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SUMMARY

Targeted inhibition of aberrant signaling is an important treatment strategy in
cancer, but responses are often short-lived. Multi-drug combinations have the
potential to mitigate this, but to avoid toxicity such combinations must be selec-
tive and given at low dosages. Here, we present a pipeline to identify promising
multi-drug combinations. We perturbed an isogenic PI3K mutant and wild-type
cell line pair with a limited set of drugs and recorded their signaling state and
cell viability. We then reconstructed their signaling networks and mapped the
signaling response to changes in cell viability. The resulting models, which
allowed us to predict the effect of unseen combinations, indicated that no combi-
nation selectively reduces the viability of the PI3K mutant cells. However, we
were able to validate 25 of the 30 combinations that we predicted to be anti-
selective. Our pipeline enables efficient prioritization of multi-drug combinations
from the enormous search space of possible combinations.

INTRODUCTION

The dependency of tumors on activated signaling pathways results in therapeutic responses to inhibitors

that block pathway activity (Weinstein, 2002). However, resistance to such targeted inhibitors inevitably de-

velops (Holohan et al., 2013; Konieczkowski et al., 2018). Combinations of two targeted inhibitors can give

more lasting clinical benefit, but resistance nonetheless emerges (Flaherty et al., 2012; Long et al., 2014).

Combiningmore than two drugs might further extend the duration of the response (Boshuizen and Peeper,

2020), but toxicity becomes amajor concern whenmultiple drugs are combined at their maximum tolerated

dose. Recently, we found that partial inhibition of three or four kinases by combining multiple drugs at

low dose (MLD) is surprisingly effective in receptor tyrosine kinase-driven tumors in multiple cancer types

(Fernandes Neto et al., 2020). It prevents the development of resistance, and it is well tolerated by mice.

Others have also shown the potential of multi-drug (low-dose) combinations in pre-clinical (Ryan et al.,

2019; Ozkan-Dagliyan et al., 2020; Zoetemelk et al., 2020; Caumanns et al., 2019) and clinical (Van Cutsem

et al., 2018, 2019) settings.

These findings warrant further exploration of multi-drug combination strategies. This will require a system-

atic way to explore promising drug combination treatments, including optimizing the dosing of the

different drugs. The combinatorial explosion of the search space — there are more than two million

possible 4-way combinations of the 89 (as of 2020 (Zhong et al., 2021)) FDA-approved targeted inhibitors,

and 24 billion if each drug is to be tested at 10 different concentrations — means that in vitro testing of all

combinations is infeasible. Computational approaches are required to prioritize promising combinations.

Recently, Nowak-Sliwinska and collaborators presented a ‘‘Feedback Systems Control’’ approach to

explore the search space of possible multi-drug combinations (Nowak-sliwinska et al., 2016; Weiss et al.,

2015; Zoetemelk et al., 2020). While this approach is promising, the method does not optimize for selec-

tivity and the obtained results lack a mechanistic underpinning, making it hard to assess to what extent

the results will generalize. Another promising approach is building mathematical models of cellular

signaling, based on a limited set of perturbation experiments (Bosdriesz et al., 2018; Dorel et al., 2018; Klin-

ger et al., 2013; Halasz et al., 2016; Saez-Rodriguez et al., 2009; Jastrzebski et al., 2018; Kirouac et al., 2013;

Nyman et al., 2020). However, current approaches suffer from two major shortcomings. First, only a very
iScience 25, 104760, August 19, 2022 ª 2022 The Authors.
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Figure 1. Overview of pipeline to prioritize promising selective low-dose multi-drug combinations

Top:MCF10A parental and PI3KH1047R cells are treated with inhibitors targeting the MAPK and AKT pathways. The signaling and cell viability responses are

measured and used to build mutant-specific models of signal transduction networks and to parametrize the relationship between signaling response and

cell viability. Bottom: These models are used to simulate the response to unobserved multi-drug combinations, at arbitrary concentrations, of the signaling

networks and how this affects cell viability. In this way, low-dose multi-drug combinations that are likely selective for a particular cell line can be prioritized.
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limited number of such modeling approaches focus on the difference between cells with different mutation

profiles (Bosdriesz et al., 2018; Saez-Rodriguez et al., 2011), which is critical for optimizing selectivity. Sec-

ond, how inhibition of oncogenic signaling affects cell viability and specifically to what extent short-term

signaling response is informative for longer term cell fate remain underexplored (Kirouac et al., 2013;

Korkut et al., 2015; Nyman et al., 2020).

We therefore set out to establish and validate a combined experimental and computational pipeline to pri-

oritize multi-drug combinations and their dosing based on mathematical models of drug response (Fig-

ure 1). Importantly, we aimed to find combinations that are selective for cells with a particular oncogenic

driver mutation. To isolate the effect of the mutation, we used an isogenic cell line pair with and without

a mutation. Specifically, we used MCF10A, a cell line derived from epithelial breast tissue (Soule et al.,

1990), and an isogenic clone with the activating PI3KH1047R mutation knocked in under its endogenous pro-

moter (Di Nicolantonio et al., 2008). We measured the response of the MAPK and AKT pathway and cell

viability after drug perturbations, and used the measurements to build mutant-specific signaling networks

models using Comparative Network Reconstruction, a method we recently developed (Bosdriesz et al.,

2018). In addition, we found that a non-linear model combining the response of phospho-ERK and phos-

pho-AKT is highly predictive for cell viability, despite the fact that signaling response and cell viability are

measured on completely different timescales of hours and days, respectively. Combining the signaling and

viability models allowed us to simulate the effect of any multi-drug combination at any concentration and

thus to prioritize promising combinations. Our models indicated that no combination of the drugs tested in

this study would likely be selective for the PI3K mutant cells. To nonetheless validate our computational

approach, we proceeded to predict which low-dose, multi-drug combinations were likely to be anti-selec-

tive, i.e. reduce the viability of the parental cells more strongly than that of the PI3K mutants. Experimental

validation showed that 25 of the 30 combinations that we predicted to be anti-selective indeed had a signif-

icantly stronger effect in the parental cells than in the PI3K mutant cells.
2 iScience 25, 104760, August 19, 2022
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RESULTS

The signaling and viability response to drug perturbations in MCA10A parental and

PI3KH1047R-mutated cells

To test how oncogenic mutations affect signal transduction networks and their downstream effects on cellular

phenotypes such as cell viability, we used the MCF10A cell line (Soule et al., 1990) and an isogenic clone with

the activating PI3KH1047Rmutation knocked in under its endogenous promoter (DiNicolantonio et al., 2008). As

expected, in the PI3KH1047R cells, the baseline signaling activity of AKT and PRAS40, both downstream of PI3K,

is elevated, but the other signaling nodes do not show significant differences in activity (Figure 2A). In the

absence of drug perturbations, PI3KH1047R mutant MCF10A cells have a comparable growth rate as their

parental cells (Di Nicolantonio et al., 2008). Dose-response curves of selected PI3K and the MAPK pathway in-

hibitors showed subtle differences in sensitivities between the parental and the mutant cells (Figure S1A).

To study how the signaling networks of these cells respond to drug perturbations, and if the PI3KH1047R mu-

tation influences this, we perturbed both cell lines with inhibitors of the PI3K and MAPK pathways, and

selected 2-drug combinations of these. Single drugs were tested at two different concentrations, corre-

sponding roughly to their IC50 and IC90 values (except RAFi, which was only tested at IC90) and drug com-

binations were tested with both drugs at their IC50 values, to obtain a total of 34 different perturbations. We

measured the response after 2 h of drug treatment (log2 fold change relative to DMSO control) of nine main

nodes in the PI3K and MAPK signaling pathway using a multiplexed luminex assay to obtain more than 600

signaling drug-response measurements (Figure 2B, Tables S1, and S2). We selected the 2 h time point

because this is the timescale for phospho-AKT (pAKT) to reach quasi steady state after PI3K pathway inhi-

bition (Korkola et al., 2015) (Figure S1B). Luminex quantification showed excellent concordance with West-

ern blots (Figure S1C). In addition, we measured the effect on cell viability using CellTiter Blue (Figure 2C,

Tables S3, and S4). Generally, the differences in both signaling response and cell viability between the

parental and PI3K mutant cells were subtle but consistent. For instance, while the responses of the

signaling nodes of the parental and PI3KH1047R cells are strongly correlated (Figures 2B and S1D), in the

parental cells pAKT shows a strong negative response to growth factor receptor inhibition (EGFRi or

IGF1Ri) that is nearly absent in the PI3KH1047R mutant cells (Figure 2B, highlighted). However, this results

in only mild differences in cell viability between the cell lines (Figure 2C, highlighted).

Network reconstructions identify relevant differences between parental and PI3K mutant

cells

To establish how the PI3KH1047R mutation affects the signal transduction network, we used the drug-

response measurements to perform Comparative Network Reconstruction (CNR) (Bosdriesz et al., 2018)

of the MAPK and AKT pathways of both cell lines. CNR is a method that we have recently developed to

reconstruct and quantify signaling networks and identify the most important quantitative differences be-

tween two or more cell lines. Prior knowledge about the network topology can be included, but the algo-

rithm can also propose edges to be added to the network. The edge-weights are interpreted as the percent

change in the downstream node activity in response to a 1% change in activity of the upstream node.

Importantly, by penalizing differences between cell line models, CNR identifies which edges are quantita-

tively different between the two cell lines.

We used the canonical MAPK and PI3K pathway interactions as prior information, and added four edges

that were proposed by the CNR algorithm based on hyperparameters selected in a leave-one-out cross-

validation loop (Figures 3A and S2A). The targets of some inhibitors were not measured in our panel. These

were modeled as affecting the first downstream target that was measured. For instance, since both IGF1R

and PI3K are not measured in our panel, IGF1R inhibition was modeled as targeting AKT1 directly. The

model gave a good fit to the data (Pearson correlation = 0.91) (Figure 3B). To assess the significance of

this fit, we compared the residuals of the model to 1000 models with the same number of randomly

selected edges. Each of these 1000 random models had a worse fit than our model (p< 0:001, Figure 3C).

Using node-label permutation to the same overall distribution of ingoing and outgoing edges in the ran-

domized networks gives similar results (Figure S2C).

CNR aims to identify the most relevant differences between cell lines by penalizing quantitative differences.

These differences can be either the edges in the network, or the strength of inhibition of a drug to its direct

target. This way, we identified 13 relevant differences between the parental and PI3KH1047R cells. These dif-

ferences are highlighted in blue in Figure 3A. The numbers next to the edges indicate the edge-strengths of
iScience 25, 104760, August 19, 2022 3
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Figure 2. Profiling signaling and viability response of MCF10A parental en PI3KH1047R cells to drug perturbations

(A) Node activity in the unperturbed cells. Most nodes have similar activity in the parental and PI3KH1047R cells, except AKT and PRAS40 (highlighted) which

are downstream of PI3K.

(B) Heatmap representing log2 fold changes of the signaling nodes upon drug perturbation compared to DMSO controls. The response of the parental and

PI3KH1047R cells is highly correlated, with some exceptions such that of AKT1 upon growth factor receptor inhibition (highlighted). Signaling response is

measured after 2 h of drug treatment. The color scale is capped between �4 and 4 for visualization purposes.

(C) Cell viability under the same drug treatments as reported in panel B. Both cell lines show a similar response profile. The strong differences in AKT

response to growth factor receptor inhibition translate into mild differences in cell viability (highlighted). Cell viability is measured after 3 days of drug

treatment. Error bars represent standard deviations.
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Figure 3. Mutant-specific network reconstructions show expected differences

(A) Comparative Network Reconstruction (CNR) of MCF10A parental and PI3KH1047R cells. Edges and direct perturbation effects that differ between the two

cell lines are highlighted in blue. Gray edges do not differ between the cell lines. Edge strengths of the differing edges are represented by the purple

(parental) and green (PI3KH1047R) numbers. Ovals indicate nodes. As expected, the most and the strongest differences between the cell lines are located

close to AKT in the network (note that PI3K is not measured).

(B) Comparison of network model fit with measured signaling response shows that the network model can explain the signaling response data well (Pearson

correlation = 0.91).

(C) Distribution of the root-mean-square (RMS) of residuals of models optimized using a random topology (gray), compared to that of the actual model used

(red). All 1000 random topology models had the same number of edges as the actual model, and for all 1000, the fit was worse than for the actual model.

(D–G) The estimated direct effect of IGF1R (C), mTOR (D), PI3K (E), and AKT (F) inhibition on AKT activity as a function of applied inhibitor concentration. Points

indicate the estimated effects of the concentrations used in the CNR reconstruction, the dashed lines indicate the interpolated curves between these points (cf. STAR

Methods, Equation 5). IGF1R, PI3K, and mTOR inhibition were modeled as directly affecting AKT because their actual targets were not measured.

ll
OPEN ACCESS

iScience
Article
the parental (purple) and PI3KH1047R (green) cells. (For visualization purposes, only the strength of edges that

differ between the cell lines is indicated. For full model visualization, see Figure S2B). The differences in

target-inhibition strength between the cell lines are shown in Figures 3D–3G and S2E. We assessed the sig-

nificance of the identified differences by comparing the residuals of our model to that of 1000 models with

the same number of randomly selected differences. None of the random models had a better fit to the data

(Figure S2D), indicating that the identified differences are, indeed, the most relevant differences.

As expected,most of the identifieddifferences are located close toAKT in the network (Figure 3A, note that PI3K

is not measured). Specifically, in the PI3KH1047R cells, AKT is less sensitive to changes in EGFR and unresponsive

to IGF1R inhibition (Figures 3A and 3D), which is consistent with PI3K being constitutively activated. Additionally,

AKT is less responsive to PI3K andmTOR inhibition (Figures 3E and 3F). At the IC50, AKT is also less sensitive to

AKT inhibition, but when AKTi is applied at its IC90, the PI3KH1047R cells show a larger response (Figure 3G). This
iScience 25, 104760, August 19, 2022 5
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Figure 4. Short-term signaling response is predictive for longer term cell viability

(A) Scatterplot of cell viability against log2 fold changes in AKT (left panel) and ERK (right panel) activity in response to

drug treatments. The Pearson correlations are 0.36 and 0.42, respectively.

(B) Scatterplot of model fit against measured cell viability based on a model where both ERK and AKT response are used

to explain cell viability (cf. STAR Methods, Equation 1). The Pearson correlation between fit and measurement is 0.71.
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last observationmight be explained by the higher baseline AKT activity of PI3KH1047R cells, since if AKT activity is

reduced to a similar absolute level, the log2 fold change of AKT in the mutant is higher.

In order to predict the signaling response to drugs combined at arbitrary concentrations, we parameterized the

relation between target inhibition and drug concentration using the direct target-inhibition estimates for drug k

onnode i for the IC50 and IC90 thatweobtained from thenetwork reconstructions (cf. STARMethods, Equation 5).

The dashed lines in Figures 3D–3G and S2E indicate the curves that we parametrized in this way.

Short-term signaling response is informative for long-term cell viability

To prioritize multi-drug combinations, the short-term response of the signaling network to a drug pertur-

bation needs to be related to its longer term effect on cell viability. Important open questions here are: Is

the short-term signaling response predictive to longer term cell viability? If so, which signaling outputs are

most predictive, and what is their relation? The associations between the individual node-responses and

cell viability were moderate even for the most strongly associated nodes, phospho-AKT (pAKT) and phos-

pho-ERK (pERK), which had a Pearson correlation with cell viability of 0.36 and 0.42, respectively (Figure 4A).

The responses of all other nodes also correlated somewhat with cell viability (Figure S3), but clearly no sin-

gle node is a good predictor for cell viability.

We therefore investigated whether a model combining the response of multiple nodes described the cell

viability data better. To this end, we first fitted a linear model using all nodes as predictors Equation 4a. This

model gave a reasonable fit, but only the coefficients for pERK, pMEK, and pAKT were significant. The co-

efficient of pMEK had an unexpected positive sign, indicating that in this model a decrease in pMEK in-

creases the predicted viability. In addition, the response of pMEK and pERK is highly correlated (Pearson

correlation 0.81), making the contribution of pMEK to viability in this multivariate model hard to interpret.

Next, we tried a linear model using only pERK and pAKT as predictors Equation 4b. However, this gave a

worse fit in a leave-one-out cross-validation loop (Table 1).

We noticed that for both linear models there is a clear structure in the relation between the residuals and

the fitted values (Figures S4A and S4B). This indicates that a non-linear model might be more suitable. To

test this, we fitted a number of biologically motivated non-linear models relating the combined response of

pAKT and pERK to cell viability. We selected pAKT and pERK based on their biological plausibility and

because the analysis above indicated that of the nodes that we have measured, these are the ones that

most strongly associated with cell viability. All models that we tested have the property that cell viability

goes to zero if either pERK or pAKT is fully inhibited (cf. STAR Methods, Equation 4c–4f), reflecting the bio-

logical assumption that both ERK and AKT activation are required for cell survival and growth.

To select the best model, we compared the standardized residuals of the model fits and the L2-norm of

the residuals in a leave-one-out cross-validation loop of the different models (Table 1). All non-linear
6 iScience 25, 104760, August 19, 2022



Table 1. Comparison of the goodness of fit of functions relating signaling response to cell viability

Function Type s (Model Fit) L2-Norm (LOOCV)

vk � 1

, 
1 � RAKT ;k

KM;AKT
� RERK ;k

KM;ERK

!
Non-linear 0.20 0.042

vk � 1

," 
1 � RAKT ;k

KM;AKT

!
,

 
1 � RERK ;k

KM;ERK

!#
Non-linear 0.20 0.045

vk � 3

, 
1 + 2

�
RERK ;k

KM;ERK + 2
�
RAKT ;k

KM;AKT

! Non-linear 0.21 0.048

vk � 4

," 
1 + 2

�
RERK ;k

KM;ERK

!
,

 
1 + 2

�
RAKT ;k

KM;AKT

!# Non-linear 0.21 0.048

1 � vk � P
i˛nodes

bi,Rik Linear 0.21 0.061

1 � vk � bAKT,RAKT ;k + bERK,RERK ;k Linear 0.28 0.093

s is themean residual standard error of themodel fitted to the full data. The L2-norm is calculated over predictionsmade in a leave-one-out cross-validation loop.

The non-linear models predict viability v from the log2-fold change of pERK and pAKT (RERK and RAKT) whereas the linear models fit the inhibition (1 - v). The table

is ordered from best to worst fit.
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models had clearly better performance than the linear models, despite having equal or less free parame-

ters. While overall the predictions of the different non-linear models were fairly similar (with Pearson

correlations between their predictions between 0.92 and 0.99, Figure S4D), a Michaelis-Menten-like model

of the form

vk =
1

1 � RAKT ;k
KM;AKT

� RERK ;k
KM;ERK

(Equation 1)

had the overall best performance on bothmetrics and shows no clear structure in the residuals (Figure S4C).

Here, vk is the cell viability and RERK ;k and RAKT ;k are the log2 fold changes of pERK and pAKT upon drug

treatment k. The parameters KM;ERK and KM;AKT can be interpreted as the log2 fold changes of pERK and

pAKT that cause 50% inhibition of cell viability. They differ slightly between the two cell lines, but the boot-

strapped 95% confidence intervals strongly overlap (Figure S4E), so we do not want to overinterpret these

differences. Importantly, this model gave a good fit to the data (Figure 4B), with a Pearson correlation be-

tween fitted and measured viability of 0.71.

Together, these results indicate that short-term signaling response is informative for longer term drug

response, that pAKT and pERK are the most informative readouts of the nodes that we measured in our

assay, and that the relation between signaling response and viability is non-linear.

Prediction and validation of selective multi-drug combinations

Next, we combined the network models (Figure 3A) with the parametrization of the signaling-viability

model (Equation 1) to simulate the effect of unseen 3-drug combination at unseen drug concentrations

on cell viability. When applying this model to the training data, the Pearson correlation between measured

and fitted cell viability was 0.78 (Figure 5A). We used this model to prioritize multi-drug combinations and

their dosing that maximize the selectivity, defined as the difference in viability v between parental and

PI3KH1047R cells: vParental � vPI3K�H1047R.

To do this, for all possible 3-drug combinations, we optimized the concentrations such that the viability of

the PI3KH1047R mutants is minimized, under the constraint that the viability of the parental cells remains

above 0.8 relative to DMSO control (cf. STAR Methods, Equation 7). To look for low-dose drug combina-

tions, we added the constraint that each drug can be used maximally at its IC10. However, no drug combi-

nation was predicted to be selective for the PI3KH1047R cells at any combination of concentrations. Since

none of the single drugs shows selectivity toward the PI3KH1047R cells (Figure 2C), this is not very surprising.

Moreover, our network reconstructions indicated that the main effect of the PI3KH1047R mutation is to

render the MCF10A parental line independent of growth factor stimulation. Indeed, when we grew

parental and PI3KH1047R cells in the media without growth factor, this is what we observed (Figure S5).
iScience 25, 104760, August 19, 2022 7
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Figure 5. Experimental validation of anti-selective drug combination predictions

(A) Scatterplot comparing full model fit (network model combined with signaling response-viability mapping) to the

training data. The Pearson correlation between fit and measurement is 0.78.

(B and C) Overview of drug combinations that we predicted to be anti-selective (B) and non-selective (C) based on this

model. Drug concentrations are color-coded relative to their IC10. The bottom row indicates predicted anti-selectivity

(defined as the difference in viability v between PI3KH1047R and parental cells, i.e. vPI3K�H1047R � vParental ) of the combi-

nation. These combinations were subsequently tested in the validation experiments.

(D) Boxplot comparing the measured anti-selectivity of the drug combinations predicted to anti-selective (panel B) or

non-selective (panel C). Each point represents the mean anti-selectivity of one drug combination, which was each tested

in eight replicates. The difference is highly significant (Wilcoxon signed-rank test p< 10� 7).

(E) Comparison of the measured anti-selectivity of IGFRi mono treatment, indicated by the horizontal gray line, with the

selected IGF1Ri-containing 3-drug combinations (red boxplot). IGF1Ri-containing combinations are significantly more

anti-selective than IGF1Ri mono treatment (one-sample t-test p< 10� 7).

(F) Boxplots comparing cell-viability of parental and PI3KH1047R cells of the 11 (out of 17) IGF1Ri-containing drug com-

binations that are significantly more anti-selective than IGF1Ri mono treatment.
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To nonetheless validate our computational approach, we then looked for drug combinations that we pre-

dicted to be anti-selective, where anti-selectivity is defined as vPI3K�H1047R � vParental. In our optimizations,

we found 30 such combinations with an anti-selectivity > 0.1 (Figure 4B). Interestingly, IGF1R inhibition was

part of all of the 17 combinations that we predict to be most anti-selective, while its anti-selectivity in the

training data was only modest (Figure 2C). However, the difference in signaling response, and specifically

pAKT, was much more pronounced (Figure 2B), and this latter aspect gets picked up in the network recon-

structions (Figure 3A). A particularly interesting example is the combination IGF1Ri + PI3Ki + GSK3i. Here,

both PI3Ki and GSK3i at their lower dose (IC50) show no anti-selectivity, yet this combination is predicted to

be one of the most anti-selective ones. (Figure 5B, highlighted). As a control, we also selected 44 combi-

nations that we predicted to be non-selective for either cell line (Figure 5C, cf. STAR Methods, Equation 8).

A conservative power analysis, based on the accuracy of the viability predictions and the effect size of the

anti-selectivity predictions, indicated a power of 90% to detect an overall difference in selectivity between

the anti-selective and control combinations.

We then treated the parental and PI3KH1047R cells with the 30 predicted to be anti-selective and 44 control

combinations and measured their viability (Table S5). Combinations that we predicted to be anti-selective

were indeed so, and this was highly significant when compared to the non-selective control combinations

(Wilcoxon signed-rank test p< 10� 7, Figure 5D). Individually, 25 of the 30 combinations predicted to be

anti-selective were indeed significantly so (one-sided t-test p< 0:05, Table S6).

As mentioned above, of the 30 predicted-to-be-anti-selective combinations we tested, 17 contain the

IGF1R inhibitor, which is also mildly anti-selective as monotherapy. (None of the other inhibitors showed
8 iScience 25, 104760, August 19, 2022
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anti-selectivity as a monotherapy at their IC10, Figure S6). To rule out the possibility that our result is mainly

driven by the anti-selectivity of IGF1Ri monotherapy, we compared the 17 IGF1Ri-containing drug combi-

nations with IGF1Ri monotherapy. Figure 5E shows that each of the IGF1Ri-containing combinations we

tested (red boxplot) is more anti-selective than IGF1Ri treatment alone (indicated by horizontal gray

line). This effect is highly significant (one-sample t-test p< 10� 7). When looking at the individual drug com-

binations, we found that 11 of the 17 IGF1Ri-containing combination treatments are significantly more anti-

selective than IGF1Ri monotherapy (one-sided t-test p< 0:05, Figure 5E and Table S7). This also includes

the IGF1Ri + PI3Ki + GSK3i combination highlighted above, which is the second most anti-selective com-

bination when ranked by effect size.

These results indicate that our pipeline is capable of making an accurate prioritization of mutation-specific

low-dose multi-drug combinations. Importantly, these predictions are not always obvious, and would not

have been possible without the help of mathematical models of the signal transduction networks and their

relation to cell viability.

DISCUSSION

In this study, we have shown that it is possible to predict which multiple low-dose (MLD) three-drug combi-

nations are likely to have amutant-specific impact based on a combination of single and two-drug high-dose

drug-responsemeasurements andmathematical modeling.We have used drug perturbation experiments to

reconstruct, quantify and compare signal transduction networks of an isogenic cell line pair, and linked the

responses of these networks to cell viability. No single signaling readout is highly predictive, but a non-linear

model combining the response of pERK and pAKT gave a good fit. Importantly, this showed that the short-

term signaling response is predictive for cell viability, which is measured in longer term experiments. Based

on the so-obtained models, we were able to predict combinations that are specifically effective in one cell

line but not another. 25 of the 30 of the combinations that we predicted to be anti-selective indeed were

so in validation experiments, despite the fact that the differences between the cell lines in the training

data were very subtle. It is to be expected that it will be easier to find mutation-specific drug combinations

when the effect of a mutation on the signaling networks and on cell viability is stronger.

All of the most strongly anti-selective drug combinations we identified contained the IGF1R inhibitor, but

as monotherapy low-dose IGF1Ri is only mildly anti-selective. More generally, which multi-drug combina-

tions are most selective or anti-selective is often far from obvious. For instance, while in the training data

PI3Ki andGSK3i at their lower dose (IC50) individually show no selectivity toward the parental cells, the com-

bination IGF1Ri + PI3Ki + GSK3i is one of the most anti-selective drug combinations, both as predicted by

our model and as measured by validation experiments. This underscores the need for mathematical

modeling in prioritizing promising combinations.

We focused on a relatively small network of nine nodes centered around the MAPK and AKT signaling axis.

However, technologies are emerging that will make it feasible to performmany perturbations and measure

the signaling network responses in a highly multiplex manner. For instance, reverse-phase protein arrays

have been used to quantify the response of hundreds of (phospho)-proteins to hundreds of drug perturba-

tions (Korkut et al., 2015) in large cell line panels (Zhao et al., 2020), and van Buggenum et al. used DNA-

barcoded antibodies to quantify the response of 70 (phospho)-proteins to �300 different kinase inhibitors

(van Buggenum et al., 2018). By leveraging such technologies, the pipeline developed here could be used

to prioritize drug combinations targeting the whole spectrum of signaling pathways.

In conclusion, here we have shown that it is feasible to make accurate, non-trivial predictions about (anti-)

selectivity of multi-drug combinations based on mathematical models of signaling transduction networks.

In combination with suitable model systems, this framework makes it possible to rationally design

biomarker-selective low-dose multi-drug combinations.

Limitations of the study

Themain limitation of this study is that, according to ourmodel, no combination of the drugs that we tested is

likely to be selective, i.e. inhibit cells with an oncogenic PI3KH1047R mutation more strongly than their parental

counterparts, at least in this particular model system The absence of oncogene-specific sensitivities is pre-

sumably due to an absence of ‘‘oncogene addiction’’ (Weinstein, 2002) to the PI3K mutation in the

PI3KH1047R MCF10A cells. In the absence of drug treatment, the mutation has no effect on proliferation under
iScience 25, 104760, August 19, 2022 9
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the growth conditions we used, and this mutation therefore presumably does not induce any vulnerabilities in

this cell line. Our network reconstruction suggests that themain effect of the PI3KH1047Rmutation onMCF10A

cells is to make them growth factor-independent, consistent with previous observations (Gustin et al., 2009).

We focused on targeting and modeling the AKT and MAPK pathways as these are most likely to show pro-

nounced differences between the cell lines (Wu et al., 2014). While some proteins in alternative pathways are

also impacted by the the PI3KH1047R mutation (Wu et al., 2014), we believe that it is unlikely that alternative

targets would show selectivity toward PI3K mutations, but we cannot fully exclude this possibility.

The inability to identify selective drug combinations is due to the particularities of theMCF10A isogenic cell

line pair model, and not due to the computational model. While isogenic cell line pairs with a mutation

knocked in are attractive models because they isolate the effect of the mutation, they may thus not always

be the best model system to study oncogene-specific sensitivities. An alternative approachmight be to use

cancer cell lines of which one of the driver mutations is removed (Haagensen et al., 2016; Torrance et al.,

2001; Martin et al., 2017). Alternatively, a larger, more heterogeneous panel of cell lines with and without

a particular biomarker could be used (Jastrzebski et al., 2018; Klinger et al., 2013; de Lint et al., 2016; Iorio

et al., 2016). In this scenario, one would look at commonalities in the signaling network response of the cell

lines with the biomarker compared to the lines without it, and use this to propose combinations that are

selective of the biomarker carrying cell lines. Finally, matched tumor and normal organoids from the

same patient could be used for truly personalized models (Veninga and Voest, 2021).

To parametrize the relation between drug concentration and target inhibition (Equation 5), we interpolated

the effects estimated at two different drug concentrations, using a simple model with just two free param-

eters. While this gives a reasonable indication about the relation between drug concentration and target

inhibition, two data points are not enough tomake strong inferences about the precise form of the function

relation drug concentration to target inhibition, and whether this differs for different drugs. Similarly, we

used a very simple model with just two free parameters to relate signaling response to cell viability. While

this model gave a good fit to the data, more data are needed to precisely determine the form of this rela-

tionship. For instance, Figure 4B suggests that the model rarely predicts viabilities below �0.3. This might

be due to the form of Equation 1 which approaches zero asymptotically slow with increasing inhibition of

ERK or AKT activity. Since we were aiming to predict low-dose combinations that are (anti)selective, the

range of viabilities of our model predictions was roughly between 0.4 and 1, so this does not affect our pre-

dictions strongly. Nonetheless, the fit might be improved with more complex models, for instance by

including something akin to a Hill-coefficient in Equation 1. In future studies, performing drug perturbation

experiments at more concentrations could help to better determine the precise relations between drug

concentration and target inhibition and between signaling response and cell viability.

Targeted inhibitors always have off-target effects, but there are multiple reasons why these are unlikely to

affect our main results. First, we focus on predicting differential drug response, and only mutant-specific

off-target effects, which are unlikely to be dominant, will influence this. Furthermore, our predictions are

based on modeling the on-target effects. If off-target effects would be dominant, these would likely not

have validated. Finally, we combine the drugs at low concentrations, at which the selectivity of targeted

drugs is typically high (Klaeger et al., 2017). Nonetheless, when in future studies selective combinations

are found, it could be advisable to exclude off-target effects before proceeding to in vivo validation by

testing alternative drugs for the same target.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

CREB1S133 (Detection Mix) ProtAtOnce Ltd. Cat#PR1707253

EGFRY1068 (Detection Mix) ProtAtOnce Ltd. Cat#PR1707253

ERK1T202/Y204 (Detection Mix) ProtAtOnce Ltd. Cat#PR1707253

GSK3S21/S9 (Detection Mix) ProtAtOnce Ltd. Cat#PR1707253

MEK1S217/S221 (Detection Mix) ProtAtOnce Ltd. Cat#PR1707253

p70RSKT389 (Detection Mix) ProtAtOnce Ltd. Cat#PR1707253

PRAS40T246 (Detection Mix) ProtAtOnce Ltd. Cat#PR1707253

RPS6S235 (Detection Mix) ProtAtOnce Ltd. Cat#PR1707253

AKT1T473 Bio-Rad Cat#171V50001M

Chemicals, peptides, and recombinant proteins

EGFRi (Gefitinib) MedKoo Biosciences Cat#100140

IGF1Ri (OSI-906) MedKoo Biosciences Cat#202096

RAFi (LY3009120) MedKoo Biosciences Cat#206161

MEKi (Trametinib) MedKoo Biosciences Cat#201458

ERKi (SCH772984) MedKoo Biosciences Cat#406578

GSK3i (3F8) MedKoo Biosciences Cat#564605

PI3Ki (BKM120) MedKoo Biosciences Cat#204690

AKTi (MK-2206) MedKoo Biosciences Cat#577522

mTORi (AZD8055). MedKoo Biosciences Cat#200312

Critical commercial assays

CellTiter-Blue Promega Corporation Cat#G8081

Cell Signaling Reagent Kit BioRad Cat#171304006M

9 plex BEAD MIX ProtAtOnce Cat#PR1707252

Deposited data

Luminex data This paper Zenodo: https://doi.org/10.5281/zenodo.6594812 and

https://github.com/evertbosdriesz/cnr-selective-combos

Envision quantification This paper Zenodo: https://doi.org/10.5281/zenodo.6594812 and

https://github.com/evertbosdriesz/cnr-selective-combos

Experimental models: Cell lines

MCF10A Parental Horizon Discovery Cat#HD PAR-003

MCF10A PI3KH1047R Horizon Discovery Cat#HD 101-011

Software and algorithms

Original code and notebooks This paper Zenodo: https://doi.org/10.5281/zenodo.6594812 and

https://github.com/evertbosdriesz/cnr-selective-combos

Comparative Network Reconstruction Bosdriesz et al., (2018) https://github.com/NKI-CCB/cnr

MixedIC50 Vis et al., (2016) https://github.com/NKI-CCB/MixedIC50

ILOG CPLEX Optimization Studio (version 12.8) IBM N/A

Mathematica (version 12.0) Wolfram Research N/A

Other

EnVision PerkinElmer N/A

Bio-Plex Protein Array system Bio-Rad N/A
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Evert Bosdriesz (e.bosdriesz@vu.nl).

Materials availability

This study did not generate new unique reagents.

Data and code availability

All data and code required to reproduce the results and figures in this paper are available at Zenodo. DOIs

are listed in the key resources table. Alternatively, they can be directly accessed on GitHub at https://

github.com/evertbosdriesz/cnr-selective-combos. All data produced in this study are included in the pub-

lished article and its supplemental information, or are available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cells and cell culture

Human parental and PI3KH1047R/+ MCF10A cell lines were obtained from Horizon discovery (HD PAR-003

and HD 101-011). Cells were cultured in DMEM/F-12 including 2.5 mM L-glutamine and 15mMHEPES, sup-

plemented with 5% horse serum, 10 mg/mL insulin, 0.5 mg/mL hydrocortisone and 0.1 mg/mL cholera toxin.

Mycoplasma tests were performed every 2 months.

Reagents and compounds

The following inhibitors were used in this study: EGFRi (Gefitinib), IGF1Ri (OSI-906), RAFi (LY3009120), MEKi

(Trametinib), ERKi (SCH772984), GSK3i (3F8), PI3Ki (BKM120), AKTi (MK-2206), mTORi (AZD8055). All inhib-

itors were purchased from MedKoo Biosciences. The luminex antibodies against CREB1S133, EGFRY1068,

ERK1T202/Y204, GSK3S21/S9, MEK1S217/S221, p70RSKT389, PRAS40T246 and RPS6S235 were purchased from

ProtATonce Ltd. The luminex antibody against AKT1T473 was purchased from BioRad.

METHOD DETAILS

Drug perturbation and validation experiments

All the cell-viability measurements were performed in biological triplicates, each with 2 technical replicates,

using black-walled 384-well plates (Greiner 781091). Cells were plated at the optimal seeding density (200

cells per well) and incubated for approximately 24 hours to allow attachment to the plate. Drugs were then

added to the plates using the Tecan D300e digital dispenser. 10 mM phenylarsine oxide was used as positive

control (0% cell viability) and DMSOwas used as negative control (100% cell viability). Three days later, culture

mediumwas removed and CellTiter-Blue (Promega G8081) was added to the plates. After 2 hours incubation,

measurements were performed according tomanufacturer’s instructions using the EnVision (PerkinElmer). Vi-

abilities were normalized per cell line according to ðtreatment � PAOmeanÞ=ðDMSOmean � PAOmeanÞ. IC50

and IC90 values were fitted using the R-package MixedIC50 (Vis et al., 2016) (code available at https://

github.com/NKI-CCB/MixedIC50).

The signaling response measurements were performed using 6-well plates (Greiner 657165). 300K cells per

well were plated and incubated for approximately 24 hours to allow attachment to the plate. Drugs were

then added to the plates and protein was harvested after 2 hours using the Bio-Plex Pro Cell Signaling Re-

agent Kit (BioRad 171304006M) according to the manufacturer’s instructions. Protein concentration of the

samples was normalized after performing a Bicinchoninic Acid (BCA) assay (Pierce BCA, Thermo Scientific),

according to the manufacturer’s instructions. Cell lysates were analyzed using the Bio-Plex Protein Array

system (Bio-Rad, Hercules, CA) according to the suppliers protocol as described previously (Klinger

et al., 2013). Intensities were normalized by subtracting blanks for each epitope and correcting for protein

concentration.

QUANTIFICATION AND STATISTICAL ANALYSIS

Comparative network reconstruction

MAPK and AKT signaling networks of the parental and PI3KH1047R mutant cell lines were reconstructed

based on the Luminex drug-response data using Comparative Network Reconstruction (CNR)(Bosdriesz
14 iScience 25, 104760, August 19, 2022
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et al., 2018). Briefly, CNR is a network reconstruction method based on Modular Response Analysis (Kho-

lodenko et al., 2002). It links the matrix of measured node responses to a set of perturbations, Rx (where Rx
ik

is defined as log2 fold change of node i in response to perturbation k in cell line x) to the matrix of unob-

served interaction strengths rx (where rxij is the logarithmic partial derivative of node i with respect to node j

in cell line x) and the direct perturbation effects sx (with sxik the scaled direct effect of perturbation k on node

i in cell line x). These matrices are related through

rx ,Rx + � sx = 0; cx: (Equation 2)

In principle, rx and the values of the elements in sx (the targets of the inhibitors are assumed to be known)

can be obtained by solving this set of equations, but in practice the problem is often under-determined.

CNR solves this problem by reformulating it as optimization procedure to find a model that balances

data-fit with a model complexity by penalizing the number of edges (non-zero entries in r) and differences

between cell lines (entries in r that are quantitatively different between the cell lines). The optimization

problem reads:

Minimize :
P
n

P
i;j

P
x
ε
x2
in + h,Iedgeij + q,

�
Idiffij + Isdiffin

�
Subject to :

P
k

rxik,R
x
kn + sxin = ε

x
in ci; j;n; x

Iedgeij = 00rxij = 0 ci; j; x

Idiffij = 00rxij � rmean
ij = 0 ci; j; x

Isdiffin = 00sxin � smean
in = 0 ci;n; x

rmean
ij = 1

�
Ncell lines

X
x

rxij ci; j

smean
in = 1

�
Ncell lines

X
x

sxin ci; n

Iedge; Idif ; Isdiff ˛ f0; 1g
n˛

�
perturbations

�
; i; j; k ˛ fnodesg; x˛�parental;PI3KH1047R

�
(Equation 3)

where the εs are the model residuals. Solving this optimization problem gives the matrices r and s for a

given R.

Additional constraints reflecting the experimental design were added to the CNR problem.

� sik is negative and stronger for higher drug concentrations, i.e. 0> sikð½IC50�Þ> sikð½IC90�Þ.
� Each inhibitor-target pair has a single indicator for the difference in perturbations strengths for

both inhibitor concentrations, i.e. if Isdiffik = 0, both constraints sparentalik ð½IC50�Þ = sPI3Kik ð½IC50�Þ and

sparentalik ð½IC90�Þ = sPI3Kik ð½IC90�Þ are active.

� Most inhibitors are modelled as a perturbation to their direct target, i.e. EGFRi, MEKi, ERKi, GSK3i

and AKTi are modelled as perturbations to EGFR, MEK1, ERK1, GSK3 and AKT1 respectively.

� The MEK inhibitor interferes not only with MEK phosphorylation, but also with its catalytic efficiency.

Hence, MEK inhibition was additionally modelled as a perturbation to its downstream proteins (c.f.

Bosdriesz et al. (2018)).

� Some inhibitors target kinases that were not measured in our assay. The effect of these inhibitors was

modelled as a perturbation to the (canonical) downstream nodes of the kinases being inhibited. Spe-

cifically, IGF1R inhibition was modelled as a perturbation to MEK1 and AKT1, PI3K inhibition as a

perturbation to AKT1, RAF inhibition as a perturbation to MEK1, and mTOR inhibition as a perturba-

tion to AKT1 and p70S6K.

Prior information about network topology was included by setting the indicators of a set of canonical MAPK

and PI3K pathway interactions Iedgeij = 1. These indicator constraints are added to the optimization

problem described in Equation 3. The corresponding edge-strengths, together with those of edges that

might be added to the network, are found by solving the optimization problem. Hyperparameter were
iScience 25, 104760, August 19, 2022 15
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set to h = 0:1 and q = 2:0 based on a leave one out cross validation loop. Single drug treatments were not

included in the leave one out cross validation because each drug concentration needs to be present in at

least one perturbation to estimate the corresponding parameter. The final model was obtained by restrict-

ing the topology to the prior network information with addition of the 4 edges that were identified in the

leave one out cross-validation loop, and then performing the optimization with q = 2:0.

The full Comparative Network Analysis can be found in the Jupyter notebook under the following link:

https://github.com/evertbosdriesz/cnr-selective-combos/blob/master/python/cnr-mcf10a-pi3k.ipynb.
Randomized models

To obtain the distribution of residuals shown in Figure 3C, 1000 models with a random topology

were generated by randomly selecting 16 (out of all possible 72) edges, setting the corresponding indicator

to Iedgeij = 1, and setting the indicators of all other edges to zero. To focus on the effect of model topology

only, we did not allow for any difference between the cell lines by setting q to infinity using

cplex.infinity. Subsequently, edge weights were obtained by solving the CNR optimization problem

described in Equation 3, and the corresponding Root Mean Square (RMS) of residuals, defined asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i;n;xε

x 2
in

q
=N, was calculated. To make a fair comparison, we also calculated the residual of our actual

model without any differences between the cell lines. To this end, we set the indicators of the edges of

the actual model Iedgeij = 1 and all others to 0, set q = cplex:infinity, and re-optimized Equation 3.

Similarly, the distribution of residuals shown in Figure S2C was obtained by randomly permuting node-

labels of the input data and optimizing the model with the same network topology as the actual model.

Finally, to obtain the distribution of residuals for random differences between the cell lines shown in Fig-

ure S2D, 1000 models with randomly selected Idiff and Isdiff were generated. For all these models, the topol-

ogy was first fixed to the topology of the actual model by setting the indicators Iedgeij = 1 for the edges that

are present in the actual model, and all others to 0. Subsequently, 13 randomly selected indicator for dif-

ferences between the cell lines Idiff and Isdiff were set to 1, the others to 0, and the optimization in Equation 3

was solved using these constraints.

The relation between signaling output and cell viability

The viability (relative to DMSO control) upon perturbation k, vk , were fitted to the following functions:

1 � vk =
X

i ˛ nodes

biRik (Equation 4a)
1 � vk = bAKT,RAKT ;k + bERKRERK ;k (Equation 4b)
1

vk =
1 � RAKT ;k

KM;AKT
� RERK ;k

KM;ERK

(Equation 4c)

1 1

vk =

1 � RAKT ;k
KM;AKT

3
1 � RERK ;k

KM;ERK

(Equation 4d)

3

vk =

1+ 2
� RERK ;k

KM;ERK + 2
� RAKT ;k

KM;AKT

(Equation 4e)

2 2

vk =

1+ 2
� RERK ;k

KM;ERK

3

1+ 2
� RAKT ;k

KM;AKT

(Equation 4f)

where RAKT ;k and RERK ;K are the log2-fold changes of pAKT and pERK relative to DMSO control upon pertur-

bation k, respectively. KM;AKT and KM;ERK are the parameters to be fitted for the nonlinear equations and can

be interpreted as the RAKT ;k and RERK ;k values for which the viability is reduced by 50% (or 25% and 33% for

Equations 4e and 4f, respectively). Fitting was performed using the lm and nls functions of R (Core Team,

2021) for the linear and non-linear models, respectively. Mean residual standard errors (s) were obtained

using the sigma function. Leave one out cross-validation was performed on a per cell-line basis. Bootstraps

were performed using the function bootstrap from the ‘rsample’ package (Kuhn and Wickham, 2020).
16 iScience 25, 104760, August 19, 2022
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All code and details for this analysis can be found in the RMarkdown-file under the following link: https://

github.com/evertbosdriesz/cnr-selective-combos/blob/master/R/02-perturbations/mapping-signaling-

drugresponse.Rmd.
Multi-drug response simulations and prediction of selective 3-drug combinations

CNR gives an estimate of the direct target inhibition of each drug only for the concentrations at which the

drug was applied. To be able to simulate the effect of unseen drug concentrations, the relations between

the applied concentration of drug k, ½Ik �, and target inhibition of node i in response to this, sik were fitted to

the following function for each inhibitor-target pair,

sikð½Ik �Þ =
Imax;ik � ½Ik �
KI;ik + ½Ik � : (Equation 5)

The parameters Imax;ik and KI;ik were fitted using the sik-values for ½Ik � = IC50 and IC90 obtained from the CNR

optimizations with the curve_fit function from the python ‘scipy.optimize’ package (Virtanen et al., 2020).

For convenience all drug concentrations were normalized to the highest concentration applied

(the IC90). In all analyses only interpolations and not extrapolations are used (0% ½I�% 1).

RA+B+C , the vector of simulated log2 fold changes in response to a perturbation with drugs A, B and C, at

concentration ½IA�, ½IB� and ½IC � was calculated as

RA+B+C = r� 1ðsAð½IA�Þ + sBð½IB�Þ + sCð½IC �ÞÞ; (Equation 6)

to obtain RAKT ;A+B+C and RERK ;A+B+C . These were then used to calculate viability according to Equation 4c.

Together, this allows for simulating the effect on cell viability of drug combinations and concentrations that

were not seen in the training data.

For each possible 3-drug combination, the (anti)-selectivity for cell line x relative to ywas optimized by solv-

ing the following optimization problem:

Minimize : vx
A+B+C

Subject to : vy
A+B+C R vy;min

0< ½Ik �< IC10 k ˛ fA;B;Cg
(Equation 7)

where vy;min is the cutoff used for the minimal viability that cell line y should have under the 3-drug

treatment, and that we (somewhat arbitrarily) set to 0.8. Specifically, to optimize selectivity we use x =

PI3KH1047R; y = Parental and to optimize anti-selectivity we use x = Parental;y = PI3KH1047R.

Similarly, unselective control combinations were obtained by solving the optimization problem:

Minimize :
�
vx
A+B+C � 0:8

	2
+
�
vy
A+B+C � 0:8

	2
Subject to : 0< ½Ik �< IC10 k ˛ fA;B;Cg

(Equation 8)

for all possible 3-drug combinations.

A power analysis of the predictions was done by performing 1000 simulations with addition gaussian

noise with a mean 0 and a standard deviation 0.25 (based on the residuals of our viability predictions) to

the results, and counting in what fraction there was an observable difference between the two groups.

The optimizations were performed in Wolfram Mathematica (Wolfram Research, Inc., 2019) (version 12.0)

using the NMinimize function. The full optimization and power analysis can be found in the Mathematica

notebook under the following link: https://github.com/evertbosdriesz/cnr-selective-combos/blob/master/

mathematica/optimize-combinations.nb.
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