
radial profiles from conditional averages of the streamwise velocity at constant r/De = 0.5. For
the round jet, the profile does not go to zero even for large azimuthal angles, consistent with the
dominance of the azimuthal mode m = 0 discussed in the previous section. Therefore, in the fractal
jet the coupling between streamwise velocity and streamwise vorticity involves structures that are
smaller in size, although of comparable strength. It should be stressed that the conditional averages
presented up to this point are obtained at the streamwise location z/De = 2.0. If the same conditional
averages were calculated at different streamwise locations, different structures of vorticity would
be found, as the observed coupling between velocity and vorticity is strongly dependent on the
streamwise position. However, this paper focuses on examining the effects of the orifice geometry
on the coupling between streamwise velocity and vorticity at a fixed downstream distance. Studying
how this coupling varies with the streamwise position is left to future work.

The conditional averages presented above enable us to estimate the characteristic size of the
vorticity structures sustaining the streamwise velocity fluctuations in both jets. With the aim
of quantifying to what extent vorticity structures at different azimuthal scales contribute to the
described mechanism, a vector implementation of the Fourier-POD analysis [10] is applied to com-
posite snapshots of streamwise vorticity and streamwise velocity. The analysis identifies composite
streamwise vorticity-velocity modes, and ranks them based on their importance. Note that, in what
follows, we use the concept of modal energy, although this does not have the same dimensions
of kinetic energy, as for the scalar POD implementation. Thus, the dominant vorticity-velocity
modes are those that better capture intense and correlated fluctuations of the streamwise velocity
and streamwise vorticity, on a wave-number-by-wave-number basis. The relative energy distribution
of the first three POD modes, i ∈ [1, 3], at the first 21 azimuthal modes, m ∈ [0, 20], is presented
in Figs. 15(a) and 15(b), respectively, for the round jet and for the fractal jet. The dashed cyan lines
represent the cumulative energy distribution of the first POD modes as a function of m, whereas
the continuous cyan lines represent the cumulative energy distribution for the first five POD modes.
As can be observed, the azimuthal wave number m = 6 is dominant in the round jet, while the
azimuthal wave number m = 8 is the most important in the fractal jet. This result is consistent with
the conditional averages of Fig. 14, where it was observed that smaller vorticity structures feature in
the near field of the fractal jet. Figure 15 also shows that the fractal orifice leads to a more scattered
energy distribution across wave numbers than the circular orifice, analogous to what was found from
the Fourier-POD analysis of the velocity, in the previous section. This property is also evident from
cumulative energy distributions for the two jets. Although the first five POD modes and the first 21
azimuthal modes capture around 90% of the total energy, modes at low wave numbers (long length
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FIG. 15. Relative energy distribution of the first three vector POD modes i ∈ [1, 3] at the first 21 azimuthal
modes, m ∈ [0, 20], (a) for the round jet and (b) for the fractal jet. The Fourier-POD analysis is performed for
the streamwise components of the vorticity and velocity fields. The cumulative energy contents of the first and
first five POD modes are represented by a cyan dashed line and continuous line, respectively.

scales) are more important in the round jet than in the fractal jet, which leads to a steeper trend of
the cumulative energy distribution in the former jet than in the latter one.

The normalized radial peak positions of the profiles of the vorticity component of the joint
streamwise vorticity and velocity Fourier-POD modes are presented in Fig. 16(a) as a function
of the azimuthal wave number. Analogous to what was found in the analysis of the three velocity
components, the peaks are located in the high-shear region and their locations move towards the
periphery for increasing azimuthal wave number. Also, the peak positions for the fractal jet are
nearer to the centerline when compared to the round jet. A reasonable explanation for this result
is that the actual lip line of the fractal orifice reaches radial positions as close to the centerline
as r/De ≈ 0.25, introducing higher streamwise vorticity fluctuations in this area. The normalized
radial length scale of the first POD vorticity structures Lr

ωz
/De, defined similarly to the radial

length scale of the velocity Fourier-POD modes, is presented in Fig. 16(b) as a function of the
azimuthal wave number. Excluding the first four azimuthal wave numbers, which define large-scale
vorticity modes of little physical interest, the radial length scale of the POD structures decreases

FIG. 16. (a) Normalized radial peak location of the radial profiles of the streamwise vorticity component
for the first vector POD mode; (b) normalized radial half size of the vorticity component of the first POD modes
as a function of the wave number m; and (c) the quantity χ (m), defined in (6) as a function of m.
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only moderately for increasing azimuthal wave numbers, reaching values lower than Lr
ωz

/De ≈ 0.2.
Although the dimension is lower than the radial length scale of the velocity POD modes discussed
previously, the mild decrease of the radial length scale for m > 4 indicates that a constant aspect ra-
tio for the vorticity eddies cannot be determined. In fact, the azimuthal length scale Lθ

ωz
= 2πRp

ωz/m
(not shown here) decreases much more rapidly with m than Lr

ωz
and is thus not a suitable scale

to characterize the POD profiles. As discussed, we argue that unlike in wall-bounded flows [12]
the lack of a solid wall originates a family of fluid structures that are free to occupy the entire
radial dimension of the high-shear region, with little influence of the azimuthal wave number. This
perspective is supported by the fact that this trend is essentially insensitive to the orifice geometry.

In Fig. 16(c), the ratio between the peaks of the velocity and vorticity components of the joint
velocity-vorticity Fourier-POD modes, defined by the quantity

χ (m) = 100 × maxr φ1
uz

(r, m)

maxr φ1
ωz

(r, m)
, (6)

is presented as a function of the azimuthal wave number m for both jets. This quantity is used here
to quantify the relative importance of the streamwise velocity component, and as a proxy for the
correlation between the two variables. It can be observed that χ (m) is largest for both orifices at
wave numbers in the range 5 � m � 8. The fact that the velocity and vorticity correlation is larger
at the wave numbers where energy is mostly concentrated (see Fig. 15) corroborates the physical
mechanisms described above, evidencing that a strong coupling between the streamwise vorticity
and velocity is active in the near field.

Radial profiles of the vorticity and velocity component of the first two composite Fourier-POD
modes are shown in Fig. 17, for wave numbers m ∈ [6,20]. The radial coordinate is scaled similarly
to the profiles of Fig. 12, using the radial half sizes Lr

ωz
and Lr

uz
. The real and imaginary parts of the

Fourier-POD profiles are dominant for the vorticity and velocity components, respectively, and are
thus reported in the figure. It can be observed that, similar to the velocity POD modes, the profiles
collapse to a universal distribution that is independent of the orifice geometry. Profiles for smaller
wave numbers, corresponding to large-scale rotational motions with little dynamical relevance,
deviate from such collapse. The relative arrangement of the vorticity and velocity components is
more clearly understood by visualizing the full structure of the Fourier-POD modes in the x-y plane.
The three most important Fourier-POD modes are presented in Figs. 18(a)–18(c) and 18(d)–18(f),
respectively, for the round jet and for the fractal jet. Color maps of the streamwise velocity and
contours of the streamwise vorticity are shown using arbitrary scales, since the modes are normal-
ized. The same observations made on the relative spatial organization of the conditionally averaged
vorticity and velocity fields apply to the Fourier-POD modes. Specifically, regions characterized
by positive or negative fluctuations of the streamwise velocity are associated, respectively, with
positive and negative fluctuations of the radial component, induced by pairs of vorticity structures.
As observed, in the fractal jet, the azimuthal mode m = 8 is dominant [Fig. 18(f)]. From the maps
of mean streamwise velocity and mean streamwise vorticity presented, respectively, in Figs. 4(d)
and 4(f), it can be observed that the mean flow characteristics dictate the relative importance of the
vorticity-velocity Fourier-POD modes. In particular, this suggests that the spatial organization of
both streaks and vortical structures is directly associated with the orifice geometry, consistent with
the spectral POD analysis of Rigas et al. [36] on a jet from a chevron nozzle.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, a Fourier-POD analysis was performed to investigate the coherent structures in the
near field of a jet issuing from a noncircular orifice. More specifically, we considered an orifice with
fractal geometry constructed from a base square pattern. These were compared with the structures
in a jet issuing from a round orifice. The paper considers three-dimensional velocity vector field
tomographic-PIV datasets obtained at a downstream distance from the orifice exit of two equivalent
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FIG. 17. Radial profiles of the (a, b) streamwise vorticity and (c, d) streamwise velocity of the (a, c) first
POD mode and (b, d) second POD mode, for the azimuthal wave numbers m ∈ [5, 40], for the round jet (red
continuous line) and for the fractal jet (cyan dashed line). The gray vertical lines indicate the radial location
r/De = 0.5, i.e., the radial location of the edge of the round orifice.

FIG. 18. Streamwise velocity of the three most energetic Fourier-POD modes, on an arbitrary color scale,
and contours of the streamwise vorticity, with continuous lines identifying positive values and dashed lines
identifying negative values, in the jet with (a, b, c) round orifice and with (d, e, f) fractal orifice.
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orifice diameters, which are used to characterize the role of the orifice geometry on the initial jet
development.

From the analysis of the streamwise velocity component, the mode at wave number m = 0, which
captures the largest amount of turbulent kinetic energy in the jet with a circular orifice, is not the
dominant mode in the jet with a fractal orifice. This is because the fractal geometry injects energy at
the fundamental wave number m = 4, thus breaking up the azimuthal coherence associated with the
vortex rings typical of the round jet. As a result, while in the jet with a circular orifice most of the
energy is contained within these vortex rings, in the jet with a fractal orifice the energy is distributed
among the first seven azimuthal modes (0 � m � 6) more uniformly. Instantaneous snapshots of
streamwise velocity confirm these findings, and show that structures within the fractal jet are smaller
in size and lack a preferential organization. Consistent with this scenario, the energy in the radial
component at the first wave number m = 0, associated with the azimuthally coherent radial motions
from the Kelvin-Helmoltz vortex rings, is significantly lower in the fractal jet. In both cases, at
the most energetic wave numbers, the streamwise component was found to capture approximately
60% of the total kinetic energy, followed by the radial component and by the azimuthal velocity
components.

The radial distribution of the Fourier-POD modes from the two orifice geometries was also
examined. It was found that the modal shapes at different wave numbers collapse to a distribution
that is independent of the orifice geometry, when scaled with a characteristic radial dimension. This
finding is common to the Fourier-POD modes from each of the three velocity components. The
most significant difference is in the radial support of the modes of the jet with a fractal orifice
being smaller at low wave numbers. This evidences that the most energetic structures tend to be
smaller in size in the jet with a fractal orifice. Regardless, the orifice geometry does not appear to
significantly affect the shape of the first POD modes, but mostly the energy distribution. The collapse
of the radial profiles was also observed in recent experiments in turbulent pipe flow [12]. However,
an important difference with these observations is that, in the present case, the ratio between the
azimuthal and radial length scales of the Fourier-POD structures varies with the wave number m,
while it is constant in pipe flow and approximately equal to 0.2. This result was explained by the
fact that in jet flow the lack of a wall-blocking effect does not significantly constrain the radial
extent of turbulent motions. In this respect, while Nogueira et al. [11] found that the spectral POD
structures are self-similar in the streamwise and azimuthal directions, the aspect ratio in the radial
and azimuthal directions was not examined. The present investigation of the radial and azimuthal
aspect ratio contributes therefore to complete the characterization of coherent structures in turbulent
jets.

Streaky structures have been recently found in the near field of a jet, resulting from a lift-up
mechanism analogous to turbulent wall-bounded flows (Nogueira et al. [11]). The structures of
streamwise vorticity leading to streamwise velocity fluctuations were examined in relation to the
orifice geometry. To this aim, (i) an averaging of the streamwise vorticity conditioned on the
intense streamwise velocity fluctuations at points on the nominal lip line location and (ii) a joint
Fourier-POD analysis of streamwise velocity and streamwise vorticity were performed. Conditional
averaging showed that intense positive fluctuations of the streamwise velocity are associated
with pairs of streamwise vorticity structures of opposite sign, flanking the point of conditioning.
Consistent with streak and roll dynamics in wall-bounded shear flows, the combined activity of
this vortex pair induces positive fluctuations of the radial velocity, i.e., a flow towards the jet
periphery. Alternatively, negative fluctuations of the streamwise velocity are associated to negative
fluctuations of the radial velocity, i.e., a flow towards the jet centerline. The flow pattern obtained
by this averaging procedure is analogous for both the orifice geometries, although the vorticity
structure from the round jet is 30% larger than the vorticity structure from the fractal jet. From the
joint Fourier-POD analysis, the fractal orifice promotes the involvement of structures over a wider
range of length scales in the mechanism leading to the streaks formation. Lower wave-number
modes contribute in larger part to the overall fluctuation budget in the round jet compared with the
fractal jet. This is consistent with the larger size of the vorticity patterns from conditional averaging
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being larger in the jet from the circular orifice. These aspects have been examined only at two
diameters from the orifice, and further investigations on the axial development of the coupling
between streamwise velocity and streamwise vorticity are warranted. However, our expectation is
that the coupling becomes milder as the jet develops axially, due to the progressively decreasing
mean shear at larger streamwise distances.

Recent observations both from experiments (Jordan et al. [65]) and from numerical simulations
(Towne et al. [66]) underline the importance of the Kelvin-Helmholtz instabilities in the generation
of tonal noise from jet-flap interactions. According to these studies, the wave packets associated with
the Kelvin-Helmholtz instabilities resonate with upstream-traveling trapped acoustic modes located
in the potential core, thus producing far-field tonal noise. In relation to these studies, the attenuation
of the Kelvin-Helmholtz instabilities by the noncircular orifice could mitigate the effects of this
resonance, and ultimately reduce the emissions of tonal noise originating from the interactions
between a round jet and the edge of a flap. Future studies of jet-flap interaction noise with a jet
nozzle of noncircular geometry could shed further light on these aspects.
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