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Abstract—Test definition and execution is an essential but
time-consuming task during system development. To speed up
the process, model-based testing and other related approaches
propose to generate/write abstract test cases and to concretize
them using either transformations, an adapter, or a mixture of
the two. QTaste is an industrial data-driven test case definition
and execution environment used to perform black-box testing
on various kinds of systems. QTaste’s test cases are manually
written in Python and use an adapter, called test API, to execute
operations on the System Under Test (SUT) interfaces. In this
paper, we describe AbsCon (Abstract test case Concretizer), a
plugin used to generate test cases executable in QTaste based on
their definition: i.e., sequences of abstract actions and assertions.
AbsCon uses programmer friendly mappings (written in Python)
for the SUT’s interfaces, actions, and assertions, to generate
standard test cases in QTaste format. Rather than having a
complete model-based testing transformation chain, the plugin
is bridging the gap between existing model-based test case
generation tools and an industrial test case execution system
using a mix of transformation and adaptation.

Index Terms—Test case concretization; software testing tool;
QTaste

I. INTRODUCTION

During software development, a lot of effort is put on testing
the produced system. Test cases are executed on this System
Under Test (SUT) to detect bugs as soon as possible. In order
to ease the required effort, researchers and industries created
different techniques to automate the test cases execution using
dedicated test management tools on the one hand, and to
automatically derive relevant test cases in order to detect bugs
on the other hand. The latter is a well studied problem in
Model-Based Testing (MBT) [1], where the overall goal is to
define a suitable set of test cases based on a model of the SUT
and some selection criteria. To obtain a set of executable test
cases, MBT tools usually proceed in two steps: first a set of
abstract test cases is generated from the model based on the
selection criteria. Those test cases contain abstract actions and
assertions over the SUT but cannot be executed as-is (except
if a manual testing process is envisioned). In the second step,
MBT tools concretizes those abstract test cases into executable
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test cases, based on mapping information provided by the test
engineer. This mapping may take one of the following forms
[1]: (i) an adapter which interprets the actions and assertions
of the abstract test case and execute them on the SUT; (ii) a
transformation from the abstract test cases to code executable
directly on the SUT; or (iii) a mixture of the above two.
In this last case, an abstract test case is transformed into
executable code which uses an intermediate adapter (like an
intermediate library for instance) to bridge the gap between the
test case and the SUT. Other development/testing approaches,
like Behavioural Driven Development (BDD), heavily rely
on test case conretization. In a BDD process, requirements
are defined as expected behaviours of the system. Those
requirements are expressed using abstract test cases, which
are conretized to form a set of acceptance tests. The complete
process is supported by tools like Cucumber [2].

However, such approaches barely consider that abstract test
cases can be generated from other techniques, yielding a map-
ping problem. This requirement stems from our research on
testing variability intensive systems, which generate abstract
test cases from variability-aware transition systems [3]–[5].

In this paper, we describe AbsCon (Abstract test case
Concretizer). AbsCon is defined as a QTaste1 plugin, an open-
source industrial data-driven test case definition and execution
environment, used to perform black-box testing on various
kinds of systems. QTaste abstracts the SUT’s interface by
using an adapter called test API, test cases are written in
Python where the operations on and the readings from the
SUT’s interface are encapsulated into calls to the test API
dedicated to the kind of the SUT. For instance, to test a Web-
application, QTaste encapsulates the access to the elements
of the Web page in a Web test API which is responsible to
perform the effective Selenium (a popular Web browser au-
tomation tool [6]) calls. After considering different options, we
chose to define AbsCon as a QTaste plugin for the following
reasons: (i) QTaste is an open source industrial tool, used to
test various kinds of systems, from Web-applications to mobile
applications and even cyber-physical systems [7], thanks to
its test API adaptation mechanism; (ii) plugin development is
already included in QTaste and this architecture was suggested

1http://www.qtaste.org



by a QTaste developer the first author contacted; (iii) the inital
goal of AbsCon was to concretize abstract test cases gener-
ated by our Variability Intensive System Behavioural teSting
framework (VIBeS) [8] using additional mapping information.
To this end, abstract test cases are defined in AbsCon using
an XML file, where each test case is a sequence of actions
and assertions on the SUT. But this definition is not specific
to VIBeS, it also allows QTaste test engineers to define test
cases in a more abstract and systematic fashion (rather than
directly Python scripts), as long as they follow the same pattern
(i.e., sequences of assertions and actions).

The remainder of this paper is as follows: Section II gives
a general description of the QTaste environment, Section
III describes AbsCon’s concretization process as well as the
required mapping information, Section IV presents AbsCon’s
implementation, advantages and limitations are discussed in
Section V, Section VI discusses related work. Finally, Section
VII wraps up with conclusions and future work.

II. TEST AUTOMATION USING QTASTE

The QSpin Tailored Automated System Test Environment
(QTaste) [9] is an open source functional and non-functional
black-box test environment developed in Java and Python. It
has been originally developed by Qspin Experts2 in order to
automate testing process of medical cyber-physical systems
developed by IBA3 and used for proton therapy. Since its
inception, QTaste has been extended to support different kinds
of SUTs, like Web-applications, mobile applications, or more
classical desktop applications [7]. It is released as an open
source project on GitHub under GNU GPL 3.0 license [9].

A. Overview of the QTaste environment

QTaste follows the data-driven testing philosophy [10]: data
used by the tests are externalized in order to allow test
cases parametrization. Each test case is written in Python and
describes a sequence of steps, i.e., operations executed by the
SUT or verifications of the outputs produced by this SUT,
using the given data as input. For instance, when testing a
form which values are recorded in a database, one test case
fills the form with the given data and check that the values
are effectively recorded in the database. This test case is
repeated with different values (e.g., positive, null, and negative
values for numeric fields) specified in a separate CSV file and
automatically executed by QTaste on the SUT.

QTaste provides test APIs which communicate with the SUT
and manage the operations executions and/or SUT’s outputs
reading. Each test API consists in a Java interface, defining
the operations and information accessible by the test cases,
and a Java implementation of this interface which manages
communication with the SUT. This mechanism allows QTaste
to test a large variety of systems: Web-applications using a
Selenium-based test API, hardware components with dedicated
API, or any other kind of system for which a test API may
be developed. The test API, together with the configuration of

2http://www.qspin.be
3https://iba-worldwide.com

Listing 1. Google search test case
1 from q t a s t e import ∗
2
3 a p i = t e s t A P I . g e t S e l e n i u m ( INSTANCE ID= ’ Google ’ )
4
5 def i n i t ( ) :
6 a p i . openBrowser ( t e s t D a t a . g e t V a l u e ( ”BROWSER” ) )
7 a p i . windowMaximize ( )
8 a p i . open ( ” h t t p s : / / www. go og l e . be / ” )
9 a p i . wai tForPageToLoad ( ” 15000 ” )

10 i f a p i . g e t T i t l e ( ) != ” Google ” :
11 t e s t A P I . s t o p T e s t ( S t a t u s . FAIL )
12
13 def s e a r c h A n d C l i c k ( ) :
14 a p i . type ( ” i d = l s t −i b ” , t e s t D a t a . g e t V a l u e ( ”

SEARCHVALUE” ) )
15 a p i . c l i c k A t ( ”name=btnK ” , ” 0 . 0 ” )
16 a p i . wai tForPageToLoad ( ” 15000 ” )
17 a p i . c l i c k ( ” l i n k =” + t e s t D a t a . g e t V a l u e ( ”

LINKTOCLICK” ) )
18 i f a p i . g e t T i t l e ( ) != t e s t D a t a . g e t V a l u e ( ”

LINKTITLE” ) :
19 t e s t A P I . s t o p T e s t ( S t a t u s . FAIL )
20
21 def e x i t ( ) :
22 a p i . s t o p ( )
23
24 doStep ( i n i t )
25 doStep ( s e a r c h A n d C l i c k )
26 doStep ( e x i t )

the SUT instance is called a Testbed: this mechanism allows to
write test cases independently from the execution environment,
using only test (and standard Python) API(s). Once all the test
cases have been executed, QTaste generates a summary report,
with the number of success and fails, the Testbed used, for
each test case, the CSV lines used, etc..

Listing 1 presents a (simplified) test case for the Google
search engine that is executed for each line of the external CSV
file. It launches a Web browser and connects to the Google
search website, fills the search field with a string, and click
on a specified link. Line 3 creates a Selenium instance test
API, which manages the connection to the browser; lines 5,
13 and 21 declare the steps of this test case, called at lines
24, 25, and 26; explanations about each step is given as a
comment in Python format (not shown here) and is used during
the generation of the test reports. At each step, the test API
instance is used to manipulate the browser user interface (lines
6 to 10, 14 to 18, and 22) according to the data provided in
the external CSV file (identified by column names at lines 6,
14, 17, and 18). Finally, each step may check assertions on
the outputs of the browser to validate the execution (lines 10
and 18).

B. Advantages and limitations

The main advantage of QTaste is the test API mechanism,
allowing test cases to manipulate a large variety of SUTs using
a general purpose programming language: Python. Expressing
test cases using a general purpose and popular programming
language like Python benefits from the large number of
available Python libraries. This can be very handful when
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writing test cases in order to perform more complex opera-
tions or access external resources. The environment provides
extensibility mechanisms to the test engineers in order to write
dedicated adapters between QTaste and SUTs, and describes
the usage of those adapters in a test API. Coupled to the
externalisation of data and SUT’s configuration, it improves
test cases reusability and automation of the test process [1].
As it works as a black-box test environment, QTaste access the
SUT through its interface, manipulated by the test cases trough
the test API. This means that whenever the interface and/or the
test API evolve, all the test cases using this interface and/or
modified test API are impacted, increasing maintenance cost
[1]. AbsCon provides an additional abstraction layer separating
the different concerns thus reducing maintenance costs when
combined with abstract test cases as presented in the next
section.

III. CONCRETE TEST CASES GENERATION USING ABSCON

AbsCon (stands for Abstract test cases Concretizer) was
originally developed to support abstract test case concretiza-
tion [11]. In our case, an abstract test case is a sequence of
abstract assertions and actions, usually automatically derived
by a model-based testing tool [1] (VIBeS in this case [8]). The
concretization process translates the abstract test case into a
(concrete) test case executable by QTaste: (resp.) assertions
and actions are mapped to (resp.) verifications and sequences
of operations manipulating the SUT through the test API. The
most common way to perform this task is to give, for each
assertion and each action, the corresponding Python code.
It allows to improve the reusability and automation, while
decreasing the maintenance costs (each assertion or action is
defined only once in the mapping).

However, access to the SUT’s interface elements remains
hard coded in the different test cases (e.g., lines 10 or 15
in Listing 1). This potentially raises some issues: (i) element
of the SUT’s interface are accessed using test API methods,
requiring to know and provide at each method call the access
method (e.g., using the element’s id or name or at lines 14
and 15 in Listing 1) and the access value (e.g., lst-ib at
line 14 and btnK at line 15 in Listing 1); (ii) besides being

Listing 2. Google instant search test cases in AbsCon XML format
1 <? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =”UTF−8” ?>
2 < r e a l i s a t i o n i d =” Google t e s t i n g ”>
3 <uimode l>web< / u imode l>
4 <uimapping>UiMappings . py< / u imapping>
5 <o p e r a t i o n s>O p e r a t i o n s . py< / o p e r a t i o n s>
6 <d a t a s>T e s t D a t a . csv< / d a t a s>
7 < t e s t s>
8 < t e s t>
9 <a c t i o n> s t a r t< / a c t i o n>

10 <a c t i o n>goHomePage< / a c t i o n>
11 <a s s e r t>onHomePage< / a s s e r t>
12 <a c t i o n> i n p u t S e a r c h S t r i n g< / a c t i o n>
13 <a s s e r t>s e a r c h R e s u l t s P r i n t e d< / a s s e r t>
14 <a c t i o n>c l i c k L i n k< / a c t i o n>
15 <a s s e r t>pageLoaded< / a s s e r t>
16 <a c t i o n>e x i t< / a c t i o n>
17 < / t e s t>
18 . . .
19 < / t e s t s>
20 < / r e a l i s a t i o n>

cumbersome when writing test cases, requiring access method
and value in each method calls may also raise problems, as not
all elements of test API may be called on all elements of the
SUT’s interface (e.g., for a Web-application, it is only possible
to type text in text fields or in text areas), which will only be
checked when running the test case; (iii) as previously, when
an interface or test API element is updated, all the actions
and/or assertions using this element are impacted, requiring to
update the mapping in different places and thus increasing the
maintenance cost (with a more limited magnitude).

To mitigate those issues, we divide the mapping in AbsCon
in 3 (as illustrated by the dashed boxes in Figure 1): a
SUT’s interface elements mapping trough a model instance
of this interface; a data mapping; and an assertions and
actions mapping, giving for each (resp.) assertion/action the
(resp.) verifications/operations to perform on the SUT. The
verifications and operations on the SUT are defined as Python
functions that will use the interface model instance, using the
methods of the different elements, and the external data. The
external data are recorded in a CSV file and managed using
QTaste’s dedicated mechanism. The interface model, i.e., a
set of Python classes, uses one or more test APIs in order to
execute the operations and retrieve information on/from the
SUT.

The model of the interface and the assertion/actions map-
ping is detailed in the following sections. To illustrate those
different mappings, we will use Google instant search as SUT
and consider the following test cases:

(1) open Google search website, enter a keyword, see that
search results are printed, click on a link, and check that
the website is loaded;

(2) open Google search website, enter a keyword, see that
search results are printed, deactivate the instant search in
the parameters and validate, go back to the main page, and
check that search results are not printed when a keyword
is entered;

(3) open Google search website, enter a keyword, see that
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search results are printed, deactivate the instant search in
the parameters and cancel, go back to the main page, and
check that search results are printed when a keyword is
entered.

Test case 1 checks the common usage of Google instant search,
test case 2 checks that, when the instant search is deactivated
in the parameters options, the instant search is not performed,
and test case 3 checks that when instant search is deactivated
but the change is cancelled in the parameters options, instant
search is still active. Test cases are defined in XML format as
a sequence of assertions and actions: lines 8 to 17 in Listing
2 gives test case 1 definition (other test cases are omitted).
Additional information are the SUT’s interface model to use
(line 3), the path to the Python file defining the instance of
this model for the Google instant search interface (line 4), the
path to the Python file defining the operations mapping (line
5), and the path to the external CSV data file (line 6).

A. SUT’s interface model

A SUT’s interface model describes for a particular family
of SUTs the different elements accessible when performing
black-box testing. For instance, for Web-applications, the web
model at line 3 in Listing 2 is defined (here using a class
diagram notation to ease the reading) in Figure 2. It describes
the different elements we can found on a Web page: each class
has to access the QTaste Selenium test API (using inherited
attribute api) and will extend WebElement; WebBrowser
objects will start and exit the Web browser specified
for the current test case execution using the data from the
external CSV file (as on line 6 in Listing 1); a WebPage
is available at a given URL address, may be opened (and
expected to load before a given timeout), closed, and has
a title; WebElements will appear on this page, each one
is accessible using an accessMethod (e.g., XPath) and an
access value (e.g., an XPath query to this element), may or may
not exist on the page, has a value, and may be clicked; the
different elements we identified (relevant for the examples of
this paper) are WebButton, WebLink, WebRadioButton,

Listing 3. Google instant search interface model instance (UiMapping.py)
1 from uimodel web import ∗
2
3 # mapping d e f i n i t i o n s
4 goog lePage = WebPage ( ” h t t p s : / / www. go og l e . be / ” ,

5000)
5 s e a r c h B a r = WebEditBox ( ” i d ” , ” l s t −i b ” )
6 s e a r c h B u t t o n = WebButton ( ”name” , ” btnK ” )
7 d i s a b l e I n s t S e a r c h = WebRadioButton ( ” x p a t h ” , ” / /

d i v [ @id= ’ i n s t a n t −r a d i o ’ ] / d i v [ 3 ] / span ” )
8 e n a b l e I n s t S e a r c h = WebRadioButton ( ” x p a t h ” , ” / /

d i v [ @id= ’ i n s t a n t −r a d i o ’ ] / d i v [ 2 ] / span ” )
9 . . .

WebText, WebPicture, and WebEditBox which may be
filled using textual values.

In AbsCon, each interface model is defined in Python. It is
instantiated to represent the SUT’s interface. For instance, for
Google instant search, the web model instance is defined in
UiMapping.py (Listing 3), as specified at line 4 in Listing
2. Each object is built using the dedicated constructor, which
will require in most cases an access method and an access
value: e.g., search bar is accessed using its id in the page,
which is lst-ib (line 5), or using an XPath expression (lines
7 and 8). As for test APIs, interface models may be reused
across different SUTs, as long as they share the same kind of
interface (Web pages in this case).

Another option to the modelling offer described here would
be to use User Interface Description Languages (UIDLs)
[12] such as USIXML [13]. These languages provide generic
constructs (organized in one or more metamodels that repre-
sent both platform independent and platform specific views,
according to Model-Driven Architecture [14] principles) al-
lowing to model any kind of user-interface (including non-
conventional interfaces such as voice-enabled ones). However,
the use of such proposals in ours raises the following problem:
the number of concepts they are offering being quite large,
modelling a simple user interface can be cumbersome and
complex, unless we tailor the language to specific needs. In
our context, we do not try to model the whole user interface
but the subset concerned by the tests. We therefore adopted a
lightweight approach that has the complementary advantage
of not requiring any new modelling language to learn, by
exploiting Python’s object-orientation facilities. Furthermore,
as initially mentioned, QTaste’s spectrum is larger than testing
graphical user interfaces.

B. Assertions and actions mapping

AbsCon extracts assertions and actions from the abstract test
cases (Listing 2). Each assertion is mapped to a verification
(i.e., a function returning true or false) over the SUT’s inter-
face; and each action is mapped to a sequence of operations
over elements of the SUT’s interface (i.e, again, a function).
Verifications as well as operations are defined using the
interface model instance defined in UiMapping.py (and will
manipulate the different elements using the methods defined
for those elements) and the QTaste data mapping mechanism



Listing 4. Verifications and operations mapping (Operations.py)
1 from q t a s t e import ∗
2 from UiMappings import ∗
3
4 # A c t i o n s d e f i n i t i o n
5 def goHomePage ( ) :
6 goog lePage . open ( )
7
8 def i n p u t S e a r c h S t r i n g ( ) :
9 s e a r c h B a r . e n t e r V a l u e ( t e s t D a t a . g e t V a l u e ( ”

SEARCHVALUE” ) )
10 . . .
11 # A s s e r t s d e f i n i t i o n
12 def s e a r c h R e s u l t s P r i n t e d ( ) :
13 goog lePage . w a i t F o r P a g e ( )
14 i f ( not ( n a v P i c t u r e . e x i s t s ( ) ) ) :
15 t ime . s l e e p ( 3 ) # w a i t f o r l o a d i n g and r e t r y
16 re turn n a v P i c t u r e . e x i s t s ( )
17 . . .

in order to retrieve data from the external TestData.csv
file. The mapping between the assertions and actions from
the abstract test case is done by using the same name for the
verifications and operations functions.

For instance, Listing 4 presents the verifications
and operations mapping (Operations.py) for the
Google instant search test cases from Listing 2. Function
inputSearchString (line 8) corresponds to the action
with the same name in the test cases and inputs a search
string, coming from the SEARCHVALUE column of the
external CSV file, in the Google search bar defined in
UiMappings. Function searchResultsPrinted (line
12) corresponds to the assertion with the same name in the
test case, and returns true if the navigation picture from the
result page is loaded.

C. Test cases generation and execution

Once the mappings are defined, AbsCon generates concrete
(i.e., executable) test cases for QTaste: for each test case,
it creates a Python script which imports the mappings and
executes a sequence of doStep and doAssert calls using
the verifications and operations functions. Those Python files,
with the TestData.csv file, are used as input for QTaste to
execute the test cases on the SUT and generate a summary test
report. Listing 5 presents the result of the generation for test
case 1: each doStep call (part of the standard QTaste API)
corresponds to one action in the test case and will execute the
given function. The doAssert function, defined by AbsCon,
calls the given function (corresponding to an assertion in the
test case) and prints the given error message if the call returns
false.

IV. IMPLEMENTATION

AbsCon provides a graphical user interface integrated to
QTaste (as shown in Figure 3a) with different tabs, one for
each mapping phase. When executing the plugin, the first
step is to load the abstract test cases from an external XML
file, AbsCon extracts the different actions and assertions for
which a mapping has to be provided and presents them under

Listing 5. Generation result for test case 1
1 from q t a s t e import ∗
2 from O p e r a t i o n s import ∗
3
4 # A s s e r t
5 def d o A s s e r t ( method , message ) :
6 r e s = method ( )
7 i f r e s == 0 :
8 r a i s e Q T a s t e T e s t F a i l E x c e p t i o n ( message )
9

10 # S t e p s
11 doStep ( s t a r t )
12 doStep ( goHomePage )
13 d o A s s e r t ( onHomePage , ” a s s e r t i o n onHomePage has

f a i l e d ” )
14 doStep ( i n p u t S e a r c h S t r i n g )
15 d o A s s e r t ( s e a r c h R e s u l t s P r i n t e d , ” a s s e r t i o n

s e a r c h R e s u l t s P r i n t e d has f a i l e d ” )
16 . . .

the Abstract tests tab. The second step is to define or
load a SUT’s interface model (under tab UI model) and to
instantiate this model under the UI mapping tab presented
in Figure 3b: for each element of the interface, one has to
instantiate a class of the interface model (selected using a
drop-down list) by providing the required parameters for the
constructor, and add it to the mapping using the Declare
button (or load an existing mapping using the Load button).
Actions and assertions mappings are given using the two next
tabs: the user select the action/assertion using a drop-down
list and provides the Python code for this action/assertion as
shown in Figure 3c (the assertion mapping tab in this case). In
the Data tab, the user provides the data in an editable table,
and finally generates the QTaste executable test cases in the
QTaste tests tab.

V. DISCUSSION

AbsCon heavily relies on abstraction, of the SUT’s interface
on the one hand, and on the assertion and actions on the other
hand. This abstraction layer allows to define each mapping
independently from the higher or lower levels: abstract test
cases are defined using assertions and actions with meaningful
names for the user/test engineer; each assertion and each action
is mapped to a Python function representing a verification or
an operation, and is defined as a manipulation of the SUT’s
interface meaningful from a user point of view (depending on
the nature of the SUT, the user may be a human or another
system), thanks to the SUT’s interface model; finally the SUT’s
interface model encapsulates the test API calls in charge of the
effective communication with the SUT.

The goal of our abstraction layer is to reduce the overall
complexity of the test cases and to decrease the maintenance
costs. Indeed, when the SUT’s interface evolves, only the
mapping to this interface has to be (potentially) changed,
AbsCon can then re-generate concrete test cases for QTaste
that will serve for non-regression. This process is much lighter
than the update of QTaste test cases as it will (potentially)
require to update all the test cases containing code that
manipulate the SUT’s interface (using directly the test API
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in this case). In the same way, when functionalities are added
to the SUT, only the new interface elements, and verifications
and operations mappings have to be added. New abstract test
cases may then be written for those elements and AbsCon can
re-generate a complete set of test cases for the whole SUT.

The definition of the different mappings may represent
an additional effort during test activities. However, different
aspects have to be taken into account. First, the SUT’s interface
model depends solely on the nature of the SUT, e.g., Web-
application for the web model from Figure 2. Once defined,

this model may be reused across different projects. As this
model abstracts the test API by defining methods from the
interface point of view (e.g., click, open, getTitle, etc.
in Figure 2), we believe that it will also soften QTaste’s
learning curve. Second, the definition of the mappings enables
integrating existing model-based testing techniques (e.g., [1],
[8]) rather than defining a new complete test development
process.

In our opinion, the most time consuming task will be to
identify and map the different SUT’s interface elements. This



cost may be reduced in some cases using existing tools:
for instance, Inspect [15] or SwingInspector [16] are tools
used to identify and access graphical user interface elements
in classical desktop applications. In our UiMapping.py
example in Listing 3, we used Firefox’s inspection tool to
identify the different elements on a Web page. Depending on
the nature of the SUT, this mapping may also be partially or
totally automated (this will be part of our future works), like
for Web-applications for which each element on a Web page
describes itself using HTML tags.

VI. RELATED WORK

Test case conretization techniques are classified by Utting
et al. [1] in 3 categories: adaptation approaches abstracts
the SUT by using a wrapper (also called an adapter), test
cases call this wrapper in order to execute operations on the
SUT; transformation approaches transform abstract test cases
into test cases directly executable by the SUT, possibly using
additional information; and mixed approaches also transform
abstract test cases in executable test cases, but using an
adaptation layer in order to abstract the SUT.

Using this classification, QTaste uses adaptation to abstract
the SUT using its test APIs and requires to write test cases
which will use those test APIs. There exists other adapters,
like Selenium and Sahi [17] to test Web-applications, or
AutoHotKey [18] to test Windows applications. Tools like
Sikuli [19] and Squish [20] provide adaptation mechanisms
to perform graphical user interface testing using techniques
like image recognition, or recording and playback. None of
these tools natively support abstract test case concretization.

Other transformation and mixed tools like TOTEM [21],
SpecExplorer [22], MaTeLo [23], Smartesting solutions [24],
or STALE [25] implement full model-based testing approaches,
including abstract test case generation and concretization from
different modelling languages (e.g., UML Testing Profile [10],
etc).

Rather than having a complete transformation chain (from
models to executable test cases), we developed AbsCon in
order to plug it on an existing approach (VIBeS [8] in this
case), concretize abstract test cases, no mater their origin
as long as they are described as sequences of actions and
assertions, and get executable test cases on a generic and
industrial test environment like QTaste.

As for VIBeS, other model-based testing approaches pro-
duce abstract test cases that are concretized using existing
tools, this is the case for Skyfire [26] which uses a transfor-
mation approach to produce Cucumber [2] abstract test cases
from UML diagrams. Cucumber is a popular behaviour-driven
development tool that aims at producing typical examples of
the behaviour of a system under development, described using
a semi-structured language: Gherkin. Those examples are used
as acceptance tests and concretized using a Java annotations
based mechanism, mapping semi-structured sentences to Java
methods using a defined string pattern. The executable test
cases are run in standard JUnit environment. Cucumber could
have been another test execution environment target, but, to the

best of our knowledge, it does not provide any SUT’s interface
abstraction mechanism (like QTaste’s test APIs) and would
have required more effort to define a programmer friendly
abstraction mechanism of this interface. FitNesse, a wiki-based
integration testing approach, would also require a similar effort
as it works “just below the user interface” [27].

QTaste relies on a data-driven approach: each test cases
is parametrized to be executed with different data values
[10]. Used in isolation, the concretization process of AbsCon
also allows one to raises that level of abstraction by using a
keyword-driven approach [28], [29]: keywords in the test cases
(actions and assertions) are mapped to executable test code.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented AbsCon, a QTaste plugin devel-
oped to concretize abstract test cases represented as sequences
of actions and assertions. The adaptation mechanism provided
by QTaste’s test API is enhanced by a programmer friendly
way to encapsulate the calls to this API using a common
model specific to the kind of the SUT’s interface. This model,
reusable for different SUTs as long as their interface are
of the same kind, defines the possible interactions with the
SUTs. An instance of this model, specific to a SUT, is used
in operations and verifications corresponding to actions and
assertions defined in the abstract test cases. Using the different
mappings, AbsCon is able to generate test cases executable in
QTaste.

Originally developed to bridge the gap between VIBeS and
concrete test cases, AbsCon offers multiple advantages, even
in a non model-based testing context. We chose to implement it
over an existing industrial test case management and execution
tool, which will, we believe, eases its broader adoption. As
a standalone tool (i.e., not used in an model-based testing
chain), AbsCon enhances QTaste’s genericity by raising the
abstraction level of different elements: the SUT’s interface and
test APIs, thanks to the SUT’s interface model mechanism; and
the test cases themselves by allowing to provide definitions
using abstract actions and assertions (which is to the user)
instead of Python scripts.

So far, the plugin has only been used on small examples, a
more complete validation is part of our future works. We will
also explore automated SUT’s interface mapping possibilities
using existing inspection tools. Finally, another potentially
interesting research direction is the definition of the test cases
using a structured natural language (like Gherkin [2]) as an
input to AbsCon instead of XML files. This could be used to
automatically define, not only the actions and assertions, but
also the data to use during the test cases execution. Ideally, the
definition of the test cases in a structured language would be
processed by AbsCon to populate both the list of assertions
and actions to map, the elements of the SUT’s interface to
use (based on the text describing the test cases steps), and the
CSV file used by QTaste.
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Jaquero, “Usixml: a language supporting multi-path development of user

interfaces,” in International Workshop on Design, Specification, and
Verification of Interactive Systems. Springer, 2004, pp. 200–220.

[14] A. G. Kleppe, J. B. Warmer, and W. Bast, MDA explained: the model
driven architecture: practice and promise. Addison-Wesley Profes-
sional, 2003.

[15] “Inspect,” https://msdn.microsoft.com/en-us/library/windows/desktop/
dd318521(v=vs.85).aspx.

[16] “SwingInspector,” http://www.swinginspector.com/index en.htm.
[17] “Sahi: The tester’s web automation tool,” http://sahipro.com.
[18] “AutoHotKey,” http://ahkscript.org.
[19] “Sikuli Script,” http://www.sikuli.org.
[20] “Squish GUI Tester,” https://www.froglogic.com/squish/.
[21] L. C. Briand and Y. Labiche, “A UML-Based Approach to System

Testing,” in Proceedings of the 4th International Conference on The
Unified Modeling Language, Modeling Languages, Concepts, and Tools.
Springer-Verlag, 2001, pp. 194–208.

[22] M. Veanes, C. Campbell, W. Grieskamp, W. Schulte, N. Tillmann, and
L. Nachmanson, “Formal Methods and Testing,” R. M. Hierons, J. P.
Bowen, and M. Harman, Eds. Berlin, Heidelberg: Springer-Verlag,
2008, ch. Model-based Testing of Object-oriented Reactive Systems with
Spec Explorer, pp. 39–76.

[23] W. Dulz, “MaTeLo - statistical usage testing by annotated sequence
diagrams, Markov chains and TTCN-3,” Third International Conference
on Quality Software, 2003. Proceedings., pp. 336–342, 2003.

[24] “Smartesting,” http://www.smartesting.com.
[25] N. Li and J. Offutt, “A test automation language framework for

behavioral models,” in 2015 IEEE Eighth International Conference on
Software Testing, Verification and Validation Workshops (ICSTW), no. 1.
IEEE, apr 2015, pp. 1–10.

[26] N. Li, A. Escalona, and T. Kamal, “Skyfire: Model-Based Testing with
Cucumber,” in 2016 IEEE International Conference on Software Testing,
Verification and Validation (ICST). IEEE, apr 2016, pp. 393–400.

[27] “FitNesse: The fully integrated standalone wiki and acceptance testing
framework,” http://www.fitnesse.org.

[28] R. Mugridge and W. Cunningham, Fit for developing software: frame-
work for integrated tests. Pearson Education, 2005.

[29] D. J. Mosley and B. A. Posey, Just enough software test automation.
Prentice Hall Professional, 2002.


