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Abstract

IntroductionDiffusion-WeightedMagnetic Resonance Imaging (DW-MRI) is a quantitativeMRImethod,
where the diffusion of water molecules is exploited as a source of contrast among tissues. By sensitising
DW-MR-measurements to diffusion, we enable the non-invasive quantification of tissue microstructure.
The signal observed in a voxel arises from contributions of various diffusion processes within different
cellular components (i.e. the tissue microstructure). Many methods exist aiming to disentangle these
signal contributions and to compute biologically meaningful microstructure indices. A new, innovative
method is using Artificial Intelligence (AI) to directly predict microstructure from DW-MR-signal data,
instead of relying on signal representations or biophysical models.
Objective The objective of this project is the development of a novel AI-based method to estimate
microstructural parameters in the liver, specifically cell size and intracellular fraction, given paired ex-
amples of DW-MRI signals and microstructural features as seen on histology. We aim to outperform
the estimation of microstructure by a well-established biophysical model. The method will be developed
on pre-clinical data, and will be tested by deployment on in vivo patient data.
Methods Seven algorithms were implemented in Python, of which four voxel-wise Machine Learning
(ML) (Linear Regression, Piecewise Linear Regression, K-Nearest Neighbour, Random-Forest Regres-
sor (RFR)), one patch-wise ML (PW-RFR), one voxel-wise Deep Learning (DL) (Multi-Layer-Perceptron
(MLP)) and one patch-wise DL (PW-MLP). The algorithms were trained in a supervised manner, using
MRI-derived data co-registered to histology-derived parametric maps of the targets (i.e. the ground
truth) of seven mouse livers. The performance of the algorithms based on three input feature types is
analysed: (i) the raw DW-MR-data, (ii) signal representations, (iii) parametric maps computed by fitting
a multi-exponential biophysical model. Quantitative evaluation metrics (Mean Absolute Error (MAE)
and Relative MAE) and visual inspection are used for performance assessment. The most promising
pre-trained algorithm from the pre-clinical study is consequently tested on clinical data of three patients.
Results Based on quantitive evaluation metrics and visual inspection of the predictions in comparison
with the histology-derived ground truth, the PW-RFR was found to be the most promising algorithm.
With the PW-MLP exhibiting the second best results, the importance of incorporating spatial informa-
tion, here via the patch-wise approach, is supported. No large differences were observed in the per-
formance of the best algorithm, the PW-RFR, for the three input feature types. From the clinical study
appeared that the PW-RFR is able to at least partly capture notable contrasts in the lesion microstruc-
ture, and the predictions are in a realistic range in comparison with histology-derived microstructure
values as obtained via biopsy of the lesions.
Conclusion The PW-RFR algorithm demonstrates a promising performance in both the pre-clinical and
the clinical experiment. This points towards the feasibility of developing tools that learn how to predict
histopathological characteristics from DW-MRI on pre-clinical MRI-histology data, and consequently
deploy these tools in a clinical setting. However, these results are preliminary, and further validation
on larger and more diverse datasets is required.

i



Contents

Abstract i

Nomenclature ix

1 Introduction 1
1.1 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 7
2.1 Microstructural assessment in oncology . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Biopsy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Histological validation of DW-MRI methods . . . . . . . . . . . . . . . . . . . . . 8

2.2 Diffusion-Weighted Magnetic Resonance Imaging . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Diffusion encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 b-value and diffusion time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Signal representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Simulation study 12
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.1 Pre-clinical dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.2 Simulating the data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.3 Training, testing, evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.4 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.5 Implementation of the algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.1 Implementation of the algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.2 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Pre-clinical study 26
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3.1 Algorithm comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.2 Input feature types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

ii



Contents iii

5 Clinical study 35
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3.1 Visual comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3.2 Quantitative comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 General Discussion 40
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

References 44

A Literature Review 51

B Results of the simulation study 52

C Results of the pre-clinical study 54



List of Figures

1.1 An illustration of intra-voxel heterogeneity: the voxel size of an in vivoDW-MRI in humans
is much larger than the scale of the microstructure where diffusion takes place. Because
of this, the signal observed in one DW-MRI voxel is the result of entangling the signal
contributions of multiple different water pools into one single number. . . . . . . . . . . . 2

1.2 An overview of the methods used to achieve the main research objective, divided in
three experiments. From top to bottom: (1) the simulation study, (2) the pre-clinical
study, and (3) the clinical study. Research questions 2 and 3 are answered in (2) the
pre-clinical study. Research question 4 is answered in (3) the clinical study. DW-MR =
Diffusion-Weighted Magnetic Resonance, SNR = Signal-to-Noise Ratio, ML = Machine Learning,
DL = Deep Learning, ADC = Apparent Diffusion Coefficient, K = Kurtosis, ME = Multi-Exponential. 6

2.1 Schematic of the Pulsed-Gradient Spin-Echo (PGSE) sequence. The first and second
radiofrequency (RF) pulses rotate the magnetisation vector by 90◦ and 180◦ respectively.
These two pulses are characteristic for a spin-echo sequence, as they consecutively
excite and refocus the magnetisation. After a time TE (the echo time), the signal is fully
refocussed and sampled. The diffusion encoding gradient exists of two pulses on each
side of the 180◦. It is characterised by a gradient magnitude G, the gradient duration δ,
and the separation time in between the two gradient lobes ∆. . . . . . . . . . . . . . . . 9

2.2 MR imaging of a healthy mouse liver ex vivo at room temperature. (A) Normalized MR-
signal of a T2-image with zero diffusion weighting. (B) Normalized Diffusion-Weighted
(DW)-image with b = 918s/mm2. The DW-image shows signal attenuation in areas of
diffusion, resulting in a darker appearance in the image. . . . . . . . . . . . . . . . . . . 9

2.3 An example of the difference between a mono-exponential fit and a second-order fit
including kurtosis. On the x-axis, the various b-values are plotted. On the y-axis, the
logarithm of the signal attenuation due to the diffusion gradients is shown. . . . . . . . . 11

3.1 The pre-clinical dataset. Three representative samples are shown, from top to bottom:
wild type (WT ), i.e. healthy; Patient-Derived Xenograft (PDX) with generalized small cell
infiltration, lymphoma-like (PDXinf1); PDX with necrosis and inflammation (PDXnec).
From left to right: a T2w-image, the histological section with HE-staining, and a zoom-in
on the microstructure type most present in the sample. . . . . . . . . . . . . . . . . . . . 13

iv



List of Figures v

3.2 Acquisition of the pre-clinical dataset. (A) Patient-Derived Xenograft (PDX): mice are
subcutaneously implanted with tumour tissue taken from liver cancer patients. (B) After
a time period in which the tumour is allowed to develop further in the mice, they are sac-
rificed and their livers resected. The resected livers are immersed in phosphate buffer
saline (PBS) solution and imaged with a DW-MRI-protocol ex vivo. After MR-imaging,
the livers are fixated and prepared for histology. The slices were stained with haema-
toxylin and eosin (HE), and consequently digitized with a Hamamatsu C9600-12 scanner
(resolution: 0.277µm). Parametric maps of cell size L and intracellular fraction fic are
derived from the histological images, and these are registered to the DW-MR-images. . 14

3.3 The normalized real and simulated data of one slice for samplePDXinf1 at b = 1856s/mm2,
TE = 45ms, δ = 10ms, ∆ = 30ms. A) The real DW-MR-image with Sreal, B) the
simulated image in ideal circumstances with Ssim,SNR=100, C) the simulated image in
realistic circumstances with Ssim,SNR=20, D) the signal values for each b-value (b =

[0.43, 1855.96, 119.17, 1062.44, 234.23, 917.94, 410.99, 1495.48, 721.63, 2792.19] s/mm2), TE =

45ms, δ = 10ms, ∆ = 30ms. The voxel on which D) is based is indicated with the arrow
in A-C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 Illustration of the voxel-wise training approach. Each voxel is treated as an independent
training sample. The voxels are used as input for seven regression algorithms, to predict
the two separate outcomes. L = cell size, fic = intracellular fraction. . . . . . . . . . . . 18

3.5 LeaveOneOut Cross-Validation (LOO-CV) is used in experiment 1 and 2, to ensure that
the results are as generalizable as possible. (A) Because there are seven samples
available, this means that there will be six training samples and one test sample in each
fold. (B) As there is a limited amount of diversity in the data, we use an adapted version
of the normal LOO-CV. After division into the train and test set, we move one of the slices
in the test set back to the training set. This results in a test set with only one slice of the
’test’ sample. For the Multi-Layer-Perceptron (MLP) we further split the training set into
a train and validation set. This split is not done sample-wise, but on the shuffled whole
set of voxels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.6 Illustrations of the implemented algorithms. (A) Linear Regression, (B) Piecewise Linear
Regression, (C) K-Nearest Neighbour, (D) Random Forest Regression, (E) Multi-Layer
Perceptron. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.7 Illustration of the two versions of the patch-wise approach. If I) patch size n = 3, two
patch-wise features are used: the intensity value at the central voxel and the mean over
all voxels in the n × n, while if II) patch size n ≥ 5, three patch-wise features are used:
again the intensity value at the central voxel, and the mean over all voxels in the n × n

patch, and now with the mean over the voxels in the central 3 × 3 patch as additional
feature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 The available input (i-iii) and target data (iv) for three of the seven samples. From top to
bottom: WT , wild type, i.e. healthy; PDXinf1, PDX with massive small cell infiltration
(lymphoma-like); PDXnec, PDX with extensive areas of necrosis and diffuse inflamma-
tion. From left to right: (i) the normalized MRI, one non-DW, one DW; (ii) the maps of the
fitted signal representations ADC and K; (iii) parametric maps of cell size and intracel-
lular fraction estimated by a ME-model; (iv) the prediction target, i.e. the ground truth,
parametric maps of the histology-derived cell size L and intracellular fraction fic. . . . . 28



List of Figures vi

4.2 The test predictions by the PW-RFR and PW-MLP of (A) cell size L and (B) intracellular
fraction fic. From left to right are visualized, the ground truth, the estimation by theME-
model, the prediction based on the DW-MR-signal, the fitted maps of ADC, K, and the
parametric maps of LME , fic,ME for PW-RFR and PW-MLP, respectively. . . . . . . . . 31

5.1 T2w and DW-MRI of the biopsied liver lesions, and the histological image of the biopsied
tissue, for the three patients. On the first row, the T2w image. On the second row,
the DW-image, with b = 1500s/mm2 and TE = 75ms. Next to the MR-images, the
histological images of the HE-stained biopsies. An example of the cancer cells, and
necrosis if available, is shown for each patient. For A) Patient01, on the DWI, a clear
core of necrosis is visible in the tumour (dark), surrounded by cancer cells (light). This
corresponds with the findings from the biopsied tissue, containing cancer cells and areas
of necrosis. For B) Patient02, there are cancer cells and some necrosis visible as well
on the DWI. In the biopsy, two large regions of cancer cells from the tumour are visible,
with an area of necrosis in between. For C) Patient03, no necrosis is visible, but the
whole lesion exists of cancer cells. The lesion remains very bright on the DWI, while
the surroundings become much darker. The biopsy contains only cancer cells, in both
lumen and stroma, and no necrosis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2 The results of testing the PW-RFR on three patients, using theME-estimations as input
features. From top to bottom: the three different patients. From left to right: a high
quality T2-weighted anatomical scan, with the biopsied lesion segmented, the estimated
LME , the prediction of L by PW-RFR, the estimated fic,ME , and the prediction of fic by
PW-RFR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

B.1 The test predictions of (A) cell size L and (B) intracellular fraction fic, based on simulated
data with SNR = 20, for from top to bottomWT , PDXinf1, PDXnec, and for from left to
right predicted by Linear Regression (LR), Piecewise Linear Regression (PWLR), KNN
(K-Nearest Neighbour), Random Forest Regression (RFR), Patch-wise RFR (PW-RFR),
Multi-Layer Perceptron (MLP), and PW-MLP. . . . . . . . . . . . . . . . . . . . . . . . . 53

C.1 The test predictions of (A) cell size L and (B) intracellular fraction fic, based on fea-
ture type (i) the DW-MR-signal, for from top to bottom WT , PDXinf1, PDXnec, and
for from left to right the ground truth, the estimation by the ME-model, and the predic-
tion by Linear Regression (LR), Piecewise Linear Regression (PWLR), KNN (K-Nearest
Neighbour), Random Forest Regression (RFR), Patch-wise RFR (PW-RFR), Multi-Layer
Perceptron (MLP), and PW-MLP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

C.2 The test predictions of (A) cell size L and (B) intracellular fraction fic, based on feature
type (ii) ADC − K, for from top to bottom WT , PDXinf1, PDXnec, and for from left
to right the ground truth, the estimation by the ME-model, and the prediction by Linear
Regression (LR), Piecewise Linear Regression (PWLR), KNN (K-Nearest Neighbour),
Random Forest Regression (RFR), Patch-wise RFR (PW-RFR), Multi-Layer Perceptron
(MLP), and PW-MLP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56



List of Figures vii

C.3 The test predictions of (A) cell size L and (B) intracellular fraction fic, based on fea-
ture type (iii) the ME-estimations, for from top to bottom WT , PDXinf1, PDXnec, and
for from left to right the ground truth, the estimation by the ME-model, and the predic-
tion by Linear Regression (LR), Piecewise Linear Regression (PWLR), KNN (K-Nearest
Neighbour), Random Forest Regression (RFR), Patch-wise RFR (PW-RFR), Multi-Layer
Perceptron (MLP), and PW-MLP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57



List of Tables

3.1 Description of the seven samples. Only voxels for which all types of data are available
can be used in the experiments. Therefore, the images are masked and voxels for which
one type of data is missing are removed. The number of voxels remaining for each sam-
ple is reported here. SD = Standard Deviation, WT = Wild type, PDX = Patient-Derived
Xenograft, NA = Normal Appearing, nec = necrosis, L = cell size, fic = intracellular fraction. 15

3.2 The results of the simulation experiment for prediction of the cell size L. MAE = Mean
Absolute Error, REL MAE = Relative Mean Absolute Error, SNR = Signal-to-Noise Ratio. 25

3.3 The results of the simulation experiment for prediction of the intracellular fraction fic.
MAE = Mean Absolute Error, REL MAE = Relative Mean Absolute Error, SNR = Signal-
to-Noise Ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 Description of the available input feature types. The three input feature types are used in
the pre-clinical experiment. ADC = Apparent Diffusion Coefficient, TE = echo time, ME
= Multi-Exponential. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 TheMAE andREL MAE for prediction of cell sizeL, as predicted by the seven different
algorithms, based on three input types. For comparison, the MAE and REL MAE for
the estimation by theME-model is reported in the last row. MAE = Mean Absolute Error,
REL MAE = Relative Mean Absolute Error. . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 The MAE and REL MAE for prediction of intracellular fraction fic as predicted by the
seven different algorithms, based on three input feature types. For comparison, the
MAE and REL MAE for the estimation by the ME-model is reported in the last row.
MAE = Mean Absolute Error, REL MAE = Relative Mean Absolute Error. . . . . . . . . . 30

5.1 Patient demographics and primary tumour location for the three patients included in the
clinical study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2 The mean cell size L and intracellular fraction fic as computed over the histological
image obtained from tissue obtained via biopsy, as estimated by the ME-model from
DW-MR-signal data, and as predicted from the parametric maps of MEL and MEfic

using a PW-RFR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

viii



Nomenclature

Abbreviations

Abbreviation Definition

ADC Apparent Diffusion Coefficient
DW Diffusion-Weighted
MRI Magnetic Resonance Imaging
DKI Diffusion Kurtosis Imaging
VERDICT Vascular, Extracellular, and Restricted Diffusion for

Cytometry in Tumors
IMPULSED Imaging Microstructural Parameters Using Limited

Spectrally Edited Diffusion
EES Extra-cellular-extravascular
ic Intra-cellular
ec Extra-cellular
AI Artificial Intelligence
ML Machine Learning
DL Deep Learning
ME Multi-Exponential
LR Linear Regression
PWLR Piecewise Linear Regression
KNN K-Nearest Neighbour
RFR Random Forest Regressor
PW Patch-wise
MLP Multi-Layer Perceptron
PGSE Pulsed-Gradient Spin Echo
RF Radiofrequency
TE Echo time
PDX Patient-Derived Xenograft
PBS Phosphate Buffer Saline
HE Haematoxylin and Eosin
TR Repetition time
WT Wild type
NaN Not a number
SNR Signal-to-noise ratio
LOO-CV LeaveOneOut-Cross Validation
MAE Mean Absolute Error
CI Confidence Interval

ix



List of Tables x

Abbreviation Definition

MAPE Mean Absolute Percentage Error
REL MAE Relative Mean Absolute Error
NN Neural Network

Symbols

Symbol Definition Unit

ADC Apparent Diffusion Coefficient [µm2/ms]
K Kurtosis [-]
fic Intracellular fraction [-]
fv Vascular fraction [-]
T2 T2-relaxation time [ms]
L Cell size [µm]
G Gradient magnitude [mT/m]
b b-value [s/mm2]
A Cell area [µm2]
l Cell-wise diameter [µm]
D0 Intrinsic cytosol, i.e. intracellular, diffusivity [µm2/ms]
Dex Extracellular diffusivity [µm2/ms]

δ Gradient duration [ms]
∆ Gradient separation [ms]
tdiff Diffusion time [ms]
γ Proton gyromagnetic ratio [s−1T−1]



1
Introduction

Magnetic Resonance Imaging (MRI) is an important modality for imaging in oncology and is applied for
various purposes. Several sources of contrast can be exploited to show characteristics of the imaged
tissue, provided an appropriate MR-acquisition scheme is deployed. Diffusion-Weighted Magnetic Res-
onance Imaging (DW-MRI) is a quantitative MRI method, where the acquisition scheme is designed in
such a way that the diffusion of water molecules is exploited as a source of contrast among tissues. By
sensitising these DW-MRI measurements to water diffusion, we enable the noninvasive quantification
of tissue microstructure [1–3]. Water molecules exhibit Brownian motion [4], i.e. a thermal molecular
motion that causes fluctuations of their positions over time.

In free diffusion, particles move on average in an isotropic manner. Molecular displacement follows
in this case a Gaussian distribution. In biological tissues however, the water molecules do not diffuse
freely. As a result, the diffusion departs from being Gaussian distributed, often happening in a complex
fashion. This deviation is due to the fact that the random walks of water molecules are restricted
and/or hindered by various types of biological structures, such as cell membranes, collectively known
as tissue microstructure. The ultimate goal of DW-MRI, and also of this thesis, is the estimation of the
microstructure that has given rise to the observed DW-MR-signal [1, 5, 6].

The voxel size of in vivo MRI in humans is of the order of a few cube millimetres [7]. The observed
MR-signal in a voxel arises from contributions of various diffusion processes taking place within differ-
ent cellular components, since the voxel size is much larger than the scale of the microstructure where
diffusion takes place (∼ 1 − 100µm). As a consequence, in vivo DW-MRI measurements are charac-
terised by intrinsic, intra-voxel partial volume effects (i.e. intra-voxel heterogeneity), since the signal
entangles the contribution of multiple water pools into one measurement. In Fig. 1.1 an illustration of
intra-voxel heterogeneity is visualized.

1



1.1. Research objectives 2

The inference of microstructure from signal measurements is a challenging task [8, 9]. Different
combinations of microstructural parameters can provide virtually indistinguishable signals in the pres-
ence of noise, making microstructure estimation an ill-posed inverse problem [10]. Different techniques
have been proposed to disentangle such contributions, with the ultimate aim of obtaining sensitive and
specific biomarkers of tissue microstructure [9, 11].

1.1. Research objectives
As the first part of this thesis, a literature reviewwas executed to answer the following research question:

Research question 1: Literature Review

What is the current state of the art of DW-MRI methods for assessment of cancer microstructure
in body imaging, and what is their value in the assessment of histology?

A number of recent articles has reviewed the state-of-the-art of DW-MRI applications [1, 12–16].
However, these tend to focus heavily on brain imaging, especially in neurological or psychiatric disor-
ders, and reviews in contexts of body imaging in oncology are limited [7, 17–20], despite the rapidly
growing amount of research in this field. The focus of this literature review was therefore on the state-of-
the-art of DW-MRI, specifically in the context of oncological body imaging (beyond the central nervous
system, i.e., mainly abdominal and pelvic imaging), aiming to analyse its value in the assessment of
tissue microstructure as compared to reference co-localised histopathological measurements obtained
on the same tissues.

This full literature review can be found in Appendix A, but will be summarised here. The articles
included in the review show that measuring key biological properties, e.g., vascularisation, cell size,
and cellularity (i.e. cell density), of tumours throughout the body in a clinical setting may be feasible
with a variety of different tools.

From the literature review could be concluded that several of these DW-MRI techniques have the
potential to enable the non-invasive estimation of distinctive microstructural properties of cancer in
the body. Comparisons with histological features suggest that metrics from these methods provide
histologically meaningful microstructure indices. These metrics, while not always accurate, may aid
in equipping oncologists with non-invasive biomarkers of cancer aggressiveness. Despite the high
potential, it is however observed that several challenges remain.

Most of the currently used methods for assessment of these microstructural properties can be cat-
egorized either as (i) phenomenological signal representations, e.g. the Apparent Diffusion Coeffi-

Figure 1.1: An illustration of intra-voxel heterogeneity: the voxel size of an in vivo DW-MRI in humans is much
larger than the scale of the microstructure where diffusion takes place. Because of this, the signal observed in one
DW-MRI voxel is the result of entangling the signal contributions of multiple different water pools into one single
number.
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cient (ADC) and Diffusion Kurtosis Imaging (DKI), or (ii) multi-compartmental biophysical models, e.g.
Vascular, Extracellular, and Restricted Diffusion for Cytometry in Tumors (VERDICT) and Imaging Mi-
crostructural Parameters Using Limited Spectrally Edited Diffusion (IMPULSED).

The so-called signal representations are referred to as phenomenological, as they provide a descrip-
tion of the signal that in general does not enable the direct estimation of biophysical properties, such as
cell size or cellularity. These approaches rather parametrise the signal on global, phenomenological
properties of the whole displacement distribution of water molecules due to diffusion, e.g., the ADC

or the apparent diffusion kurtosis K. The ADC is related to the mean squared displacement of water
molecules. K on the other hand describes the level of non-Gaussianity of the overall displacement
distribution, i.e., how different the diffusion profile is from ideal Gaussian diffusion as happening in free
water. These properties are sensitive to alterations in the local microstructure due to pathology. How-
ever, they lack of specificity and may therefore be difficult to interpret, being surrogate indices that entail
contributions from multiple biological factors in one number [21]. The ADC can for instance be thought
of as the weighted average of the individual ADCs of different water pools, such as intra-cellular wa-
ter, extra-cellular water, etc). Nonetheless, these measures are relatively easy to be obtained and the
ADC has been widely utilised for multiple purposes, such as diagnostics, classification or grading of
tumours, and therapy response assessment [22, 23].

Multi-compartment biophysical models describe the DW-signal as arising from the contribution of
multiple water pools located in different cellular compartments. Fitting such models to sets of DW-
measurements provides voxel-wise estimates of salient biophysical properties, such as the intra-cellular
fraction (fic) or characteristic restriction size, effectively reflecting the mean intra-voxel cell size L. How-
ever, the use of models like these requires many assumptions on for instance the geometry of the tissue
(e.g. modelling cells using various compartment shapes [24–26]), the number of tissue compartments
(e.g. the vascular (v), intra-cellular (ic), extra-cellular-extra-vascular (EES) space [27], or the water
exchange between them [28]. The number and characteristics of the tissue parameters that can be
estimated depend on the assumptions made when building the biophysical model. The performance
of the models in assessment of tumour microstructure strongly depends on these assumptions and the
method used for fitting the model to the DW-MR-data.

In general terms, multi-compartment models typically describe the total MRI signal S of a voxel in
the form of a combination of signals from elementary components, e.g.:

S =
∑
n

Sn(microstructure;MRI sequence). (1.1)

Above, Sn is the characteristic signal of the n-th component of the signal, as for example signal
arising from water trapped within cells (intra-cellular signal), from flowing blood (vascular signal) or
from water in the extra-cellular, extra-vascular space. Sn depends on the characteristic microstructural
features of the component (e.g., the total amount of water relative to the component in question and the
cell size for intra-cellular water). These microstructural features are in that case the unknowns of the
mathematical problem and have to be estimated. This estimation is achieved by measuring the MR-
signal multiple times, for different MRI acquisition settings. The model in Eq. (1.1) above is then fitted to
the dataset made of the varying MR-settings and the corresponding varying MR-signal measurements.

Another method of estimating microstructural parameters that recently has been gaining momentum
is to avoid relying on any functional form of the DW-signal (whether phenomenological or based on a
biophysical model), but rather to use Artificial Intelligence (AI) to directly predict microstructure from
raw DW-MR-signal data. In the literature, several applications of AI are reported for similar purposes,
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showing promising results [29–31]. In this thesis we follow this innovative approach, to test whether it
is possible to outperform state-of-the-art multi-compartmental, biophysical modelling of the DW signal,
by using AI-algorithms that enable the estimation of microstructural parameters. In particular, using AI
on paired examples of MRI signals and microstructural, histological measurements avoids the need of
relying on analytical expressions of the MRI signal, whose formulation always comes with hypothesis
on the link between signal and microstructure. The main research objective of this thesis is therefore
defined as:

Main research objective

The development of a novel AI-based method to estimate microstructural parameters in the liver,
specifically cell size L and intracellular fraction fic, given paired examples of DW-MRI signals
andmicrostructural features as seen on histology, outperforming the estimation of microstructure
by a well-established biophysical model.

Specifically, we want to develop a method based on pre-clinical data, to eventually be deployed on
in vivo patient data, which is tested in the final part of this thesis.

To achieve this, a pre-clinical study is firstly performed. Various Machine Learning (ML) and Deep
Learning (DL) algorithms are implemented, trained with DW-MR-data co-registered to histology, aiming
to accurately predict the cell size L and intracellular fraction fic. A selection of different algorithms is
used, ranging from very simple to more complex, to get a comprehensive overview of what kind of
algorithm is most suitable for this specific purpose. We have DW-MR-data co-registered to histology-
derived maps of cell size L and intracellular fraction fic, i.e. the ground truth, available of seven mouse
livers. The algorithms can therefore be trained in a supervised manner for this pre-clinical setting. The
goal of this part is to answer the following research question:

Research question 2: Pre-clinical study

Which of the implemented algorithms is most suitable to predict cell size L and intracellular
fraction fic, in a pre-clinical setting?

As stated, we will attempt to predict the histological maps using the (i) raw DW-MR-data as input.
In addition to this, we will also compute the (ii) ADC and K signal representations for this raw data,
and use (iii) parametric maps computed by fitting a multi-exponential (ME) model (similar to VERDICT
[27]) of cell size LME and intracellular fraction fic,ME . These three different input feature types lead to
the third research question:

Research question 3: Pre-clinical study

What type of input feature is most suitable for prediction of cell sizeL and intracellular fraction fic,
in a pre-clinical setting: (i) using raw DW-MRI-data, (ii) usingADC andK signal representations,
or (iii) using parametric maps of cell size and intracellular fraction as computed by aME-model?

Thirdly, the most promising AI-method will be deployed on clinical DW-MRI data. For this, we use
the algorithm pre-trained on the pre-clinical data, as we do not have the histological slides available
for patients (i.e., no ground truth). Considering this, it is not possible to compare the predictions voxel-
by-voxel. However, there are biopsies available, and thus a global comparison of the predictions can
be executed. As later will be explained further, it is only possible to use input type (iii) the parametric
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maps of cell size LME and intracellular fraction fic,ME for this purpose. In other words, we will use the
pre-trained algorithm to ’refine’ these parametric maps computed by the ME-model. This leads to the
final research question:

Research question 4: Clinical study

What is the performance of the most promising pre-trained algorithm from the pre-clinical study,
when testing on clinical patient data, to predict histological cell size L and intracellular fraction
fic, using parametric maps of cell size and intracellular fraction as computed by a ME-model?

We will specifically try to compare the performance of the algorithm with the estimation by theME-
model itself, i.e. try to see if we can improve this estimation using the pre-trained algorithm.

1.2. Outline
Research question 1 is answered thoroughly in the literature review in Appendix A and is summarized in
the previous section. In Chapter 2, background information is provided on the relevance of microstruc-
tural assessment in oncology, the fundamentals of DW-MRI, and the signal representations that we
will use as input features in the pre-clinical study. The rest of the thesis includes three experimental
approaches, of which an overview is visualized in Fig. 1.2. All experiments are executed using Python
3.9. The introduction, methods, results, discussion and a short conclusion of each experiment are de-
scribed in separate chapters. The first experiment, a simulation study, is reported in Chapter 3. This
simulation study is performed to ensure the initial implementation of the algorithms is correct. In the
next experiment, in Chapter 4, the real pre-clinical data is utilised to answer Research questions 2 and
3. In the third experiment, described in Chapter 5, clinical data is used to test the performance of the
pre-trained algorithms on real patients, answering Research question 4. Finally, in Chapter 6, the main
research objective is evaluated and a general discussion and conclusion is provided.
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Figure 1.2: An overview of the methods used to achieve the main research objective, divided in three experiments.
From top to bottom: (1) the simulation study, (2) the pre-clinical study, and (3) the clinical study. Research questions
2 and 3 are answered in (2) the pre-clinical study. Research question 4 is answered in (3) the clinical study. DW-
MR = Diffusion-Weighted Magnetic Resonance, SNR = Signal-to-Noise Ratio, ML = Machine Learning, DL = Deep
Learning, ADC = Apparent Diffusion Coefficient, K = Kurtosis, ME = Multi-Exponential.



2
Background

2.1. Microstructural assessment in oncology
Understanding the microstructure of a tumour can provide valuable insights about accurate diagnosis
and treatment planning in oncology. One important characteristic of tumour microstructure is the in-
tracellular fraction fic, which measures the proportion of the total volume of a voxel occupied by cells.
This fic is closely related to tumour cellularity, which is a key feature of tumour aggressiveness. High
cellularity is associated with faster tumour growth and a higher risk of metastasis, while low cellularity
can indicate the presence of necrosis or fibrosis, influencing the efficacy of treatments [32]. Another
important microstructural characteristic of tumours is the cell size, which can provide additional informa-
tion about tumour aggressiveness and response to therapy. Heterogeneity of the cell sizes in a tumour
often indicates neoplastic growth [33]. Specifically for liver cancers, acquiring information about tumour
heterogeneity is found to be crucial, as it can reflect the prognosis and is predictive of treatment out-
comes [34]. This information can be used to guide clinical decisions and treatment choices. Changes
in cell size have been linked to treatment response, for instance in radiation therapy, which relies on
the targeting of specific cell populations within the tumour [35]. It can also be used for the monitoring
of treatment response, considering a significant change in cell diameter when cell death occurs [27].

2.1.1. Biopsy
Currently, the only way tumour microstructure and these histological properties can be quantified with-
out excision of the tumour is via biopsy. In a biopsy, cells or tissues are removed from the body for
examination by a pathologist. The use of biopsies however has several limitations. It is an invasive
procedure for which contraindications exist [36] and might induce complications such as bleeding [37].
Additionally, during the biopsy procedure, there is a risk of seeding tumour cells into lymph nodes and/or
into the vasculature, or even dragging tumour cells along the track of the biopsy needle. Both lead to
an increased chance of the cancer spreading [38]. Furthermore, only a small part of the tissue can
be sampled. This induces the risk of inadequately targeted biopsies, missing the tissue aiming to be
sampled [39]. Finally, it is impossible to obtain an image of the microstructure of the tumour as a whole,
making it difficult to capture the tumour’s heterogeneity.

DW-MRI could function as a replacement of biopsy, to non-invasively quantify any tumour’s mi-

7
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crostructure as a whole and at any time, without risk of complications. This would be game-changing,
not only for the diagnostics of cancer, but also for treatment response monitoring, where repeated
imaging is required.

2.1.2. Histological validation of DW-MRI methods
As described, many approaches are proposed to estimate histological properties from DW-MR-data
(Appendix A). Histological validation is an essential part, which is often not present in currently published
studies. It is imperative to demonstrate that any new diffusion MRI metric is sensitive and biologically-
specific to the microstructural property it intends to measure, before it can be used in the clinic. To
this end, the voxel-by-voxel comparison of spatially-matched MRI and histology maps is the ideal way
of performing exhaustive histological validation studies. Obtaining data of this type in vivo is however
challenging, since it would imply performing histology of entire slabs of excised tissue, for example
following surgical removal of tumours or the entire organ [40, 41]. Alternatively, tissue can also be
imaged ex vivo, following excision. While on the one hand this would make MRI-histology alignment
easier, on the other hand the tissue would lack of any perfusion, and microstructural changes would
have occurred as a consequence of fixation, such as cell shrinkage. Lastly, comparing tiny 2D sec-
tions of histological material to 3D MRI has its own intrinsic limitations, since portions of tissues that
contributed to the measured MRI signals are not included in the histological maps.

2.2. Diffusion-Weighted Magnetic Resonance Imaging
In DW-MRI, the MRI measurements are sensitised to water diffusion in the imaged tissue [1–3]. In the
following sections, we describe the working principle and fundamentals of DW-MRI.

2.2.1. Diffusion encoding
Time-varying magnetic field gradients are used to sensitise the MRI signal to diffusion. The classical
DW-MRI experiment is based on the Pulsed-Gradient Spin-Echo (PGSE) approach, also known as the
Stejskal-Tanner experiment [42]. The schematic of a PGSE sequence is shown in Fig. 2.1.

The PGSE approach is based on the spin echo experiment, in which two radiofrequency (RF) pulses,
of flip angle 90◦ and 180◦, separated by a time TE/2 are used to irradiate the imaged tissue. The first
pulse excites the tissue, creating a component of magnetisation orthogonal to the static field. The
second pulse refocuses the magnetisation by cancelling out the effect of field inhomogeneities. The
signal is sampled at a time TE, when the refocussing is complete, and the sampled signal is weighted
by the underlying T2-relaxation time. In PGSE, two magnetic field gradient lobes (known as diffusion-
encoding gradients) are added on either side of the refocussing pulse. The first gradient lobe effectively
tags water molecule’s phases depending on their spatial position, so that their phases will now depend
on their position along the gradient direction. Conversely, the effect of the combination of the refo-
cussing pulse and of the second gradient lobe is that the phase distribution modulation is cancelled
out by the previous lobe, for those molecules that do not move. If all spins were perfectly static during
diffusion-encoding, one would measure the same T2-weighted signal that one would have obtained
without diffusion encoding. However, due to diffusion, water molecules change their position in be-
tween the two gradient lobes, as well as during the application of each lobe itself. This implies that a
full phase coherence over the spin ensemble will not be re-established at the echo time t = TE, so that
the signal measured will be smaller than the one obtained without diffusion-weighting, leading to signal
attenuation. The amount of attenuation increases as the amount of diffusion taking place increases,
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Figure 2.1: Schematic of the Pulsed-Gradient Spin-Echo (PGSE) sequence. The first and second radiofrequency
(RF) pulses rotate the magnetisation vector by 90◦ and 180◦ respectively. These two pulses are characteristic
for a spin-echo sequence, as they consecutively excite and refocus the magnetisation. After a time TE (the echo
time), the signal is fully refocussed and sampled. The diffusion encoding gradient exists of two pulses on each
side of the 180◦. It is characterised by a gradient magnitude G, the gradient duration δ, and the separation time in
between the two gradient lobes ∆.

resulting in DW images of lower intensity. An example of this is visualized in Fig. 2.2.

2.2.2. b-value and diffusion time
The amount of signal loss caused by diffusion-weighting depends on several factors. Some depend
on the tissue being imaged, such as the underlying intrinsic diffusion coefficient and the characteristics
of the microstructure, e.g., type and features of the biological structures that restrict or hinder diffusion.
These features include, for example, the cellularity and the cell size. Other factors depend instead on
the acquisition, and are: the gradient magnitudeG, the gradient duration δ, and the gradient separation

Figure 2.2: MR imaging of a healthy mouse liver ex vivo at room temperature. (A) Normalized MR-signal of a
T2-image with zero diffusion weighting. (B) Normalized Diffusion-Weighted (DW)-image with b = 918s/mm2. The
DW-image shows signal attenuation in areas of diffusion, resulting in a darker appearance in the image.
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∆ (see Fig. 2.1). The total DW-signal S is the ensemble average of the signals from all spins [43], i.e.,

S = S0 < ejϕ > (2.1)

where S0 is the T2-weighted, non-DW-reference signal and ϕ is the phase accumulated by a spin. The
ϕ depends on the interaction between a spin’s random walk over time r(t) until the sampling time TE,
and the temporal evolution of the diffusion encoding gradient G(t), i.e.,

ϕ = − γ

∫ TE

0

G(t) · r(t) dt, (2.2)

where γ is the proton gyromagnetic ratio. For free water self-diffusion without any barriers, Eq. (2.1)
simplifies to:

S = S0 exp(−bD0). (2.3)

Above, S0 is the non-DW signal, whereas D0 is the intrinsic diffusivity of water at the experiment tem-
perature, and b provides a general indication of the overall strength of the diffusion-weighting. This
factor depends on the acquisition settings, and is routinely known as b-value. It can be calculated as:

b = γ2G2δ2(∆− δ/3) (2.4)

where γ is the proton gyromagnetic ratio, and G, δ and ∆ the gradient parameters [44]. Another
useful sequence parameter is the overall diffusion time tdiff = ∆− δ/3. This provides an indication of
the amount of time that diffusing water molecules are allowed to experience the microstructure, before
the MRI signal is acquired.

2.3. Signal representations
It can be shown that the signal in Eq. (2.1) can be expanded as a function of increasing powers of
the b-value, i.e., ln(S) ∼

∑
k=1 ak b

k (the cumulant expansion [45]), where coefficients ak are related
to the cumulants of the spin displacement distribution within a voxel. Expanding Eq. (2.1) up to the
second power of b, provides (i.e., with an approximation error proportional to O(b3))

S = S0 e
−bADC + 1

6K(bADC)2 . (2.5)

In Eq. (2.5) above, ADC andK are respectively the apparent diffusion and excess kurtosis coefficients
along the direction of the diffusion encoding gradient. ADC provides a measurement of the overall
amount of diffusion taking place during the measurement, so that higher ADC implies stronger signal
decay.

When the b-value is not too high (generally, not exceeding 400-800 s/mm2 in body imaging or 1000-
1500 s/mm2 in the brain), the non-Gaussian diffusion characteristics (i.e., the excess kurtosis K) can
be neglected, and the expansion reduces to

S = S0e
−bADC (2.6)

where S0 is the non-DW-signal, b the b-value and ADC is the apparent diffusion coefficient. The dif-
ference between a mono-exponential (Eq. (2.6)) and a second order fit (Eq. (2.5)) including K is
visualized in Fig. 2.3.
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Figure 2.3: An example of the difference between a mono-exponential fit and a second-order fit including kurtosis.
On the x-axis, the various b-values are plotted. On the y-axis, the logarithm of the signal attenuation due to the
diffusion gradients is shown.

The ADC of Eq. (2.6) is easy to obtain, since it can be computed with as few as two images (one
DW and one non-DW). It offers sensitivity to alterations in tissue microstructure due to pathology. For
this reason, it is widely used for multiple purposes in the clinic, such as diagnostics, classification or
grading of tumours, and therapy response assessment [22, 23]. However, as stated, it has a poor
biological specificity, since contributions from different water compartments within the same voxel (e.g.,
intra-/extra-cellular water) are pooled together in one average number. This implies that the ADC

measurement does not describe the complicated diffusion process in heterogeneous microstructures
accurately. Signal contributions from different processes within a voxel, including pseudo-diffusion due
to perfusion, are integrated and modelled by one single diffusion coefficient in Eq. (2.6), which also
depends on the particular diffusion times used for the acquisition (e.g., gradient duration δ and gradient
separation ∆). These factors make ADC only an ’apparent’ coefficient.

The expanded version in Eq. (2.5) includes an extra variable K. By including this second-order
term proportional to K, the equation accounts for non-Gaussian characteristics. In body imaging (e.g.,
prostate, bone, liver), it is common to evaluate scalar kurtosis indices, rather than full kurtosis tensors,
due to relatively low diffusion anisotropy. Such kurtosis indices are typically reported in the form of an
excess kurtosis K, so that K = 0 for Gaussian diffusion. While K = 0 would imply perfectly Gaussian
diffusion, i.e., ideal mono-exponential signal decay, a non-zero K accounts for non-Gaussian diffusion.
This can arise from a variety of intra-voxel sources, including the presence of multiple water pools
with different intrinsic diffusivities, presence of restriction, water exchange, or combination of those [46,
47]. K is a unitless parameter. A larger K (in absolute value) implies greater departures from ideal
Gaussian diffusion. Higher K values are typically observed in presence of higher cell densities, due
to the increased level of diffusion restriction. [24]. The ADC in Eq. (2.5) is effectively a corrected
estimate as compared to the first-order description S = S0 exp (−bADC).

To measure kurtosis, it is necessary to sample the DW-signal at relatively high b-values (depending
on themicrostructure this is often higher than 1000 s/mm2), at which departures fromGaussian diffusion
become apparent.



3
Simulation study

3.1. Introduction
As described in Chapter 1, the relationship between the DW-MR-signal and the microstructure is com-
plex, and the estimation of features such as cell size and intracellular fraction from MRI signal mea-
surements is a challenging, ill-posed inverse problem. In this chapter, the implementation of algorithms
developed to solve this inverse problem is described in detail. Moreover, results are presented regard-
ing simulations conducted to verify the correct implementation of the algorithms and of the training
routines.

To achieve this, simulated DW-MR-data is generated, of which we know that it has a clear relation-
ship with the desired outputs. When feeding this data as input to the algorithms, it can be assumed
that the algorithms should be able to predict the outputs with a high performance. The performance of
the algorithms on this data can already be used as an indication of which algorithms are promising for
the real data. Furthermore, we will analyse what hyperparameters appear suitable for this application.

To better understand the nature of the data that we will attempt to simulate, in the next section
the real available pre-clinical dataset will firstly be described. The procedure for the data simulation is
described in the section after that. Consequently, the procedure for training, testing, and evaluating the
algorithms, and details of the implementation of the algorithms are described. Finally, the results and
a short discussion are reported.

3.2. Methods
3.2.1. Pre-clinical dataset
The available data is anatomical (T2-weighted) and DW-MRI data co-registered with histological maps
of seven mouse livers. Characteristics of the samples are described in Table 3.1. For three sam-
ples, WT , PDXinf1, and PDXnec, the T2W-image, the HE-staining and an example of the present
microstructure is visualized in Fig. 3.1. Two of the same mouse livers (WT , PDXinf1) were used for
a study by Grussu et al. [25]. The mice were subcutaneously implanted with tumour tissue taken from
patients, i.e. patient-derived xenografts (PDX), as illustrated in Fig. 3.2A. The tumour tissue gets a
chance to develop further in the mice. This will occur for some mice more than others, allowing healthy
liver to remain in some cases. After a time period, all mice are sacrificed and their livers resected. The
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resected livers are used in both the ex vivo DW-MRI- and the histology procedure, as shown in Fig.
3.2B.

Figure 3.1: The pre-clinical dataset. Three representative samples are shown, from top to bottom: wild type (WT ),
i.e. healthy; Patient-Derived Xenograft (PDX) with generalized small cell infiltration, lymphoma-like (PDXinf1);
PDX with necrosis and inflammation (PDXnec). From left to right: a T2w-image, the histological section with HE-
staining, and a zoom-in on the microstructure type most present in the sample.

DW-MRI
The (DW-)MRI-protocol was executed ex vivo, while immersed in a phosphate buffer saline (PBS)
solution at room temperature. After MR-imaging, the livers were fixated and prepared for histological
imaging, which is described in the next section.

The imaging acquisition protocol settings are as follows: a slice thickness of 2.2mm and resolution
of 387µm× 387µm, based on PGSE, 9.4 T Bruker Scanner, TR = 2700ms, δ = 10ms, TE/∆ = {31/15,
45/15, 65/15, 45/30, 65/30} ms, and 10 b-values spaced between 0 − 2800s/mm2 for each TE/∆

combination: b = [0.43, 1855.96, 119.17, 1062.44, 234.23, 917.94, 410.99, 1495.48, 721.63, 2792.19]s/mm2.
This results in a total of 50 images for each subject. Two slices are imaged, resulting in a total size of
{86, 86, 2} voxels per sample.

Histology-derived parametric maps
The formation of the histological maps was already executed for a previous study by Grussu et al.
[25]. After MRI, for both of the imaged slices, a 4µm-thick histological section was attempted to be
obtained. The slices were first stained with haematoxylin and eosin (HE), and consequently digitized
with a Hamamatsu C9600-12 scanner (resolution: 0.277µm). Using the QuPath [48] software for digital
pathology image analysis, cells were segmented. Based on these segmentations, the cell area A is
computed. Consequently, using:

l =

√
4

π
A, (3.1)

the cell-wise diameters l were determined. To obtain maps of cell size L and intra-cellular fraction fic

on the same resolution as the MR-images, these diameters l were analysed by dividing the histological
images into patches matching the MRI resolution of 387µm× 387µm. For each patch, the histological
cell size L is computed by:



3.2. Methods 14

Figure 3.2: Acquisition of the pre-clinical dataset. (A) Patient-Derived Xenograft (PDX): mice are subcutaneously
implanted with tumour tissue taken from liver cancer patients. (B) After a time period in which the tumour is allowed
to develop further in the mice, they are sacrificed and their livers resected. The resected livers are immersed
in phosphate buffer saline (PBS) solution and imaged with a DW-MRI-protocol ex vivo. After MR-imaging, the
livers are fixated and prepared for histology. The slices were stained with haematoxylin and eosin (HE), and
consequently digitized with a Hamamatsu C9600-12 scanner (resolution: 0.277µm). Parametric maps of cell size
L and intracellular fraction fic are derived from the histological images, and these are registered to the DW-MR-
images.

L =

(
< l7 >

< l3 >

) 1
4

, (3.2)

which is the so-called volume-weighted cell size [25]. The rationale for using this metric instead
of the simple arithmetic mean < l > is described in detail in [25, 49]. Briefly, the metric in Eq. (3.2)
accounts for the fact that cells with a larger volume contain more water, and thus contribute more to
the total MR-signal Stot. Stot is known to be the average of the cell signals weighted by cell volume,
i.e., Stot = <l3 S(b,l)>

<l3> , rather than Stot = < S(b, l) >. Since S(b, l) ∼ e−αl4 ≈ 1 − α l4 [25], it can

be shown that Stot is roughly proportional to <l7>
<l3> . This implies that

(
<l7>
<l3>

) 1
4 better corresponds to

the cell size estimated through MRI than the simple arithmetic mean of the cell sizes within a voxel
(< l >) [25, 49]. Therefore, the cell size L as computed by Eq. (3.2) is used as the ground truth that we
want to predict. It should be noted that cells measured on histological sections are on average smaller
than in vivo, because of two main reasons. The first is that cell shrinkage occurs during preparation
for histology, due to dehydration, clearing, and paraffin embedding. The second reason is that we only
see a 2D section from the 3D structure of the actual cells on the histological image. We rescale the L

by 1.148× and 1.273×, respectively to take into account the histological preparation and the bias from
the 2D sectioning.

The intra-cellular fraction fic is computed by analysing the area within one patch that belongs within
cells, and dividing this by the total patch area, i.e. the MRI voxel size. When fic is very low, i.e., there
are little to no cells, it makes sense that the cell size in that voxel cannot be reliably estimated. To
circumvent this, a threshold is set at fic < 0.1, so that for voxels with fic below this, the cell size L is
set to Not a Number (NaN). In this way, these unreliable cell size estimates are not taken into account
in training and testing.

By symmetric diffeomorphic registration of specimen’s manual outlines [50], the histology-derived
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Table 3.1: Description of the seven samples. Only voxels for which all types of data are available can be used in
the experiments. Therefore, the images are masked and voxels for which one type of data is missing are removed.
The number of voxels remaining for each sample is reported here. SD = Standard Deviation, WT = Wild type, PDX
= Patient-Derived Xenograft, NA = Normal Appearing, nec = necrosis, L = cell size, fic = intracellular fraction.

Sample Available voxels Description Mean L [SD] [µm] Mean fic [SD] [-]

WT 911 Wild type, i.e. healthy 27.1 [1.61] 0.766 [0.157]
PDXNA1 2883 PDX but with normal liver structures 26.8 [2.65] 0.828 [0.128]
PDXNA2 1116 PDX but with normal liver structures 27.9 [2.78] 0.667 [0.172]

PDXinf1 3594 PDX with massive small cell infiltration,
lymphoma-like 20.8 [2.68] 0.833 [0.143]

PDXinf2 2687 PDX with some cell infiltration, lymphoma-
like, but to a lesser extent than PDXinf1

27.6 [1.72] 0.797 [0.137]

PDXinf3 1415 PDX with some cell infiltration, lymphoma-
like, but to a lesser extent than PDXinf1

29.4 [1.24] 0.780 [0.108]

PDXnec 2240 PDX with extensive areas of necrosis and
diffuse inflammation 25.9 [2.80] 0.543 [0.232]

Total 14846

parametric maps were registered to the MRI. A description of the seven samples is provided in Table
3.1, including their mean cell size L and intracellular fraction fic.

Preprocessing the data
Masking In order to be able to use a voxel as a training sample, the DW-MRI data as well as the
ground truth target data should be available for that voxel. Therefore, the data needs to be prepro-
cessed to ensure this. A mask is created with ones on voxels where there are both DW-MRI signal
intensity values and ground truth values based on the histological map for both cell size L and intra-
cellular fraction fic available. The number of voxels that remains after this masking operation is the
actual number of voxels that is available for the training and testing, shown in Table 3.1. The rest of the
voxels, not belonging to the mask, will be set to NaN in the images. As mentioned, it was attempted to
obtain histological images of both two DW-MR slices. However, this was not possible for two samples.
For these (WT , PDXinf3), there is only one histological slice imaged. Still, the availability of multiple
slices for the rest of the samples will be utilised in the used cross-validation method, as described later
in Section 3.2.3.

Normalisation Due to a lack of standardisation of DW-MRI acquisition and differences in machinery,
it is required to remove the influence of the non-DW-signal S0. To do this, the samemethod as in a study
by de Almeida Martins et al. (2021) was utilised: we normalised the 50 DW-MR-acquisitions by dividing
them by the signal value acquired at the lowest b-value and shortest TE-time [51]. Here, this means
using the DW-MRI at b = 0.43s/mm2 and TE = 31 ms. Due to this normalisation, this first DW-MRI will
become all ones in the image and will thus not contain useful information any more. However, the rest
of the acquisitions will be normalized between 0-1. Some algorithms are not affected by normalisation,
while others are. To keep the pipeline equal for all algorithms, however, normalisation of the data is
applied for all algorithms.

Furthermore, sometimes the performance of algorithms also benefits from normalisation of the out-
put. Intra-cellular fraction is, it being a fraction, already between 0-1, but the cell size ranges from
∼ 14−42µm. Therefore, the outputs are also normalised using aMinMax-scaler from the scikit-learn
library, resulting in a normalisation between 0-1.
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3.2.2. Simulating the data
The synthetic data is based on a deformation of the histological cell size L and intra-cellular fraction
fic, using a multi-exponential (ME)-model. The model we use here ignores signal contribution of the
vascular compartment. It assumes that the DW-MR-signal originates from two different compartments,
intra-cellular and extra-cellular. This method is similar to the VERDICT model [27]. The total signal is
described by:

S = ficexp[−bADCic(L,D0, δ,∆)] + (1− fic)exp[−bDex] (3.3)

where fic is the intra-cellular fraction, Dex the extra-cellular diffusion coefficient, D0 the intrinsic cytosol
diffusivity in µm2/ms, L the cell size in µm, ∆ and δ respectively the gradient separation and duration
in ms, and b the b-value in ms

µm2 .
The intra-cellular ADCic depends on the latter four parameters, and is modelled by a Gaussian

phase approximation for diffusion within a sphere [52]:

ADCic =
2

D0δ2(∆− δ/3)

∞∑
m=1

α−4
m

α2
mR2 − 2(

(2δ − 2 + e−α2
mD0(∆−δ) − 2e−α2

mD0δ − 2e−α2
mD0∆ + e−α2

mD0(∆+δ)))

α2
mD0

)
(3.4)

where αm is the m-th root of J ′
3/2(αR) − 1

2J 3
2
(αR) = 0, and J3/2 is the Bessel function of order 3/2

and J ′
3/2 is the derivative of the Bessel function of order 3/2. This model thus describes a simplified

relationship between L, fic and the measured DW-signal. No time-dependency is taken into account
for the extra-cellular diffusion signal. To reduce complexity of the signal model, it is chosen to use a
fixed TE-time (TE = 45ms), even though acquisitions with three different TE-times are available in the
real data. The same ∆, δ, and b-values are used as in the real acquisition, as described in Section
3.2.1. This selection results in 20 different simulated acquisitions remaining.

Both intracellular diffusivity D0 and extracellular diffusivity Dex are fixed at set values, with D0 and
Dex varying randomly between 1.8 − 2.5µm2

ms and 1 − 2µm2
ms , respectively. The D0 and ground truth L

computed from histology is given as input to Eq. (3.4), to obtain an estimate of ADCic. Consecutively,
this ADCic is combined with the ground truth fic as computed by histology and Dex in Eq. (3.3) to
finally determine the Ssim. For all samples, synthetic DW-signals are generated based on this model.
Finally, the same normalisation procedure as for the real data is executed (Section 3.2.1).

Noise The Rician distribution has been found to characterize the noise present in MRI [53]. MR-
images are reconstructed from a real and an imaginary component based on the complex Fourier
transform [54]. A complex MRI z is thus represented by:

z = zreal + jzimaginary = (rcos(θ) + n1) + j(rsin(θ) + n2) (3.5)

where zreal and zimaginary are the real and imaginary components, respectively. Both are independently
corrupted by Gaussian white, i.e. zero-mean, noises n1 and n2. The r and θ describe the magnitude
and the phase of the signal, respectively. To avoid phase artefacts, most commonly the magnitude
images are used in MRI [53]. The magnitude of the MRI signal |z| is defined as:

|z| =
√
(rcos(θ) + n1)2 + j(rsin(θ) + n2)2. (3.6)
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Figure 3.3: The normalized real and simulated data of one slice for sample PDXinf1 at b = 1856s/mm2, TE =
45ms, δ = 10ms,∆ = 30ms. A) The real DW-MR-image with Sreal, B) the simulated image in ideal circumstances
with Ssim,SNR=100, C) the simulated image in realistic circumstances with Ssim,SNR=20, D) the signal values for
each b-value (b = [0.43, 1855.96, 119.17, 1062.44, 234.23, 917.94, 410.99, 1495.48, 721.63, 2792.19] s/mm2), TE =
45ms, δ = 10ms, ∆ = 30ms. The voxel on which D) is based is indicated with the arrow in A-C.

.

Therefore, Rician noise is added to the synthetic signal according to this mathematical description of
the signal. For simplification, it is assumed that the whole signal coming from the tissue is located in
the real domain, resulting in:

Ssim =
√
(S + (1/SNR) ∗ n)2 + (1/SNR) ∗ n)2 (3.7)

where rcos(θ) is simplified to S: the simulated DW-MR-signal without noise, rsin(θ) is neglected, n is
the noise, i.e. a random variable with a normal distribution centred at µ = 0 and σ = 1 (Gaussian white
noise), with the same dimensions as S. The n1 and n2 from Eq. (3.5) are assumed to be equal to n.
Signal-to-noise ratios (SNR) of 100 and 20 will be used, to analyse the algorithms’ performance in ideal
SNR (Ssim,100) and realistic circumstances (Ssim,20), respectively. In Fig. 3.3, an example of the real
and simulated data at the two SNR levels is visualized, for PDXinf1, and the corresponding signal
values for one voxel out of the shown slice.

3.2.3. Training, testing, evaluation
Each voxel is treated as an independent training sample, to ensure a set containing sufficient data
points for training the algorithms. For each voxel, i.e. each sample i, a feature-target pair is available:

(X(i),y(i)) (3.8)
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Figure 3.4: Illustration of the voxel-wise training approach. Each voxel is treated as an independent training
sample. The voxels are used as input for seven regression algorithms, to predict the two separate outcomes. L =
cell size, fic = intracellular fraction.

where X(i) is the input feature vector containing n features, here including the 20 simulated DW-MR-
acquisitions, and y(i) the target vector, including the two outcomes we want to predict, cell size L and
intra-cellular fraction fic. This voxel-wise training approach is illustrated in Fig. 3.4.

LOO-CV Leave-one-out cross-validation (LOO-CV) is used for the model training and testing, to en-
sure that the results are as generalizable as possible. In this way, the models are trained and tested
in seven folds, with one subject in the test set for each fold. This is visualized in Fig. 3.5A.

As was visible from Table 3.1, the available data roughly contains three different types of tissue:
normal liver structures (WT , PDXNA1, PDXNA2, PDXinf2, PDXinf3), lymphoma-like small cell in-
filtrations (especially in PDXinf1, to a much lesser extent in PDXinf2 and PDXinf3), and necrosis
(PDXnec). This implies that when either PDXinf1 or PDXnec is located in the test set, the algorithms
have no training data available that contains similar data for that specific microstructure type in the test
set. In this way, the algorithms would never be able to learn the relationship between DW-MRI or the
other input feature types and the resulting microstructure of the tissue, exhibiting small cell infiltration
or necrosis. To circumvent this problem, we utilise the fact that we have multiple slices available for
most subjects (5 out of 7 samples, and at least for the two unique samples, PDXinf1 and PDXnec).
After formation of the train and test sets for each fold, one slice is moved back from the test set to the
train set (Fig. 3.5B). For two samples (WT , PDXinf3) only one slice is available. For these samples,
nothing changes in this adaption to the distribution: this slice remains in the test set.

Finally, for the one DL model, the Multi-Layer Perceptron (MLP), an additional split is made. The
data remaining in the train set is split further into a validation set. This split is not done sample wise,
instead, just the approximate equivalent of 1 of the slices is moved into the validation set; i.e. 7.15%
of the voxels.

Evaluation For the slice remaining in the test set, the trained model is used to predict the outcomes,
and these predictions are saved as nifti files for visual inspection of the performance. As described
in the previous section, we essentially have three tissue types available, mainly occurring in WT ,
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Figure 3.5: LeaveOneOut Cross-Validation (LOO-CV) is used in experiment 1 and 2, to ensure that the results
are as generalizable as possible. (A) Because there are seven samples available, this means that there will be
six training samples and one test sample in each fold. (B) As there is a limited amount of diversity in the data, we
use an adapted version of the normal LOO-CV. After division into the train and test set, we move one of the slices
in the test set back to the training set. This results in a test set with only one slice of the ’test’ sample. For the
Multi-Layer-Perceptron (MLP) we further split the training set into a train and validation set. This split is not done
sample-wise, but on the shuffled whole set of voxels.

PDXinf1, PDXnec (Fig. 3.1). For this reason, these three samples are considered the representa-
tive samples, and these will be used for visual analysis of the performance.

For the seven predictions, two evaluation metrics are computed. The mean and 95%CI are com-
puted over the evaluation metrics of each fold.

The Mean Absolute Error (MAE) is a popular metric for regression problems [55]. For quantitative
evaluation of the performance, the MAE will be computed with respect to the histology-derived ground
truth. MAE is a simple metric and is computed as:

MAE =
1

n

n∑
i=1

|yi − ŷi|, (3.9)

where n is the total number of samples in the dataset, yi and ŷi are the true value and the predicted
value respectively for the ith sample. The absolute value | · | ensures that the difference is always
positive.

Mean Absolute Percentage Error (MAPE) is another popular performance metric for regression
problem. This metric ranges from 0 to infinity and is defined by:

MAPE =
100%
n

n∑
i=1

| (yi − ŷi)

y
|. (3.10)

The advantage of this metric is that it does not depend on the units of the data, providing us with a
percentage error. This causes the metric to be easy to understand and to compare between different
outcomes. However, the metric fails or becomes extremely high if some of the actual values are equal
or close to zero. Because this often occurs in the intra-cellular fraction fic, it being a fraction, the metric
would provide a biased metric. To instead still provide an indication of how large the error is relative
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Figure 3.6: Illustrations of the implemented algorithms. (A) Linear Regression, (B) Piecewise Linear Regression,
(C) K-Nearest Neighbour, (D) Random Forest Regression, (E) Multi-Layer Perceptron.

to the ground truth, a second MAE is computed [30]. This is done by normalising the output to [0,1],
in the same way as described in Section 3.2.1. The MinMax-scaler is fitted to the ground truth values
y and this scaler is used to transform both ground truth and the prediction. The resulting values are
inputted in:

REL MAE =
1

n

n∑
i=1

|ynorm,i − (ŷnorm,i)| ∗ 100. (3.11)

This provides a percentage instead of an absolute value. This metric will be utilised to compare the
performance of the algorithms between the two outputs.

3.2.4. Algorithms
In this section, the algorithms implemented in the thesis are explained. The same algorithms will be
used for the real pre-clinical study, described in the next study, in Chapter 4. The relationship between
histology and DW-MRI-data depends on many factors and because of this, not a single model can
be identified beforehand that will perform best. Various models are therefore tested, both ML- and
DL-based, with an increasing complexity. The principle of the algorithms is illustrated in Fig. 3.6A-E.

Linear Regression
The most simple algorithm tested is Linear Regression (LR) (Fig. 3.6A). An implementation from the
scikit-learn library is used, which is based on ordinary least squares LR. It finds the best fit by
adjusting the coefficients w1,…, wp to minimize the difference between the predicted values and the
actual values in the data.

Piecewise Linear Regression
Piecewise linear regression (PWLR) (Fig. 3.6B) is a type of regression analysis that involves fitting
multiple linear models to different segments of the data, as opposed to a single linear model for the
entire dataset like the LR in Fig. 3.6A. PWLR is useful when the data exhibits different linear trends
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across different regions, as a single LR-model may not be able to accurately capture the underlying
patterns in the data. Various methods can be applied for identifying how the data should be segmented.
We utilise an implementation of scikit-learn, using a DecisionTreeRegressor for the segmentation.
It is important to consider the number of segments that the feature space is eventually split in. When
using a decision tree, this depends on various hyperparameters, like the depth of the tree. Various
options are tested, and an optimal value is empirically chosen.

K-Nearest Neighbour Regression
K-Nearest Neighbours (KNN) regression works by finding the K nearest samples in the training data
for each new (test) point (Fig. 3.6C). Consecutively, the target variable for this new point is predicted
as the average of the target value of those K nearest points in the training data. The algorithm thus
uses feature similarity to predict the values. Again, an implementation of the scikit-learn library is
used.

The performance of the KNN regressor is mainly affected by the choice of the number of neighbours
K (not to be confused with the kurtosisK) and the used distance metric. The chosen metric determines
how the distance is computed between the new point and each training point. The three most popular
distance metrics are Euclidean, Manhattan andMinkowski, where the latter is a generalized form of the
first two. It is chosen to use theMinkowski metric. While a largerK can reduce noise in the predictions,
it also leads to a smoother model. An optimal K is empirically identified.

Random Forest Regression
Random Forest Regression (RFR) is an ensemble learning method, i.e., multiple ’models’ are com-
bined, aiming to be more accurate than a single model. Specifically, RFR is based on an ensemble
of decision trees (Fig. 3.6D). When using decision trees for regression, the input feature space is split
into small regions. The mean of the target variable in that small region is then used as prediction for
any new data point in that region. The algorithm works step-wise, where each time the feature and
threshold are selected that result in the largest decrease in variance of the target variable. The space
is then split along that feature and threshold, until certain stopping criteria are reached. The end result
is a tree with a set of decision rules at the internal nodes and predictions at the leaf nodes. When a new
data point is given to the model, a prediction is made by traversing the tree from root to a leaf node,
using the decision rules at each internal node to determine the next node to visit.

Only using one decision tree as a regression model exhibits several problems, such as a high
sensitivity to slight changes in data, which result in significantly different tree structures. Furthermore,
decision trees struggle to find globally optimal solutions, and tend more to find a locally optimal solution.
Using a whole forest of random decision trees, i.e. an RFR, the problems that single decision trees
have, can be solved.

Within a random forest, trees do not interact, and they all predict a value independently. A predefined
number of decision trees is constructed during training, and the mean is taken of the predictions of all
the trees. For each new data point, each one of the decision trees will be used to predict the target
value, and the average of all predictions is assigned to the final prediction. RFR has a high risk of
overfitting, and because of that, hyperparameter tuning is important for this algorithm. By setting a
maximal depth, you can control how deep the trees will grow. In addition, by setting the number of
estimators, you can control how many trees are constructed, thus how large an ensemble you take at
each step. An optimal value for both of these hyperparameters will empirically be determined.
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Patch-wise RFR
In all the aforementioned algorithms, a voxel-wise approach is used. A disadvantage of this is that the
spatial relationship between voxels is completely ignored. The surroundings of a voxel can however
contain information about that specific voxel as well, and thus might be beneficial to integrate in the
input given to the algorithm. Alexander et al. [56] researched this in 2017, for another application of
parameter estimation from DW-MRI, and confirmed that the neighbourhood information is important
and substantially improves the performance.

This is integrated in the patch-wise approach (Fig. 3.7), where patches are used to predict the
central pixel of the patch. The image is divided in patches with a patch size n, using a sliding window
over the voxels located within the mask. A step size of 1 is used to ensure that a patch is formed on
every voxel. The output patch array is a square array of voxels including and surrounding the central
pixel, with size n × n. For voxels at or near the border of the mask, it is not possible to form a patch
completely filled up with voxels containing information. These voxels are therefore not used in the
training process, resulting in an erosion of n − 1/2 voxels at the border. Due to the still sufficiently
large number of training voxels, this is not considered to be a problem. Then, for the remaining voxels,
the mean of the values in the n × n patch is computed as a new feature. This results in two different
feature types given to the algorithms as input: (i) the values for each feature (e.g. the 50 different
DW-MR-acquisitions) in the central pixel, and (ii) the mean of the feature values over the n× n patch
(also for e.g. the 50 different DW-MR-acquisitions). The final input feature vector for DW-MR-signal
data in the patch-wise approach now has twice as many features as in the voxel-wise approach (100
vs. 50 features, respectively). In this way, the information of the surroundings is incorporated in the
form of a mean value for the prediction of the central pixel.

When a patch size with n > 3 is used, an additional feature is computed in the form of (iii) the mean
of the central 3 × 3 patch. So, for instance, when using a 5 × 5 patch, three features are used: the
central voxel value, the mean over the whole 5× 5 patch, and the mean over the central 3 × 3 patch.
The two versions of the patch-wise approach are illustrated in Fig. 3.7.

This patch-wise approach is specifically used for the RFR, based on a similar approach by Alexander
et al. (2017) [56]. The algorithm is implemented using the settings as described in the previous section,
but now with the additional patch-wise feature(s).

Voxel-wise Multi-Layer Perceptron
A feedforward neural network is implemented using the PyTorch library. Specifically, a Multi-Layer
Perceptron (MLP) is used, which is a traditional class of neural networks (NN) suitable for regression
tasks [57]. An MLP is an NN with at least three layers: one input layer, one or more hidden layers, and
one output layer, with any arbitrary activation function after each hidden layer. De Almeida Martins et
al. [51] implemented two feedforward neural networks for parameter estimation based on DW-MRI, but
for an application with many more input features (ranging 164 − 270). In our study, a smaller number
of input features is available, ranging from 2 for the parametric maps of the multi-exponential model to
100 for the patch-wise version of the DW-MRI. Because of this, a MLP is used with a similar network
architecture as De Almeida Martin et al.’s shallower network, i.e. three fully connected hidden layers
decreasing in number of nodes. However, in the first hidden layer a lower number of neurons will
be used, corresponding to the lower number of input features. After each hidden layer, an activation
function is used.

In addition to the network architecture, many other hyperparameters influence the performance of
an MLP. The number of epochs is set to 30. Overfitting is prevented by the use of an early stopping
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Figure 3.7: Illustration of the two versions of the patch-wise approach. If I) patch size n = 3, two patch-wise
features are used: the intensity value at the central voxel and the mean over all voxels in the n × n, while if II)
patch size n ≥ 5, three patch-wise features are used: again the intensity value at the central voxel, and the mean
over all voxels in the n × n patch, and now with the mean over the voxels in the central 3 × 3 patch as additional
feature.
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method that terminated the training process when no decrease is observed in the validation loss for 3
(the patience) consecutive epochs.

The hyperparameters that are taken into account for optimisation in this case are: the learning rate,
the batch size, and the network architecture.

Patch-wise Multi-Layer Perceptron
TheMLP described in the above section is based on a voxel-wise approach. Because we are interested
to see how the inclusion of neighbourhood information influences both ML- and DL-algorithms, the MLP
is also implemented patch-wise. This simply implies the incorporation of the additional patch-wise
feature(s) as input data for the MLP.

3.2.5. Implementation of the algorithms
As described in Section 3.2.4, there are hyperparameters to be optimised for almost all the algorithms.
To do this, several hyperparameters are tested on the simulation, to see which values are appropri-
ate for the application. For PWLR, the maximal depth was varied from {2, 4, 8}. The KNN was run
with a number of neighbours of K = {10, 30, 80}. For the RFR, two parameters were analysed. The
maximal depth of the trees was varied as {10, 20, 50, 100}. The number of estimators was varied as
{8, 10, 20, 50 100}. For the MLP, the learning rate is varied from {0.1, 0.01, 0.001, 0.0001} and the batch
size from {128, 256, 512, 1024, 2048}. Several model architectures are tested, with a varying number of
hidden layers and neurons per layer. For the PW variant of the RFR and the MLP, the same hyper-
parameters were considered. Additionally, the performance using patch size 3 × 3 was compared to
patch size 5× 5 and patch size 7× 7.

3.3. Results
3.3.1. Implementation of the algorithms
All models were implemented using the 20 simulated MRI-acquisitions, until it was clear that the model
training functioned without bugs, by observance of an acceptable performance. The PWLR was imple-
mented with a maximal depth of 4. The KNN-regressor was implemented using 30 neighbours. For
the RFR, both voxel-wise and patch-wise, a maximal depth of 20 was chosen. Eight estimators (trees)
were used. A batch size of 1024 and a learning rate of 0.01 were used. The final model architecture
existed of three hidden layers with a decreasing number of neurons, 40 − 25 − 10 respectively. After
each hidden layer, a ReLU-activation function was used. For both the PW-RFR and the PW-MLP, a
patch size of three was chosen.

3.3.2. Performance evaluation
The performance of the algorithms for prediction of cell size L and intracellular fraction fic is visualized
in Table 3.2 and 3.3, respectively. Additionally, the test results for three representative samples are
shown in Figure B.1 in Appendix B.

3.4. Discussion
The goal of this simulation study was to ensure the algorithms are implemented in a correct way, and
to find hyperparameters suitable for this regression problem. To achieve this, we simulated data using
a ME-model and added Rician noise.
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Table 3.2: The results of the simulation experiment for prediction of the cell size L. MAE = Mean Absolute Error,
REL MAE = Relative Mean Absolute Error, SNR = Signal-to-Noise Ratio.

MAE [95% CI] [µm ] REL MAE [95% CI] [%]
SNR = 100 SNR = 20 SNR = 100 SNR = 20

LR 1.35 [0.652, 2.72] 1.37 [0.861, 1.82] 13.3 [8.35, 19.6] 14.7 [9.47, 22.7]
PWLR 1.03 [0.776, 1.36] 1.33 [1.03, 1.81] 8.78 [4.24, 12.3] 11.6 [4.99, 17.2]
KNN 1.07 [0.742, 1.67] 1.48 [1.04, 1.95] 9.1 [4.47, 13.9] 12.3 [7.39, 17.4]
RFR 0.88 [0.552, 1.38] 1.4 [1.12, 1.76] 9.51 [4.37, 13.2] 15.0 [10.6, 19.0]
PW-RFR 0.575 [0.313, 0.871] 0.936 [0.532, 1.55] 6.32 [2.46, 8.67] 10.1 [4.12, 14.0]
MLP 1.05 [0.453, 1.83] 1.21 [0.948, 1.9] 10.6 [5.56, 14.4] 12.9 [7.36, 16.4]
PW-MLP 0.542 [0.31, 0.82] 0.865 [0.48, 1.48] 5.92 [2.37, 8.39] 9.36 [3.78, 13.1]

Table 3.3: The results of the simulation experiment for prediction of the intracellular fraction fic. MAE = Mean
Absolute Error, REL MAE = Relative Mean Absolute Error, SNR = Signal-to-Noise Ratio.

MAE [95% CI] [-] REL MAE [95% CI] [%]
SNR = 100 SNR = 20 SNR = 100 SNR = 20

LR 0.0764 [0.0549, 0.0995] 0.121 [0.0676, 0.158] 11.4 [7.97, 13.6] 18.1 [11.6, 23.6]
PWLR 0.061 [0.0452, 0.0947] 0.0934 [0.0489, 0.147] 7.42 [5.25, 11.2] 11.4 [5.67, 17.2]
KNN 0.0646 [0.0463, 0.122] 0.0967 [0.0607, 0.16] 7.81 [5.28, 14.2] 11.7 [7.02, 18.7]
RFR 0.0555 [0.0309, 0.0912] 0.0933 [0.0461, 0.139] 8.11 [5.58, 12.1] 13.7 [8.31, 18.4]
PW-RFR 0.041 [0.0216, 0.0663] 0.0658 [0.0293, 0.125] 6.05 [3.4, 8.81] 9.55 [4.61, 16.6]
MLP 0.0583 [0.0324, 0.0967] 0.0733 [0.0293, 0.165] 8.57 [5.75, 13.1] 10.6 [5.23, 22.1]
PW-MLP 0.0344 [0.0185, 0.0556] 0.0575 [0.027, 0.122] 5.03 [2.9, 7.39] 8.34 [4.23, 16.2]

Based on the results of this experiment, the patch-wise algorithms appear to be the most promising.
A clear increase in performance is observed when the additional patch feature is incorporated for both
the RFR (e.g. at SNR = 20, REL MAE from 15.0 to 10.1% for L, and REL MAE from 13.7 to 9.55%
for fic) and the MLP (e.g. at SNR = 20, REL MAE from 12.9 to 9.36% for L, and REL MAE from
10.6 to 8.34% for fic).

The overall best performing is the most complex model, the PW-MLP, with the PW-RFR being a
close second. However, using the simulated data, even the most simple model, LR, shows an accept-
able performance (e.g. at SNR = 20, REL MAE = 14.7% and 18.1% for L and fic, respectively).

No large differences are yet observed between the prediction of cell size L vs. intracellular fraction
fic, with for SNR = 20 the REL MAE ranging from 5.92-13.3% for L and 5.03-11.4% for fic.

3.5. Conclusion
From the experiment described in this chapter, we conclude that the algorithms and their training rou-
tines are all implemented correctly. Each algorithm is able to predict the desired outputs with high
performance. Furthermore, suitable hyperparameter settings were found using the simulated data. In
the next chapter, the algorithms will be deployed on the real pre-clinical data, using the found hyperpa-
rameters.



4
Pre-clinical study

4.1. Introduction
In this chapter the pre-clinical experiment is presented, aiming to analyse which of the algorithms per-
forms best in predicting microstructure based on DW-MR-data, and which input feature type is most
suitable for this application.

The algorithms as described in the previous chapter will be trained again on the real data, using the
best functioning hyperparameters as found in Experiment 1. The algorithms will be trained separately
six times, i.e. using the three types of input features X (Table 4.1, Fig. 4.1) and the two targets y.
The same voxel-wise approach as illustrated in Fig. 3.4 in the previous chapter is used for the training,
including the LOO-CV adaptation (Fig. 3.5). For each algorithm the MAE and REL MAE will be
computed and the prediction on the slice remaining in the test set is saved for visual inspection. The
results of this section will first be used to provide an answer to Research question 2:

Research question 2: Pre-clinical study

Which of the implemented algorithms is most suitable to predict cell size L and intracellular
fraction fic, in a pre-clinical setting?

In order to objectively assess this, mainly the quantitative results are used, besides visual inspection.
Consecutively, the best performing algorithm will be chosen, and analysed further to answer Research
question 3:

Research question 3: Pre-clinical study

What type of input feature is most suitable for prediction of cell sizeL and intracellular fraction fic,
in a pre-clinical setting: (i) using raw DW-MRI-data, (ii) usingADC andK signal representations,
or (iii) using parametric maps of cell size and intracellular fraction as computed by aME-model?

The use of the two additional input feature types (ii, iii), handcrafted from the raw DW-MRI data,
could have several potential benefits over the use of (i) the raw DW-MRI data. Firstly, each of the
feature types provides unique information about the tumour biology. The raw DW-MRI data reflect the
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Table 4.1: Description of the available input feature types. The three input feature types are used in the pre-clinical
experiment. ADC = Apparent Diffusion Coefficient, TE = echo time, ME = Multi-Exponential.

Input feature type Number of features Description

(i) DW-MR-signal 50 Different acquisitions, including T2W- and DW-images
with various b-values and TE-times.

(ii) ADC −K 10

Signal representations fit to the raw DW-MR-signal.
The apparent diffusion coefficient and the excess
kurtosis are fit for five different combinations between
TE and diffusion time.

(iii) ME-estimations 2 Parametric maps of cell size and intracellular fraction
as estimated by fitting a ME-model.

overall diffusion properties of the tumour, while ADC and K are often used in an attempt to provide
more specific information about the cellularity and size of tumour cells. The ME-model allows us to
incorporate biophysical modelling into the regression problem, which, as described in Chapter 1, has
limitations, but also shows promising results. Secondly, Table 4.1 shows that using either one of the
two handcrafted feature types induces a reduction in feature dimensionality: 50 to 10 to 2 features for
the raw DW-MR-signal, ADC − K, and the ME-estimations, respectively. Using a lower number of
input features allows for a simpler and more interpretable model that is less prone to overfitting. Thirdly,
comparing the performance of the algorithms for different input feature types can help identify which
type is the most informative for this prediction.

Additionally, using the parametric maps obtained from the ME-model can enable translation to
clinical data, while the other input feature types may not be directly applicable in a clinical setting due
to their dependence on the specific MR-acquisition protocol. This does induce the requirement that
the parametric maps of cell size and intracellular fraction as computed by the biophysical ME-model
should be independent of the input MR-protocol. This is especially relevant considering that the protocol
utilised for our pre-clinical dataset is not reproducible in a clinical setting.

The synthesis of input feature types (ii, iii) is described in the following sections. Consecutively, the
results, a short discussion and conclusion are reported.

4.2. Methods
4.2.1. Dataset
Three different types are analysed as input featuresX, to test which of them is most suitable. Firstly, the
DW-MRI signal as described in Section 3.2.1 will be utilised as feature type (i). Two other input feature
types are formed based on this raw signal data, for which the computation will be described in the
next paragraphs. The DW-MR-signal data is normalized using the method described in Section 3.2.1,
by dividing all acquisitions over the lowest b-value and shortest TE-time image. Feature type (ii) and
(iii) are normalised between 0-1, by using the mentioned MinMax-scaler. Cell size L and intracellular
fraction fic are again used as targets y, based on the same acquisition process as described in Section
3.2.1. An overview of the available input features is shown in Table 4.1 and visualized in Fig. 4.1.

(ii) Signal representations Two signal representations are fit to the DW-MR-signal, theADC and the
K, which were introduced in Chapter 1. As stated, theADC describes the overall amount of diffusion in
a voxel taking place during DW-MR measurement; a higher ADC implies stronger signal decay. ADC

has been utilised for multiple purposes, such as diagnostics, classification or grading of tumours, and
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Figure 4.1: The available input (i-iii) and target data (iv) for three of the seven samples. From top to bottom:
WT , wild type, i.e. healthy; PDXinf1, PDX with massive small cell infiltration (lymphoma-like); PDXnec, PDX
with extensive areas of necrosis and diffuse inflammation. From left to right: (i) the normalized MRI, one non-
DW, one DW; (ii) the maps of the fitted signal representations ADC and K; (iii) parametric maps of cell size and
intracellular fraction estimated by a ME-model; (iv) the prediction target, i.e. the ground truth, parametric maps
of the histology-derived cell size L and intracellular fraction fic.

therapy response assessment [58]. Diffusion Kurtosis Imaging (DKI) is a technique originally proposed
by Jensen et al. (2005) [46]. The kurtosis K indicates how much the observed diffusion processes
depart from Gaussian free diffusion.

ADC and K are both phenomenological signal representations, as they describe the MRI signal
based on the statistical moments of the spin displacement distribution. They are surrogate indices
that entail contributions from multiple biological factors from within one voxel into one single number
[21]. Because of this, these metrics may be hard to interpret and do not provide direct estimates of
microstructural characteristics. Even though they have a relatively poor biological specificity, they can
still function as sensitive markers for tissue microstructure. The relationship between ADC, kurtosis
K and microstructural characteristics has been researched extensively (e.g. in [22, 23, 25, 59–63] or
see the Literature Review in Appendix A). Typically, ADC is negatively correlated with cell density, as
a higher cell density leads to an increase in restriction [22]. K values are typically positively correlated
with cell density, due to the increased level of diffusion restriction leading to greater departures from
ideal Gaussian diffusion. In addition, K can carry information about the heterogeneity within a voxel
[24].

These features were computed from theDW-MR-signal, by fitting aADC-K model from the MRItools
collection [64], based on Eq. (2.5), described in Chapter 2. It should be noted that the estimation of K
is error-prone, considering that K becomes unstable for low ADC (approaching 0), as K is obtained
by dividing the second cumulant by ADC and noise is thus amplified.

(iii) Parametric maps Furthermore, parametric maps of the cell size and intra-cellular fraction as
computed by a multi-exponential ME-model are included as input feature type. This model is similar
to the one used for the simulated DW-MR-signal generation in Section 3.2.2, but with several adaptions.

We derived maps of cell size and intra-cellular fraction following a two-step procedure. Firstly, we
fitted a model that describes the total signal as the sum of vascular and non-vascular (tissue) compo-
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nents, i.e., S:
S = S0

(
fve

−bADCV − TE
T2v ) + (1− fv)(e

−bADCT+ 1
6 b

2ADC2
TK− TE

T2T

)
(4.1)

where S0 is the non-DW-signal, b the b-value, and TE the echo time. The first exponential describes
the signal coming from the vascular compartment (V , this was not considered in the previous chapter),
with fv the vascular fraction, and the second exponential describes the tissue signal (T ), i.e. everything
non-vascular. The ADCv and ADCT respectively describe the apparent diffusion coefficient for the
vascular and tissue compartment. The T2V and T2T describe the T2-relaxation times for the respective
compartments, and K the kurtosis observed in the tissue.

Once the model in Eq. (4.1) was fitted, we performed a second fitting only including measurements
where the vascular signal can be reasonably considered to have vanished. Here this means that the
second fitting was performed only on acquisitions with b > 1000s/mm2. This is based on the fact that
in our samples vessels are mainly filled with PBS, and there is no pulsating blood (diffusivity of the
PBS being ADCV ≃ 2.4µm2

ms ). The second fitting tries to explain the tissue signal as the sum of the
intra-cellular and extra-cellular, extra-vascular components, i.e.:

S = S0(1− fv)e
−T2T

(
fice

−bADCic + (1− fic)e
−bADCec

)
. (4.2)

Here, ADCic and ADCec are the intra-cellular/extra-cellular ADC, and it is assumed that the T2-
relaxation times are equal for both compartments, i.e. T2,ic ≃ T2,ec ≃ T2,T . For the ADCic, Eq. (3.4) as
defined in Section 3.2.2 is used. In contrast with the VERDICT model, the choice is made to fit all the
remaining free variables to the data, and refrain from fixing any of them to a set value. Eq. (4.2) is fit to
the DW-MR-signal data using a custom-written Python script for maximum-likelihood fitting, resulting
in parametric maps with an estimation of cell size and intracellular fraction.

The use of the estimations of cell size and intracellular fraction by theME-model is two-fold. We use
them as input feature type (iii), and in this case we will refer to the two of them as theME-estimations.
Furthermore, we want to compare the performance of our own implemented AI-algorithms to the es-
timations by this very biophysical ME-model. When we talk about the estimations of the model as
this separate gold-standard model that we try to outperform, we will refer to them as LME and fic,ME .
For performance comparison, the MAE and REL MAE are computed for the estimation by the ME-
model.

4.3. Results
The quantitative results for prediction of L and fic are reported in Tables 4.2 and 4.3, respectively. The
performance metrics for theME-model are visualized in these tables in the last row. The predictions for
three representative samples for all seven algorithms and three input types can be found in Appendix
C.
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Table 4.2: The MAE and REL MAE for prediction of cell size L, as predicted by the seven different algorithms, based on three input types. For comparison, the MAE
and REL MAE for the estimation by the ME-model is reported in the last row. MAE = Mean Absolute Error, REL MAE = Relative Mean Absolute Error.

MAE [µm] [95% CI] MAE REL [95% CI] [%]
DW-MR-signal ADC −K ME-estimations DW-MR-signal ADC −K ME-estimations

LR 5.08 [1.37, 19.3] 2.95 [1.68, 6.5] 3.24 [1.51, 7.02] 32.3 [9.99, 90.3] 23.1 [11.2, 38.9] 25.8 [12.0, 52.4]
PWLR 2.8 [1.45, 5.29] 3.27 [1.49, 7.34] 2.89 [1.29, 6.77] 21.6 [13.7, 29.4] 25.3 [11.7, 41.0] 21.4 [12.1, 33.4]
KNN 3.12 [1.47, 8.01] 2.98 [1.77, 7.1] 2.89 [1.31, 6.54] 22.3 [13.8, 38.4] 22.5 [11.2, 35.1] 21.7 [12.5, 32.4]
RFR 3.11 [1.45, 8.22] 3.05 [1.64, 7.43] 2.88 [1.45, 6.68] 29.2 [17.1, 58.3] 29.2 [21.1, 52.2] 27.9 [17.8, 47.3]
PW-RFR 2.09 [1.45, 3.31] 2.19 [1.5, 2.72] 2.23 [1.3, 3.91] 23.4 [11.5, 43.0] 24.0 [12.1, 33.5] 24.8 [12.1, 50.5]
MLP 3.66 [1.14, 12.8] 3.38 [1.18, 10.5] 3.25 [1.1, 10.5] 32.4 [13.0, 89.1] 31.0 [13.5, 74.4] 29.3 [12.6, 73.1]
PW-MLP 2.07 [0.971, 3.12] 2.09 [1.33, 3.11] 2.23 [1.27, 3.7] 22.0 [11.4, 35.7] 22.2 [15.1, 35.5] 23.2 [15.2, 42.1]
LME 7.44 [6.38, 8.32] 8.61 [7.84, 9.36]

Table 4.3: The MAE and REL MAE for prediction of intracellular fraction fic as predicted by the seven different algorithms, based on three input feature types. For
comparison, the MAE and REL MAE for the estimation by the ME-model is reported in the last row. MAE = Mean Absolute Error, REL MAE = Relative Mean Absolute
Error.

MAE [-] [95% CI] MAE REL [95% CI] [%]
DW-MR-signal ADC −K ME-estimations DW-MR-signal ADC −K ME-estimations

LR 0.386 [0.105, 1.53] 0.138 [0.0766, 0.197] 0.15 [0.0888, 0.209] 45.4 [12.0, 175.0] 16.5 [9.47, 23.1] 18.0 [11.9, 24.4]
PWLR 0.159 [0.108, 0.22] 0.165 [0.0891, 0.29] 0.169 [0.113, 0.206] 19.6 [12.7, 31.1] 19.7 [11.2, 33.3] 20.3 [15.9, 24.1]
KNN 0.186 [0.0678, 0.564] 0.157 [0.0989, 0.206] 0.17 [0.116, 0.209] 21.9 [8.0, 64.5] 18.8 [13.1, 24.1] 20.4 [16.4, 24.4]
RFR 0.167 [0.0694, 0.395] 0.153 [0.103, 0.194] 0.166 [0.107, 0.218] 25.0 [12.3, 59.9] 23.0 [15.2, 28.6] 24.9 [16.9, 35.9]
PW-RFR 0.0994 [0.0523, 0.149] 0.117 [0.0733, 0.168] 0.127 [0.0597, 0.194] 14.8 [9.19, 23.5] 17.7 [11.0, 24.6] 19.4 [8.86, 31.6]
MLP 0.11 [0.0685, 0.195] 0.0861 [0.0496, 0.18] 0.0966 [0.0672, 0.18] 16.5 [10.2, 26.8] 12.7 [7.01, 24.2] 14.2 [9.92, 24.2]
PW-MLP 0.0878 [0.0372, 0.166] 0.0773 [0.0463, 0.181] 0.0756 [0.0272, 0.186] 12.8 [6.51, 22.2] 11.2 [6.6, 23.9] 10.8 [4.66, 24.6]
fic,ME 0.251 [0.11, 0.46] 0.302 [0.16, 0.51]
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Figure 4.2: The test predictions by the PW-RFR and PW-MLP of (A) cell size L and (B) intracellular fraction fic. From left to right are visualized, the ground truth, the
estimation by the ME-model, the prediction based on the DW-MR-signal, the fitted maps of ADC, K, and the parametric maps of LME , fic,ME for PW-RFR and PW-MLP,
respectively.
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4.3.1. Algorithm comparison
In general, it appears that cell size L is slightly harder to predict than intracellular fraction fic, with for
the PW-RFR based on DW-MR-signal e.g. a REL MAE of 17.3 vs. 10.7%, respectively.

As expected, the LR does not seem to capture the complex relationship well, being a very simple
algorithm. The PWLR already shows an increase in performance in comparison with LR, with the
algorithms based on DW-MR-signal showing a MAE of 5.08 vs. 2.80 µm for cell size L and 0.386 vs.
0.159 for intracellular fraction fic. The KNN and RFR provide similar quantitative results.

Again, it is visible that the introduction of spatial information via the patch-wise features enhances
performance, for all input types and both outcomes. The algorithms that appear to perform the best are,
similar as for the simulation study, the patch-wise algorithms. Both the PW-RFR and the PW-MLP show
a low error for both metrics, all input types and both outcomes. The predictions by these two algorithms
on the test slice for the three representative samples are shown in Fig. 4.2. The PW-MLP, has, while
close to the ground truth values on average, the tendency to predict very uniform parametric maps,
mainly for fic. This limitation is especially visible for PDXnec, where all contrast from the necrotic parts
is lost. The PW-RFR exhibits this limitation less. For the prediction of L, the PW-MLP’s parametric
maps seem further off than the PW-RFR as well, showing patterns in the map that appear to much
lesser degree, or not at all, in the ground truth (e.g. in the higher L part of PDXinf1 on the right lower
side, which is enlarged for ADC − K, and even more for the ME-estimations). Again, this effect is
somewhat present for the predictions by PW-RFR, but to a much lesser degree.

Based on these visual aspects and the similar quantitative results, it is chosen to continue the rest
of the experimental approaches with the PW-RFR.

4.3.2. Input feature types
No large differences in MAE and REL MAE are observed in the performance of the chosen model,
the PW-RFR, for the three input feature types. Overall, the DW-MR-signal gives the lowest error. The
prediction based on the ME-estimations is never the best, but also does not greatly underperform
the other feature types, especially considering that this type has the lowest number of features, only 4
including the 2 patch-wise features computed with patch size 3× 3.

When considering the predicted parametric maps in Fig. 4.2, differences are visible for the feature
types, even though the quantitative results are similar. The predictions based on the ME-estimations
appear to be slightly noisier than for the other two types. However, when considering the original
estimation by the ME-model in the second column, a large decrease in noise is still achieved by the
PW-RFR.

The algorithm is able to capture differences in cell size L (Fig. 4.2A) between the three samples,
i.e. between small cell infiltration, healthy, and necrosis/inflammation, no matter the used input feature
types.

Mainly in the prediction of fic for PDXnec (Fig. 4.2B), differences in contrast are visible for the types.
Only the algorithm based on DW-MR-signal appears to somewhat be able to capture the streak of low
fic (necrosis) on the right side of the sample. In the other two predictions, on other locations regions
with low fic appear. Interestingly, the prediction based on the ME-estimations appears to invert the
contrast of the estimation by theME-model, showing a high predicted fic on the lower right side vs. a
low estimated fic,ME and vice versa for the upper left side.
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4.4. Discussion
In this experiment, we used three different input feature types, DW-MR-signal, ADC-K, and ME-
estimations, to predict two microstructural characteristics of seven samples of mice livers. For each
sample, a test prediction has been computed. Using these test predictions, we could compute the
MAE and REL MAE in comparison with the ground truth histology-derived maps. Based on these
error metrics, it appeared that the two patch-wise algorithms, PW-RFR and PW-MLP, showed the most
potential. The parametric maps as predicted by these two models were visualized for inspection, and
based on that, the PW-RFR was chosen as the most promising algorithm. This algorithm will therefore
be used in the next chapter, where a clinical study will be executed.

Even though the PW-MLP had the best performance for the simulation study, the predictions for the
real data did not appear as accurate. In the predictions, certain patterns in the maps are observed that
are not present that way in the ground truth, i.e. so called AI-hallicunations. This could be explained
by the lack of sufficient and diverse training samples, further explained in the general discussion in
Chapter 6.

As mentioned, the algorithms perform in general better at predicting intracellular fraction fic than
they do for cell size L. This can be explained by the increased contrast that is visible in the ground
truth cell size maps; the maps for fic exhibit much less variation and are more uniform, making them in
theory easier to predict. The only sample for which there are large contrasts visible in fic is for PDXnec.
Logically, this sample appears in general to be harder to predict for the algorithms. Only the PW-RFR
is able to capture some of the contrast in this sample, while the other algorithms are in general unable
to capture any contrast in PDXnec, predicting instead a uniform, higher, fic, and ignoring the necrotic
parts with lower fic. Again, an increased diversity of the dataset with more data representative of
different tissue types would possibly increase the performance to capture these contrasts (see further
explanation in Chapter 6).

From the quantitative results, it appears as if even the simplest model, LR, already outperforms
the fits of the ME-model. However, when looking at the individual predictions of the folds by the ME-
model, in Fig. 4.2, it appears that the ME-model is able to capture the contrast between WT , i.e.
healthy, and PDXinf1, i.e. small cell infiltration, very well. The LR is not able to do this, and instead
predicts a more uniform, average value, to get as close as possible to the true values.

Finally, the results of each algorithm per fold, i.e. per each test slice, confirm the indication that the
lack of diversity in the dataset could be problematic. As stated, in principle, we have three different
types of tissue available in our set. For both small cell infiltration and necrosis however, we only have
one sample available. Even though we tried to circumvent this problem by ensuring there is always
one representative slice available in the train set (Section 3.2.3, Fig. 3.5B), still, in general, a higher
error appears especially when either PDXinf1 or PDXnec is located in the test set. The only algorithm
that appears to capture the relationship between the input features and these ’special’ microstructure
phenotypes is the PW-RFR, explaining the decrease in mean error over the folds as well.

4.5. Conclusion
From the experiment described in this chapter, we conclude that the PW-RFR algorithm performs the
best for this application, with both high performance in the quantitive results as in the visual analysis. All
input feature types give a quantitatively satisfactory performance, but show differences in the predicted
test slices. The predictions based on the ME-estimations appear the most noisy, but considering the
great reduction in feature dimensionality, the algorithm is still performing well. In addition, this is the
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only input feature type that is independent of the input MR-acquisition protocol. Therefore, this is the
feature type that will be used in the next chapter, where we will test the PW-RFR as developed on the
pre-clinical data on real clinical data.



5
Clinical study

5.1. Introduction
In this chapter results are presented where the best-performing algorithm developed on pre-clinical
data is deployed on in vivo clinical scans of patients with liver cancer. The aim of this chapter is to
investigate the feasibility of using algorithms pre-trained on pre-clinical acquisitions with co-localised
MRI and histology, to predict tissue microstructure in real clinical contexts.

As analysed in the previous experiment, the PW-RFR performed the best of all implemented algo-
rithms. Only the PW-RFR trained on input feature type (iii) can be deployed in this clinical study. For
this purpose, the algorithm will be trained on all the seven pre-clinical samples, combining the training
and test set. The same algorithm settings as described in Section 3.3.1 are utilised. The trained models
are exported and saved for use on the clinical data. As described, we have the parametric maps of cell
size and intracellular fraction as estimated by the ME-model available. The two additional patch-wise
features are formed according to the method of Section 3.2.4. The trained PW-RFR is used to predict
parametric maps of cell size L and intracellular fraction fic for the three patients, based on these input
features. The predictions will be used to answer Research question 4:

Research question 4: Clinical study

What is the performance of the most promising pre-trained algorithm from the pre-clinical study,
when testing on clinical patient data, to predict histological cell size L and intracellular fraction
fic, using parametric maps of cell size and intracellular fraction as computed by a ME-model?

In the next section, the clinical dataset is described. The adapted evaluation procedure is described
in the section after that, since we cannot use the same evaluationmethods as for the pre-clinical dataset.
Finally, the results, a short discussion and conclusion are reported.

5.2. Methods
5.2.1. Dataset
For this clinical experiment, data from three patients participating in an ongoing, prospective phase I clin-
ical trial on immunotherapy treatment in advanced solid tumours are used. Patient demographics and
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Table 5.1: Patient demographics and primary tumour location for the three patients included in the clinical study.

Patient Gender Age Primary tumour
Patient01 F 46 Melanoma
Patient02 M 55 Hepatocarcinoma
Patient03 M 55 Rectal cancer

Figure 5.1: T2w and DW-MRI of the biopsied liver lesions, and the histological image of the biopsied tissue, for
the three patients. On the first row, the T2w image. On the second row, the DW-image, with b = 1500s/mm2

and TE = 75ms. Next to the MR-images, the histological images of the HE-stained biopsies. An example of
the cancer cells, and necrosis if available, is shown for each patient. For A) Patient01, on the DWI, a clear core
of necrosis is visible in the tumour (dark), surrounded by cancer cells (light). This corresponds with the findings
from the biopsied tissue, containing cancer cells and areas of necrosis. For B) Patient02, there are cancer cells
and some necrosis visible as well on the DWI. In the biopsy, two large regions of cancer cells from the tumour are
visible, with an area of necrosis in between. For C) Patient03, no necrosis is visible, but the whole lesion exists of
cancer cells. The lesion remains very bright on the DWI, while the surroundings become much darker. The biopsy
contains only cancer cells, in both lumen and stroma, and no necrosis.

primary tumour locations are provided in Table 5.1. As part of the study protocol, patients underwent
mpMRI with a 3T GE SIGNA Pioneer scanner along multiple time points. An ultra-sound-guided biopsy
was also collected from one of the imaged liver lesions at known radiographic position after baseline
MRI (i.e., before starting treatment). For this study, only the baseline scans were utilised, alongside the
biopsy. The MR-protocol included, among others, anatomical T2w, T1w scans, and DW-MRI. The diffu-
sion imaging acquisition protocol settings are the following: a slice thickness of 6mm and resolution of
2.4mm×2.4mm, TR = 3500ms, b = [0, 50, 100, 400, 900, 1200, 1500] s/mm2, and each b-value being ac-
quired with TE = {75, 90, 105} ms. The diffusion gradient duration and separation (δ and ∆) were: δ =

{0.000, 3.900, 5.200, 9.200, 15.000, 18.200, 21.000} ms and ∆ = {0.000, 27.800, 29.000, 33.000, 28.700,
31.800, 34.700} ms for TE = 75 ms; δ = {0.000, 3.900, 5.200, 9.200, 13.000, 15.800, 18.500} ms and
∆ = {0.000, 27.800, 29.000, 33.000, 37.000, 39.600, 42.300} ms for TE = {90, 105} ms. Examples of
anatomical T2w-images and diffusion images of the biopsied liver lesions are shown in Fig. 5.1.

Unlike for the ex vivo pre-clinical data, this mpMRI data was acquired on patients in vivo. Spatially
matched histological imaging is not possible for this study, and we do not have a voxel-wise ground
truth available for the target. However, an ultra-sound guided biopsy was taken from the lesion imaged
with mpMRI, by an experienced radiologist. The location of the biopsied lesion was segmented on
the MRI. The histological material was processed similarly as the pre-clinical material, using paraffin-
embedding and HE-staining, and digitized using a Hamamatsu C9600-12 scanner (resolution: 0.45µm).
An experienced pathologist visually inspected the images and outlined areas containing either fibrosis,
necrosis, or tumour cells. Additionally, any other tissue types from outside the biopsied lesions were
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outlined. The histological images of the biopsies of all three patients are visualized in Fig. 5.1, indicating
examples of the outlined tissue type areas.

Furthermore, based on these histological images, cell size L and intracellular fraction fic could be
computed using the same procedure in QuPath [48] as described in Section 3.2.1. The only difference
is the scaling factors used to account for tissue shrinkage in the histology. For the in vivo data, we use
the factor 1.1806× to account for the histological preparation, and the factor 1.273× to account for the
bias induced by the 2D sectioning.

Based on the mpMRI, the same ME-model as described in Section 4.2.1, is fitted to the DW-MR-
signal data (based on Eq. (4.2)). Where for the pre-clinical ex vivo data, only acquisitions with b >

1000s/mm2 were used to ensure removal of vascular signal, we set this threshold at b > 100s/mm2 for
this in vivo study. As there is pulsation in this setting, the ADCV ≫ 10µm2

ms , i.e. much higher (due to
perfusion effects), and we can set the b-value threshold thus lower. The same custom-written Python
script is used for the maximum likelihood fitting of the model to the MR-data. This results in parametric
maps with an estimation of cell size and intracellular fraction, i.e. input feature type (iii) as described in
Section 4.2.1.

5.2.2. Evaluation
We cannot compare the predictions voxel-by-voxel to the available ’ground truth’ histological images.
Instead, the mean L and fic are computed over the whole biopsy. We have the segmentations of the
biopsied lesions available on the DW-MR-images. These can be used as a mask for the parametric
maps of theME-estimations, so that we know which voxels belong to the biopsied lesion, and thus for
which voxels the prediction should be analysed. To be able to globally compare the predicted values
with the values as computed over the biopsy, we compute the mean predicted L and fic over all the
values within this biopsy-mask. To compare this performance with the estimation of the ME-model
itself, the mean estimated LME and fic,ME are also computed.

5.3. Results
5.3.1. Visual comparison
As visible from the colour bars in Fig. 5.2, the range of predicted cell size values is much smaller
for the PW-RFR than for the ME-model. No clear patterns are visible in the cell size maps, except
for Patient02. From the biopsy, we know that for Patient02, there is a core of necrosis in the lesion,
surrounded by tumour cells. This contrast is visible in the prediction by the PW-RFR; showing lower
fic in the centre of the lesion and higher fic around the borders. In the estimation of fic,ME , this is
not captured. The same holds for Patient01, where this contrast is captured slightly better by the ME-
model than the PW-RFR. However, also in the prediction by PW-RFR, lower fic in the centre of the
lesion can be detected.

5.3.2. Quantitative comparison
In addition to the visual inspection of the parametric maps, we computed the average cell size and
intracellular fraction for the ME-estimations, the PW-RFR predictions, and the biopsy. These results
are visualized in Table 5.2. For all three samples the PW-RFR predicts on average a cell size L quite
close to the average cell size L as found in the biopsy. Where the ME-model overestimates the cell
size for each patient, the PW-RFR is able to correct this quite well. For intracellular fraction, the ME-
model estimates values slightly closer to the biopsy for Patient01 and 03. Patient02 has a much lower
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Figure 5.2: The results of testing the PW-RFR on three patients, using the ME-estimations as input features.
From top to bottom: the three different patients. From left to right: a high quality T2-weighted anatomical scan,
with the biopsied lesion segmented, the estimated LME , the prediction of L by PW-RFR, the estimated fic,ME ,
and the prediction of fic by PW-RFR.

fic than the others on the biopsied tissue. As was also visible from the visualization in Fig. 5.2, the
PW-RFR is able to capture the lower fic (especially in the centre) better than the ME-model. This
explains that the prediction is on average closer to the biopsy values than that the estimation is.

5.4. Discussion
In this experiment, we attempted to predict parametric maps of microstructural characteristics, in a
clinical in vivo setting, using an algorithm trained on pre-clinical ex vivo data.

As can be seen in Table 5.2, we have found that the predictions are in a realistic range in comparison
with histology-derivedmicrostructure values obtained via biopsy of the lesions. Especially, wewere able
to predict a cell size very close to the histology-derived one, with biopsy vs. PW-RFR: 27.3 vs. 26.4,
25.5 vs. 25.7, 25.7 vs. 26.6µm for the three patients. This indicates that it is possible to pre-train a

Table 5.2: The mean cell size L and intracellular fraction fic as computed over the histological image obtained
from tissue obtained via biopsy, as estimated by the ME-model from DW-MR-signal data, and as predicted from
the parametric maps of MEL and MEfic using a PW-RFR.

Cell size L [µm]
Biopsy ME-model PW-RFR

Patient01 27.3 31.7 26.4
Patient02 25.5 32.3 25.7
Patient03 25.7 29.1 26.6

Intracellular fraction fic [-]
Biopsy ME-model PW-RFR

Patient01 0.842 0.733 0.711
Patient02 0.445 0.857 0.678
Patient03 0.845 0.807 0.709
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model on pre-clinical data, and consequently use it on real patient data, discussed further in the next
chapter (Chapter 6).

As shown in Fig. 5.1, both the lesions of Patient01 and 02 show necrosis in the core of the tumour,
surrounded by cancer cells. Especially in the biopsy of Patient02 (Fig. 5.1), this is clearly visible, also
corresponding with the low (fic = 0.445, the lowest of all patients) as computed from the biopsy. While
in the estimation by the ME-model this is not replicated (0.857, the highest of all patients), the PW-
RFR’s prediction improves this greatly (0.678, the lowest of all patients). The same improvement is
visible in the predicted maps in Fig. 5.2, showing a clear lowered fic in the core of the lesion.

While these results look promising, this is still a very preliminary study. Where we were able to
execute a voxel-by-voxel comparison of the whole parametric map for the pre-clinical study, we could
now only compare the absolute values with the biopsy. As described in the Section 2.1.1, only a
very small part of the lesion is sampled with this method, of which we do not know the exact location.
Therefore, we compared the average predicted values over the whole lesion with those of the biopsy.
Due to the outlining on the histological imaging by the pathologist, we know what kind of microstructure
types are samples in the biopsy, e.g. necrosis, or cancer cells, and we can assume that the biopsied
tissue is representative for the whole lesion. However, as we do not have a complete map available
of the microstructural characteristics, the conclusions we draw about the performance of the algorithm
remain speculative.

5.5. Conclusion
Despite these limitations, our results suggest that it may be feasible to use co-localised MRI-histology
data obtained pre-clinically to train AI-algorithms that predict microstructure from DW-MRI, and then
deploy them on clinical scans obtained in vivo. Nonetheless, further work will be needed to fully assess
the performance of such algorithms and validate their predictions on histological data.



6
General Discussion

The main research objective of this thesis was:

Main research objective

The development of a novel AI-based method to estimate microstructural parameters in the
liver, specifically cell size L and intracellular fraction fic, from DW-MRI data, outperforming the
estimation of a biophysical model.

The main research aim was pursued via three experiments. Firstly, a simulation study was executed
to implement the algorithms, using data for which a clear relationship between the input featuresX and
the targets y was known. Seven algorithms were used, of which four voxel-wise ML (LR, PWLR, KNN,
RFR), one patch-wise ML (PW-RFR), one voxel-wise DL (MLP), and one patch-wise DL (PW-MLP).
From the simulation study, it could already be concluded that the incorporation of patch-wise features
enhances the performance of the algorithms greatly, with the PW-RFR and the PW-MLP showing the
lowest errors, both absolutely and relatively.

In the next experiment, real pre-clinical data was used to answer Research questions 2 and 3.
Based on quantitive evaluation metrics and visual inspections of the predictions in comparison with
the histology-derived ground truth, the PW-RFR was found to be the most promising algorithm, in
correspondence with the results from the simulation study. Furthermore, no large differences were
observed in the performance of the chosen algorithm for the three input feature types, exhibiting only
small differences in the evaluation metrics. The predictions based on the DW-MR-signal replicate the
contrasts from the ground truth slightly better. However, this input feature type is also the most protocol-
dependant, the least interpretable, and has the highest dimensionality, resulting in the most complex
model. The use of either the fitted ADC−K or parametric maps of theME-model causes a reduction
in feature dimensionality.

For our clinical study described in the third experiment however, we were only able to use the
last input feature type; the ME-estimations. This was due to the fact that the pre-clinical and clini-
cal MR-protocol are different, and this is the only input feature type with features (parametric maps of
LME and fic,ME) independent of the input MR-protocol. In this experiment, we exported the PW-RFR,
pre-trained on the pre-clinical data with this input feature type (iii). This PW-RFR was consequently
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deployed on the data of three patients with liver lesions. For these lesions, there was also an ultra-
sound guided biopsy available. The predicted maps of the microstructural characteristics were visually
analysed, and compared with quantitative data obtained via histological images of the biopsied tissue.
The ability to train an algorithm on pre-clinical data and subsequently apply it to clinical data presents
a notable advantage in this study. Spatially-matched data like we have is scarce, and would be even
more challenging to acquire from a clinical setting. Therefore, it is beneficial to leverage a pre-trained
model trained on spatially matched pre-clinical data, allowing for predictions on clinical data without
the need of a histological ground truth. The voxel-by-voxel comparison of spatially matched MRI and
histology maps remains the ideal method for exhaustive histological validation studies, considering
there might be differences in the relationship of the observed DW-MR-signal and microstructure, be-
tween pre-clinical and clinical settings. However, the application of pre-trained models derived from
pre-clinical data to clinical data provides valuable insights, bridging the gap between pre-clinical re-
search and clinical applications. The results of our clinical study are, while promising, preliminary, and
further validation and verification on larger and more diverse clinical datasets would be necessary to
confirm the algorithm’s reliability in clinical contexts.

A number of potential limitations are acknowledged for this thesis and will be discussed in the
following paragraphs. Firstly, the cell size and intracellular fraction as derived from histological images
of the tissue serve as the ground truth for this study. However, using this histological ground truth itself
has certain inherent limitations, specifically arising due to the fact that we compare small 2D sections
of histological material to 3D MRI data. As mentioned, there is a mismatch in spatial scales between
MRI and histology. The MRI slices used in this study have a thickness ranging of 2.2mm, whereas
the histology sections are much thinner, 4µm. As a result, portions of the tissue that contribute to
the measured DW-MR signals may not be included in the histological maps due to the limitations of
histological sectioning. This discrepancy in spatial resolution raises the possibility that certain within-
sample variations observed in the MRI data are not directly reflected in the histology, limiting the ability
to precisely predict the observed microstructural characteristics. The correspondence between the
microstructural characteristics derived from histology and those predicted from DW-MRI data thus has
some degree of variability and uncertainty. This should be considered when interpreting the findings
of this study, as the used histological ground truth, although valuable, may not fully correspond to and
capture the microstructure as imaged on the MRI.

Secondly, as mentioned, the number of samples available for our analyses was limited, despite
being higher than in most studies where co-registered MRI-histology data are used. With no more
than seven samples at hand, it would be challenging to properly train algorithms. To mitigate this prob-
lem, we employ a voxel-wise training approach, resulting in ∼ 15.000 independent training ’samples’.
While this strategy increases the effective number of training samples, it does not address the under-
lying issue of limited diversity within the dataset. Visual inspection of the mouse liver histology by an
experienced pathologist reveals that in practical terms, the 7 samples contained only 3 unique types
of microstructure, namely: i) normal liver structures; ii) infiltration of small malignant cells in between
hepatocytes (lymphoma-like); iii) extensive necrosis and inflammation. These are clearly represented
in samples WT (normal liver), PDXinf1 (small cell infiltration), and PDXnec (necrosis and inflamma-
tion), as shown in Figure 3.1 in Chapter 3. The limited number of microstructures available may have
hampered the algorithm’s ability to generalize and accurately predict the full spectrum of microstruc-
tural characteristics. Future studies should aim to obtain a more diverse and representative dataset,
to enhance the robustness and effectiveness of the predictive models in capturing the full range of
microstructural characteristics.
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In an attempt to improve the data diversity, we decided to slightly adapt the conventional LOO-CV
(see Fig. 3.5 as described in Section 3.2.3), by moving one slice of the test set in each fold back
to the training set, while the one remaining slice was now treated as the test sample. However, this
approach introduces a potential risk of data leakage, since information from the test sample, i.e. the one
slice, is included in the training set. As a result, the algorithms may inadvertently learn and exploit this
leaked information during training, leading to an overestimation of the predictive performance during
cross-validation in the pre-clinical study.

Interestingly, the algorithms seem to be affected in various ways by the remaining scarcity of diver-
sity. Despite this limitation, mainly the PW-RFR appears to exhibit a good performance in predicting
also the underrepresented microstructure types. While the PW-MLP showed a good performance for
the simulation study, the results on the real pre-clinical data were less promising. This observation sug-
gests that the PW-RFR algorithm might possess greater resilience to the issue of the limited diversity.
While both algorithms are naturally affected, the MLP’s more complex architecture makes it particularly
susceptible to the lack of diversity. Consequently, the trained network may struggle to capture the
nuanced features and patterns related to specialized microstructures, potentially leading to overfitting
and the observed exaggeration of certain features that are not present in that way in the output (the
so called AI-hallicunations, as mentioned in Chapter 4). The (PW-)RFR’s reliance on explicit feature
engineering and ensemble learning mechanisms may contribute to its relatively better performance.
This finding emphasizes the importance of dataset diversity and suggests that, while the RFR may be
a more suitable choice for predicting microstructural characteristics from DW-MRI data for this specific
dataset, further investigations are needed to validate and generalize these findings across different
datasets.

In the context of predicting parametric maps from MR-images [29], convolutional neural networks
(CNNs) are often considered the go-to approach due to their effectiveness in capturing spatial de-
pendencies within images. However, in this particular study, utilizing a CNN for prediction becomes
impractical due to the adopted voxel-wise training approach. Typically, CNNs require the entire image
as input for training, which would result in an extremely small training set size given the limited num-
ber of seven samples available. Such a small training set poses a significant challenge for CNNs, as
they rely on a substantial amount of data to learn and generalize complex spatial patterns effectively.
Consequently, the voxel-wise approach was employed to augment the effective training set size and
overcome the limitation of limited data. The large disadvantage is of this approach is that all spatial
information is lost, treating each voxel totally independent. Naturally, however, a relationship exists be-
tween the microstructure of neighbouring voxels and incorporating this could improve the performance
of the prediction [56]. In an attempt to do this, we included patch-wise features for two of the algo-
rithms as an alternative approach to use spatial information. The finding that these algorithms showed
the highest performance supports the hypothesis that a CNN might be a suitable algorithm for this
application, granting availability of a sufficient amount of training data.

Finally, another limitation of this study relates to the method used for hyperparameter optimization
in the implementation of the algorithms. The simulated dataset was employed to explore and evaluate
various hyperparameter configurations for some of the algorithms. However, it is important to note that
this hyperparameter optimization process was not conducted extensively or exhaustively. Instead of
performing a comprehensive grid search or systematically exploring the entire hyperparameter space,
a limited set of hyperparameters was tested, and the optimal hyperparameters were chosen based on
their performance on the simulated dataset. These chosen hyperparameter configurations were then
utilized for the algorithms’ application on the real pre-clinical and clinical dataset. Consequently, this
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approach to hyperparameter optimization may not fully capture the optimal settings for each algorithm
on the real data. Potentially, better hyperparameter configurations exist, which could improve the pre-
dictive performance. The performance of the algorithms in this study can therefore be considered as
a so-called baseline performance. Future studies should consider employing more rigorous and sys-
tematic techniques for hyperparameter optimization, such as grid search or more advanced methods
like Bayesian optimization or random search, to thoroughly explore the hyperparameter space and
identify the most suitable configurations. Finally, this is not only a limitation for the hyperparameters
of the DNN, but also for the chosen architecture in general. We now utilise a relatively simple MLP-
architecture, leaving many promising architectures unexplored, such as Recurrent Neural Networks
(RNNs) and Transformers. The possibility that the use of these architectures could result in a better
performance is present, but is out of the scope of this thesis.

6.1. Conclusion
In summary, this thesis aimed to develop an AI-basedmethod for estimating microstructural parameters
from DW-MRI data. The PW-RFR algorithm demonstrated a promising performance in both simulated
and real pre-clinical data, outperforming other algorithms. The ability to deploy models that have been
trained on pre-clinical data to real-world clinical contexts provided valuable insights, bridging the gap
between research and clinical applications. It provided promising results pointing towards the feasi-
bility of developing tools that learn how to predict histopathological characteristics from DW-MRI on
large databases of pre-clinical MRI-histology data. However, the results of the clinical study presented
in this thesis are preliminary, and further validation on larger and diverse datasets would be required.
Limitations include spatial resolution mismatch between MRI and histology, limited data availability
(specifically in diversity of microstructure types), and the need for more extensive hyperparameter op-
timization. Future research should focus on addressing these limitations and exploring advanced DL
architectures such as CNNs, RNNs, and transformers. Overall, this thesis provides insights into the
development of AI-based methods for liver microstructural parameter estimation based on DW-MRI.
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Figure B.1: The test predictions of (A) cell size L and (B) intracellular fraction fic, based on simulated data with SNR = 20, for from top to bottom WT , PDXinf1,
PDXnec, and for from left to right predicted by Linear Regression (LR), Piecewise Linear Regression (PWLR), KNN (K-Nearest Neighbour), Random Forest Regression
(RFR), Patch-wise RFR (PW-RFR), Multi-Layer Perceptron (MLP), and PW-MLP.
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Figure C.1: The test predictions of (A) cell size L and (B) intracellular fraction fic, based on feature type (i) the DW-MR-signal, for from top to bottom WT , PDXinf1,
PDXnec, and for from left to right the ground truth, the estimation by the ME-model, and the prediction by Linear Regression (LR), Piecewise Linear Regression (PWLR),
KNN (K-Nearest Neighbour), Random Forest Regression (RFR), Patch-wise RFR (PW-RFR), Multi-Layer Perceptron (MLP), and PW-MLP.
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Figure C.2: The test predictions of (A) cell size L and (B) intracellular fraction fic, based on feature type (ii) ADC−K, for from top to bottomWT , PDXinf1, PDXnec, and
for from left to right the ground truth, the estimation by theME-model, and the prediction by Linear Regression (LR), Piecewise Linear Regression (PWLR), KNN (K-Nearest
Neighbour), Random Forest Regression (RFR), Patch-wise RFR (PW-RFR), Multi-Layer Perceptron (MLP), and PW-MLP.
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Figure C.3: The test predictions of (A) cell size L and (B) intracellular fraction fic, based on feature type (iii) the ME-estimations, for from top to bottom WT , PDXinf1,
PDXnec, and for from left to right the ground truth, the estimation by the ME-model, and the prediction by Linear Regression (LR), Piecewise Linear Regression (PWLR),
KNN (K-Nearest Neighbour), Random Forest Regression (RFR), Patch-wise RFR (PW-RFR), Multi-Layer Perceptron (MLP), and PW-MLP.
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