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ABSTRACT
Modern Knowledge Graphs (KGs) are inevitably noisy due to the
nature of their construction process. Existing robust learning tech-
niques for noisy KGs mostly focus on triple facts, where the fact-
wise confidence is straightforward to evaluate. However, hyper-
relational facts, where an arbitrary number of key-value pairs are
associated with a base triplet, have become increasingly popular
in modern KGs, but significantly complicate the confidence assess-
ment of the fact. Against this background, we study the problem of
robust link prediction over noisy hyper-relational KGs, and propose
NYLON, a Noise-resistant hYper-reLatiONal link prediction tech-
nique via active crowd learning. Specifically, beyond the traditional
fact-wise confidence, we first introduce element-wise confidence
measuring the fine-grained confidence of each entity or relation of
a hyper-relational fact. We connect the element- and fact-wise con-
fidences via a “least confidence” principle to allow efficient crowd
labeling. NYLON is then designed to systematically integrate three
key components, where a hyper-relational link predictor uses the
fact-wise confidence for robust prediction, a cross-grained confi-
dence evaluator predicts both element- and fact-wise confidences,
and an effort-efficient active labeler selects informative facts for
crowd annotators to label using an efficient labeling mechanism
guided by the element-wise confidence under the “least confidence”
principle and further followed by data augmentation. We evaluate
NYLON on three real-world KG datasets against a sizeable collec-
tion of baselines. Results show that NYLON achieves superior and
robust performance in both link prediction and error detection
tasks on noisy KGs, and outperforms best baselines by 2.42-10.93%
and 3.46-10.65% in the two tasks, respectively.

CCS CONCEPTS
• Computing methodologies → Knowledge representation
and reasoning.
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1 INTRODUCTION
Knowledge Graphs (KGs) have been widely used to build various
Web applications ranging fromWeb search to recommendation sys-
tems. Traditionally, KGs are represented as a set of triplets, where
each triplet (head, relation, tail), or (h,r,t) for short, represents a fact
that encodes a relation connecting a head entity to a tail entity, such
as (Apple Inc., headquarter location, Cupertino). To better describe the
rich information of the complex facts in real-world scenarios, mod-
ern KGs often contain hyper-relational facts [7, 14, 15, 24, 33, 60],
where a base triplet (ℎ, 𝑟, 𝑡) is further associated with an arbitrary
number of key-value (𝑘, 𝑣) pairs describing additional information
about the base triplet, represented as (ℎ, 𝑟, 𝑡, 𝑘1, 𝑣1, ...). For example,
a hyper-relational fact on Wikidata1 (Apple Inc., industry, software
industry, in the scope of, computer program, in the scope of, oper-
ating system) involves a base triplet (Apple Inc., industry, software
industry), and key-value pairs2 (in the scope of, computer program)
and (in the scope of, operating system) further describing the de-
tailed information about the scope of the software industry that
Apple Inc. is in. To effectively make use of such KGs, link prediction
tasks [2, 45] have been widely adopted to solve KG completion and
reasoning problems, such as (ℎ, 𝑟, ?) or (ℎ, ?, 𝑡, 𝑘1, 𝑣1, ...), where the
question mark indicates the missing element (entity or relation)
to be predicted. Existing approaches to this problem usually de-
sign KG embedding models [45] learning to capture the structural
information of the KG for predicting the missing element.

Despite the wide adoption of KGs in various domains, modern
KGs often contain inevitable noises. Specifically, modern KGs usu-
ally contain millions of entities with billions of facts connecting
them; such a large scale makes it infeasible for manual knowledge
extraction and curation by human experts. Subsequently, existing
KGs are either automatically extracted from large Web corpora
using heuristic algorithms such as NELL [6] and YAGO [40], or
collectively built via crowdsourcing such as Wikidata [42], where
1https://www.wikidata.org/wiki/Q312
2Note that in a (𝑘, 𝑣) pair, 𝑘 and 𝑣 are indeed a relation and an entity, respectively.
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both approaches intrinsically result in noisy KGs. On one hand, the
automatic extraction approach suffers from noisy source corpora
and imperfect extraction techniques. For example, NELL estimates a
precision of 74%, corresponding to around 0.6 million noisy triplets
[6]; YAGO reports an accuracy of 95%, corresponding to around 7.5
million noisy triplets [42]. On the other hand, the crowdsourcing
approach is sensitive to participants’ motivation and vulnerable to
malicious participants. For example, Wikidata has been vandalized
frequently as its facts can be freely edited by anyone [18]. Such
noises could be very harmful to downstream applications [56].

To tackle the noise problem in KGs, existing work focuses either
on noisy triplet detection (a.k.a. error detection) [59] predicting the
erroneous triplets, or on robust link prediction over noisy KGs [50]
predicting the confidence of triplets which are then used to improve
the downstream link prediction performance. In both approaches,
the core problem of confidence assessment of triplets is usually ad-
dressed using KG topology [50] and KG embeddings [17], as well as
using additional information beyond the noisy KG itself such as KG
schematic rules [34], Web corpora [22], third-party clean KGs [13],
KG editing history [30], pre-trained large language models [3], or
crowdsourcing [13]. Although these existing works propose robust
learning solutions to handle noisy KGs, they all focus on triple facts
only, which have been shown to oversimplify the complex nature
of the real-world facts [26, 33]. However, different from a triple
fact that is easy to check its correctness, a hyper-relational fact is
much more complex to be checked. More precisely, it is straight-
forward to check the correctness of a triplet (ℎ, 𝑟, 𝑡) by assessing
whether the entity ℎ and 𝑡 should be connected via the relation
𝑟 (i.e., triple confidence [50]). In contrast, for a hyper-relational
fact (ℎ, 𝑟, 𝑡, 𝑘1, 𝑣1, ...), its correctness depends on the compatibility
of all its contained elements. This significantly complicates the
confidence assessment of the fact, which hinders the application of
many existing confidence assessment techniques.

In this context, confidence assessment by humans via crowd-
sourcing becomes a promising solution. However, due to the expen-
sive cost of crowd annotators, how to effectively integrate crowd-
sourcing into hyper-relational link prediction techniques while
maximally benefiting from the limited human labeling budget is
still a non-trivial task. On one hand, as a hyper-relational fact could
contain an arbitrary number of key-value pairs associated with the
base triplet, crowd annotators may need to spend much effort in
checking those facts containing a large number of elements, such
as the largest hyper-relational fact in our experiment dataset con-
taining 67 entities and 66 relations. It is thus important to design
technical solutions to assist crowd annotators. On the other hand,
the tremendous number of facts contained in modern KGs often
largely exceeds the labeling capacity of crowd annotators, where
only a few representative facts can be labeled. Therefore, it is critical
to not only select the most informative samples for confidence as-
sessment, but also design an efficient labeling mechanism boosting
the confidence prediction performance on other unlabeled facts.

Against this background, we propose NYLON, a Noise-resistant
hYper-reLatiONal link prediction technique via active crowd learn-
ing. Specifically, different from existing confidence assessment tech-
niques that only evaluate the confidence of a whole fact (i.e., fact-
wise confidence), we further introduce so-called element-wise confi-
dence, which measures the fine-grained confidence of each element

(entity or relation) of a hyper-relational fact, which can be used
to significantly reduce the effort of crowd annotators in the noise
labeling process. More precisely, we connect the element- and fact-
wise confidences using a “least confidence” principle, where the
confidence of a fact is determined by the least confidence of all
its elements; in other words, if one element in a fact is labeled as
incorrect, the whole fact is incorrect. Subsequently, this principle
allows that for a noisy fact, the crowd annotators may only need
to check part of its elements until an incorrect element is found.
Following this principle, NYLON is designed to efficiently and ef-
fectively evaluate the confidence of hyper-relational facts for the
ultimate goal of resolving hyper-relational link prediction tasks. It
consists of three components. First, a hyper-relational link predictor
is built on top of self-attention networks with a masked training
process, where each learning hyper-relational fact is weighted by
its fact-wise confidence. Second, a cross-grained confidence evalu-
ator learns from a small set of noise-labeled facts to predict both
element- and fact-wise confidences. Third, an effort-efficient ac-
tive labeler iteratively selects informative hyper-relational facts for
crowd annotators to label according to the fact-wise confidence.
To reduce the labeling effort of crowd annotators, element-wise
confidence is used to guide crowd annotators to check the ele-
ments of a hyper-relational fact according to the ascending order
of their element-wise confidence (where the top ones are most
probably incorrect), and terminate the labeling process until one
incorrect element is found. Moreover, the labeler further augments
the human-labeled facts by generating pseudo-labeled facts having
the same label ratio, which are together regarded as noise-labeled
facts to better train the confidence evaluator. In summary, we make
the following key contributions:
• We study the problem of robust link prediction over noisy hyper-
relational KGs, which is, to the best of our knowledge, the first
work on robust learning over noisy hyper-relational KGs.

• We introduce element-wise confidence beyond the traditional
fact-wise confidence for hyper-relational facts, and bridge the
gap between them using the “least confidence” principle, which
could significantly reduce the labeling effort of crowd annotators.

• We design NYLON, a Noise-resistant hYper-reLatiONal link pre-
diction technique via active crowd learning. Following the “least
confidence” principle, it integrates a hyper-relational link pre-
dictor using the fact-wise confidence for robust prediction, a
cross-grained confidence evaluator predicting both element- and
fact-wise confidences, and an effort-efficient active labeler se-
lecting informative facts for crowd annotators to label via an
efficient labeling mechanism followed by data augmentation.

• We conduct a thorough evaluation of NYLON compared to a
sizable collection of baselines on three KG datasets. Results show
that NYLON outperforms baselines in both link prediction tasks
by 2.42-10.93%, and error detection tasks by 3.46-10.65%. It also
achieves the best Pareto frontier when trading off the task per-
formance and crowdsourcing labeling effort.

2 RELATEDWORK
2.1 Link Prediction on Hyper-Relational KGs
Hyper-relational KGs encode rich informationwith hyper-relational
facts, where each fact contains multiple relations and entities [16,
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33]. Somework adopted an n-ary representation for hyper-relational
facts, i.e., a set of key-value (relation-entity) pairs [16, 24, 60]. As a
typical example in [14, 16], a hyper-relational fact (ℎ, 𝑟, 𝑡) with (𝑘, 𝑣)
is transformed into {𝑟ℎ :ℎ, 𝑟𝑡 :𝑡 , 𝑘 :𝑣 } by converting the relation 𝑟 into
two keys 𝑟ℎ and 𝑟𝑡 , associated with head ℎ and tail 𝑡 , respectively.
Using such n-ary representations, these techniques learn either the
relatedness between entity-relation pairs [14, 16], or relatedness
among all entities in a fact [24, 60] for link prediction. However,
recent studies [15, 33] revealed that the base triplets (ℎ, 𝑟, 𝑡) serve as
the fundamental data structure in the KGs and preserve the essen-
tial information for link prediction, and suggested learning directly
from the hyper-relational facts represented as (ℎ, 𝑟, 𝑡, 𝑘1, 𝑣1, ...). Fol-
lowing this direction, HINGE [33] and NeuInfer [15] design two
different feature extraction pipelines for the base triplets and key-
value pairs, respectively; StarE [12], Hy-Transformer [57], GRAN
[46], QUAD [38] and HAHE [27] design Graph Neural Networks
(GNNs) to encode the base triplets together with key-value pairs
using transformer networks for link prediction.

However, these existing works all assume that the input KG is
clean and noise-free, which is often an unrealistic assumption for
real-world large-scale KGs that are either automatically extracted
from Web corpora or collectively built in a crowdsourcing manner.

2.2 Robust Learning on Noisy KGs
To tackle noisy KGs, robust learning techniques are widely studied,
which can be classified into two categories as follows:

The first category relies on facts of KGs only, evaluating the
confidence of facts using the topology/structure/paths of a KG and
mostly together with the entity/relation embeddings of the KG. For
example, CKRL [50] combines local triple confidence and global
path confidence; KGTtm [23] estimates the confidence of triplets
under a PageRank-like resource allocation mechanism; SUKE [44]
combines KG structural and knowledge uncertain information for
fact confidence prediction; Reform [47] designs an error mitiga-
tion technique using GNNs for confidence prediction; GEDet [17]
combines graph data augmentation and generative adversarial net-
works for erroneous entity detection; CAGED [59] uses contrastive
learning for KG error detection by focusing on nontrivial erro-
neous triplets; IDKG [20] combines entity embedding similarity
with relation path confidence to detect noisy facts.

Besides the information from the KG, additional data have also
been used to design noise-resistant learning techniques. For ex-
ample, RUGE [19] includes KG schema [25, 54] information and
proposes a schema-rule-based KG cleaning technique; CrossVal [49]
uses an external KG to validate facts in a target KG via cross-graph
representation learning; TKGC [22] jointly performs fact extraction
tasks and noisy fact cleaning using open Web data; Bass [31] uses
KG edit history and a set of constraints, to automatically correct
constraint violations of facts; Knowledge Vault [9] is a Web-scale
probabilistic knowledge base where noisy facts are detected and cor-
rected using prior models built from already-cataloged knowledge.
We also acknowledge the potential of Large LanguageModels (LLM)
in KG robust learning, such as using LLM probes for KG repairing
[3]. However, as the prompt design for hyper-relational facts is a
non-trivial task due to the complexity of the hyper-relationality,
we leave this direction as our future work.

These existing robust learning methods all focus on triple facts
only. However, hyper-relational KGs significantly complicate the
confidence assessment of hyper-relational facts, which hinders the
application of many existing confidence assessment techniques.
Therefore, we propose NYLON for noise-resistant hyper-relational
link prediction via active crowd learning.

2.3 Crowdsourcing for KGs
Crowdsourcing has been widely used for KG construction [32] and
KG alignment [21]. A few existing works also leverage crowdsourc-
ing for cleaning noisy KGs. For example, Acosta et al.[1] adopted a
Find-Fix-Verify mechanism [5] to directly fix incorrect or incom-
plete object values, data types, and links in KGs; WhoKnows [43]
proposes a strategy to generate questionnaires for KG cleaning;
KGClean [13] uses a pre-trained clean KG embedding model com-
bined with crowdsourcing to detect and repair a noisy KG; KAEL
[8] integrates crowdsourcing with ensemble learning for noise de-
tection. However, these works have not looked into crowdsourcing
for noisy hyper-relational KGs. Our work fills this gap.

A slighted related line of work addresses the human side issues
in crowdsourcing, for example, various human biases affected by
cognitive [11], cultural and demographic [10] factors, which may
lead to sub-optimal performance. However, the utility of active
learning lies in the amount of labeling cost being saved compared
to the setting without active learning [52]; methods for dealing
with these biases [4, 55, 61] are thus orthogonal to our work, in the
sense that they can be considered in our problem but are not the
focus of our work.

3 NYLON
In this section, we present NYLON, a noise-resistant hyper-relational
link prediction technique via active crowd learning. Specifically,
beyond the traditional fact-wise confidence that is widely used to
evaluate the confidence of a fact as a whole, we introduce element-
wise confidence measuring the fine-grained confidence of each ele-
ment (entity or relation) of a hyper-relational fact. We connect the
element-wise confidence to the fact-wise confidence using a “least
confidence” principle, which states that the confidence of a fact
is determined by the least confidence of all its elements. Following
this principle, we design NYLON integrating three components as
shown in Figure 1: 1) a hyper-relational link predictor built on top
of a hyper-relational fact encoder based on self-attention networks
with amasked training process, where each training fact is weighted
by its predicted fact-wise confidence; 2) a cross-grained confidence
evaluator trained on a small set of noise-labeled hyper-relational
facts obtained via crowdsourcing, so as to predict both element-
and fact-wise confidences while following the “least confidence”
principle; 3) an effort-efficient active labeler selecting informative
hyper-relational facts for crowd annotators to label according to
the fact-wise confidence, guiding the labeling process using the
element-wise confidence to reduce the labeling effort of crowd anno-
tators, and also augmenting the human-labeled facts by generating
pseudo-labeled facts which are together regarded as noise-labeled
facts to better train the confidence evaluator. We present the detail
of each component below, followed by the model training process.
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Figure 1: Overview of NYLON with three components: 1) Hyper-Relational Link Predictor; 2) Cross-Grained Confidence
Evaluator; 3) Effort-Efficient Active Labeler. Three training pipelines are shown as arrows in three different colors, respectively.

3.1 Hyper-Relational Link Predictor
The hyper-relational link predictor is designed to predict a miss-
ing element (entity or relation) in a hyper-relational fact. It is
built on top of a hyper-relational fact encoder with a masked
training process. Specifically, inspired by GRAN [46], our encoder
adopts a self-attention network with learnable edge biases dis-
criminating connections between different elements in the hyper-
relational fact, to capture the correlation between entities and rela-
tions both in the base triplet and the key-value pairs. We present a
single self-attention layer below. For an input hyper-relational fact
(ℎ, 𝑟, [𝑚𝑎𝑠𝑘] , 𝑘1, 𝑣1, ...) (with a missing element masked for predic-
tion), it is fed into a self-attention layer [41]. For each element 𝑢𝑖 ∈
(ℎ, 𝑟, [𝑚𝑎𝑠𝑘] , 𝑘1, 𝑣1, ...), its embedding ®𝑢𝑖 ∈ R𝑑 is first projected
into attention query, key and value3 W𝑄 ®𝑢𝑖 ,W𝐾 ®𝑢𝑖 ,W𝑉 ®𝑢𝑖 ∈ R𝑑
by linear transformation parameters W𝑄 ,W𝐾 ,W𝑉 ∈ R𝑑×𝑑 . The
pair-wise similarity between elements is computed as:

𝛽𝑖 𝑗 =
(W𝑄 ®𝑢𝑖 )⊤ (W𝐾 ®𝑢 𝑗 + ®𝑐𝐾

𝑖 𝑗
)

√
𝑑

(1)

where ®𝑐𝐾
𝑖 𝑗

(and also ®𝑐𝑉
𝑖 𝑗

below) refers to learnable edge biases on
attention key (and value)3 [37, 46]. In the self-attention layer, a
hyper-relational fact is viewed as a fully-connected graph with edge
biases specifying the type of edges connecting different elements

3Note that attention key and value are completely irrelevant to the key-value pairs in
a hyper-relational fact.

in the hyper-relational fact. Five types of undirected edges are
considered, namely (ℎ, 𝑟 ), (𝑡, 𝑟 ), (𝑟, 𝑘), (𝑘, 𝑣) and others not included
in the categories above, which is shown as an adjacency matrix in
Figure 1. Afterward, a softmax function is used to normalize the
similarity score 𝛽𝑖 𝑗 , and the edge biases ®𝑐𝑉

𝑖 𝑗
on the attention value3

is also added when updating the embedding of element ®𝑢𝑖 :

®𝑢
′
𝑖 =

𝑁∑︁
𝑗=1

exp
(
𝛽𝑖 𝑗

)∑𝑁
𝑘=1 exp (𝛽𝑖𝑘 )

(
W𝑉 ®𝑢 𝑗 + ®𝑐𝑉𝑖 𝑗

)
(2)

where 𝑁 represents the number of elements in the hyper-relational
fact. We stack a number of 𝐿𝐻 self-attention layers with learnable
edge biases to generate the embedding of the [MASK] token, de-
noted as ®𝑥𝑀 . To predict the missing element, a single layer of a
linear transformation with a softmax function is used:

®𝑝 = softmax
(
W𝑀 ®𝑥𝑀 + ®𝑏𝑀

)
(3)

where W𝑀 is the weight matrix of the input embedding layer of
entities and ®𝑏𝑀 is a learnable entity bias, as the missing element is
an entity in the above example. For predicting a missing relation,
the learnable parametersW𝑀 and ®𝑏𝑀 in Eq. (3) correspond to the
weight matrices of the input embedding layer of relation and re-
lation bias, respectively. The final output of our hyper-relational
link predictor is a probability distribution ®𝑝 over all entities (or re-
lations), and we compute the cross-entropy loss against the ground
truth entity (or relation), denoted as ®𝑦𝑙 . To consider the confidence
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of an input fact, we re-scale its loss according to its predicted fact-
wise confidence 𝜏𝑓 (which we introduce in the next subsection), to
form a so-called noise-resistant link prediction 𝑙𝑜𝑠𝑠𝐿 as follows:

𝑙𝑜𝑠𝑠𝐿 = CELoss( ®𝑝, ®𝑦𝑙 ) · 𝜏𝑓 (4)

Subsequently, for a fact with low confidence, this loss can weaken
its importance in the training process. Note that NYLON is not
limited to this specific hyper-relational fact encoder; it can easily
generalize to other encoders (see Appendix A.5).

3.2 Cross-Grained Confidence Evaluator
The cross-grained confidence evaluator is designed to predict both
element- and fact-wise confidences while following the “least confi-
dence” principle. Due to the expensive cost of crowd annotators, it
is trained on a small set of noise-labeled hyper-relational facts ob-
tained via our effort-efficient active labeler. First, the cross-grained
confidence evaluator shares the same hyper-relational fact encoder
used by the hyper-relational link predictor, due to the following
two reasons. On one hand, the encoder generates informative em-
beddings by learning the complex correlation between elements
in a hyper-relational fact, which could then be used to effectively
support different downstream tasks including link prediction and
confidence prediction, as these two tasks both require learning
the correlation and compatibility of elements in the fact. On the
other hand, as the small set of noise-labeled hyper-relational facts
is often insufficient to train a high-quality encoder for the confi-
dence prediction task, the shared hyper-relational factor encoder
could benefit from the large training set for the link prediction
task (as evidenced by our ablation study later). Second, based on
the embeddings generated by the encoder for all elements in a
hyper-relational fact, we adopt a feed-forward network with 𝐿𝑐
fully connected layers, noted as 𝐹𝐹𝑁 , to predict the element-wise
confidence ®𝜏𝑒 of the fact.

®𝜏𝑒 = sigmoid (𝐹𝐹𝑁 ( [ ®𝑥ℎ, ®𝑥𝑟 , ®𝑥𝑡 . . . ])) (5)

where the sigmoid function bounds the confidence ®𝜏𝑒 ∈ (0, 1). For
the fact-wise confidence, following the “least confidence” principle
which states that the confidence of a fact is determined by the least
confidence of all its elements, we utilize a min-pooling layer to
generate the fact-wise confidence 𝜏𝑓 :

𝜏𝑓 = min ( ®𝜏𝑒 ) (6)

We train our cross-grained confidence evaluator by defining a loss
combining both element-wise confidence 𝑙𝑜𝑠𝑠𝑒 and fact-wise confi-
dence 𝑙𝑜𝑠𝑠𝑓 , which are both computed using BCELoss as follows:

𝑙𝑜𝑠𝑠𝑒 =
1

| | ®𝑚𝑒 | |0
BCELoss ( ®𝜏𝑒 ⊙ ®𝑚𝑒 , ®𝑦𝑒 ⊙ ®𝑚𝑒 ) (7)

𝑙𝑜𝑠𝑠𝑓 = BCELoss(𝜏𝑓 , 𝑦𝑓 ) (8)
where 𝑦𝑓 ∈ {0, 1} is the fact-wise confidence label, while ®𝑦𝑒 is the
element-wise confidence label vector (each entry of ®𝑦𝑒 refers to the
confidence label of the corresponding element). Note that ®𝑦𝑒 could
be partially labeled, as our “least confidence” principle suggests the
labeling process could be terminated until one incorrect element
is found, so as to reduce the crowd labeling effort (see Section 3.3
below for more detail). Subsequently, we introduce a binary mask
vector ®𝑚𝑒 to discount the impact of unlabeled elements in the loss,

where an entry of 1 in ®𝑚𝑒 indicates the corresponding element
is actually labeled, 0 otherwise; ⊙ is the Hadamard product, and
| | ®𝑚𝑒 | |0 is the L0-norm (the number of non-zero values) of ®𝑚𝑒 for
normalization. The overall confidence prediction 𝑙𝑜𝑠𝑠𝐶 combines
both element- and fact-wise confidence losses as follows:

𝑙𝑜𝑠𝑠𝐶 = 𝑙𝑜𝑠𝑠𝑒 + 𝑙𝑜𝑠𝑠𝑓 (9)

3.3 Effort-Efficient Active Labeler
The effort-efficient active labeler is designed on one hand for ac-
tively selecting a small set of informative hyper-relational facts for
crowd annotators to label, while on the other hand for reducing the
labeling effort of crowd annotators via an effort-efficient labeling
mechanism, followed by label-ratio-compliant data augmentation.

3.3.1 Uncertainty sampling for active learning. To select the most
informative facts to train the confidence evaluator, we follow the
idea of uncertainty sampling [35] for active learning to pick the
most uncertain facts. To this end, we select the facts whose fact-
wise confidence is most close to 0.5 (which our confidence evaluator
is most uncertain of) as follows:

𝑓 ∗ = argmin
𝑓 ∈D

��𝜏𝑓 − 0.5
�� (10)

where D denotes a set of training facts. In practice, for each active
learning iteration, we pick the top uncertain and unlabeled facts as
query facts for labeling, under a crowdsourcing budget constraint
(see Section 3.4 below for more detail).

3.3.2 Effort-efficient labeling mechanism. To reduce the labeling
effort of crowd annotators, we follow the “least confidence” prin-
ciple to design an effort-efficient labeling mechanism. Specifically,
we use the element-wise confidence of each query fact to guide
crowd annotators to check the elements of the fact according to the
ascending order of their element-wise confidence (where the top
elements are most probably incorrect), and terminate the labeling
process until one incorrect element is found, as shown in Figure
1. Subsequently, for a noisy fact, the crowd annotators need to
check only part of its elements until an incorrect element is found,
thus reducing the labeling effort of crowd annotators. Note that
the unlabeled elements do not affect the training process of the
cross-grained confidence evaluator, as the unlabeled elements are
marked by the binary mask vector ®𝑚𝑒 as 0, which eliminates the
loss of unlabeled element from the learning objective using Eq. 7.

3.3.3 Label-ratio-compliant data augmentation. Based on the above
human-labeled facts, we perform label-ratio-compliant data aug-
mentation, which is particularly beneficial when learning from very
limited human-labeled facts, as evidenced by our ablation study
later. Specifically, following thewidely adopted “cluster assumption”
[48, 62] in semi-supervised learning, we first generate 𝑘 pseudo-
labeled positive facts from each human-labeled positive fact, i.e.,
its top 𝑘 closest unlabeled facts in the fact embedding space under
L2-distance, where fact embeddings are the concatenated output of
our the hyper-relational fact encoder

[−→𝑥 ℎ,−→𝑥 𝑟 ,−→𝑥 𝑡 , . . . ] . Afterward,
from each pseudo-labeled positive fact, we generate one pseudo-
labeled negative fact via negative sampling by randomly corrupting
its element. Then, we perform label-ratio-compliant drop-off on
these pseudo-labeled facts so as to ensure their positive/negative
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ratio is consistent with the ratio of human-labeled facts. Finally,
the pseudo-labeled facts and the human-labeled facts are together
regarded as noise-labeled facts for training the confidence evaluator.

3.4 Training Process
3.4.1 Overall training process. For each training epoch, the three
pipelines in Figure 1 alternate as follows. First, we start by training
our cross-grained confidence evaluator on a small set of noise-
labeled training facts (randomly selected in the first epoch, and
then generated by our active labeler in the following epochs) un-
der a crowdsourcing budget 𝑏, to minimize the overall confidence
loss integrating both element- and fact-wise confidences using Eq.
9. Second, we train our hyper-relational link predictor using all
training facts. Specifically, each training fact is fed both to the hyper-
relational link predictor to perform the masked training process
obtaining its cross-entropy loss for link prediction, and to the cross-
grained confidence evaluator to obtain the element- and fact-wise
confidences (which are cached for active labeler later for efficiency
purposes). The obtained link prediction loss and the fact-wise con-
fidence are finally combined as the noise-resistant link prediction
loss using Eq. 4, which is optimized via backpropagation. Third, our
effort-efficient active labeler uses the cached element- and fact-wise
confidence to select the top uncertain and unlabeled facts as query
facts for human labeling (under the given crowdsourcing budget
𝑏), which are then augmented to noise-labeled facts. We repeat the
training pipelines until convergence.

3.4.2 Incremental training of confidence evaluator via meta-learning.
In the above training process, the amount of noise-labeled train-
ing facts increases over epochs. Here we adopt an incremental
training scheme using meta-learning [29] to efficiently train our
cross-grained confidence evaluator. We regard the set of noise-
labeled training facts T𝑖 in the epoch 𝑖 as one meta-learning task,
and set the meta-goal as generalizing the model to the latest𝑤 sets
of noise-labeled training facts, i.e, {T𝑙 |max(𝑖−𝑤, 1) < 𝑙 ≤ 𝑖}, where
themax operation implies that when the current epoch 𝑖 is less than
the defined window size𝑤 , we use all existing sets of noise-labeled
training facts {T𝑙 |1 < 𝑙 ≤ 𝑖}. We use the first-order meta-learning
algorithm Reptile [28] for efficient parameter updating.

Appendix A.1 summarizes the NYLON training algorithm. Our
code is available online4.

4 EXPERIMENTS
4.1 Experimental Setup
4.1.1 Dataset. Weevaluate NYLONon three commonly used hyper-
relational KG datasets JF17K [60], WikiPeople [16] and WD50K
[12], as shown in Table 1. As there are no explicitly labeled noisy
facts in these datasets, we design a hyper-relational noisy fact gen-
eration strategy. Specifically, existing triple noisy fact generation
methods [13, 50, 53] randomly corrupt one element (entity or rela-
tion) in a positive triple fact to generate a noisy fact. We generalize
it to a two-step approach for hyper-relational facts. First, for a
hyper-relation fact of 𝑛 elements, we randomly choose 𝑞 (𝑞 ∈ N
and 1 ≤ 𝑞 ≤ 𝑛

2 ) elements to corrupt, to ensure the number of
corrupt elements is not greater than half of the total elements in

4https://github.com/UM-Data-Intelligence-Lab/NYLON_code

Table 1: Statistics of the datasets

Dataset JF17K WikiPeople WD50K
#Entities / #Relations 28,645 / 501 34,825 / 178 47,109 / 531
#Training facts 76,379 294,439 166,345
Triple+Hyper (%) 57.9%+42.1% 97.4%+2.6% 86.2%+13.8%
#Test tuples 6,144 9,472 46,139
Triple+Hyper (%) 42.4%+57.6% 97.2%+2.8% 86.9%+13.1%

the fact. Second, we corrupt each chosen entity or relation by a ran-
domly picked entity or relation, respectively. Note that for a triple
fact where 𝑛 = 3, our approach randomly corrupts 𝑞 = 1 element,
which is equivalent to the triple noisy fact generation methods. To
evaluate the robustness of our method against different levels of
noise, we generate and insert different percentages of noisy facts
compared to the number of positive facts. Specifically, we consider
the cases of noisy facts being 2%, 5%, 10%, 20%, 40%, 60%, 80%, and
100% of the positive facts in our experiments.

4.1.2 Baselines. We compare NYLON against a sizeable collection
of state-of-the-art techniques from the following three categories.
First, hyper-relational link prediction techniques without consider-
ing noisy facts include GRAN [46], StarE [12], Hy-Transformer
[57], QUAD [38], ShrinkE [51] and LGHAE [58]. Second, robust
learning techniques for both error detection and link prediction over
noisy KGs include CKRL [50] and our improved version CKRL-
Fix (by adapting to hyper-relational KGs), KGTtm [23], and IDKG
[20]. Third, active crowd learning techniques consider two specific
settings for selecting informative data samples to label via crowd-
sourcing. On one hand, following the setting of the error detection
techniques [20, 23], we regard the output of the binary classifier for
error detection as the fact-wise confidence which is then used for
active learning and crowdsourcing; these methods are denoted as
CKRL-Fix (AL),KGTtm (AL), and IDKG (AL). On the other hand,
we also consider active learning sampling strategies based on learnt
embeddings, Farthest-Traversa (FT) [39] and Density-Weighted
Methods (DWM) [36], which are integrated with our NYLON by
replacing our uncertainty sampling method, denoted as NYLON-
FT and NYLON-DWM, respectively; we refer to them together
with our NYLON as the NYLON family. The detailed description
and settings of all methods are presented in the Appendix A.2.

4.1.3 Evaluation Protocol. We consider hyper-relational link pre-
diction as our primary evaluation task. It predicts a missing element
in a hyper-relational fact, such as (ℎ, 𝑟, ?, 𝑘1, 𝑣1, ...) or (ℎ, ?, 𝑡, 𝑘1, 𝑣1, ...)
where the missing element is an entity or a relation, respectively.
We generate a ranking list of entities or relations using each method
and report two commonly used metrics, i.e., Mean Reciprocal Rank
(MRR) and Hits@1, for link prediction tasks on entities and rela-
tions separately. Other metrics like Hit@3/5/10 show similar results,
but are not presented due to space limitations. Moreover, we also
evaluate confidence prediction as a binary classification task, a.k.a.
error detection tasks [23], classifying whether a fact is a noisy fact;
we report Accuracy as the evaluation metric. In addition, as our
method NYLON can also predict element-wise confidence beyond
the fact-wise confidence, we thus report element-wise accuracy
when applicable.

To evaluate the efficiency of our proposed labeling mechanism,
we consider different crowdsourcing labeling budgets𝑏. Specifically,
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Table 2: Overall link prediction performance (*StarE, Hy-Transformer, ShrinkE, LGHAE, and QUAD only predict entities; they
cannot be applied for relation prediction (marked as N/A), and their results on entity prediction also exclude value prediction.

Method
JF17K WikiPeople WD50K

Entity Relation Entity Relation Entity Relation
MRR Hit@1 MRR Hit@1 MRR Hit@1 MRR Hit@1 MRR Hit@1 MRR Hit@1

Hyper-
relational
link
prediction

GRAN 0.4910 0.4063 0.9902 0.9851 0.4259 0.3132 0.9490 0.9211 0.2804 0.2171 0.8951 0.8545
StarE* 0.4322 0.3449 N/A N/A 0.3457 0.2149 N/A N/A 0.2372 0.1669 N/A N/A
Hy-Transformer* 0.4705 0.3848 N/A N/A 0.3825 0.2612 N/A N/A 0.2631 0.1924 N/A N/A
QUAD* 0.3869 0.2888 N/A N/A 0.3167 0.1891 N/A N/A 0.2362 0.1693 N/A N/A
ShrinkE* 0.4470 0.3626 N/A N/A 0.3037 0.2258 N/A N/A 0.1715 0.1146 N/A N/A
LGHAE* 0.4729 0.3838 N/A N/A 0.3704 0.2481 N/A N/A 0.2592 0.1861 N/A N/A

Robust
learning

CKRL 0.4764 0.3952 0.9896 0.9842 0.4398 0.3502 0.9256 0.8915 0.2726 0.2094 0.8934 0.8528
CKRL-Fix 0.4870 0.4013 0.9905 0.9858 0.4328 0.3208 0.9480 0.9210 0.2815 0.2177 0.8969 0.8561
KGTtm 0.4744 0.3921 0.9877 0.9820 0.4153 0.3012 0.9487 0.9217 0.2654 0.2047 0.8860 0.8431
IDKG 0.4875 0.4045 0.9893 0.9840 0.4570 0.3685 0.9454 0.9186 0.2732 0.2167 0.8796 0.8353

Active
crowd
learning

CKRL-Fix (AL) 0.4839 0.4048 0.9871 0.9802 0.3832 0.2900 0.9333 0.9045 0.2750 0.2178 0.8771 0.8331
KGTtm (AL) 0.4776 0.3991 0.9851 0.9773 0.3788 0.2846 0.9350 0.9053 0.2716 0.2150 0.8753 0.8302
IDKG (AL) 0.4894 0.4044 0.9899 0.9849 0.4258 0.3139 0.9470 0.9179 0.2799 0.2164 0.8940 0.8533

NYLON
family

NYLON-FT 0.5122 0.4265 0.9917 0.9877 0.4732 0.3795 0.9457 0.9234 0.3064 0.2454 0.9014 0.8641
NYLON-DWM 0.5082 0.4253 0.9905 0.9862 0.4721 0.3847 0.9452 0.9236 0.3035 0.2422 0.8938 0.8561
NYLON 0.5349 0.4476 0.9929 0.9894 0.5019 0.4151 0.9607 0.9436 0.3285 0.2649 0.9162 0.8838

following our element-wise confidence, we define the 𝑏 as the
number of elements to be labeled in each active learning iteration.
To discount the impact of the different numbers of facts across
datasets, we define 𝑏 as a percentage of elements (over the number
of all elements of all facts in a dataset) to be labeled and consider
the following values: 0.025%, 0.05%, 0.1%, 0.15%, 0.2%, and 0.25%.
The default budget is set to 0.25% if not specified otherwise.

4.2 Link Prediction Performance
We compare NYLON with all baselines on hyper-relational link
prediction performance. Table 2 shows the results with the dataset
setting of 100% noise level, which is the highest noisy level and thus
the most difficult dataset setting (results with 40% noise level are
shown in Appendix A.3). Figure 2 further shows the performance
of the best-performing techniques (per category of techniques on
each dataset) across different noise levels.

We observe that NYLON consistently achieves the best link pre-
diction performance compared to all baselines in Table 2. Specif-
ically, NYLON outperforms the best-performing baselines (from
all categories excluding the NYLON family) by 4.93%, 6.52%, and
10.93% on JF17K, WikiPeople, and WD50K, respectively. Moreover,
we also observe in Figure 2 that NYLON is much more robust than
baseline techniques against different levels of noise. When increas-
ing the level of noise, the performance of NYLON decreases much
slower than baseline techniques or even retains its performance in
some cases. Finally, compared to the best baseline in NYLON family
NYLON-FT, NYLON yields 2.42%, 4.81%, and 4.77% improvement
(on average) on the three respective datasets, showing the advan-
tage of our uncertainty sampling technique based on the confidence
predicted by our cross-grained confidence evaluator.

Interestingly, we observe that the existing robust learning tech-
niques designed for noisy triple facts sometimes yield little im-
provement on noisy hyper-relational KGs. For example, in Table
2, compared to the best hyper-relational link prediction method
GRAN, the best robust learning method IDKG shows comparable

(a) MRR for Entity on JF17K (b) MRR for Relation on JF17K

Figure 2: Performance comparison with the best-performing
baselines (per category of techniques) on JF17K (results on
other datasets shown in Appendix A.4).

results on JF17K and WD50K, but a clear improvement on WikiPeo-
ple. Because triple facts dominate the WikiPeople dataset (over 97%
as shown in Table 1); this is not the case in the other two datasets.

4.3 Error Detection Performance
We evaluate NYLON on the error detection task, which applies to
all active crowd learning techniques learning a binary classifier to
predict the probability of a fact being fake. Table 3 shows the results
with 100% noise level (results with 40% noise level are shown in Ap-
pendix A.3). We observe that NYLON significantly outperforms all
baselines in this task, yielding 10.65% and 3.46% improvement (on
average over datasets) on fact- and element-wise error detection, re-
spectively, over the best baselines. We also find that the methods us-
ing hand-crafted features/confidences for triple facts, i.e., CKRL-Fix
(AL), KGTtm (AL), and IDKG (AL), show much worse results than
the NYLON family. Because these heuristic features/confidences for
triple facts fail to consider the hyper-relationality of our facts. Fi-
nally, we conduct a case study to demonstrate the predicted element-
wise confidence in Appendix A.8.

4.4 Ablation Study
We consider the following variation of NYLON in the ablation
study. NYLON (noSE) does not use the Share hyper-relational
fact Encoder between the hyper-relational link predictor and the
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Table 3: Error detection performance (in accuracy)

Method JF17K WikiPeople WD50K
Fact Element Fact Element Fact Element

CKRL-Fix (AL) 0.5022 N/A 0.5029 N/A 0.5014 N/A
KGTtm (AL) 0.5172 N/A 0.6409 N/A 0.5308 N/A
IDKG (AL) 0.7571 N/A 0.7965 N/A 0.7806 N/A
NYLON-FT 0.8104 0.9166 0.8722 0.9337 0.8511 0.9358
NYLON-DWM 0.8407 0.9332 0.8565 0.9265 0.7102 0.8568
NYLON 0.9606 0.9791 0.9528 0.9661 0.9231 0.9543

Table 4: Ablation study on link prediction (in MRR)

Method JF17K WikiPeople WD50K
Entity Relation Entity Relation Entity Relation

NYLON (noSE)# 0.5194 0.9906 0.4825 0.9485 0.3122 0.9004
NYLON (noUS)+ 0.5224 0.9917 0.4908 0.9591 0.3160 0.9061
NYLON (noEEL)+ 0.5299 0.9926 0.5018 0.9587 0.3238 0.9112
NYLON 0.5349 0.9929 0.5019 0.9607 0.3285 0.9162

Table 5: Ablation study on error detection (in accuracy)

Method JF17K WikiPeople WD50K
Fact Element Fact Element Fact Element

NYLON (noSE)# 0.8556 0.9307 0.9078 0.9455 0.8185 0.9158
NYLON (noUS)+ 0.9283 0.9700 0.9284 0.9596 0.8861 0.9451
NYLON (noEEL)+ 0.9480 0.9776 0.9390 0.9651 0.9070 0.9528
NYLON 0.9606 0.9791 0.9528 0.9661 0.9231 0.9543

cross-grained confidence evaluator; instead, it uses two separate
encoders for the two respective components. NYLON (noUS) does
not use the Uncertainty Sampling technique; instead, it randomly
samples facts to be labeled. NYLON (noEEL) removes the Effort-
Efficient Labeling mechanism, where the element-wise confidence
is not used and crowd annotators are required to label all elements
for each query fact. Table 4 and 5 show the results on 100% noise
level. Paired t-tests are used for statistical significance, where we
highlight (p-value<0.01)# and (p-value<0.05)+.

4.4.1 Impact of the shared hyper-relational fact encoder. We ob-
serve that NYLON significantly outperforms NYLON (noSE) by
2.58% and 6.93% (on average over datasets) on link prediction and
error detection tasks, respectively. This verifies our design choice
of using the shared hyper-relational fact encoder, which indeed
benefits both link prediction and confidence evaluation.

4.4.2 Impact of the uncertainty sampling. We observe that NYLON
outperforms NYLON (noUS) by 1.67% and 2.14% (on average over
datasets) on link prediction and error detection tasks, respectively,
which shows the effectiveness of our uncertainty sampling, where
we select the facts whose fact-wise confidence is closest to 0.5 (the
case that our confidence evaluator is most uncertain of).

4.4.3 Effort-Efficient Labeling Performance. We see that NYLON
consistently outperforms NYLON (noEEL), showing the effective-
ness of our effort-efficient labeling mechanism. Given the same
crowdsourcing budget𝑏 (i.e., the number of elements to be checked),
our mechanism designed under the “least confidence” principle ob-
tains more but partially labeled facts, while NYLON (noEEL), which
requires crowd annotators to label all elements for each query fact,
obtains less but fully-labeled facts. NYLON can benefit from the
larger number of partially labeled facts for confidence evaluation.

(a) Link prediction on JF17K (b) Error detection on JF17K

Figure 3: Tradeoff between performance and labeling budget
on JF17K (results on other datasets shown in Appendix A.6)

Moreover, we show the tradeoff between the performance and
the labeling budget in Figure 3. Here we also study the impact
of our data augmentation by comparing the number of pseudo-
labeled facts 𝑘 = 0 and the 𝑏𝑒𝑠𝑡 𝑘 searched over {1, 2, 5, 10}. First,
the performance on both link prediction and error detection tasks
increaseswhen increasing the labeling budget, andNYLON achieves
a better Pareto frontier than NYLON (noEEL). Furthermore, we see
that our data augmentation can effectively boost performance in
the case of a small labeling budget. This utility decreases when
increasing the labeling budget, and even leads to negative effects
for a large budget. Because with enough human-labeled facts for
training the confidence evaluator, the pseudo-labeled facts could
introduce additional noise. Therefore, 𝑘 is suggested to be tuned
according to the specific labeling budget on each dataset. A detailed
parameter sensitivity study of 𝑘 can be found in Appendix A.7.

5 CONCLUSION
In this paper, we study the problem of robust link prediction over
noisy hyper-relational facts, and propose NYLON, a Noise-resistant
hYper-reLatiONal link prediction technique via active crowd learn-
ing. We first introduce the element-wise confidence beyond the tra-
ditional fact-wise confidence for hyper-relational facts, and bridge
the gap between them using the “least confidence” principle. Fol-
lowing this principle, NYLON systematically integrates a hyper-
relational link predictor using the fact-wise confidence for robust
prediction, a cross-grained confidence evaluator predicting both
element- and fact-wise confidences, and an effort-efficient active
labeler selecting informative facts for crowd annotators to label
via an efficient labeling mechanism with label-ratio-compliant data
augmentation. Evaluation results on three KG datasets show that
NYLON achieves superior and robust performance in both link pre-
diction and error detection tasks, and outperforms best baselines
by 2.42-10.93% and 3.46-10.65% in the two tasks, respectively.

In the future, we plan to incorporate KG schemas to further assist
the labeling process of crowd annotators.
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A APPENDIX
A.1 NYLON Training Algorithm
Algorithm 1 summarizes the overall training process. After initial-
izing the first set of noise-labeled training facts (Line 1), we repeat
the three training pipelines: incrementally train the cross-grained
confidence evaluator using meta-learning (Line 3), train the hyper-
relational link predictor (Line 4) and get a new set of noise-labeled
training facts via the effort-efficient active labeler (Line 5). As our
ultimate goal is for robust link prediction over noisy KGs, we use
the link prediction loss for the convergence criterion (Line 6).

A.2 Baselines and Settings
The three categories of baselines in our experiments are as follows:

• Hyper-relational link prediction techniques, where they do not
consider the confidence of noisy facts.GRAN [46] is our selected
encoder in NYLON. StarE [12] represents a hyper-relational fact
as a directed heterogeneous graph and designs a customized
message-passing mechanism to extract the inter-vertex inter-
action using GNNs. Hy-Transformer [57] extends StarE by
replacing the message-passing mechanism with a lightweight en-
tity/relation embedding module and adding a qualifier-oriented
auxiliary training task. QUAD [38] also extends StarE by adopt-
ing two separate aggregators to encode the primary entity-typed
triplets and associated key-type pairs, respectively. ShrinkE [51]
transforms the head entity to box (set of parameters boundedwith
upper and lower limits) with relation, shifts this boxes with qual-
ifiers and evaluates this fact with box-tail distance. LGHAE[58]
aggregates entities without tail and relations in both primary
triples and qualifiers respectively to predict the missing tail entity.
We do not include NaLP [16], HINGE [33], and NeuInfer [15]

here, as they have been shown to underperform the methods
above [46].

• Robust learning techniques for both error detection and link pre-
diction over noisy KGs. CKRL [50] is a robust link prediction
technique over noisy KGs. It evaluates the confidence of a fact
by combining a local triple confidence score computed using an
energy function and a global path confidence score computed via
the relation path reliability. We replace its original link predictor
TransE for triple facts with our hyper-relational link predictor.
CKRL-Fix is our improved version of CKRL [50] by re-designing
the local triple confidence to fit the energy score (loss) output by
our hyper-relational link predictor. Specifically, CKRL designs a
mechanism to reinforce the confidence of facts with high energy
scores (greater than a threshold) and punish others. This thresh-
old is defined as a margin-based distance function, which fits
well with the margin-based training strategy of TransE. However,
when replacing TransE with our hyper-relational link predictor,
the thresholding mechanism does not fit our cross-entropy loss.
Therefore, we propose a ranking-based mechanism to reinforce
the confidence of facts whose loss is the top half minimum and
punish others, which can indeed improve the link prediction per-
formance as evidenced by our experiments. KGTtm [23] is an er-
ror detection technique for noisy triplets. It integrates confidence
scores measured at the entity level using energy scores, at the re-
lationship level via resource allocation, and at the KG global level
via reachable paths inference. As KGTtm is originally designed
for error detection tasks trained on a fixed dataset without active
crowd learning, we thus integrate it with our hyper-relational link
predictor by simply averaging the confidence scores at the three
levels as the fact-wise confidence. IDKG [20] is another error
detection technique, which combines resource-allocation-based
entity semantic representation confidence scores and relation
path confidence scores. We adopt the same setting above (as for
KGTtm) to integrate IDKG with our hyper-relational link pre-
dictor, i.e., combining the averaged confidence scores with our
hyper-relational link predictor.

• Active crowd learning techniques for selecting informative data
samples to label via crowdsourcing. First, following the setting
of the error detection techniques [20, 23], the confidence scores
can be used as features to learn a binary classifier for predicting
the probability of a fact being fake. We can thus regard the out-
put of this classifier as the fact-wise confidence which is then
used for active learning and crowdsourcing. In other words, we
replace our cross-grained confidence evaluator with this clas-
sifier, and keep our link predictor and active labeler. Note that
as these classifiers cannot output element-wise confidence, our
effort-efficient labeling mechanism is not used. We implement
this setting for CKRL-Fix, KGTtm, and IDKG, denoted as CKRL-
Fix (AL), KGTtm (AL), and IDKG (AL), respectively; we keep
only the improved version of CKRL here. Second, we also con-
sider sample selection techniques for active learning based on
learnt embeddings, and integrate them with NYLON by replacing
our uncertainty sampling in Eq 10. Specifically, Farthest-Traversa
[39] (FT) selects the facts with the largest embedding distance
from the center embedding of all facts. Density-Weighted Meth-
ods [36] (DWM) utilizes the fact embedding distance from the
center embedding of all facts to re-scale our fact-level confidence.
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We use the output of our hyper-relational fact encoder as the fact
embedding and compute the center embedding as the average of
embeddings of all facts. Note that these sample selection tech-
niques can only be applied to the fact-wise confidence, we still use
our cross-grained confidence evaluator to predict both element-
and fact-wise confidence and apply these baseline techniques
to our predicted fact-wise confidence. Meanwhile, our effort-
efficient active labeler remains fully functional. As these two
techniques re-use most of the components of our proposed NY-
LON, we thus denote them as NYLON-FT and NYLON-DWM,
respectively. We also refer to them together with our NYLON as
the NYLON family.

In our experiments, NYLON is set with the number of self-
attention layers in the shared hyper-relational fact encoder 𝐿𝐻 = 12
with attention head 4 and embedding size 256, the number of lin-
ear layers in our cross-grained confidence evaluator 𝐿𝐶 = 4, the
window size for incremental learning 𝑤 = 10, and the maximum
number of iterations 𝐼𝑡𝑒𝑟 = 100. We search the best value for the
number of pseudo-labeled facts generated for data augmentation 𝑘
within {0, 1, 2, 5, 10}.

A.3 Performance with 40% noise level
Following the setting in the [50], we also show the results with
the noise level of 40% on JF17K, WikiPeople, and WD50K. Table 6
and 7 show the link prediction performance and error detection
performance, respectively. The results are similar to the case of 100%
noise level. Specifically, we observe that our NYLON outperforms
the best-performing baselines by 2.12%, 3.38%, and 4.33% on link
prediction performance, and by 9.36%, 10.34%, and 13.94% on fact-
wise error detection performance, over JF17K, WikiPeople and
WD50K, respectively.

A.4 Performance across different noise levels
on WikiPeople and WD50K

Figure 4 shows the performance comparisonwith the best-performing
baselines (per category of techniques) across different noise levels
on WikiPeople and WD50K. Similar to the results on JF17K, we see
that NYLON is significantly more robust than baseline techniques
against different levels of noise. When increasing the level of noise,
the performance of NYLON decreases much slower than baseline
techniques or even retains its performance sometimes.

A.5 Experiment with other encoders
To show the generalization of the NYLON framework to other
encoders, besides our selected encoder GRAN [46], we further con-
sider another encoder HAHE [27]. The results are shown in Table 8.
We see that different encoders have different performances across
datasets. While GRAN outperforms HAHE in most cases, HAHE is
better than GRAN on the JF17K dataset. In all other experiments, we
empirically select GRAN as the default encoder. More importantly,
we see that NYLON (GRAN) and NYLON (HAHE) consistently
outperform GRAN and HAHE, respectively, which show the effec-
tiveness of the NYLON framework against noisy KGs, in particular,
its generalization ability of NYLON to different encoders.

(a) MRR for Entity on WikiPeople (b) MRR for Relation on WikiPeople

(c) MRR for Entity on WD50K (d) MRR for Relation on WD50K

Figure 4: Performance comparison with the best-performing
baselines (per category of techniques) on WikiPeople and
WD50K

(a) Link prediction on WikiPeople (b) Error detection on WikiPeople

(c) Link prediction on WD50K (d) Error detection on WD50K

Figure 5: Tradeoff between model performance and labeling
budget on WikiPeople and WD50K

A.6 Tradeoff between model performance and
labeling budget on WikiPeople and WD50K

Figure 5 shows the tradeoff between model performance and la-
beling budget on WikiPeople and WD50K. Similar to the results
on JF17K, we see that NYLON consistently outperforms NYLON
(noEEL) by achieving a better Pareto frontier. Moreover, the im-
provement of NYLON (best k) over NYLON (k=0) also decreases
when increasing the labeling budgets; sometimes NYLON (best k)
even underperforms NYLON (k=0) for a large labeling budget. To
further study this issue, we present below a parameter sensitivity
study of the number of pseudo-labeled facts 𝑘 .

A.7 Parameter sensitivity study of the number
of pseudo-labeled facts 𝑘

We study the impact of the number of pseudo-labeled facts gener-
ated for data augmentation 𝑘 ∈ {0, 1, 2, 5, 10}. Figure 6 shows the
results on JF17K.We observe that in the case of a very small labeling
budget (e.g., 0.025%), a larger 𝑘 yields better performance in general.
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Table 6: Overall link prediction performance with 40% noise level

Method
JF17K WikiPeople WD50K

Entity Relation Entity Relation Entity Relation
MRR Hit@1 MRR Hit@1 MRR Hit@1 MRR Hit@1 MRR Hit@1 MRR Hit@1

Hyper-
relational
link
prediction

GRAN 0.5079 0.4235 0.9916 0.9876 0.4563 0.3634 0.9621 0.9389 0.3062 0.2448 0.9190 0.8842
StarE* 0.4222 0.3312 N/A N/A 0.3496 0.2184 N/A N/A 0.2531 0.1792 N/A N/A
Hy-Transformer* 0.4854 0.3941 N/A N/A 0.3904 0.2667 N/A N/A 0.2800 0.2071 N/A N/A
QUAD* 0.3959 0.2930 N/A N/A 0.3280 0.1987 N/A N/A 0.2435 0.1724 N/A N/A
ShrinkE* 0.4662 0.3809 N/A N/A 0.3237 0.2420 N/A N/A 0.2045 0.1415 N/A N/A
LGHAE* 0.4912 0.3997 N/A N/A 0.3939 0.2719 N/A N/A 0.2832 0.2090 N/A N/A

Robust
learning

CKRL 0.4872 0.4022 0.9907 0.9860 0.4661 0.3712 0.9535 0.9304 0.2982 0.2361 0.8963 0.8569
CKRL-Fix 0.5075 0.4250 0.9891 0.9834 0.4639 0.3745 0.9531 0.9306 0.3068 0.2452 0.9012 0.8640
KGTtm 0.4784 0.3923 0.9833 0.9756 0.4493 0.3559 0.9516 0.9252 0.2966 0.2362 0.8932 0.8539
IDKG 0.5069 0.4247 0.9900 0.9848 0.4786 0.3906 0.9558 0.9340 0.3041 0.2430 0.9021 0.8655

Active
crowd
learning

CKRL-Fix (AL) 0.5145 0.4296 0.9895 0.9843 0.4667 0.3770 0.9550 0.9335 0.3105 0.2486 0.9022 0.8658
KGTtm (AL) 0.5076 0.4227 0.9892 0.9833 0.4577 0.3658 0.9522 0.9295 0.3072 0.2460 0.9003 0.8635
IDKG (AL) 0.5079 0.4253 0.9888 0.9833 0.4606 0.3712 0.9538 0.9317 0.3063 0.2451 0.9001 0.8632

NYLON
family

NYLON-FT 0.5242 0.4377 0.9919 0.9882 0.4945 0.4066 0.9594 0.9418 0.3241 0.2608 0.9119 0.8796
NYLON-DWM 0.5205 0.4349 0.9918 0.9879 0.4926 0.4018 0.9576 0.9377 0.3235 0.2601 0.9109 0.8769
NYLON 0.5349 0.4482 0.9924 0.9888 0.5035 0.4169 0.9667 0.9493 0.3348 0.2707 0.9201 0.8886

Table 7: Error detection performance (in accuracy) with 40%
noise level

Method JF17K WikiPeople WD50K
Fact Element Fact Element Fact Element

CKRL-Fix (AL) 0.4957 N/A 0.4995 N/A 0.4999 N/A
KGTtm (AL) 0.5001 N/A 0.6876 N/A 0.5801 N/A
IDKG (AL) 0.6890 N/A 0.7512 N/A 0.6597 N/A
NYLON-FT 0.8784 0.9472 0.8635 0.9281 0.8102 0.8965
NYLON-DWM 0.8325 0.9292 0.7754 0.8821 0.7577 0.8747
NYLON 0.9606 0.9791 0.9528 0.9661 0.9231 0.9543

Table 8: Link prediction performances on entities with dif-
ferent encoders in NYLON

Method JF17K WikiPeople WD50K
MRR Hit@1 MRR Hit@1 MRR Hit@1

GRAN 0.4910 0.4063 0.4259 0.3132 0.2804 0.2171
HAHE 0.5610 0.4764 0.3518 0.2369 0.2792 0.2179
NYLON (GRAN) 0.5349 0.4476 0.5019 0.4151 0.3285 0.2649
NYLON (HAHE) 0.5758 0.4885 0.4102 0.2899 0.3184 0.2480

(a) Link prediction on JF17K (b) Error detection on JF17K

Figure 6: Impact of augmentation amount

Because given very limited human-labeled facts, the pseudo-labeled
facts can effectively help train the confidence evaluator. However,
this utility decreases when increasing the labeling budget. In the
case of a large labeling budget (e.g., 0.25%), a larger 𝑘 yields even
worse performance. Because when the amount of human-labeled
facts is enough to train the confidence evaluator, the pseudo-labeled

facts could introduce additional noise. Therefore, 𝑘 is suggested to
be tuned according to the specific labeling budget on each dataset.

A.8 Case Study
We conducted a case study on the WD50K dataset to show the
predicted element-wise confidence. For a true hyper-relational fact
(Los Angeles Film Critics Association Award for Best Director, win-
ner, David Fincher, for work, The Social Network), its element-wise
confidence is predicted as (0.9974, 0.9949, 0.9993, 0.9975, 0.9994). In
this case, all the elements have high confidence scores, resulting
in a high fact-wise confidence of 0.9949 (lowest score among the
element-wise confidence) following the least confidence principle.
The link prediction loss on this fact will thus have a large impact on
the learning process. For comparison, we created a synthetic false
fact (Cannes Best Director Award, winner, David Fincher, for work,
The Social Network). Its corresponding element-wise confidence is
predicted as (0.0141, 0.9965, 0.9994, 0.9915, 0.9912), and its fact-wise
confidence is 0.0141. This implies that this false fact has little impact
on the training process of the link predictor.
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